
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1988

A Parallel Implementation of Stickel's AC Unification Algorithm in A Parallel Implementation of Stickel's AC Unification Algorithm in

a Message-Passing Environment a Message-Passing Environment

David John Kleikamp

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kleikamp, David John and Wilkerson, Ralph W., "A Parallel Implementation of Stickel's AC Unification
Algorithm in a Message-Passing Environment" (1988). Computer Science Technical Reports. 76.
https://scholarsmine.mst.edu/comsci_techreports/76

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/76?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A PARALLEL IMPLEMENTATION OF STICKEL'S AC
UNIFICATION ALGORITHM IN A MESSAGE-PASSING

ENVIRONMENT

D. J. Kleikamp* and R. W. Wilkerson

CSc-88-11

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314)341-4491

*This report is substantially the M.S. thesis of the first author,
completed, December 1988.

ii

ABSTRACT

Unification algorithms are an essential component o f automated reasoning and

term rewriting systems. Unification finds a set of substitutions or unifiers that, when

applied to variables in two or more terms, make those terms identical or equivalent.

Most systems use Robinson's unification algorithm or some variant o f it. However,

terms containing functions exhibiting properties such as associativity and

commutativity may be made equivalent without appearing identical. Systems

employing Robinson's unification algorithm must use some mechanism separate from

the unification algorithm to reason with such functions. Often this is done by

incorporating the properties into a rule base and generating equivalent terms which

can be unified by Robinson's algorithm. However, rewriting the terms in this manner

can generate large numbers of useless terms in the problem space of the system.

If the properties of the functions are incorporated into the unification algorithm

itself, there is no need to rewrite the terms such that they appear identical. Stickel

developed an algorithm to unify two terms containing associative and commutative

functions. The unifiers (there may be more than one) are found by creating a

homogeneous linear Diophantine equation with integer coefficients from the terms

being unified. The unifiers can be constructed from solutions to this equation.

The unifiers generated from one solution of the Diophantine equation are

independent o f any other solution to the equation. Therefore, once the Diophantine

equation has been solved, the unifiers can be calculated from the solutions in parallel.

We have implemented Stickel's AC unification algorithm to run in parallel on a local

area network of Sun 4/110 workstations in an effort to improve the speed o f AC

unification.

IV

TABLE OF CONTENTS

Page

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

LIST OF ILLUSTRATIONS ..vi

LIST OF TABLES ... vii

I. IN T R O D U C T IO N .. 1

A. STRUCTURE .. I

B. GOALS AND MOTIVATION .. 2

II. DEFINITIONS ... 4

A. TERMS .. 4

B. SUBSTITUTIONS... 4

C. PREDICATES AND FIRST-ORDER LOGIC 6

III. U N IF IC A T IO N .. 7

A. APPLICATIONS ... 7

B. ROBINSON UNIFICATION .. 9

C. E -U N IF IC A T IO N 12

IV. STICKEL'S AC UNIFICATION ALGORITHM14

A. THE VARIABLE-ONLY CASE ..14

B. GENERAL CASE ..17

C. SOLVING THE DIOPHANTINE E Q U A T IO N 18

1. Huet's Algorithm 18

2. Lankford's Algorithm ... 19

3. Zhang's Algorithm ..20

V

V. PARALLEL COMPUTING ... 22

A. PARALLEL HARDWARE ...22

B. PARALLEL SOFTWARE ...23

C. ARGONNE'S TOOLS FOR PORTABLE PARALLEL
PROGRAMS ..25

1. The Shared Memory Model ...26

2. The Message Passing Model ...28

VI. SEQUENTIAL IMPLEMENTATION 30

A. DATA STRUCTURES ... 30

B. ROBINSON'S UNIFICATION ALGORITHM31

C. STICKEL'S ALGORITHM ...32

D. OTHER CONSIDERATIONS ..32

VII. PARALLEL IMPLEMENTATION ...34

A. OPPORTUNITIES FOR EXPLOITING PARALLELISM . . . 34

B. IMPLEMENTATION ..35

VIII. RESULTS ..39

A. OBSERVATIONS ...39

B. ANALYSIS OF SEQUENTIAL PROGRAM 40

C. TOPICS FOR FUTURE RESEARCH ... 41

REFERENCES .. 44

V I T A ..46

APPENDIX: Source Listing - Parallel Version ..47

Figure Page

1 The Composition of Two S ubstitu tions... 5

2 Unifiers and mgu's ... 7

3 Robinson's Unification Algorithm .. 10

4 An example o f Robinson's unification a lg o rith m 11

5 Stickel's Variable-Only AC Unification A lg o rith m 16

6 Stickel's General AC Unification Algorithm .. 18

7 A Monitor For Sending and Receiving Messages 27

8 AC Unification Algorithm - Master 37

9 AC Unification Algorithm - S la v e ... 38

vi

LIST OF ILLUSTRATIONS

Tabic Page

I BASIS OF SOLUTIONS TO DIOPHANTINE EQUATIONS 15

II SIZE LIMITATIONS FOR UNIFICATION PROBLEMS 33

III AC UNIFICATION TIMES .. 39

IV UNIFICATION TIMES VS. FORTENBACHER 41

V UNIFICATION TIMES VS. CHRISTIAN & LINCOLN 42

Vll

LIST OF TABLES

1

I. INTRODUCTION

A. STRUCTURE

Chapter II contains definitions of terms used throughout the paper. Additional

definitions are presented as needed in the remainder of the paper.

In Chapter III, we describe unification, a process which, through substitution,

makes two or more terms equal. Applications of unification are discussed and

Robinson's algorithm for finding the most general unifier of a set of terms is

presented. Finally, we describe E-unification, in which expressions are made

equivalent modulo associativity and commutativity.

In Chapter IV, Stickel's AC unification algorithm is examined. This algorithm

finds unifiers of functions that are associative and commutative. The algorithm

consists of two parts, the first unifies terms in which all of the function's arguments

are variables. The second part, which makes use of the first variable-only part,

unifies terms in which the arguments can be any term. Chapter IV concludes with a

discussion of methods to solve a homogeneous linear Diophantine equation. Stickel's

algorithm requires finding a basis of solutions to this type o f equation.

In Chapter V, we discuss parallel programming. The two basic types of parallel

computing architectures are discussed. Shared memory machines have random-access

memory available to several processors, whereas other multiprocessors communicate

through message-passing. We discuss considerations and obstacles in developing

software capable of exploiting parallel hardware as well as tools designed to facilitate

parallel software development.

2

Chapters VI and VII deal with our sequential and parallel implementations o f

Shekel's algorithm respectively. In Chapter VI, we discuss the data structures used,

the modifications we made to Robinson's and Stickel's algorithms, and various other

details of our sequential program. In Chapter VII, we discuss where in our program

parallelism could be exploited, the types o f messages the processes use to

communicate with each other, and how they interact with one another.

In Chapter VIII, we compare the performance of the sequential and parallel

programs. We find that our attempt to increase execution speed through distributing

the program over a local area network failed. However, we do not see this as an end

to our research and suggest further directions the research can take.

Appendix A contains the source code for the parallel implementation of our

program. The source for the sequential program is not included since nearly all o f it

is duplicated in the parallel version.

B. GOALS AND MOTIVATION

In the heart of most automated reasoning systems is a unification algorithm.

Every step of reasoning involves a number of unifications to be attempted. An

increase in the speed of unification will result in a considerable increase in the speed

of the automated reasoning system as a whole.

Unlike standard unification in which two terms have a t most one most general

unifier, AC-unification may produce a large set of unifiers which may or may not be

minimal. These unifiers each correspond to a solution of a homogeneous linear

Diophantine equation representing the arguments of the terms being unified and the

number of occurrences o f these arguments. The unifier corresponding to one solution

is independent o f any of the other solutions. This appears to be a good opportunity

to exploit parallelism. By letting a different processor find the unifiers for a given

3

solution of the Diophantine equation, the elapsed time needed to find the unifiers

should be reduced.

Although no true multiprocessor machines are easily accessible to us at the

present time, it is possible to implement a parallel program on a local area network of

workstations. We implemented a parallel version of Stickel's AC unification

algorithm on six Sun 4/110 workstations interconnected by a CSMA/CD LAN. The

processes running on each machine communicate by passing messages to one another

across the network.

4

II. DEFINITIONS

A. TERMS

Variables arc designated by the names u, v, w, x, y, z, u,, v,, w„ x„ y, and z, for

/> 0 . Function symbols are designated by the names +, x , f g, h, f , and A, for

i > 0. Constants are designated by the names a, b, c, d, e, aif b„ c„ d(and e, for

/> 0 .

A term is defined recursively as follows:

(1) A variable is a term.

(2) A constant is a term.

(3) I f / i s a function symbol and /„ ..., tn are terms, J[tl t ..., /„) is a term.

(4) Only those syntactic structures defined by (l)-(3) are terms.

B. SUBSTITUTIONS

A substitution represented by the names 6, X, a, 0„ 2, and ot where / > 0, is a

function mapping variables into terms. It is written 9 — {v, tu ..., v„ <- tn} where

n > 0. Since a substitution is a mapping, the v/s are distinct such that v, ^ vy for / ¥= j.

The empty substitution is represented by e.

A substitution 6 is applied to a term t by simultaneously replacing every variable

in t that is in the domain o f 6 by the corresponding term. We write td to represent 6

applied to t.

For substitutions X = {x, ♦- s„ ... s j and 8 = (y, /„ ... ,y m *- /„}, the

composition of X and 6, written X°0 is defined X°8 = {x, <- s ,0 ,..., x„ +- sn8) 1J

11 y, * x, for I ^ j < n). To construct the composition, we first apply

6 to each term in the range of X. We then append to X each component^, <- /, e 8

5

such that j>, is not in the domain of X. If any trivial components of the form x< - x

remain, they can be removed from the resulting substitution. Figure I contains an

example.

Let = {x *-y, w <-J{y, z), u <- v}

Let 0 = {y *- x, z *- g(x, a), u b)

Find the composition X°6.

We first apply 9 to the range o f X.

{x<-x, w *-/[x, g(x, a)), u* -v)

Next, we append the components of 6 with unique domain variables.

[x Jr, w *~fyx, g(x, a)), u<-v, y < -x , z ■*- g(x, a)}

Removing the trivial components gives us the composition.

X°9 = {w g{x, a)), u <- v, y <- x, z *- g(x, a)}

Figure 1. The Composition of Two Substitutions

The effect o f applying the composition X°6 to term t is the same as first applying

X to / and then applying 6 to that result. Hence, t(X°6) = (tX)d. It is easily shown

that for any substitution X, c°X = X°z — X.

A term s is an instance of a term t, and t is a generalization of s if there exists a

substitution 6 such that id = s.

6

C. PREDICATES AND FIRST-ORDER LOGIC

A predicate is a constant or function whose range is the set {TRUE, FALSE).

A literal is either (I) a predicate or (2) the negation o f a predicate. A literal of

the first form is called a positive literal and a literal o f the second form is called a

negative literal.

A clause is a disjunction of literals and an assertion is a conjunction o f literals.

7

III. UNIFICATION

Unification is a pattern matching process in which two or more terms are made

equal by substitutions of their variables. A set of terms is said to be uniftable if there

exists a substitution which, when applied to each of them, makes them equal. This

substitution is called a unifier. A unifier n is called a most general unifier or mgu o f a

set o f terms if, for every unifier a of the set, there exists a substitution A such that

li°A = a. Figure 2 gives an example.

Let q =J{x, a) and t2 = fy , z).

The number of unifiers is infinite and include:

(1) { * a, y < - a , z <- a]
(2) { x * ~ b , y * - b , z * - a]
(3) z *- a]
(4) z * - a)

Unifiers (3) and (4) are mgu's and are, in fact, identical modulo variable
renaming. Since both x and y are replaced by the same variable, the name
o f the variable is arbitrary.

Figure 2. Unifiers and mgu's

A. APPLICATIONS

Unification has applications in several areas including automated theorem

proving, expert systems, automated term rewriting systems, and logic programming.

In automated theorem proving systems, expert systems, and logic programming

systems, information known to the system is represented as a set of clauses. In order

to derive new facts, two or more clauses are combined in such a way that a new

clause is formed. The most common way of doing this is using a rule called resolution

8

C/?o65]. Using resolution, two clauses, one containing a literal and the other

containing its negation, are appended, removing the literal and its negation. The

following example illustrates this.

P\Q
-^P \R

Q \R

I f the literals appearing in both clauses do not match exactly but are unifiable,

we can combine the two clauses in a similar manner, applying the unifier to the other

literals in the clauses. This is illustrated below.

M \ g (x)
)\h (b)

S(a) I Kt>)

Here J[x) is unified with/(a) resulting in the unifier {x <- a}. This unifier is applied to

g(x) and h(b).

Term rewriting, which is also critical to automated theorem proving, is a

technique in which terms are replaced with equivalent, and hopefully simpler, terms.

For instance, a term rewriting system may replace the term cos(x) tan(x) by sin(x).

Rewriting systems contain rewrite rules which consist of two terms. Terms are

rewritten by matching a term with one half of a rewriting rule. Matching is a form of

unification in which only the variables of one term, in this case the one in the

rewriting rule, can be substituted into. If the terms match, the unifier is applied to

the second half of the rewrite rule and the result is a term equivalent to the original

one. For example, let J[x,J{y,z))->f{J{x,y),z) be a rewrite rule. Given the term

A a>Ag(a’ 6).c)). wc can match the term with the left side o f the rewrite rule giving us

the substitution {x <- a, y* -g (a ,b), z *- c}. Applying the unifier to the right side o f

the rewrite rule, we get AAa> gia< ^)), c) which is equivalent to the original term.

9

Rewrite rules may be applied to subterms imbedded in larger terms. For

instance,the term J{a, + (b, 0)) can be simplified using the rewrite rule + (x, 0) -»■ x

resulting in the term /{a, b).

B. ROBINSON UNIFICATION

The concept o f unification dates back to the introduction of Herbrand's theorem

E //e30]. However, it was not until Robinson C#065] presented his landmark paper

on resolution as a theorem-proving tool that there was an efficient algorithm for

finding a unifier. Almost all theorem-proving and term-matching systems to date use

Robinson's algorithm or some extension of it.

In order to present Robinson's unification algorithm, we make the assumption

that a function symbol is used exclusively for some n-ary function. That is to say, if

some function symbol is used to denote a function with 4 arguments, it may not be

used to denote a function with 3 arguments elsewhere. We also assume that there is

a lexical ordering o f all symbols such that the symbols representing variables appear

before those representing functions or constants.

We must also introduce an additional definition. Let A be a set o f terms. We

call B the disagreement set o f A where B is the set of all subterms of the terms in A

which begin at the first symbol position at which not all the terms of A have the same

symbol. For example, let A = {/(x,g(*,.K)), A x >z)i A x > K a> £))}• The disagreement

set o f A is {g(x,y), z, h(a, b)). We can see that the disagreement set o f A is empty if

and only if A is empty or a singleton.

We extend the definition o f applying a substitution to a set of terms such that

{/„ ..., t„}6 = (f,0 ,..., tnd}. Hence, if Q unifies A, Ad is a singleton.

10

Robinson's unification algorithm is shown in figure 3.

Step 1. Set a0 = c and k = 0, and go to step 2.

Step 2. If Aak is not a singleton, go to step 3. Otherwise, set oA = ak
and terminate.

Step 3. Let Vk be the earliest, and Uk the next earliest in the lexical
ordering of the disagreement set Bk of Aak. I f Vk is a variable, and does
not occur in Ukt set ok+1 = ak°{Vk«- Uk}, add 1 to k, and return to step 2.
Otherwise, terminate.

Figure 3. Robinson's Unification Algorithm

Simply stated, Robinson's algorithm begins with an empty unifier p. If the set

of terms A is a singleton, p is the most general unifier and the algorithm terminates.

Otherwise, it scans the terms until it finds a symbol which is not the same in all the

terms. It then considers the subterms beginning at this symbol. It chooses two such

subterms. (There may or may not be more.) If one of these subterms V is a variable,

it checks if the variable occurs in the second subterm U. I f it does, there is no unifier

and the algorithm terminates. This is called the occurs check. Otherwise, V is

replaced by U in A and p is composed w'ith {F<-U}. If neither subterm is a

variable, there is no unifier and the algorithm terminates. I f the algorithm has not

yet terminated, it repeats with A and p updated. Figure 4 contains an example.

Robinson's algorithm will always terminate and, if a set of terms is unifiable, it

will find the most general unifier. This algorithm, however, could require exponential

time due to the occurs check. Several methods have been devised to improve the

efficiency of Robinson's algorithm. In fact, the logic programming language

PROLOG does not implement the occurs check at all. It is up to the PROLOG

programmer to ensure that a term will not be unified with a variable that occurs in

11

Let A = [f{x, g(y, b), £(>, c)), A s ia, u),u,g{b, c))}.

For k — 0:

o0 = e

Ao0 = {f[x, g(y, b), g(y, c)), J[g{a, u), u, g(b, c))}

B0 = {*, g{a, «)}

For k = 1:

<r, = oa°{x <- g(a, u)} = {x<- g(a, «)}

Aox = {/fe(«> «), £ 0 , b), g(y, c)), J[g{a, u), u, g(b, c))}

Bi = {g(y,b), «}

For k = 2:

a2 = £7,°{m <- £(y, b)} = {x+- g(a, g(y, b)), u <- g{y, b)}

Ao2 - {f[g(a, g(y, b)), g(y, b), g{y, c)), Jlg(a, g(y, b)), g(y, b), g(b, c))}

Bi= {y, b}

For k = 3:

* 3 = a2°{y *-b} = {x<r- g(a, g(b, b)), u *- g(b, b), y <- b)

Ao3 = {f{g(a,g(b,b)),g(b,b),g(b,c))}

Since Aa3 is a singleton, o3 is the mgu of A.

Figure 4. An example of Robinson's unification algorithm

within the term itself. The trade off, of course, is faster execution time of PROLOG

programs.

12

C. H-UNIFICATION

In theorem-proving and term-matching applications, we often work with

functions which have properties such as associativity, commutativity, identity or

idempotencc. For instance, if the function / is commutative, the terms J[a, x) and

f[b ,y) will not unify under ordinary unification, although the substitution

{x*~ b, y <- a) will make the terms equal under the commutative property.

One solution to this problem is to build into the rule base of the system,

rewriting rules that will generate every equivalent expression for the terms with regard

to the property or properties belonging to each function. Unfortunately, this strategy

may generate an excessive amount of useless clauses which will impede the efficiency

of the system.

A more elegant solution is to build these properties into the unification

algorithm. This method has the advantage of unifying equivalent terms without

having to rewrite the terms in a form in which they unify under ordinary resolution.

This greatly decreases the number of intermediate clauses used in solving a problem.

A disadvantage is that for every property or set of properties, a new algorithm must

be developed. For instance, a separate algorithm is needed for functions which are

associative only, commutative only, or both associative and commutative. This type

o f unification is called E-unification where E represents the equations or axioms

defining the property or properties. Hence, AC-unification is unification under the

associative and commutative properties. In the context o f E-unification, ordinary

Robinson unification is called null-E unification.

Unlike ordinary or null-E unification, E-unification does not guarantee a single

mgu. A set of unifiers {0,... 6„} is said to be complete if for any unifier a, there exists

1 < i < n and X such that 6°X = o. The set o f unifiers is minimal if for 1 < i< n ,

l < j < n and / A j , there does not exist X such that 0°X = 0r It is not uncommon for

13

a minimal, complete set of unifiers of two relatively short terms to contain hundreds

or even thousands of unifiers.

Consider the associative and commutative function / . The minimal, complete

set of unifiers for the terms J[x, a) and J[u, b, v) is

{v «- a, x b)}

{u<r-a, x <r-J[b, v)}

{u z,), x *-J[zu b, v)}

{v z2), x <-j{u, b, z2)}

Here, z, and z2 are variables not in the original terms. These are called introduced

variables.

It should be noted that since / is associative, the term J[u, b, v) in the previous

example could have been written as J{/[u, b), v) or J{u,f[b,v)). Removing nested

function symbols in this manner is called flattening.

14

IV. S T IC K E L 'S AC U N IFICA TIO N A L G O R ITH M

Stickel CS/81] presented an algorithm for unifying two terms whose function is

associative and commutative. Because associative terms can be flattened, we assume

the associative and commutative (AC) function can have an arbitrary number o f

arguments. AC unification is also known as bag unification and can be thought o f as

unifying two multisets since the terms can be flattened and are order-independent.

To unify the terms, they are first flattened and arguments common to both are

removed from both terms. Removing the common arguments may eliminate the

generation of unifiers that, although correct, are less general than other unifiers. For

instance, if the common argument g(x) is not eliminated from the terms, fg (x), g(a))

and fg(y), g(x)) whose most general unifier is {y<-a}, unification may result in the

additional generation of the unifier [x <- a, y <- a).

Stickel first presents an algorithm for unifying two AC terms whose arguments

are all variables. This algorithm, solving the variable-only case, is used by Stickel's

general-case algorithm which unifies any two AC terms.

A. THE VARIABLE-ONLY CASE

In the case that all arguments are variables, to unify the terms f x {, ..., jrJ and

f y „ ... ,y m) we assign each variable a term of the form t, whose function symbol is not

/ or a term of the fo rm er ,,..., tk). For such an assignment to be a unifier, each term

r, must appear an equal number of times in each term. Let sx = f x , jr.y) and

s2 = f u , v, v, w). 6 = (x *- a, y * - fb , b), u<- a, v <- b, w «- a) is a unifier o f s, and s2

since s f = sfi — f a , a, b, b).

15

Each term /, in the substitution must conform to the homogeneous linear

Diophantine equation

in which a, and bk represent the number of occurrences of the j A and kA variable in the

first term and second terms, respectively, and xy and yt represent the number o f times

r, appears in the substitution of the j* and k variable in the first and second terms,

respectively.

For instance, the equation corresponding to the terms and s2 is

2x, + x2 = y { + ly2 + yv Nonnegative integral solutions to this equation can be used

to represent unifiers since each variable can be assigned a nonnegative integral

number of occurrences of each term. Although the number of solutions to a

homogeneous linear Diophantine equation is infinite, we can find a finite set o f basis

solutions such that each solution is a linear combination of these basis solutions.

Table I contains the basis solutions to the above Diophantine equation.

m n

Table I. BASIS OF SOLUTIONS TO DIOPHANTINE EQUATIONS

x y u v w

0 1 0 0 1
0 1 1 0 0
0 2 0 1 0
1 0 0 0 2
1 0 0 1 0
1 0 1 0 1
1 0 2 0 0

Zl

Z3

h

16

Associated with each basis equation is an introduced variable z,. For each

combination of basis equations such that there is at least one nonzero coefficient

corresponding to each original variable, we can construct a unifier. The term

replacing each variable is made of the introduced variables associated with the basis

equations. The coefficient corresponding to an original variable and an introduced

variable determines the number of times the introduced variable is represented in the

term replacing the original. For instance, the unifier generated from basis equations

3, 4 and 6 is {jr <-./(z4, z6), y h), « z«, v«- z3. w 2 4,.z6)}. The

variable-only algorithm is shown more formally in figure 5.

1. Eliminate common terms.

2. Form an equation from the two terms where the coefficient o f each
variable in the equation is equal to the multiplicity of the corresponding
variable in the term.

3. Generate a basis of nonnegative integral solutions to the equation.

4. Associate with each solution a new variable.

5. For each sum o f the solutions (no solution occurring in the sum more
than once) with no zero components, assemble a unifier composed o f
assignments to the original variables with as many o f each new variable as
specified by the solution element in the sum associated with the new-
variable and the original variable.

Figure 5. Stickel's Variable-Only AC Unification Algorithm

17

B. GENERAL CASE

To find the unifiers for AC terms with arbitrary arguments (which may be AC

functions, ordinary functions, constants or variables) we create two new terms called

the variable abstraction of the original terms by replacing each distinct argument with

a new variable. For instance, the variable abstraction of J[a,a,x) and J ly ,y ,b) is

J[xu x„ x2) and j{yuy uy j with the substitution {x, <- a, x2*~ x, y x <-y, y2 b}.

We next use the variable-only algorithm to find the unifiers to the variable

abstraction. For efficiency, we introduce additional constraints for generating the

variable-only unifiers. Any unifier which assigns a nonvariable to an argument

corresponding to a nonvariable in the original terms is eliminated. Likewise any

unifier which assigns the same variable to two arguments corresponding to arguments

in the original terms that obviously will not unify are discarded. In the above

example the unifiers are

(1) {x, «- z4, x2 <- z„ yx *- z4, y2 <- z,}
(2) {x, <- z4, x2 <-/izi> z2). Li z*)> y 2

The last step is to unify each of these unifiers with the substitution

corresponding to the variable abstraction. In this example, this is the unifier

{x, «- a, x2 *— X, y x <r~y, y2 b}.

This gives us the following results.

(1) {x<-b, y<r-a)
(2) *~Ab> h, h), y «)}

Figure 6 contains Stickel's general AC unification algorithm. Note that this

algorithm may be called recursively in step 3 for terms with AC functions and that

Robinson's unification algorithm is called for all other terms.

18

1. Form generalizations (the variable abstraction) of the two terms by
replacing each distinct argument by a new variable.

2. Use the algorithm for the variable-only case to generate unifiers for the
generalizations of the two terms. The variable-only-case algorithm may be
constrained to eliminate the generation of unifiers assigning more than one
term to variables whose value must be a single term, and the generation of
unifiers which will require the later unification of terms which are obviously
not unifiable.

3. Unify for each variable in the substitution from step 1 and the unifiers
from step 2 the variable values and return the resulting assignments for
variables o f the original terms. This is the complete set of unifiers o f the
original terms.

Figure 6. Stickel's General AC Unification Algorithm

C. SOLVING THE DIOPHANTINE EQUATION

Stickel's AC unification algorithm requires a basis of solutions for a

homogeneous linear Diophantine equation with integer coefficients of the form

m n

<■=i j=i

Several algorithms have been developed to generate such a basis.

1. Huet's Algorithm. Huet developed an algorithm which begins with

the trivial (all zero) solution and generates basis solutions by enumeration. His

algorithm determines bounds which provide stopping conditions for the enumeration.

Huet proves that any solution, such that some jc, is greater than the largest bj or

likewise some ys is greater than some a„ is nonminimal. Huet also shows that for any

1 < i < m and 1 < j < n, where lem,y is the least common multiple o f a, and bJt a

19

solution such that jc, = lcm<y/a, and yt = lcm,y/bj and all other coordinates 0, is minimal.

Therefore, any solution in which all coordinates are greater than or equal to the

respective coordinates of any of these solutions is nonminimal. Using these

constraints, Huet constructs bounds to limit the enumeration. Each potential

solution within these bounds is checked whether it is a solution and that it is not

greater than any solution already found.

2. Lankford's Algorithm. Lankford [L a87] developed an algorithm which uses

elementary row operations on a matrix to generate a basis of solutions. By keeping

the matrix irredundant, Lankford ensures the basis formed is minimal.

Lankford represents the homogeneous equation as

m n

'=1 7=1

The norm of an m + n-tuple 5 is defined as

m n

IISI! = Y f f r - Y j^ + J ■
i= 1 J= 1

We define A to be the set o f all m+n-tuples S such that 1 < i < m , s, = 1 and all

other coordinates are 0. Likewise, B is the set of all m + n-tuples 5 such that

m + l < i < m + n, s, = 1 and all other coordinates are 0.

20

Lankford's algorithm iteratively finds the sets Xk, Pk, Nk, and Z*. The initial

conditions are

X] = the empty set,

PX = A,

N x = B,

Z 1 = the empty set.

The inductive definition of the subsequent generations is

X*+1 = (^ + A r*)U (fl+ />*),

= {S I S e X k+l, ||S|| > 0, and 5 is irreducible relative to Z k},

Nk+l = {S | S e X k+i, ||S|| < 0, and S is irreducible relative to Z k],

Z k+1 = Z k U {S | 5 e X k+' and !|S|| = 0}.

In the above definition, S is reducible relative to Z k if there exists some Z e Z* such

that each coordinate of X is greater than or equal to the corresponding coordinate of

The algorithm terminates when Pk and Nk are empty. When this occurs, Z k

contains an irredundant basis.

3. Zhang's Algorithm. Zhang [_Zh%l~\ developed a very efficient algorithm

which finds the basis solutions to a homogeneous linear Diophantine equations in

which several coefficients are l's. In practice, many of the Diophantine equations

appearing in AC unification problems are of this form. The simple case solves

Diophantine equations in which all the coefficients on one side of the equation are

l's. This algorithm has the additional asset that intermediate results can be stored

and need not be recalculated every time they are needed. The general case solves

equations which have two or more 1-coefficients regardless of where they are in the

21

equation. Zhang's algorithm reduces the equation to smaller equations with only one

1 -coefficient and uses some other algorithm (possibly Huet's or Stickel's) to solve

them. The smaller equations will generally require less time to solve than the original

equation.

Zhang's simple case algorithm considers Diophantine equations o f the form

Zhang defines a set C(m, k) = {(&„ ..., km) \ k{ H----- h km = k) and a vector e{ which is a

vector o f length n such that all components are 0 except the component is 1. The

basis o f the Diophantine equation is the set of vectors X = (x „ ..., x j and

Y — (y.,... ,y„) such that 1 < j < n , X e C(rr.,j), and Y = e{. Once C{m,j) is computed,

it can be stored and used in solving other equations.

Zhang uses the same concept to simplify finding the basis solutions to

Diophantine equations having more than one 1-coefficient, with neither side

containing all 1-coefficients. For the details of this algorithm see [Z /t87 j.

m n

22

V. PARALLEL C O M PU TIN G

Most computer programs today are sequential. They arc structured so that one

instruction is executed after another in a fixed sequence on a single processor. In

recent years, computer hardware technology has made it possible for several

processors to be connected in such a way that they can be executing simultaneously

and can communicate with each other when necessary. Programs are being designed

to distribute their workload so that tasks that are relatively independent o f one

another's results can be executing at the same time on different processors.

A. PARALLEL HARDWARE

The two major categories of parallel hardware are the Single Instruction Multiple

Data or SIMD machines and the Multiple Instruction Multiple Data or M IM D

machines. A SIMD machine consists of a number of processors which execute the

same instruction simultaneously on separate data elements. For instance, to add two

m x n matrices, the SIMD machine may execute an add instruction on m x n different

processors, each adding the elements at a different position in the two matrices and

storing the result in a third matrix. Of course, if there are less than m x n processors,

the problem is partitioned into smaller pieces and the program would add each piece

one after another.

A M IM D machine, on the other hand, can be visualized as several autonomous

sequential machines. Each processor can either have its own local memory which it

alone can access or processors may share a common memory. A shared memory

machine has some memory which can be accessed by any of the processors. This

scheme allows the processors to communicate through shared variables with almost

no overhead. However, care must be taken to ensure that two processors do not

attempt to modify the shared data at once.

23

A monitor is a mechanism which allows only one processor to access a section of

memory at a single time. A process wanting to access a section of shared mempry

must first enter the monitor. Once in the monitor, no other process can enter it.

When the process is finished accessing the shared memory, it exits the monitor. A

process trying to enter a monitor while another process is already in it is put on hold

until the other process exits the monitor. To increase efficiency, monitors are made

as small as possible so that the probability of two processes needing the monitor at

once is minimized.

M IM D machines that do not have shared memory communicate through

message passing. The processors are connected by some sort o f high-speed

communications media. They may be directly wired together in a mesh or ring

topology or connected to a bus. When a process on one processor wants to send

data to a process on another processor, it simply sends a message to that processor.

A process wanting data simply receives a message that was sent to it. Obviously,

message passing can be implemented on a shared memory machine as well.

A number o f workstations on a local area network can be considered a M IM D

machine. A single application may run on several workstations, communicating with

each other via message passing on the network.

B. PARALLEL SOFTWARE

Although progress is being made rapidly in developing hardware capable o f

executing parallel programs, software development techniques are making much

slower progress. The problem is not that parallel hardware is difficult to use, b u t that

existing applications are usually structured for sequential operation. The actual

mechanisms for spawning multiple processes, message passing, and using monitors

are usually implemented as primitives that are as easy to use as calling a subroutine.

24

The difficulty is to partition the program into sections in which the dependency of the

results of one section upon the results of any other section is minimized.

Applications vary in the extent to which they can exploit parallelism. Some

problems are well suited for parallel execution and easily implemented. Others are

very sequential by nature and cannot benefit at all by running in a parallel

environment. Many problems have elements which are sequential but can exploit

parallelism on a limited basis. Iterative problems in which each iteration uses only

the results of past iterations can be broken up into subproblems that can run

concurrently, synchronizing when results must be communicated between processes.

Some problems consist of a sequence of steps in which some of the steps can exploit

parallelism and others cannot. In this case, an application can be running on a single

processor part of the time, and on multiple processors another time.

Another consideration for exploiting parallelism is the concept of grain size.

The grain size refers to amount of work to be done by each process. If a problem is

broken up into very small subproblems, the overhead of controlling and

communicating with a remote process outweighs the actual work done by the process.

On the other hand, if the grain size is too large, the problem may only be broken up

into a few pieces and several processors may be idle.

Consider a program that adds two arrays of numbers. If we let each process

take a single number from each array and add them, the overhead o f setting up the

subproblem is much greater than the simple act o f adding the numbers. However, if

a program finds the prime factors of a list of numbers, and the numbers are

sufficiently large, the overhead of sending a single number to a process and later

obtaining the results may be significantly less than the act o f factoring the number.

25

There is a lot more to converting a sequential program to run on a parallel

machine than recompiling the source on that machine. The programmer must first

have a good understanding of the overall program. He must carefully analyze the

data transfer within the program and recognize where parallelism can and cannot be

exploited. The program will need to be restructured and split into separate executable

modules, some o f which may be executed on several processors.

Another major obstacle for program development in a parallel environment is

debugging. Instead of tracing through the execution o f a single program, the

programmer or debugger has several concurrent program traces to monitor. A

program which may execute flawlessly one time may malfunction the next time

because events occur in a different order.

Tools are being developed to help overcome these problems. Trace facilities are

being built in to the primitives used to control the parallel processes. These help keep

track of the sequence of events taking place in several processes. Windowing systems

on workstation consoles allow interactive debugging on more than one process a t the

same time. By stepping through several processes, the programmer can monitor the

interactions between the processes.

C. ARGONNE'S TOOLS FOR PORTABLE PARALLEL PROGRAMS

A set of tools was developed at Argonne National Laboratory to facilitate

writing portable C programs to run on a wide range of parallel machines C52J87]

These tools are implemented as macros. A source program containing macros is

preprocessed by a macro assembler which expands the macros into C source

statements. The resulting file is then compiled and linked as usual. Using this

scheme, only the macros themselves need be machine-dependent. Any application

programs using the macros will need little or no modification to be compiled and run

26

on a different machine. The macros also make it easy to develop parallel programs

with little knowledge of the machines themselves. The macros support either a shared

memory or a message passing environment.

1. The Shared Memory Model. The shared memory model is structured around

the monitor. O f course if one process is in the monitor, another cannot enter until

the first has left it. The MENTER and MEXIT operations enforce this

synchronization. If a process enters a monitor using MENTER, no other process is

allowed in until the first process executes the MEXIT operation. Immediately

following the MEXIT operation a waiting process may enter the monitor.

Often a process wishes to retrieve data from within a monitor that may not yet

be there. Rather than repetitively entering the monitor, checking if the data is there,

and exiting, the DELAY and CONTINUE operators are used. Here, the process may

enter the monitor, using MENTER, and check the data. If it is already there, it gets

the data and exits via MEXIT. Otherwise, it goes into a wait state by executing the

DELAY operation. This frees the monitor to be entered by another process. The

process depositing the data would execute the CONTINUE operation prior to exiting

the monitor. The CONTINUE operation wakes up the dormant process and puts it

back in the monitor. The process then receives the data, and exits. I f more than one

process was to receive the data, the exiting process would execute the CONTINUE

operation in case another process was in the DELAY queue. Each process being

continued would likewise execute the CONTINUE operation until the DELAY queue

is empty.

A process depositing data within a monitor may likewise put itself on hold if the

data buffer was full. A process receiving data would then execute the CONTINUE

operation when space becomes available in the data buffer. Figure 7 contains

pseudocode for implementing a simple monitor that is used to send and receive

27

messages. Only one message is stored in the monitor at one time. FULL is initially

false.

SEND (message) {
M ENTER(monitor)
if FULL is true

DELAY (SENDQ)
move message to BUFFER
set FULL = true
CONTINUE (RECEIVEQ)
MEXIT(monitor)

RECEIVE (message) {
M ENTER(monitor1
if FULL is false

DELAY(RECEIVEQ)
move BUFFER to message
set FULL = false
CONTINUE(SENDQ)
MEXIT(monitor)

Figure 7. A Monitor For Sending and Receiving Messages

One type of monitor is called a barrier. In a barrier, processes entering the

monitor enter a delay state until a certain number of processes have entered. Then

they are released one after another. The barrier allows several tasks to synchronize.

Barriers are often used at the end of some problem to insure that no process

continues until they all have finished.

Argonne's macros include higher level monitors which relieve the programmer

from handling the mechanics of scheduling jobs to several processors. The GETSUB

monitor assigns subscripts sequentially to each process entering it. For instance, if

every element o f an array is processed independently, each processor retrieves the

subscript of an array element, processes that element, and gets another subscript as

28

soon as it finishes. The monitor insures that two processes do not get the same

subscript.

Another higher level monitor is the ASKFOR monitor. The ASKFOR monitor

manages a pool of tasks which are distributed to processes when they enter the

monitor. By entering the monitor, the process asks for a task. In processing the

task, the process may create new subtasks to add to the pool. This procedure can

terminate in more than one way. If the pool o f tasks is exhausted, there are no

problems left to solve. For some problems, once an answer has been found, the rest

o f the problem can be abandoned. The ASKFOR monitor communicates these

conditions to the processes as well as distributing the workload.

2. The Message Passing Model. The message passing model supports parallel

programming in an environment in which processes communicate solely through

messages. This allows the same applications to be run on diverse machines such as

uniprocessor systems, shared-memory multiprocessors, multiprocessors without

shared memory, and networks of workstations.

A program under this model consists of three components: the program for the

master process, the program(s) for the slave processes, and a table describing how to

create the slave processes. The master process uses the table to spawn the slave

processes which may be on different machines. The master and slave processes

communicate through messages that may contain both control signals and data.

When the program is ready to terminate, an end signal is transmitted to all the

processes telling them to terminate.

Messages are sent and received by the SEND and RECEIVE macros

respectively. The SEND macro has as arguments the receiver's ID, the message type,

data, and an optional length. The length will default to the declared length o f the

29

message type. SENDR is an optional form of the SEND macro in that the sender

does not procede until the message is acknowledged by the receiver. This alleviates

the need for an explicit acknowledge to be designed into the program. The

RECEIVE macro indicates to the receiver the type of message received and who sent

the message, along with any data in the message. If the message was sent using the

SENDR macro, it automatically acknowledges the message. The receiving program

can selectively receive a message from a particular sender and/or receive a particular

type of message.

The messages transmitted must be explicitly typed using the MSG_TYPE macro.

This way, if messages are passed between two machines which represent data

differently, the type conversion is transparent to the programmer. The SEND,

SENDR, and RECEIVE macros handle the data conversion so that, for instance, a

double precision floating point number is represented correctly on both machines.

The data type is represented either as EMPTY which specifies there is no data field in

the message or as a structure of C data types. Data types such as pointers and

unions are not supported as message data types.

Additional macros needed for the message passing program are ENV,

INITENV, and WAIT_FOR_END. ENV defines data types and variables used by

the other macros. INITENV initializes these variables. WAIT_FOR_END is a

macro used by the master process before terminating. It insures that all the slave

processes have terminated. Some machines do not allow a process to exit until all

processes spawned from it are killed.

30

VI. SEQUENTIAL IMPLEMENTATION

We first implemented Stickel's AC unification algorithm in C to run sequentially

on a single Sun 4/110 workstation. Zhang's simple-case algorithm is used to

construct the basis solutions to the Diophantine equations when the coefficients on

one side o f the equation are all l's. Otherwise, Lankford's algorithm is used.

A. DATA STRUCTURES

Terms are represented as trees where each node is a function symbol, constant,

or variable. Only function symbols have children. The nodes are represented by type

(function, constant, or variable) and an integer identifier. The identifiers are

associated with character string names by a table. The names are used only for the

user interface. Each node has a pointer to its first child, if any, and its next sibling.

A flattened term is represented as a linked list of pointers to the term's

arguments. The AC function symbol is not a part of the data structure. This data

structure allows the term to appear flat without changing any of the pointers in the

term or having to make a copy of the subterms.

Unifiers are represented as linked lists, where each list element consists o f a

variable identifier and a pointer to a term. A set o f unifiers is a linked list o f pointers

to unifiers.

Substitutions are not made directly to the terms. Instead, whenever a node is

inspected, and the node represents a variable, the node's identifier is compared to the

variable identifiers in the substitution. If that identifier is found, the term pointed to

by the substitution is used in place of the variable If this new term is itself a

variable, this process is repeated until either a nonvariable or a variable not in the

substitution is reached. If the substitutions were applied to the terms, the terms

31

could grow exponentially in size as multiple occurrences of variables are replaced with

terms which may themselves contain repeated variables requiring substitution.

B. ROBINSON'S UNIFICATION ALGORITHM

Robinson's algorithm had to be modified slightly to work in conjunction with

AC functions. It is implemented recursively such that if the two terms to be unified

are the same function and have the same number of arguments, the arguments are

unified by a generic unification routine. This generic routine determines if the terms

are the same AC function and, if they are, it uses Stickel's algorithm, otherwise it uses

Robinson's.

Robinson's algorithm was also modified to handle more than one unifier. Since

the arguments of the terms may contain AC functions, more than one substitution

may be returned by the generic unification routine. Subsequent arguments are

unified independently for each of these substitutions. Substitutions resulting from

these unifications are. accumulated and likewise used in unifying subsequent

arguments. Hence, this algorithm may return multiple unifiers.

To prevent the occurs check from redundantly searching the same subterms for

an occurrence of the same variable, a list is maintained of variables whose

substitutions do not contain the target variable. The first time a variable is

encountered that is in the substitution list, the associated term is searched. If the

target variable is not found, the encountered variable is put on the list of searched

variables. Otherwise, the occurs check fails. If a variable is encountered that is on

the list o f searched variables, it is immediately skipped.

32

C. STICKEL'S ALGORITHM

Our implementation of of Stickel's algorithm varies from that presented in

Chapter 5. Rather than determining the complete set of unifiers for the variable

abstraction and then unifying these with the substitution defining the variable

abstraction, we create each variable-only unifier as we need it and unify it with the

variable-abstraction substitution. It should be apparent that the variables

representing the variable abstraction need not be used in either scheme. It is only the

terms associated with these variables that are actually unified.

As in our implementation of Robinson's algorithm, the generic unification

function is called to unify the arguments. The existence o f multiple unifiers for these

subterms is handled in a similar manner.

D. OTHER CONSIDERATIONS

The user interface reads from the UNIX standard input and writes to standard

output. The input is read in stream mode such that white space (spaces, tabs, or

newline characters) separate the the input symbols. Terms are read two at a time to

be unified. Functions are enclosed in parentheses where the first symbol inside is the

function symbol and the following terms are arguments. Symbols beginning with the

letters u through z are treated as variables. Variables consisting o f the letter z

followed by an integer such as zl2 should be avoided since that is the format o f the

introduced variables created by the AC unification algorithm.

The program will print the number of unifiers found, if any, and will optionally

print up to 100 of them. Also output is the elapsed wall time for functions such as

reading the input data, unifying the terms, and printing the unifiers. The wall time is

used, rather than epu time, since it is more meaningful in comparison to the

33

execution time of a parallel implementation. The wall time is determined by the

Berkeley-UNIX C function getlimeofday.

Table II contains some size limitations built into the current implementation.

Other limits, such as the maximum number of unifiers that can be found, are limited

by the amount o f memory that can be dynamically allocated by the program.

Table II. SIZE LIMITATIONS FOR UNIFICATION PROBLEMS

Max. number of basis solns. to Diophantine eq. 200

Max. number of unique arguments in 2 terms being unified

Max. length of symbols 9 chars.

12

Max. number of unique symbols in two terms being unified

Max. number of matrix rows generated for N or P matrices
in one step o f Lankford's algorithm

100

25

34

VII. PARALLEL IMPLEM ENTATION

Wc implemented the parallel version of the AC unification algorithm to run on

six Sun 4/110 workstations connected via a CSMA/CD LAN. The master process

runs on one workstation and a slave runs on each of the other five. The processes

communicate via message passing using the macros developed by Argonne

Laboratory.

A. OPPORTUNITIES FOR EXPLOITING PARALLELISM

Our unification program presents several possible opportunities to exploit

parallel processing. For instance, the occurs check in Robinson's unification

algorithm need not be sequential. Recall that the occurs check checks for an

occurrence of some variable in a term. If the term being checked is a function with

several arguments, each argument can be checked for the variable by a different

processor. However, the overhead of message passing on a LAN far outweighs the

processing needed to perform the occurs check on one term. Hence, the grain size of

the occurs check is too small to make efficient use of parallelism.

The algorithms used to find the basis solutions to the Diophantine equations

similarly can be designed to distribute the processing, but again, the grain size o f the

problem is rather small compared to the overhead inherent in our message-passing

scheme.

Since our implementation of Robinson's algorithm allows multiple substitutions

to be returned when unifying a terms arguments, subsequent arguments must be

unified using each of the previous substitutions. Each o f these unifications may be

done by a different processor. Consider the terms J[+ (x,j>), + (jc, z)) and

J[+ (a, u), + (b, v)), where + is AC and f is not. Robinson's unification algorithm

35

would first unify + (*,_>>) and + (a, u) using the AC unification algorithm. Stickel's

algorithm will return four substitutions. The next pair o f arguments are unified four

times, once for each of these substitutions. These unifications may be each be

distributed to a separate processor.

Parallelism can be exploited similarly in the last step o f Stickel's algorithm when

the subterms corresponding to the variable abstraction are unified with the

introduced-variable terms.

Another way to exploit parallelism in Stickel's algorithm is to generate the

unifiers corresponding to each particular solution of the Diophantine equation on a

separate processor. This method is appealing since the generation of the unifier

involves unifying all the arguments of the terms. The grain size of the distributed

subtasks is larger than in the previous methods in which each distributed subtask

unified one argument.

We decided to implement our program using this last plan. Our AC unification

algorithm runs sequentially up to the point where the valid solutions to the

Diophantine equation are determined. The master process then sends a solution to

each slave, which finds the unifiers associated with that solution.

B. IMPLEMENTATION

The master process contains all of the elements of our sequential

implementation with the exception o f the sequential AC unification algorithm itself.

The user interface and Robinson unification algorithm remain unchanged. The

mainline was modified to create and terminate the slave processes.

36

The slave processes consist of the distributed part of the AC unification

algorithm and all routines necessary to unify the subterms. Since the slaves do not

have the ability drive other slaves, the sequential version of the AC unification

algorithm is included in the slaves.

The processes exchange the following types o f messages.

TERMS - sent from the master to the slaves. Contains the terms and a substitution
representing the variable abstraction of the arguments of the terms being unified and
the substitution calculated so far.

READY - sent from a slave to the master. Signals that the slave is ready to be sent a
problem.

PROBLEM - sent from the master to a slave. Contains the basis vectors that make
up a particular solution to the Diophantine equation.

SOLUTION - sent from a slave to the master. Contains unifiers corresponding to
the problem sent to the slave. A flag indicates if there are more unifiers than can be
transmitted in one message.

SEND MORE - sent from the master to a slave when the slave indicated it had more
solutions to send.

DONE - sent by both the master and the slaves. Tells the slave that no more
problems will be sent associated with the last terms sent. The slave returns this
message in acknowledgement.

E N D S IG N A L - sent by both the master and the slaves. Tells the slaves to
terminate. The slave returns the message in acknowledgement.

E R R O R S IG N A L - sent by a slave to the master. Signals that a slave cannot
continue due to array overflow or insufficient memory. Allows graceful abnormal
termination. The master acknowledges by sending END SIGNAL to all slaves and
terminating.

Figures 8 and 9 contain pseudocode for the master and slave components of the

AC unification algorithm.

37

A C unify {
Flatten both terms.
Remove arguments common to both terms.
For each distinct argument {

Add it to variable abstraction.
Determine its multiplicity.

}
Form Diophantine equation from multiplicities o f arguments.
Find basis of solutions to Diophantine equation.
Remove illegal basis vectors.
Determine all valid solutions to Diophantine equation.
If no solutions exist

Return(fail).
Send TERMS to slaves.
UNIFIERS = empty list.
NUM_DONE = 0.
While (NUM DONE < number of slaves) {

Receive message from slave.
If (message = SOLUTION) {

Add solution to UNIFIERS.
If (slave has more to send)

Send SEND MORE to slave.
}
If (message = READY or

(message = SOLUTION and slave has no more)) (
If (more problems to send)

Send PROBLEM to slave.
Else

Send DONE to slave.
}
Else if (message = DONE)

NUM_DONE = NUM_DONE + 1.
}
If (UNIFIERS = empty list)

Retum(fail).
ELSE

Retum(success).

Figure 8. AC Unification Algorithm - Master

38

slave {
message = READY.
While (message != END SIGNAL) (

Receive message from master.
If (message = TERMS) {

Parse terms from message.
Parse SUBSTITUTION from message.
Send READY to master,
message = PROBLEM
While (message = PROBLEM or message = SEN D M O R E) (

Receive message from master.
If (message = PROBLEM) {

Determine variable-only unifier.
O L D U N IF = SUBSTITUTION.
For each term in variable abstraction {

N EW JJN IF = empty.
For each substitution in OLD_UNIF {

Unify variable-only, variable-abstraction terms.
Append unifier (if any) to NEW_UNIF.

}
O L D JJN IF = N E W JJN IF

}
While (Too many unifiers for one message) {

Send SOLUTION to master.
Receive SEND MORE from master.

}
Send SOLUTION to master.

}
Else if (message = DONE)

Send DONE to master.
}

}
}
Send END SIGNAL

Figure 9. AC Unification Algorithm - Slave

39

VIII. RESULTS

A. OBSERVATIONS

The results of our research are disappointing. In most cases, the algorithm runs

faster sequentially than it does in parallel. Table III shows the running time

comparison between the two implementations in seconds of wall time. The functions

+ and * are both associative and commutative. The time of 0 seconds is a result of

the granularity of the gettimeofday function on the Sun workstations which returns

time in increments of 10 ms.

Table III. AC UNIFICATION TIMES

Terms being unified # sols seq time par time

+ (x,a,b) + (u,c,d,e) 2 .00 .08

+(x,x,y) +(u,v,v,c) 18 .01 .20

+ (x,a,b) +(u,v,c,d) 12 .02 .17

+ (x,y,z) +(u,v,w,xx) 2161 2.54 20.75

-t-(*(a>a,x,x),*(b,c,y,yJz),*(a,b,c)x))
+ (*(a,b,u),*(c,cfu,u),*(c,utv))

51 .33 .64

+ (x,*(x,y),*(y,z)) + (*(u,v),*(v,v,a),u) 1610 4.41 23.04

+ (*(a,b,x),*(x,y,c),*(x,y,d))
+ (*(d,e,f),*(c,u,e),*(v,b,g))

0 .02 .11

+ (*(a,x,y),*(b,xx,xy),*(c,yx,yy))
+ (*(d,e,f),*(e,uu,vv),*(d,u,v))

0 .01 .10

+ (*(a,x,y), *(b,xx,xy), *(c,yx,yy))
+ (*(dIu,v),*(d,e,f),*(e,uu,vv))

0 .79 .69

+ (*(a,x,y),*(b,xx,yy),*(c,yx,yy))
+ (*(d,u,v),*(e,uu,vv) ,*(d,e,0)

0 42.10 31.18

40

We would expect the sequential program to perform better on the very simple

unifications, due to the fact that the overhead involved in distributing the problem is

greater than the unification itself. We sec that this is indeed the case. However, we

find that the parallel program performs much slower on larger problems in which

many unifiers are produced. On large problems that produce few or no unifiers, the

parallel program does run faster.

This behavior has led us to the conclusion that even though the unifiers might

be calculated by the slaves quickly, the overhead of the master process receiving the

data from the slaves is prohibitive. A single processor can find the unifiers using the

sequential program faster than it can get them from the slave processes via message

passing on the LAN.

We verified this notion by imbedding system clock calls within the master and

slave process to determine where the program was spending the most time. The slave

processes were found to be unifying the subterms and sending the results to the

master process quickly. They spent most of their time waiting for the master process

to send more problems. The master process spent most o f its time receiving the

unifiers from the slaves. It was not possible to tell what part of that time it was idle,

waiting for a response from the slaves, but since the slaves were spending most of

their time waiting, we suspect the master was not.

B. ANALYSIS OF SEQUENTIAL PROGRAM

Since the our parallel implementation of the AC unification algorithm is derived

from our sequential implementation, it is critical that the sequential version be as

efficient as possible. In tables IV and V, we compare the unification times o f our

sequential program to those published by Fortenbacher [F o87] and Christian and

Lincoln CCL87]. Fortenbacher's program was run on an IBM 3081 under CMS and

41

Christian and Lincoln's program was run on a Symbolics 3600. Again the running

times of our program are in wall time rather than cpu time and we are limited to an

accuracy of + 10 milliseconds. Since our program was run on a different machine, we

cannot say with certainty how it compares with the other programs. However, the

unification times are close enough that we believe our program is an efficient

rendering of the algorithm.

Table IV. UNIFICATION TIMES VS. FORTENBACHER

Terms being unified # sols Our time F.'s time

+ (a,x) +(b,y) 2 .010 .005

+ (x,x) +(y,z) 5 .000 .012

+ (x,x,y,a,c) + (b,b,z,c) 4 .000 .012

*(+ (x,a), + (y,a),c,c) *(+ (z,z,z),w) 4 .010 .030

*(+ (x,a), + (y,a), + (z,a)) *(+ (w,w,w),z,z) 2 .010 .019

+ (x,a,x,a) *(g(a),g(y),z,z) 2 .000 .009

+ (w, + (x,g(x))) +(y, + (z,g(z))) 35 .050 .108

C. TOPICS FOR FUTURE RESEARCH

As stated in the previous section, the message-passing overhead on the LAN

prohibits us from taking advantage o f the computing power available to us on the

network. By implementing the parallel program on a machine with shared memory or

very fast interprocessor communication, we should be able to increase the

performance of the algorithm.

42

Tabic V. UNIFICATION TIMES VS. CHRISTIAN & LINCOLN

Terms being unified # sols Our time C & L's

+ (x,a,b) + (u,c,d,e) 2 .000 .005
+ (x,a,b) + (u,c,c,d) 2 .010 .005
+ (x,a,b) + (u,c,c,c) 2 .000 .004
+ (x,a,b) + (u,v,c,d) 12 .020 .013
+ (x,a,b) + (u,v,c,c) 12 .010 .014
+ (x,a,b) +(u,v,w,c) 30 .050 .034
+ (x,a,b) + (u,v,w,ww) 56 .080 .079
+ (x,a,a) + (u,c,d,e) 2 .000 .005
+ (x,a,a) + (u,c,c,d) 2 .010 .004
+ (x.a.a) + (u,c,c,c) 2 .000 .005
+ (x,a,a) + (u,v,c,d) 8 .010 .010
+ (x,a,a) + (u,v,c,c) 8 .000 .011
+ (x,a,a) + (u,v,w,c) 18 .020 .023
+ (x,a,a) + (u,v,w,ww) 32 .030 .051
+ (x,y,a) + (u,c,d,e) 28 .030 .024
+ (x,y,a) + (u,c,c,d) 20 .020 .018
+ (x,y,a) + (u,c,c,c) 12 .010 .013
+ (x,y,a) + (u,v,c,d) 88 .110 .064
+ (x,y,a) + (u,v,c,c) 64 .050 .048
+ (x,y,a) + (u,v,w,c) 204 .240 .160
+ (x,y,a) + (u,v,w,ww) 416 .510 .402
+ (x,y,z) + (u,c,d,e) 120 .120 .118
+ (x,y,z) + (u,c,c,d) 75 .060 .072
+ (x,y,z) + (u,c,c,c) 37 .030 .038
+ (x,y,z) + (u,v,c,d) 336 .340 .269
+ (x,y,z) + (u,v,c,c) 216 .170 .171
+ (x,y,z) + (u,v,w,c) 870 1.000 .729
+ (x,y,z) + (u,v,w,ww) 2161 2.630 1.994

Providing we get over the data transmission obstacle, we may further increase

performance by breaking the program up into finer components. Chapter VII

discusses several opportunities for exploiting parallelism that we did not attempt.

Since we were only working with a small number o f processors, it would have done us

no good to have the slave processes distribute any of their workload. However, if

more processors were available, a slave process might break up its subtask into

43

smaller subtasks which would be distributed by an ASKFOR monitor as described in

chapter V.

On a shared memory machine, the overhead of distributing tasks may be low

enough to exploit parallelism in the occurs check or in solving the Diophantine

equations. We may also be able to move our data structures into shared memory and

use monitors to coordinate communication between the processes, avoiding the

overhead of message passing.

44

REFERENCES

CZ?Z?87] Boyle J., Butler R., Disz T., Glickficld B., Lusk E., Ovcrbeck R., Patterson

J., and Stevers R., Portable Programs for Parallel Processors, Holt, Rhinehart

and Winston, Inc., New York, 1987.

CCL87] Christian J., and Lincoln P., "Adventures in associative-commutative

unification." MCC Technical Report ACA-ST-275-87, 1987.

CFo87] Fortenbacher A., "An algebraic approach to unification under associativity

and commutativity." Journal o f Symbolic Computation, vol 3, (1987) pp.

217-229.

C/7c30j Herbrand J., "Recherdies sur la Theorie de la Demonstration." Trauaux de

la Societe des Sciences et Lettres de Varsovie, Classe II I Sci. Math. Phys., 33,

1930.

[_Hul%~\ Huet G., "An algorithm to generate the basis o f solutions to homogeneous

linear Diophantine equations." Information Processing Letters, vol 7, no 3,

(April, 1978) pp. 144-147.

CLa87] Lankford D.S., "Non-negative integer basis algorithms for linear equations

with integer coefficients." (unpublished), 1987.

CA/a88] Mayfield B., "The role of term symmetry in equational unification and

completion procedures." Ph.D. dissertation, University of Missouri-Rolla, 1988.

C/?o65] Robinson J.A., "A machine-oriented logic based on the resolution principle."

Journal o f the Association for Computing Machinery, vol 12, no 1, (January,

1965), pp. 23-41.

45

C-S/81] Stickel M., "A unification algorithm for associative-commutative functions."

Journal o f the Association for Computing Machinery, vol 28, no 3, (July, 1981),

pp. 423-434.

[fT /88] Wilkerson R., Private communication. 1988.

[_Zh%l~\ Zhang H., "An efficient algorithm for simple Diophantine equations."

Technical Report 87-26, Department of Computer Science, Rensselaer

Polytechnic Institute, Troyr Nevv York. 1987.

46

VITA

David John Kleikamp was born on March 7, 1964 in Lebanon, Missouri. He

graduated from Lee's Summit High School in Lee's Summit, Missouri in May, 1982.

He received a Bachelor of Science degree in Computer Science from the

University of Missouri-Rolla in Rolla, Missouri in December 1986. As an

undergraduate, he was an active member of Sigma Pi Fraternity and worked part time

as a student programmer for the United States Geological Survey and as a bartender.

He remained at the University of Missouri-Rolla where he is currently pursuing

a M aster of Science degree in computer science. He continued working for the U.S.

Geological Survey until August 1988 when he began working as a graduate research

assistant in the computer science department.

He is engaged to marry Donna Marie Talleur in October 1989.

47

APPENDIX

SOURCE LISTING - PARALLEL VERSION

The following is an include file defining parameters and data structures used

throughout the code.

#ifndef TYPESDEFINED

^define TYPES DEFINED

^include <stdio.h>
^include < sys/time.h >

#define LOGICAL int
^define TRUE 1
^define FALSE 0

^define NUMAC 2
#define MAXCNO 12
#define NMAXDIMENSION 50
#define ZMAXDIMENSION 200
#define TMAXLEN 1000
^define UMAXLEN 800

#define STAT TYPE long
#define MAX_CLOCKS 100
#defme INPUTJTIME 0
^define U N IFY TIM E 1
#defme CLEANUP TIME 2
^define TOTAL TIME 3
#defme PRINT_TIME 4

#defme NSLAVES 5

#define TERMS 0
#define PROBLEM 1
#define SOLUTION 2
#defme DONE 3
#define READY 4
#define END SIGNAL 5
^define ERRO RSIG N A L 6
#define SEND MORE 7

struct term {
int id;
char type;

48

struct term *child;
struct term *sibling;

};

struct flat {
struct term *subterm;
struct flat *next;

};

struct substitution {
int var;
struct term *subst;
struct substitution *nexts;

};

struct unifier {
struct substitution * first;
struct unifier *nextu;

};

struct vector {
int vect;
struct vector *nextv;

};

struct dio_soln {
struct vector *first;
struct dio_soln *next;

};

struct te rm lis t {
char type;
int id;

};

struct clock {
STAT_TYPE accum_sec; j* accumulated seconds */
STAT TYPE accum_usec; /* accumulated microseconds*/
STA TTY PE curr_sec;
STAT TYPE curr_usec;

};

#endif

49

The following is the master main-line program. It contains macro calls for the

message-passing primitives.

#include "types.h"

^******
*
* These macros define the message-passing environment
*
******y

ENV

P R O C ID process_ids[NSLAVES];

BEGIN_MSG TYPES
MSG_TYPE(TERMS, struct terms {
int ac_op;
int base;
int nterms;
struct term list list[TMAXLEN];

} ;)
MSG_TYPE(PROBLEM, struct problem {
int nvects;
int dsolution[ZMAXDIMENSION][MAXCNO];

} ;)
MSG_TYPE(SOLUTION, struct solution {
int base;
int nunifiers;
LOGICAL more;
struct term jist list[UMAXLEN];

} ;)
MSG_TYPE(SEND_MORE, EMPTY)
MSG_TYPE(DONE, EMPTY)
MSG_TYPE(END_SIGNAL, EMPTY)
MSG_TYPE(READY, EMPTY)
MSG_TYPE(ERROR_SlGNAL, EMPTY)

END_MSG_TYPES

^******
*

* main is the mainline master process. It spawns the slave processes and
* drives the unification.
*

* * * * * * I

main(argc, argv)
int argc;
char *argv;
{

struct term *terml, *term2;
char string 10];
struct unifier ^unifiers, *u;
int unify(), count, print_unifiers(), base, i, done;

50

char symtab[100][10];
int nsymbols, parse_tcrm(), ttimc, utime, itimc, ctime, ptime;
void erase_term(), frec_unifiers();
char *alloc(), print flag;
STAT TYPE clock_val();
PROC ID id;
int msg type;

INITENV

clock_init();
clock_start(TOTA L_TI M E);

if NS LAVES = = I
REMOTE_CREATE(one_slave, process_ids)

#endif

if NSLAVES = = 3
REMOTE_CREATE(three_sIaves, process_ids)

#endif

if NSLAVES = = 5
REMOTE_CREATE(five_slaves, process ids)

#endif

done = 0;

printf("\nPrint unifiers? ");
scanfl^/os", string);
p rin tflag = string[0];

while (Idone) {
clock_reset(I N PU TT IM E);
clock_reset(UN IF Y_T IM E);
clock_reset(PRINT_TI ME);
clock_reset(CLEANUP_TIME);

clock_start(INPUT_TI ME);

symtab[0][0] = ' + ';
symtab[0][l] = '\0';
symtab[l][0] =
symtab[l][l] = '\0';

nsymbols = 2;

printf("\nEnter a term: ");

if (scanfT%s'\string) != EOF) {
if (string[0] != '(' II string! 1] !■ '\0') {

p rin tf^ n Invalid syntax!\n\n~);
stop();

}

terml = (struct term *) alloc(sizeof(struct term));

51

if (parsc_tcrm(terml, symtab, &nsymbols))
stop();

printl("\n\nTerml: ");
print_tcrm(tcrml, NULL, symtab);

printf^n^nEnter second term: ");
scanf ("%s",string);

term2 = (struct term *) all oc(sizeo Obstruct term));
if (parse_term(term2, symtab, &nsymbols))

stop();
printf("\n\nTerm2: ");
print_term(term2, NULL, symtab);

clock_stop(INPUT_TI ME);
clock _start(UNI F Y T I M E);

unifiers = (struct unifier *) alloc(sizeof(struct unifier));
unifiers-> first = NULL;
unifiers-> nextu = NULL;
base = 1;
if (unifv(terml, term2, &base, NULL, unifiers)) {

clock_stop(UN I FY_TI ME);
cIockstart(PR IN TTIM E);
if (print flag = = 'y') {

printf("\n\nUnifiers:\n");
count = print_unifiers(unifiers, symtab);

}
else

for (u = unifiers, count = 0; u != NULL; u = u-> nextu, count-t- +);
printf("\n\nNumber of unifiers = %d", count);
clock_stop(PRINT_TIME);

}
else {

clock_stop(UNI F Y T I M E);
printf("\nterms will not unify.");

}

clock_start(CLEANU P_TI M E);
erase_term(terml);
erase_term(term2);
free_unifiers(unifiers);
clock_stop(C LEANU P_TI M E);

itime = clock_val(INPUT_TIME);
utime = clock_val(U NI FY_T IM E);
ptime = clock_val(PRINT_TIME);
dim e = clock_val(CLEANU P_TI M E);
printf("\n\nlnput time: %d ms\nUnify time: %d ms\n",itime, utime);
printf("Print time: %d ms\nCleanup time: %d ms\n", ptime, ctime);

}
else

done = 1;
}
for (i = 0; i < NSLAVES; i + +)

SEND(&process_ids[i], END SIGNAL);
for (i = 0; i< NSLAVES; i+ +)

RECEIVE(&id, &msg_type, , (match_id(&process_ids[i]) &&
match_typc(EN D_S IGN A L)))

W AITFOREND(NSLAVES)
ttime = clock_val(TOTAL_TIME);
printf("\n\nTotal time: % d ms\n", ttime);

53

The following is AC unification algorithm used by the master process. It includes the

macro calls to invoke the message-passing primitives.

#include "types.h"
^/********
*
* These macros must be included to define the message passing environment
*
********y

ENV

BEGIN_MSG_TYPES
MSG_TYPE(TERMS, struct terms {
int ac_op;
int base;
int nterms;
struct term_list listfTMAXLEN];

} ;)
MSG_TYPE(PROBLEM, struct problem {
int nvects*
int dsolution[ZMAXDIMENSIONJ[MAXCNO];

} ;)
MSG_TYPE(SOLUTION, struct solution {
int base;
int nunifiers;
LOGICAL more;
struct te rm list list[5000];

} ;)
MSG_TYPE(SEND_MORE, EMPTY)
MSG_TYPE(DONE, EMPTY)
MSG_TYPE(END_SIGNAL, EMPTY)
MSG_TYPE(READY, EMPTY)
MSG_TYPE(ERROR_SIGNAL, EMPTY)

E N D M S G T Y P E S

extern PROC_ID process_ids[NSLAVES];

f******
*

* AC janify is the parallel version of Shekel's algorithm.
*

int AC_unify(terml, term2, base, old_unifier, newunifiers)
struct term *terml, *term2;
int *base;
struct substitution *old_unifier;
struct unifier ^new unifiers;
{

void elim_dup();
struct flat *newl, *new2, *flatten(), *ptr2, *ptr;
struct term *arg, *arg2, *last, *parse_t();
struct substitution *copy_s(), *unif;

54

struct vector *v, *tcmpv;
struct unifier *ncw, *final;
int n l, n2, nA, nB, same_term(), count_subterms();
int find_basis(), i, j;
int npairs, num, basis[ZMAXDIMENSION][MAXCNO + I];
int weed_basis(), highest, offset;
struct dio soln ^solution, *sol, *find_solutions(), *tempsol;
int soJarIZMAXDIMENSIONJ, count[MAXCNO];
struct term *originaI[MAXCNO];
int muIt[MAXCNO];
char *alloc();
struct terms msgl;
struct problem msg2;
struct solution msg3;
PROC ID id;
int m sgtype, num_done, length;

newl = flatten(terml, oldunifier);
new2 — flatten(term2, old_unifier);
elim_dup(newl, new2, old unifier);

n l = countsubs(newl);
n2 = count_subs(riew2);
if (nl = = 0 & & n 2 = = 0) {

new_unifiers-> first = copy_s(old_unifier);
new unifiers-> nextu = NULL;
eraseflat(newl);
erasejflat(new2);
return (1);

}
if (n l = = 0 || n2 = = 0) {

erase_flat(newl);
erase_flat(new2);
return (0);

}

npairs = 0;
for (ptr = newl; ptr != NULL; ptr = ptr-> next) {

arg = ptr- > subterm;
if (arg != NULL) {

mult[npairs] = 1;
original[npairs] = arg;
for (ptr2 = p tr-> next; ptr2 != NULL; ptr2 = ptr2->next) {

arg2 = ptr2-> subterm;
if (arg2 ! = NULL && same_term(arg, arg2, old unifier)) {

mult[npairs] + + ;
ptr2-> subterm = NULL;

}
}
npairs + + ;

}
}
nA = npairs;

for (ptr = new2; ptr !— NULL; ptr = ptr-> next) {

55

arg = ptr- > subterm;
if (arg != NULL) {

multfnpairs] = I;
original[npairsj = arg;
for(ptr2 = ptr-> next; ptr2 != NULL; ptr2 = ptr2->ncxt) {

arg2 = ptr2- > subterm;
if (arg2 != NULL && same_term(arg, arg2, old unifier)) {

multf npairs] + + ;
ptr2-> subterm = NULL;

}
}
npairs + + ;

}
}
nB = npairs - nA;

erase_flat(newl);
erase_flat(new2);

num = find_basis(mult, nA, mult + nA, nB, basis);

if (num < 1) exit(l);

num = weed_basis(num, npairs, basis, original);

if (num = = 0)
return (0);

for (i = 0; i < npairs; i + +)
countfi] = 0;

solution = fmd_solutions(num, npairs, basis, original, 0, so far, count, NUL
L) ;

final = NULL;
highest = *base;

if (solution = = NULL)
retum(O);

msgl.ac_op = term l->id;
msgl.base = *base;
msgl.nterms = npairs;
offset = 0;
for (i = 0; i < npairs; i+ +)

offset + = trav_term(original[i], &(msgl.Iist(offset]));
for(unif = old_unifier; unif != NULL; unif — unif->nexts) {

msgl.list[offset].type = V ;
msgl.list[offset + +].id = unif->var;
offset + = trav_term(unif-> subst, &(msgl.list(offsct]));

}
m sgl.list[offset++].type =
length = 4*sizeof(int) + offset*sizeof(struct term list);
for (i = 0; i < NSLAVES; i+ +)

SEND(&process_ids[i], TERMS, &msgl, length)

56

sol = solution;
numdone = 0;

while (num done < NSLAVES) {
RECEIVE(&id, &msg_type, &msg3, (match typc(READY) || m atchtype(SO LU TIO N)

E)))
match type(ERROR SIGNAL) || match_type(DON

if (m sgjype = = ERROR_SIGNAL) {
printf("\nError in slave process. Waiting for all slaves to exit\n");
stop();

}
if (msg_type = = SOLUTION) {

if (msg3.base > highest)
highest = msg3.base;

offset = 0;
for (i = 0; i < msg3.nunifiers; i+ +) {

new = (struct unifier *) alloc(sizeof(struct unifier));
new- > nextu = final;
final = new;
new- > first = NULL;
while(msg3.1ist(ofTsetj.type != '}') {

unif = (struct substitution *) alloc(sizeof(struct substitution))

unif->nexts = new- > first;
new-> first = unif;
unif->var = msg3.1ist[offset++].id;
unif- > subst = parse_t(&(msg3.1ist[offset]), &j);
offset + = j;

}
offset + + ;

}
if (msg3.more)

SEND(&id, SENDMORE)
}
if ((msg type = = SOLUTION && !msg3.more) || msg_type = = READY) {

if (sol = = NULL) {
SEND(&id, DONE)

}
else {

msg2.nvects = 0;
for (v = sol-> first; v != NULL; v = v-> nextv) {

for (j = 0; j < npairs; j + +)
msg2.dsolution[msg2.nvects][j] = basisfv-> vect]f j + 1];

msg2.nvects + + ;
}
SEND(&id, PROBLEM, &msg2, (1 + MAXCNO*msg2.nvects)*sizeof(int))
sol = sol-> next;

}
}
else if (msg_type = = DONE)

num_done + + ;
}
for (sol = solution; sol != NULL; sol = tempsol) {

57

tcmpsol = sol-> next;
for (v = sol-> first; v != NULL; v = tempv) {

tempv = v- > nextv;
mfree(v, sizeof(*v));

}
mfree(sol, sizeof(*sol));

}
if (final = = NULL)

return (0);
new_unifiers-> first = final-> first;
new_unifiers-> nextu = final-> nextu;
mfree(final,sizeof(*final));
*base = highest;
return(l);

y******
*

* stop kills the slaves and exits. It is used for abnormal exits only.
*

****** J
stop()
{

PROC ID id;
int msg_type, i;

for (i = 0; i < NSLAVES; i+ +)
SEND(&process_ids[i], END SIGNAL)

for (i = 0; i < NSLAVES; i + +)
RECEIVE(&id, &msg_type, , match_type(END_SIGNAL))

WAIT_FOR_END(NS LAVES)
exit(l);

}

58

The following is the slave mainline including the macro calls for the message-passing

primitives. It is called from a driver named inmain.

#include "types.h"

^******
*
* These macros define the message-passing environment
*
******/

ENV

BEGIN MSGJTYPES
MSG_TYPE(TERMS, struct terms {
int ac op;
int base;
int nterms;
struct term_list list[TMAXLEN];

};)
MSG_TYPE(PROBLEM, struct problem {
int nvects;
int dsolution[ZMAXDIMENSION][MAXCNO];

};)
MSG_TYPE(SOLUTION, struct solution {
int base;
int nunifiers;
LOGICAL more;
struct term_list list[6000];

} ;)
MSG_TYPE(SEND MORE, EMPTY)
MSG_TYPE(DONE, EMPTY)
MSG_TYPE(END_SIGNAL, EMPTY)
MSG_TYPE(READY, EMPTY)
MSG_TYPE(ERROR_SIGNAL, EMPTY)

END_MSG_TYPES

struct term garbage;

PROC_ID master;

j4.****
*

* slave performs the unification on the arguments of the terms being
* unified by the master process, slave is called from inmain.
*
*****I

slave()
{

int msg type, offset, i, j, k, fail, zbase, length, trav_term(), old ofiset;
PROC ID id;
struct terms msgl;

59

struct problem msg2;
struct solution msg3;
struct substitution *unif, *u, *temp, *copy_s();
struct term *tcmpt, *term(MAXCNOj, *last, *zterm, *sub, *parse_t();
struct unifier *unifier, *old, *ncwu, *un, *newu2, *last_un;
char *alloc();
LOGICAL send_fiag;
FILE *fopen();

msg_type = READY; /* insure msg_type is not initially END_SIGNAL */
while(msg_type ! = END SIGNAL) {

RECEIVE(&id, &msg_type, &msgl, (match_tvpe(TERMS) || match_type(END_SIGNAL
)

COPY_ID(&master, &id)
if(msg_type = = TERMS) {

offset = 0;
unif = NULL;
for (i = 0; i < msgl.nterms; i+ +) {

term[ij = parse_t(&(msgl.Iist[offset]), &j);
offset + = j;

}
while(msgl.list[offset].type != '}') {

u = (struct substitution *) alloc(sizeof(struct substitution));
u->nexts = unif;
unif = u;

NE) ||

u -> var = msgl.list[offset++].id;
u->subst = parse_t(&(msgl.list[offset]), &j);
offset + = j;

}
SEND(&id, READY)
msg_type = PROBLEM;
while(msg_type = = PROBLEM || msg_type = = SEND_MORE) {

RECEIVE(&id, &msg_type, &msg2, (match type(PROBLEM) || match_type(DO

match_type(EN D_S IGN A L)))
if (msg_type = = PROBLEM) {

garbage.child = NULL,
old = (struct unifier *) alloc(sizeof(struct unifier));
old- > first = copy_s(unif);
old-> nextu = NULL;
fail = 0;
zbase = msgl.base + msg2.nvects;
offset = 0;

for (i = 0; i < msgl.nterms && .'fail; i+ +) {
zterm = last = NULL;
for (j = 0; j < msg2.nvects; j + +) {

for(k = 0; k < msg2.dsoIution[j][i]; k+ +) (
if (zterm = = NULL) {

zterm = (struct term *) alloc(sizeof(struct term));
zterm- > id = -(msgl.base + j);
zterm->type = V ;
zterm- > sibling = garbage.child;
garbage.child = zterm;
zterm-> child = NULL;

6 0

ClSif (last = = NULL) {
sub - (struct term *) aIIoc(sizcof(struct term));
sub- > id = zterm- > id;
sub-> type = V ;
sub-> child = sub-> sibling = NULL;
zterm->dhild = sub;
zterm-> id = msgl.ac_op;
zterm-> type = 't';
last = sub;

}
sub = (struct term *) alloc(sizeof(struct term));
last- > sibling = sub;
sub-> child = sub-> sibling = NULL;
sub-> id = -(msgl.base + j);
sub- > type = V ;
last = sub;

}
}

}
newu = NULL;
for (unifier = old; unifier != NULL; unifier = unifier-> nextu)

{
newu2 = (struct unifier *) alloc(sizeof(struct unifier));
if (unify(zterm, termfi], &zbase, unifier- > first, newu2)) {

for (un = newu2; un-> nextu != NULL; un = un-> nextu);
un- > nextu = newu;
newu = newu2;

}
else

mfree(newu2, sizeoi(struct unifier));
}
free_unifiers(old);
old = newu;
if (old = = NULL)

fail = 1;
}
offset = 0;
msg3.nunifiers = 0;
if (fail) {

msg3.base = msgl.base;
length = 3*sizeoffint);

}
else {

msg3.base = zbase;
la s tu n = NULL;
send_flag = FALSE;
for (un = old; un != NULL && msg type != END SIGNAL; un = un->

nextu) {
old_ofiset = offset;
for (u = un-> first; u != NULL; u = u-> nexts) {

msg3.1ist[offset].type = V ;
msg3.list[offset + +].id = u->var;
offset + = trav_term(u-> subst, &(msg3.1ist[offset]));

O l

}
msg3.1ist[oflsct+ +].typc =
msg3.nunifiers+ + ;
length — 3*sizeof(int) + offset*sizeof(struct term list);
if (length > 5000) {

if (la s tu n = = NULL)
stop();

un = la s tu n ;
msg3.nunifiers-;
offset = old_offset;
sendflag = TRUE;
length = 3*sizeof(int) + offset*sizeof(struct term_list)

}
last_un = un;
if (send_flag || ((length > (5000 - UMAXLEN)) &&

(un-> nextu != NULL))) {
msg3.more = TRUE;
SEND(&id, SOLUTION, &msg3, length)
RECEIVE(&id, &msg_type, ,(match_type(SEND_MORE) ||

match_type(END_SIGNAL)))
offset = msg3.nunifiers = 0;
la s tu n = NULL;
send flag = FALSE;

}
}
freeunifiers(old);

}
msg3.more = FALSE;
SEND(&id, SOLUTION, &msg3, length)

for (sub = garbage.child; sub != NULL; sub = tempt) {
tempt = sub- > sibling;
erase_term(sub);

}
}
else if (msg_type = = DONE)

SEND(&id, DONE)
}
for (u = unif; u != NULL; u = temp) {

temp = u->nexts;
erase_term(u-> subst);
mfree(u, sizeof(struct substitution));

}
for (i = 0; i < msgl.nterms; i + +)

erase_term(term(i]);
}

}
SEND(&id, END SIGNAL)

}
y******
*
* stop provides a graceful abort. It signals to the master that an error
* has occurred and terminates normally.

stop()
{

P R O C J D id;
in t msg_type;

SEN D (& m aster, E R R O R S IG N A L)
RECEIVE(& id, &msg_type, , m a tc h ty p e (E N D S IG N A L))
SEND(& id, END SIG N A L)

/* copied from program "inmain" since we are n o t returning from "slave" */
xx_kill_daemon();
xx_kill_grandkids();
xx_locks_dealloc();
xx_mem(3);

* * 4 : * * * ^

}
ex it(l);

63

The following is the sequential version of the AC unification algorithm which is used by

the slave processes if AC functions are arguments to the function being unified in

parallel.

#include "types.h"

extern struct term garbage;

^********
*
* AC unify is the sequential version of Stickel's algorithm. It is used by
* the slave processes when AC functions are nested.
*
* * * * * * * * y

int AC_unify(terml, term2, base, old_unifier, new_unifiers)
struct term ‘ terml, *term2;
int *base;
struct substitution ‘ oldunifier;
struct unifier *new_unifiers;
{

void elim_dup(), erase_term();
struct flat *newl, *new2, *flatten(), *ptr2, *ptr;
struct term ‘ sub, ‘ zterm;
struct term *arg, ‘ arg2, ‘ last;
struct substitution *copy_s();
struct vector ‘ v, ‘ tempv;
struct unifier ‘ newu, *newu2, ‘ final, *u, ‘ old, ‘ unif;
int n l, n2, nA, nB, same_term(), count_subs();
int find_basis(), i, j. fail, number;
int npairs, num, basis[ZMAXDIMENSION][MAXCNO+ i];
int weed_basis(), zbase, highest;
struct dio soln ‘ solution, ‘ sol, *find_solutions(), ‘ tempsol;
int so_far[ZMAXDIMENSION], count[MAXCNO];
struct term *original[MAXCNO];
int mult[MAXCNO];
char *alloc();

newl = flatten(terml, old_unifier);
new2 = flatten(term2, old_unifier);
elim_dup(newl, new2, old_unifier);

n l = count_subs(newl);
n2 = count_subs(new2);
if (nl = = 0& & n2 = = 0) {

new_unifiers-> first = copy s(old unifier);
new_unifiers-> nextu = NULL;
eraseflat(newl);
erase_flat(new2);
return (1);

}
if (nl = = 0 || n2 = = 0) {

64

craseflat(newl);
crase_fiat(new2);
return (0);

}

npairs - 0;
for (ptr = newl; ptr != NULL; ptr = ptr-> next) {

arg = ptr-> subterm;
if (arg != NULL) {

multfnpairs] = 1;
original[npairs] = arg;
for (ptr2 = ptr-> next; ptr2 != NULL; ptr2 = ptr2->next){

arg2 = ptr2- > subterm;
if(arg2 != NULL && same_term(argf arg2, old_unifier)) (

mult[npairs] + 4-;
ptr2-> subterm = NULL;

}
}
npairs + + ;

}
}
nA = npairs;

for (ptr = new2; ptr != NULL; ptr = ptr-> next) {
arg = ptr- > subterm;
if (arg != NULL) {

mult[npairs] = 1;
original[npairsl = arg;
for (ptr2 = p tr-> next; ptr2 != NULL.; ptr2 = ptr2-> next) {

arg2 = ptr2- > subterm;
if(arg2 != NULL && same_term(arg, arg2, old unifier)) {

mult[npairs] + + ;
ptr2- > subterm = NULL;

}
}
npairs + + ;

}
)
nB = npairs - nA;

eraseflat(newl);
erase_flat(new2);

num = fmd_basis(mult, nA, mult+nA, nB, basis);

if (num < 1) exit(l);

num = weed_basis(num, npairs, basis, original);

if (num = = 0)
return (0);

for (i= 0; i < npairs; i + +)
count[i] = 0;

65

solution = find_solutions(num, npairs, basis, original, 0, so far, count, NUL
L) ;

final = NULL;
highest = *base;

for (sol = solution; sol != NULL; sol = sol->next) {
old = (struct unifier *) alloc(sizeof(struct unifier));
old-> first = copy_s(old_unifier);
old-> nextu = NULL;
fail - 0;
zbase = *base + num;

for (i = 0; i < npairs && Ifail; i + +) {
zterm = last = NULL;
for (v = sol-> first; v! = NULL; v = v-> nextv) {

number = v->vect;
if (basis(number][i+1] > 0)

for (j = 0; j < basis[number][i+ 1J; j+ +) {
if (zterm = = NULL) {

zterm = (struct term *) alloc(sizeof(struct term));
zterm-> id = -(*base +number);
zterm- > type = 'v';
zterm- > sibling = garbage.child;
garbage.child = zterm;
zterm-> child = NULL;

d ^f (last = = NULL) {
sub = (struct term *) alloc(sizeof(struct term));
sub- > id = zterm- > id;
sub- > type = V ;
sub- > child — sub-> sibling — NULL;
zterm- > child = sub;
zterm->id = terrnl->id;
zterm- > type = 't';
last = sub;

}
sub = (struct term *) alloc(sizeof(struct term));
last- > sibling = sub;
sub-> child = sub-> sibling = NULL;
sub-> id = -(*base +number);
sub-> type = V ;
last = sub;

}
}

}
newu = NULL;
for (unif = old; unif != NULL; unif= unif-> nextu) {

newu2 = (struct unifier *) alloc(sizcof(struct unifier));
if (unify(zterm, original[i], &zbase, unif-> first, newu2)) {

for(u = newu2; u-> nextu != NULL; u = u-> nextu);
u-> nextu = newu;
newu = newu2;

else
mfrec(newu2, sizcof(*newu2));

}
frccunificrs(old);
old = newu;
if (old = = NULL)

fail = 1;
}
if (!fail) {

for (u = old; u-> nextu != NULL; u = u-> nextu);
u- > nextu = final;
final = old;
if (zbase > highest)

highest = zbase;
}

}
for (sol = solution; sol != NULL; sol = tempsol) {

tempsol = sol- > next;
for (v = sol-> first; v ! = NULL; v = tempv) {

tempv = v- > nextv;
mfree(v, sizeof(*v));

}
mfree(sol, sizeof(*sol));

}
if (final = = NULL)

return (0);
new_unifiers- > first = final- > first;
new_unifiers-> nextu = final-> nextu;
mfree(final,sizeof(*final));
*base = highest;
return(l);

67

The following code is common to both the master and slave processes.

^include "types.h"

^*****
*
* parsc term reads symbols from the standard input and builds a term.
*

int parse_term(tree, symtab, nsymbols)
struct term *tree;
char symtab[][10j;
int *nsymbols;
{

struct term ^subtree, *last;
char string[10J, *alloc();
int i, done, found;

scanf("%s", string);
if (stringlO] = = EOF) {

printf("\n\nln valid syntax!\n\n");
return (1);

}
found = 0;
for (i == 0; i< *nsvmbols && Ifound; i + +)

if (str_equal(string, symtabfi])) {
tree- > id = i;
found = 1;

}
if (Ifound) {

for (i=0; (symtab[*nsymbols](i] = string[i])!= '\0'; i + +);
tree- > id = (*nsvmbols) + + ;

}
tree- > type = 't';

last = NULL;
done = 0;

while (Idone) {
scanf("%s", string);
if (string[0] = = EOF) {

printf("\n\nlnvalid syntax!\n\n");
retum(l);

}

if (stringlO] = = ')') {
if (last = - NULL)

printf("\nlnvalid syntax");
else

last-> sibling = NULL;
done = 1;

}
else {

68

subtree = (struct term *) a!loc(sizcol(struct term));
if (last = = NULL)

tree- > child = subtree;
else

last- > sibling = subtree;

if (string[0] = = T) {
if (parse_term(subtree, symtab, nsymbols))

return(l);
}
else {

found = 0;
for (i = 0; i < &nsymbols; i + +)

if (str_equal(string, symtab[i])) (
subtree- > id = i;
found = 1;

}
if (Ifound) {

for (i = 0; (symtab[*nsymbols][ij = stringfi]) != '\0 '; i+ +) ;
subtree- > id = (*nsymbols) + + ;

}
if (string[0] > = 'u ' && string[0] < = 'z')

subtree- > type — V ;
else

subtree-> type = 'c';
subtree-> child = NULL;

}
last = subtree ;

}
}
retum(O);

}

*
* print_term prints a term to standard output
*
***** J

print_term(tree, unif, symtab)
struct term *tree;
struct substitution *unif;
char symtab[][10];
{

struct term ^subtree, *sub, *sub_v();
char *build_z(), *temp;

if (tree- > type = = V)
tree = sub_v(tree, unif);

if (tree- > child = = NULL)
printf^/os",symtab] tree- > id]);

else {
printf(''(%s/',symtab[tree- > id]);
subtree = tree-> child;

while (subtree != NULL) {
print!]" ");
if (subtree-> type = = V)

sub = sub_v(subtrce, unif);
else

sub = subtree;

if (sub-> child = = NULL)
if (sub-> id < 0) (

printf]"%s",(temp = build_z(-sub-> id)));
mfree(temp, 10*sizeo!]char));

}
else

printf]"%s",symtab[sub-> id]);
else

print_term(sub, unif, symtab);
subtree = subtree- > sibling;

}
printf(")");

}
return;

}

*

* print_unifiers prints up to 100 unifiers to standart output and returns
* the total number of unifiers
*

int print_unifiers(unifiers, symtab)
struct unifier ^unifiers;
char symtab[][I0];
{

struct unifier *temp;
struct substitution *subs;
int count = 0;

for (temp = unifiers; temp != NULL; temp = temp-> nextu) {
if (count + + < 100) {

printf ("\n{ ");
for (subs = temp-> first; subs ! = NULL; subs = subs->nexts)

if ((subs- > var) > = 0) {
printf("%s/', symtab[subs-> var]);
print_term(subs-> subst, temp-> first, symtab);
print!]", ~);

}
print!]'}");

}
}
return(count);

}
j *****
♦
* sub v does substitutions on a variable if the variable is in the domain

70

* of a unifier. It returns a pointer to the final term.
*
***** j

struct term *sub_v(node, unif)
struct term *node;
struct substitution *unif;
{

struct substitution *v;
struct term *t;

for (v = unif; v != NULL; v = v-> nexts)
if (v- > var = = node- > id) {

t = v- > subst;
if (t-> type = = V)

return (sub_v(t, unif));
else

return (t);
}

return (node);
}̂*****

*

* flatten flattens a term and returns a pointer to the flattened term
*

struct flat *flatten(tree, unif)
struct term *tree;
struct substitution *unif;
{

struct term *sub_v(), ^subtree, *ptr;
struct flat *temp, *last, *root;
char *alloc();

if (tree- > type = = 'v')
tree = sub_v(treef unif);

last = NULL;
for (ptr = tree-> child; p tr != NULL; ptr = p tr-> sibling) {

if (ptr- > type = - V)
subtree = sub_v(ptr, unif);

else
subtree = ptr;

if (subtree- > id = = tree- > id) {
temp = flatten(subtree, unif);
if (last = = NULL)

root = temp;
else

last-> next - temp;
for (last = temp; last-> next != NULL; last = last-> next);

}
else {

temp = (struct flat *) alloc(sizeof(struct flat));
temp-> subterm = subtree;
temp-> next = NULL;
if (last = = NULL)

71

root = temp;
else

last-> next = temp;
last = temp;

}
}
return (root);,

}

*
* str_equal tests if two character strings are equal
*

int str_equal(sl, s2)
char sl[], s2[];
{

int i;

for (i = 0; sl[i] = = s2(i]; i+ +)
if (sl[i] - = '\0')

retum(l);

return(O);
}

* occurs performs the occurs check. It returns true if var occurs in the
* term tree
*

int occurs(var, tree, unif, checked, nchecked)
int var, checked[], Unchecked;
struct term *tree;
struct substitution *unif;
{

struct term ^subtree;
int i;
struct substitution *v;

if (tree- > type = = V)
if (tree- > id = = var) {

return (I);
}
else {

for (i = 0; i < Unchecked; i+ +)
if (tree- > id = = checked[i])

return (0);

checked[(*nchecked) + +] = tree- > id;

for (v = unif; v != NULL; v = v-> nexts)
if (tree- > id = = v- > var)

return (occurs(var, v-> subst, unif, checked, nchecked));

72

return (0);
}

else
for (subtree = tree-> child; subtree ! = NULL; subtree = subtree-> sibling)

if (occurs(var, subtree, unif, checked, nchecked))
return (1);

return(O);
}

*
* unify determines which unification algorithm is used to unify two terms.
*
* * * * * y

int unify(terml, term2, base, old unifier, new unifiers)
struct term *terml, *term2;
int *base;
struct substitution *old_unifier;
struct unifier *new_unifiers;
{

struct term *sub_v();
int R_unify(), AC_unify();
int is_AC();

if (term l-> type = = 'v')
terml = sub_v(terml, old_unifier);

if (term2-> type = = V)
term2 = sub_v(term2, old_unifier);

if (term l-> child = = NULL || term2-> child = = NULL)
return (R_unify(terml, term2, base, old_unifier, new unifiers));

else if (term l-> id = = term2->id)
if (is_AC(terml-> id))

return (AC_unify(terml, term2, base, old_unifier, new unifiers));
else

return (R_unify(terml, term2, base, old_unifier, new_unifiers));
else

return (0);
}
y * * * * *
*
* is_AC returns true if the function func is AC
*
* * * * * y

int is_AC(func)
int func;
{

return (func < NUMAC);
}
y****

*

* Reunify is Robinson's unification algorithm
*

73

int R_unify(terml, term2, base, old unifier, new unifiers)
struct term *terml, *term2;
int *base;
struct substitution *old_unifier;
struct unifier *new_unifiers;
{

void frce_unifiers();
int checked[100], nchecked;
int count_subterms(), unify();
struct unifier *o!d, *new, *new2, *temp, *unif;
struct substitution *new_unif,*copy_s();
struct term *subl, *sub2;
char *aIloc();

if (te rm l-> type = = V) {
if (term2-> type = = V && term l-> id = = term2->id) {

new unifiers-> first = copys(old_unifier);
newunifiers- > nextu = NULL;
return (1);

}
nchecked = 0;
if (occurs(terml-> id, term2, old unifier, checked, &nchecked))

return(0);
new unif = (struct substitution *) alloc(sizeof(struct substitution));
new_unif-> var = term l-> id;
new_unif- > subst = term2;
new_unif-> nexts = copys(oldunifier);
new_unifiers-> first = new_unif;
new_unifiers-> nextu = NULL;
retum (l);

}
else if (term2- > type = = V)

return (R_unify(term2, terml, base, old_unifier, new_unifiers));
else if (term l-> id = = term2-> id) {

if (count_subterms(terml) = = count_subterms(term2)) {
old = (struct unifier *) alloc(sizeof(struct unifier));
old-> first = copy_s(old_unifier);
old-> nextu = NULL;
sub2 = term2-> child;
fo r(subl = term l-> child; subl != NULL; subl = sub l-> sibling) {

new = NULL;
for (unif = old; un if!= NULL; unif = unif-> nextu) {

new2 = (struct unifier *) alloc(sizeof(struct unifier));
if (unify(subl, sub2, base, unif-> first, new2)) (

for (temp = new2; temp-> nextu != NULL; temp = temp-> nextu);
temp-> nextu = new;
new = new2;

}
else

mfree(new2, sizeof(struct unifier));
}
freeunifiers(old);
old = new;
sub2 = sub2- > sibling;

74

if (old = = NULL)
rcturn(O):

newunifiers-> first = old-> first;
newunifiers- > nextu = old- > nextu;
mfree (old, sizeof(*old));
return(l);

}
}
return (0);

}
/****+

}

* copy_s makes a copy of a substitution
*
* * * * * j

struct substitution *copy_s(old)
struct substitution *old;
{

struct substitution *new;
char *alloc();

if (old = = NULL)
new = NULL;

else {
new = (struct substitution *) alloc(sizeof(struct substitution));
new- > var = old- > var;
new-> subst = old-> subst;
new->nexts = copy_s(old->nexts);

}
return (new);

}
******/
*

* count_subs returns the number o f subterms in a flattened term
*
*****!

int count_subs(f)
struct flat *f;
{

int i;
struct flat *temp;

i = 0;
for (temp = f;tem p != NULL; temp = temp-> next)

if (temp-> subterm != NULL)
i + + ;

retum(i);
}
j*****
*
* count subterms returns the number of argument in a term

int countsubterm s(t)
struct term *t;
{

int i;
struct term *temp;

i = 0;
for (temp = t-> child; temp != NULL; temp = temp-> sibling)

i+ + ;
return(i);

}
y*****
*
* free_unifiers deallocated the memory used by u
*
*****y

void free_unifiers(u)
struct unifier *u;
{

struct unifier *temp, *next;
struct substitution *sub, *sub2;

for (temp = u; temp != NULL; temp = next) (
for (sub = temp-> first; sub != NULL; sub = sub2) {

sub2 = sub->nexts;
mfree(sub, sizeof(*sub));

}
next = temp- > nextu;
mfree(temp, sizeof(*temp));

}
}
j*****
*
* same_term returns true if terml and term2 are identical
*

int same_term(terml, term2, unif)
struct term *terml, *term2;
struct substitution *unif;
{

int count_subtermsO;
struct term *subl, *sub2, *sub_v();

if (terml -> type = = 'v') {
if (term2-> type = = V && term l-> id = = term2-> id)

retum(l);
terml = sub_v(terml, unif);

}

if (term2- > type = = V)
term2 = sub_v(term2, unif);

76

if (term l-> id = = term2->id)
if (countsubterms(terml) = = count_subterms(term2)) {

for(subl = term l-> child, sub2 = tcrm2->child; subl != NULL;
subl = subl-> sibling, sub2 = sub2-> sibling)

if (Isame term(subl, sub2, unif))
return (0);

return (1);
}

return (0);
}

*
* erase_flat deallocates the memory used by a flattened term
*
*****j

erase_flat(f)
struct flat *f;
{

struct flat *temp, *ff;

for (ff = f; ff!= NULL; flf = temp) {
temp = ff->next;
mfree(ff, sizeof(*fI));

}
}

*
* erase_term deallocates the memory used by a term
*
*****y

void erase_term(t)
struct term *t;
{

struct term *subterm, *temp;

if (t != NULL) {
for (subterm = t-> child; subterm != NULL; subterm = temp) (

temp = subterm- > sibling;
eras e_term(subterm);

}
mfree(t, sizeof(*t));

}

*
* elim dup removes similar terms from both terms
*

void elim_dup(terml, term2, unif)
struct flat *terml, *term2;

struct substitution *unif;
{

struct term *subl, *sub2;
struct flat *ptrl, *ptr2;
int done, same_term();

fo r(p trl = terml; ptr 1 != NULL; ptrl = p trl-> n ex t){
subl = p trl-> subterm;
if (subl ! = NULL) {

done = 0;
for (ptr2 — term2; ptr2 != NULL && Idone; ptr2 = ptr2-> next) {

sub2 = ptr2-> subterm;
if (sub2 != NULL && same_term(subl, sub2, unif)) {

p tr l-> subterm = NULL;
ptr2-> subterm = NULL;
done = 1;

}
}

}
}

}

*
* build_z creates a character string containing the name o f an introduced
* variable
*
£ * * *

char *build_z(number)
int number;
{

int i, index, num2;
char temp[10], *id, *alloc();

id = alloc(sizeof(char)*10);
id(0] = 'z';
index = 0;
while (number ! = 0) (

num2 = number/10;
temp[index+ +] = '0' + number - 10*num2;
number = numi2;

}
for (i = 0; i< index; i+ +)

id[i+ 1] = temp(index-i-l);
id[index+2] = ^0';

return (id);
}
j *****
♦
* print basis is a debugging tool that prints the basis of solutions to a
* Diophantine equation

78

* * * * * j
print_basis(basis, num, npairs)
int basis[][MAXCNO+ 1], num, npairs;
{

mt 1, j;

printf("\n\nBasis:\n\n");
for (i = 0; i < num; i + +) {

for (j= 1; j < = npairs; j + +)
printf("%d ",basis[i]Q]);

p r i n t i n ') ;
}
p r in t in '”);

}
yf*****
*
* weed_basis removes basis solutions which can not appear in any valid
* solution to the Diophantine equation
*

int weed_basis(num, npairs, basis, original)
int num, npairs, basis[][MAXCNO + 1];
struct term *original[];
{

int i, j, newnum, good, cflag, tflag, termid;

newnum = 0;
for (i= 0 ; i<num ; i + +) {

good = 1;
cflag = 0;
tflag = 0;
for (j = 0; j < npairs && good; j + +) {

if (original[j]-> type = = 'c') {
if(basis[i]lj + 1] > 1)

good = 0;
else if(basis[i][j + 1] = = 1) {

if (cflag || tflag)
good = 0;

else
cflag = 1;

}
}
else if (original(j]- > type = = Y) {

if(basis(i][j + 1] > 1)
good = 0;

else if(basis[i][j + 1] = = 1) {
if (cflag || (tflag && original[j]- > id !— termid))

good = 0;
else {

tflag = 1;
termid = original(j]->id;

}
}

79

if (good) (
if (i ! = newnum)

for (j = 0; j < npairs; j + +)
basis[newnum][j + 1] = basis[i][j + 1];

newnum 4- + ;
}

}
return (newnum);

}

}
}

/*****/*
* findsolutions generates the valid solutions to the Diophantine
* equation, given the weeded basis
*

struct d io so ln *find_solutions(num, npairs, basis, original, nb, so far, count,
solution)

int num, npairs, basis[][MAXCNO-t- 1], nb, so_far[], count[MAXCNO];
struct dio soln *solution;
struct term * original)];
{

int i, j, illegal, good;
struct vector *v;
struct dio soln *new_solution;
char *alloc();

num—;
for (i = 0; i< 2 ; i+ +) {

illegal = 0;
if(i = = 1){

so_far[nb + +] = num;
for(j = 0; j<npairs; j + +) {

count(j] + = basis[num][j+1];
if (county] > 1 && originaiy]- > type ! = V)

illegal = 1;
}

}
if (lillegal) {

if (num = = 0) {
good = 1;
for (j = 0; j < npairs; j + +)

if (county] ===== 0)
good = 0;

if (good) {
new solution = (struct dio_soln *) alloc (sizeof(struct dio soln)

);
newsolution- > next = solution;
new_solution-> first = NULL;
solution = new_solution;
for (j = 0; j < nb; j + +) {

v = (struct vector *) alloc(sizeof(struct vector));
v->nextv = solution-> first;

80

solution-> first = v;
v- > vcct = so_far[jj;

}
else

solution = find_solutions(num, npairs, basis, original, nb, so fa r,
count, solution);

}
}
for (i = 0; i< npairs; i+ +)

count[i]-= basis[num][i+1];

return(solution);
}

struct set {
struct set *next;
unsigned char num{10];

} *C[10][10];
^*****

*

* findbasis returns the basis solutions of a Diophantine equation
*
*****j

int find_basis(A, nA, B, nB, basis)
int A[MAXCNO], BfMAXCNO], basis[ZMAXDIMENSION][MAXCNO + 1], nA, nB;
{

/* Zhang's algorithm (simple case) */

LOGICAL A_is_all_ones, B_is_all_ones;
struct set *find_C(), *ptr;
int i, j, nvects, num ones, num other, onesindex, other_index, * other;

A i s a l l o n e s = TRUE;

for (i = 0; i < nA && A_is_all_ones; i+ +)
if (A[i] != 1)

A_is_all_ones = FALSE;

if (A_is_alI_ones) {
num ones = nA;
onesindex = 1;
num_other = nB;
other = B;
otherindex = 1 + nA;

}
else {

B_is_all_ones = TRUE;

for (i = 0; i < nB && B is all ones; i+ +)
if(B[i]!= 1)

B i s a l l o n e s = FALSE;

}
}

81

if (B is all ones) {
numones = nB;
onesindex = 1 + nA;
numother = nA;
other = A;
otherindex = 1;

}
else

return(lankford(A, nA, B, nB, basis));
}

nvects = 0;
for (i = 0; i < num other; i + +)

for (ptr = find_C(num_ones, other[i]); ptr != NULL; ptr = p tr->next) {
for (j = 0; j < num ones; j + +)

basis[nvects][ones_index +j] = ptr->num[j|;
for (j = 0; j < num_other; j + +)

basis[nvects]|other_index +j] = (i = = j);
nvects + + ;

}

return(nvects);

* find_C returns the set C(m, k) used in Zhang's algorithm
*
***** j

struct set *fmd_C(m, k)
int m, k;
{

char *alloc();
int i, j;
struct set *ptr, *ptr2;

if (m > 9 || k > 9) {
printf(''\n argument to find_C is too big !\n\n");
retum(NULL);

}
if (C[m][k] = = NULL) {

if (m = = 1) {
Ql][k] = (struct set *) alloc(sizeof(char *) + sizeof(char));
C[l][k]-> next = NULL;
C[l][k]-> num[0] - k;

}
else {

for (i = 0; i < = k; i+ +)
for (ptr = find_C(m-l, k-i); ptr != NULL; ptr = ptr-> next) {

ptr2 = (struct set *) alloc(sizeof(char *) + m*sizeof(char))

ptr2->next = C[m][k];
C[m][k] = ptr2;
for (j = 0; j < m-1; j+ +)

ptr2->num[j] = ptr->num|j];

82

ptr2-> num[m-l] = i;
}

return(C[m][k]);

}
}

* i n i t C initializes the array used to calculate C
*

init_C()
{

mt 1, j;

for (i = 0; i < 10; i4- +)
for (j = 0 ; j < 10; j+ +)

C m = NULL;
}

*̂
* lankford finds the basis solutions of a Diophantine equation using
* Lankford's algorithm
*

*****y
int lankford(A, nA, B, nB, Zmatrix)
int A[MAXCNO], B[MAXCNO], Zmatrix[ZMAXDIMENSION][MAXCNO+ 1], nA, nB;
{

int Nmatrix[NMAXDIMENSION][MAXCNO + 1], Pmatrix[NMAXDIMENSION][MAXCNO + 1]
int new[MAXCNO+ 1);
int nN, nP, nZ, n, old_offset, new_offset;
int i, j, jj, k;
int Nend, Pend, Zend;
int newN(), newZ(), newP();

n = nA + nB + 1;
nN = nZ = nP = 0;
for (i= 1; i<n; i+ +)

new[i] = 0;
for (i = 0; i<nA; i+ +) {

new[i+ 1] = 1;
for (j = 0; j < n B ; j + +) {

jj = nA + I + j;
newfjj] = 1;
new(0] = A[i] - B[jj;
if (new(0] < 0) {

for (k=0; k<n; k + +)
Nmatrix[nN][k] = new(k];

nN + + ;
}
else if (new{0] = = 0) {

for (k = 0; k<n; k + +)
Zmatrix(nZ][k] = new(k];

83

nZ+ + ;
}
else {

for (k = 0; k<n; k+ +)
Pmatrix[nPj[k] = new[k];

nP+ + ;
}
newfjj] = 0;

}
new[i + 1] = 0;

}

new offset = 0;
oldoffset = NMAXDIMENSION/2;

while (nN + nP > 0) {
i = old_offset;
oldofTset = newofiset;
new_offset = i;
Nend = nN;
Pend = nP;
Zend = nZ:
nN = nP = 0;
for (i = 0; i < Nend; i + +) {

for (j = 1; j < n; j+ +)
new[j] = Nmatrix[i+old_ofFset][j];

for (j = 0; j < nA; j+ +) {
new[i+ 1] + + ;
new(0] = A[j] + Nmatrix[i+old_ofTset][0];
if (new{0] < 0) {

nN = newN(Nmatrix, nN, Zmatrix, nZ, new, n, new_ofiset);
if (nN - = -1)

retum(O);
}
else if(new[0] = = 0) {

if ((nZ = newZ(Zmatrix, nZ, Zend, new, n)) = = -1)
retum(O);

}
else {

nP = newP(Pmatrix, nP, Zmatrix, nZ, new, n, new_ofFset);
if(nP = = -1)

retum(O);
}
new[j+ 1)—;

}
}
for (i = 0; i < Pend; i + +) {

for(j » 1; j < n; j + +)
new(j] = Pmatrix[old_ofrset+i][j];

for (j = 0; j < nB; j + +) {
new(j + 1 + nA] + + ;
new[0] = Pmatrix[old_ofiset + i][0] - B(j];
if (new(0] < 0) {

nN = newN(Nmatrix, nN, Zmatrix, nZ, new, n, new offset);
if (nN = = -1)

84

rctum(O);

else if(new[0] = = 0) {
if ((nZ = newZ(Zmatrix, nZ, Zend, new, n)) = = -1)

return(O);
}
else {

nP = newP(Pmatrix, nP, Zmatrix, nZ, new, n, new_offset);
if (nP = = -1)

retum(0);
}
new{j + 1 + nA]—;

}
}

}
rcturn(nZ);

}
y******
*
* newN adds a row the Lankfords N-matrix
*
4=4=4:*̂ * j

int newN(Nmatrix, nN, Zmatrix, nZ, new, n, offset)
int Nmatrix[][MAXCNO+ 1], nN, offset;
int Zmatrix[][MAXCNO + 1], nZ, new]MAXCNO+ 1], n;
{

int i, j, reducible, same;

same = 0;
for (i = 0; i < nN && !same; i+ +) {

same = 1;
for (j = 1; j < n && same; j + +)

if (new[j]! = Nmatrix[offset+i][i])
same = 0;

}
if (!same) {

reducible = 0;
for (i — 0; i < nZ && Ireducible; i+ +) {

reducible = 1;
for (j= 1; j < n && reducible; j+ +)

if(new(j] < Zmatrix[i](il)
reducible = 0;

}
}
if (Isame && Ireducible) {

if (nN = = NMAXDIMENSION/2)
nN = -1;

else {
for (i = 0; i<n; i+ +)

Nmatrix[offset+nN][i] = new{i];
nN + + ;

}
}

}

85

rcturn(nN);

^*****
*
* newZ adds a row to Lankford's Z-matrix which becomes the basis
*

int newZ(Zmatrix, nZ, Zend, new, n)
int Zmatrix[][MAXCNO + 1], nZ, Zend, new(MAXCNO+ 1], n;
{

int i, j, same;

same = 0;
for (i = Zend; i < nZ && !same; i+ +) {

same = 1;
for (j — 1; j < n && same; j+ +)

if (newfjj ! = Zmatrix[i][j])
same = 0;

}
if (!same) {

if (nZ = = ZMAXDIMENSION)
nZ = -1;

else {
for (i = 0; i <n ; i+ +)

Zmatrix[nZ][i] = new{i];
nZ + 4-;

}
}

return(nZ);
}
 ̂* * * * *
*
* newP adds a row to Lankford's P-matrix*
* * * * * j

int newP(Pmatrix, nP, Zmatrix, nZ, new, n, offset)
int Pmatrix[][MAXCNO + 1], nP, ofTset;
int Zmatrix[][MAXCNO 4-1], nZ, new(MAXCNO+ 1], n;
{

int i, j, reducible, same;

same = 0;
for (i = 0; i < nP && Isame; i+ +) {

same = 1;
for (j — 1; j < n && same; j + +)

if(new (i]!= Pmatrix[ofTset + i][j])
same = 0;

}
if (Isame) {

reducible = 0;
for (i = 0; i < nZ && Ireducible; i+ +) (

reducible = 1;

}

8 6

for (j = 1; j < n && reducible; j + +)
if (new[j] < Zmatrix[i]|j])

reducible = 0;

if (Isame && Ireducible) {
if (nP = = NMAXDIMENSION/2)

nP = -1;
else {

for (i = 0; i < n; i+ +)
Pmatrix[offset + nPJ[iJ = new(i];

nP + + ;
}

}

return(nP);
}

#define FACTOR 1000
^define FACT4 4*FACTOR

struct root {
int allocated;
char *base;
char **empty;

} class[10];

*
* alloc dynamically allocates and manages memory
*
***** j

char *alloc(size)
unsigned size;
{

char *malloc();
char *ptr, **ptr2;
int index;

/* blocks are in multiples o f 4 bytes */
index = (size-l)> > 2;

}
}

if (index > 9)
stop();

if (class[index].base = = NULL) {
class[index].allocated = 0;
class[indexj.base = malloc(FACT4*(index+ 1));
classjindexj.empty = NULL;

}

if (class[index].empty = = NULL) {
if (class[index].allocated = = FACTOR) {

class[index].allocated = 1;
ptr = class(index].base = malloc(FACT4*(index+ 1));

87

if (ptr = = NULL) {
printf("\n M A LLOC returned NULL!!!\n");
stop();

}
}
else

ptr = class[index].base + (((index 4-1) * class[index].allocated+ +).< <2);
}
else {

ptr2 = class[index].empty;
class[index].empty = (char **) *ptr2;

ptr = (char *) ptr2;
}
return (ptr);

I*****
*
* mfree keeps track of memory no longer needed for future use by alloc
*

mfree(block, size)
char **bIock;
unsigned size;
(

int index;

/* blocks are in multiples of 4 bytes */
index = (size-l)> >2;

*b!ock = (char *) class[index].empty;
class[indexj.empty = block;

}
^*****
*
* trav_term traverses a term and copies it into a list*

int trav_term(term, list)
struct term *term;
struct term_list list[];
{

struct term *subterm;
int i;

list[0].type = term- > type;
list[0].id = term- > id;
i = 1;

if (term- > type = = 't') {
for (subterm = term-> child; subterm != NULL; subterm = subterm-> sibling)

i + = trav_term(subterm, &list[i]);
list[i+ +].type = ')';

88

return(i);
}

*
* p a r s e t parses a term from a list
*

struct term *parse_t(list, next)
struct term list list[];
int *next;
{

}

struct term *term, *subtcrm, *last;
int i;
char *alloc();

term = (struct term *) alloc(sizeof(struct term));
term- > type = list[0].type;
term- > id = list[0].id;
term -> child = NULL;
term -> sibling = NULL;
last = NULL;
*next = 1;

if (list[0].type = = 't') {
while (list[*next].type != ')') {

subterm = parse_t(&list[*next], &i);
(*next) + = i;
if (last = = NULL)

term- > child = subterm;
else

last-> sibling = subterm;
last = subterm;

}
(*next) + + ;

}
return (term);

}

89

The clock routines used to time the programs follow.

^include "types.h"

struct clock clocks[MAX_CLOCKSj;

/*************
*
* clock_init() - Initialize all clocks.
*
*************/

clock_init()
{

int i;
for (i = 0; i < MAX_CLOCKS; i+ +)

clock_reset(i);
} /* clock_init */
y*************

*

* wall_time(sec, usee) - It has been sec seconds + usee microseconds
* since midnight Jan. 1, 1970 GMT.
*
* * * * * * * * * * * * * y

wall_time(seconds, microseconds)
STAT_TYPE ^seconds, ^microseconds;
{

struct timeval t;
struct timezone tz;

gettimeofday(&t, &tz);
^seconds = t.tv_sec;
* microseconds = t.tv_usec;

} /* wall_time */

y * * * * * * * * * * * * *
*

* clock_start(clock_num) - Start or continue timing.
*

* If the clock is already running, a warning message is printed.
*

*************/

clock_start(c)
int c;
{

struct clock *cp;

cp = &clocks[cJ;
if (cp- > curr_sec ! = -1) {

90

fprintf(stderr, "WARNING, clockstart: dock %d already on.\n", c);
printf("WARNlNG, clock_start: clock %d already on.\n", c);
}

else
wall_time(&cp- > curr_sec, &cp-> curr_usec);

} /* clock start */

y*************
*
* clock_stop(clock_num) - Stop timing and add to accumulated total.
*

* If the dock not running, a warning message is printed.
*
*************/

clock_stop(c)
{

STAT TYPE sec, usee;
struct dock *cp;

cp = &clocks[c];
if (cp- > curr_sec = = -1) {

fprintf(stderr, "WARNING, clock stop: clock %d already on.\n", c);
printf("WARNING, clock stop: clock %d already off.\n", c);
}

else {
wall_time(&sec, &usec);
cp- > accum_sec + = sec - cp- > curr sec;
cp-> accum_usec + = usee - cp-> curr usec;
cp->curr_sec = -1;
cp-> curr_usec = -I;
}

} /* clock_stop */

y*************
*

* STAT_TYPE clock_val(clock_num) - Returns accumulated time in milliseconds.
*

* Clock need not be stopped.
*

* * * * * * * * * * * * * y

St a t t YPE clock_val(c)
int c;
{

STAT_TYPE sec, usee, i, j;

i = (clocks[c].accum_sec * 1000) + (clocks[c].accum_usec / 1000);
if (clocks[c].curr_sec = = -1)

retum(i);
else {

wall_time(&sec, &usec);
j = ((sec - clocks[c].curr_sec) * 1000) +

((usee - clocks[c].curr_usec) / 1000);
retum(i + j);

91

}
} /* clock_vaI */

^*************
*

* clock_reset(clock_num) - Clocks must be reset before being used.
*

clock_reset(c)
int c;
{

clocks[c].accum_sec = clocks[c].accum_usec = 0;
clocks[c].curr_sec = clocks[c].curr_usec = -1;

} I* clock_reset */

This last File is used by the macros to generate the slave processes.

#include <stdio.h>

* These macros create routines to spawn the slave processes
*

ENV

P ROCE S S_G ROU P(one_sla ve)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umriscc)

P ROCES S_G ROU P_EN D

PROCESS_GROUP(three_slaves)
P ROC ESSEN TR Y(/usr/U M RI SCB/users/shaggyk/par/ac. slave,umrisca)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umriscc)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umriscd)

P ROCESS_G ROUP_END

PROCESS_GROUP(five_slaves)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umrisca)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umriscc)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umriscd)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umrisce)
PROCESS_ENTRY(/usr/UMRISCB/users/shaggyk/par/ac.slave,umriscf)

PROCESS GROUP END

	A Parallel Implementation of Stickel's AC Unification Algorithm in a Message-Passing Environment
	Recommended Citation

	tmp.1633698656.pdf.OYFG0

