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ABSTRACT 

A quantum phase transition is a phase transition at absolute zero occurring 

under variations in an external non-thermal parameter such as magnetic field or pres­

sure. Quantum phase transitions are one among the important topics currently inves­

tigated in condensed matter physics. They are observed in various systems, e.g., in 

the ferromagnetic-paramagnetic phase transition in LiHoF 4 or in the superconductor­

metal phase transition in nanowires. 

A particular class of quantum phase transitions, which is phase transitions in 

the presence of disorder and dissipation, is investigated here. An example of this 

class is the ferromagnetic-paramagnetic phase transition in Nil-xV x or CePd1-xRhx 

caused by variations in chemical composition. In these system, disorder is due to 

random positions of doping element and the dynamics of order-parameter fluctuations 

is dissipative due to conduction electrons. 

These quantum phase transitions are explained using the following approach: 

The Landau-Ginzberg-Wilson functional, which is derived from a microscopic Hamil­

tonian, is treated by the strong-disorder renormalization group method. For ohmic 

damping, phase transitions are strongly influenced by disorder and the critical point 

is an infinite-randomness fixed point, which is in the universality class same as that 

of the random transverse-field Ising model. The scaling form of observable quantities 

is activated type rather than conventional power-law type. For superohmic damping, 

the strong-disorder renormalization group method yields one of the recursion relation­

ships different from ohmic damping. This difference indicates a more conventional 

transition for superohmic damping. 
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1. INTRODUCTION 

The phase change between ice and liquid water is a familiar example of a phase 

transition. Phase transitions occur in many diverse systems. Because they are com­

plex phenomena, formulation of a theoretical framework to explain them has been 

a challenge for many decades. The tools of statistical mechanics have been used to 

understand these many-body phenomena. 

A quantum phase transition is a special kind of phase transition observed at ab­

solute zero due to variations in a nonthermal parameter such as pressure or magnetic 

field. This chapter explains the basics of phase transitions1 generally and quantum 

phase transitions in particular. 

1.1. THE BASICS OF PHASE TRANSITIONS 

Variations in energy configurations of the constituents of a substance can qual­

itatively change the physical properties2 of that substance. The phases are these en­

ergy configurations, which often correspond to various symmetries, and the changes 

in these configurations are phase transitions. Figure 1.1 shows the phases of a typical 

fluid substance as a function of pressure and temperature. The solid lines represent 

the boundaries between phases. The liquid-gas phase boundary ends at the critical 

point C. A phase transition takes place when the system crosses the phase bound­

ary due to variations in the external parameters. Crossing of the phase boundary is 

accompanied by singularities in the physical properties of the substance. 

In general, phase transitions are classified as either first-order or continuous 

(or second-order) . In a first-order phase transition, both phases coexist at the phase 

boundary. The phase change is accompanied by latent heat3 , which is evidence of 

abrupt structural changes in the substance. The first derivative of the free energy 

with respect to a state variable is discontinuous in a first-order phase transition. 

IFor more details see, e.g., [1,2,31. 
2These include, e.g., mechanical, electrical, or magnetic characteristics. 
3Latent heat is the heat absorbed by a substance at a constant temperature as it changes from 

one phase to another. 
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Liquid 

Solid ..... ~ 

Gas 

T 

Figure 1.1. Phase diagram of a typical fluid substance as a function of pressure, p, 
and temperature, T. Point C denotes the critical point. The dotted arrow 
across the solid and the liquid phase shows a first-order phase transition. 
The dotted arrow passing through the critical point shows a continuous 
phase transition. 

The dotted arrow drawn across the solid-liquid phase boundary in figure 1.1 is an 

example of a first-order phase transition. It corresponds to the example mentioned 

above of ice and liquid water. 

The dotted arrow passing through the critical point C in figure 1.1 shows an 

example of a continuous phase transition. The two phases (i.e., liquid and gas) 

that coexist on the phase boundary become indistinguishable at that point. In such 

a transition, the free energy and its first derivative with respect to a state variable 

are continuous, and there is no latent heat involved. The ferromagnetic-paramagnetic 

phase transition in iron at 1043°K is another example of a continuous phase transition. 

A continuous phase transition is generally characterized by an order parameter 

'¢', which is a physical quantity that is zero on one side of the critical point and 

non-zero on the other. For example, the order parameter of the liquid-gas transition 

in figure 1.1 can be the difference between liquid and gas densities. Defining the order 

parameter for a phase transition can be difficult. 

The spatial and temporal fluctuations of the order parameter are important 

in addition to the average of order parameter. These are quantified by a two-point 
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correlation function4 
: 

C(x, T) _ (¢(O,O) . ¢(x, T)) _ 1 (¢) 12 . (1) 

One way to obtain experimental information about a continuous phase transition is 

by means of scattering experiments5 . The scattering cross-section of probing particles 

is proportional to the Fourier transform of the two-point correlation function. As a 

system approaches the critical point, order-parameter fluctuations grow in space and 

time. These are correlated up to a length called the correlation length6 , c;; likewise, 

the typical time scale of order-parameter fluctuations is defined as correlation time, 

Tc. The length and time scales of order-parameter fluctuations become large at the 

critical point. An example is the critical point of CO2 at 304°K and 73 atm pressure. 

The transparent CO2 turns milky as it approaches the critical point. The increasing 

length scale of density (Le., the order parameter) fluctuations eventually becomes 

comparable to the wavelength of visible light; consequently, the light is scattered. 

This phenomenon is known as critical opalescence [5]. 

Empirical studies7 of systems approaching a continuous phase transition at 

a temperature Tc indicate power-law relationships between observable quantities. 

Specifically, the correlation length c; diverges as Irl-v
, where r is the reduced temper­

ature (r = (T - Tc)/Tc) and v is the correlation-length critical exponent. Likewise, 

the correlation time diverges as 

(2) 

where z is the dynamical critical exponent. These and other power laws of observable 

quantities (Table 1.1) can be theoretically derived from the scaling hypothesis. 

4The notation (a) represents the thermal average of a. The thermal average of a quantity is the 
average at a constant temperature in an equilibrium state. 

5For example, see [4]. 
6The relationship between the two-point correlation function and the correlation length (i.e., 

equation (10)) is addressed in section 1.2 below. 
7For instance, see [6, 7, 8, 9]. 
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1.2. THE SCALING HYPOTHESIS 

The following discussion of the scaling hypothesis considers a magnetic system 

that undergoes a ferromagnetic-paramagnetic continuous phase transition. Thermo­

dynamic quantities at the critical point can be derived from the free energy density, 

which is given by 

f = - (k~T) In Z , (3) 

where V is volume, kB is a Boltzmann constant, T is the temperature, and Z is 

the canonical partition function. An example is the magnetic susceptibility X in the 

absence of an external field h : 

X = - (~~) , 
h=O 

(4) 

or the magnetization in the absence of an external field 

m= (-~~) . 
h=O 

(5) 

Widom propounded the scaling hypothesis on a phenomenological basis [10] . 

The hypothesis states that the free energy density of a system sufficiently close to the 

critical point has a so-called scaling form 

(6) 

where the scaling function 'l/J is a function of only one variable. 

The scaling function differs for r > 0 (i.e., 'l/J+) and r < 0 (i.e., 'l/J-). Widom 

found that the values8 of x and y can be chosen such that the functions 'l/J± are 

identical for apparently dissimilar systems. The scaling hypothesis has played an 

important role in the development of the renormalization group9 [11]. 

SHere, x and y are real numbers. 
9The renormalization is the modern theory of critical phenomena. Using the renormalization 

group, the scaling form of the free energy can be derived from first principles. 
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Use of the free energy density in equation (6) to calculate the magnetic suscep­

tibility of equation (4) yields the power law 

_ I 1(1-2x)/y f)
2
'l/J±(0) 

X - r f)h 2 · (7) 

If this result is compared with experimental observations at the critical point, where 

the susceptibility diverges as Ir 1-1' (see table 1.1), then the susceptibility critical 

exponent can be written as I = 2x-l. In general, a critical exponent describes the 
y 

nonanalytic behavior of an observable quantity near the critical point. The critical 

behavior of a phase transition is described by a collection of appropriate critical 

exponents, which depend on the dimension of the system and the order-parameter, 

and on the symmetry of the Hamiltonian. Table 1.1 lists the critical exponents 

of a magnetic transition and their defining conditions. Dissimilar systems of equal 

dimensions that are characterized by order parameters of the same dimensions have 

identical critical exponents. This phenomenon is called universality, which shows that 

although microscopic details may be responsible for various phases in a system, they 

do not control its critical behavior. 

The critical exponents a, {3, and 6 can be expressed in terms of x and y by taking 

a partial derivative of the free energy density (i.e., equation (6)) with respect to a 

suitable variable. Since the scaling form of the free energy density contains only two 

exponents (i.e., x and y), it leads to different relations among the critical exponents. 

Table 1.1. Definitions of the critical exponents in a magnetic phase transition: r is the 
reduced temperature, d is the system's dimension, Ixl is a spatial distance, 
and h is the external magnetic field. 

Critical exponent I Definition Condition 

v Correlation length ~ ex: Irl v r-tO;h=O 

T/ Correlation function C(x) ex: Ixl-d+:l-T/ r=O;h=O 

I Susceptibility X ex: Irl I' r-tO;h=O 

a Specific heat c ex: Ir I a r-tO;h=O 
(3 Order parameter (4)) ex: (-r)/J r -t -0 ; h = 0 

6 Critical isotherm h ex: (¢) () r=O;h-tO 
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These so-called scaling laws are 

a + 2/3 + 'Y = 2 (8) 

and 

a+/3(0+1)=2. (9) 

The scaling hypothesis of the equal-time two-point correlation function provides 

a basis for further discussion of the scaling law : 

(10) 

where v is the correlation-length critical exponent, Ixl is a distance, d is the dimension, 

and TJ is the correlation-function critical exponent. The theory of linear response,10 

which relates the magnetic susceptibility to the two-point correlation function, gives 

the scaling law 

(2 - TJ)v = 'Y . (11) 

The singular part of the free energy density is proportional to ~-d since the 

correlation length is the only useful length at the critical point. This relation gives 

the hyperscaling law 

vd = 2 - a , (12) 

which involves the dimension. The hyperscaling law holds below a specific dimension 

called the upper critical dimension 11 . 

1.3. QUANTUM PHASE TRANSITIONS 

Quantum phase transitions are zero-temperature phase transitions that occur 

under variations in an external nonthermal parameter [15, 16, 17]. A quantum phase 

lOSee, e.g., [4, 12] . 
llDiscussed below in section 2.1. More details can be found in [13, 14]. 
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transition can be a first-order or a continuous phase transition. A phase transition in 

which the two distinct degenerate ground states coexist is called a first-order quantum 

phase transition. 

A continuous quantum phase transition has no special degeneracy as in LiHoF4 . 

The phase diagram of this substance as a function of temperature and external mag­

netic field is shown in figure l.2 [18] . The ferromagnetic-paramagnetic phase transi­

tion can occur in two ways: by increasing the temperature at a small external field, 

as shown by the solid arrow, or by increasing the external field at a low tempera­

ture, as shown by the dotted arrow. The dotted arrow shows a continuous quantum 

phase transition due to quantum fluctuations, which arise from Heisenberg's uncer­

tainty principle. As the external field increases, quantum fluctuations also increase 

and compete with the order in the ferromagnetic phase. They destroy it beyond the 

critical point, which results in the paramagnetic phase. 

Since quantum phase transitions occur exactly at absolute zero, they cannot be 

attained in experiments; nevertheless, the effects of a quantum critical point, such 

as unusual power laws or a non-Fermi liquid behavior, can be observed at attainable 

temperatures. 

1.. 
• • 

I.' 

g- 1.2 

!=' 
0.8 Ferromagnet Paramagnet 

0 .• 

a.' 

0.1 

10 10 30 

Transverse Magnetic field (kOe) 

Figure l.2. Magnetic phase diagram of LiHoF4 as a function of temperature and ex­
ternal magnetic field. The solid and dotted arrows show phase transitions 
caused by thermal and quantum fluctuations respectively. 
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The schematic phase diagram in figure 1.3 shows the non-zero temperature effects 

of a quantum critical point. The external tuning parameter for this quantum phase 

transition is pressure. Quantum fluctuations dominate the quantum-paramagnetic re­

gion, whereas thermal fluctuations dominate the thermal-paramagnetic region. Both 

fluctuations become important in the quantum critical region. The crossover lines be­

tween the quantum critical region and both paramagnetic regions are determined by 

comparing the thermal energy kBT and the quantum energy (u.;e. The magnitude of 

the quantum energy can be estimated from the typical time scale (i.e., equation (2)) 

of quantum fluctuations. The dimensionless quantity describing the distance from 

the critical point at absolute zero is r = (p - Pe)IPe, where Pc is the critical pressure. 

Since We is proportional to liTe, the quantum energy is calculated as 

(13) 

Quantum fluctuations are important as long as the quantum energy is greater than 

the thermal energy. The boundaries of the quantum critical region are given by the 

condition kBT,......, Irlllz. 

T Nonuniversal 

, , 
Thermal '- Quantum " 

\ critical ,/ paramagnet \ , 
\ , 
\ , 
\ , 
\ , 
\ , 
\ , 
\ , 

I 

Quantum 
paramagnet 

Pc p 

Figure 1.3. Phase diagram in the vicinity of a quantum critical point located at Pc, 
where p is the pressure and T is the temperature. The shaded region is 
the classical critical region. 
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Exciting the quantum critical ground state by increasing the temperature leads to 

unusual behavior in the quantum critical region. 

Since thermal fluctuations dominate the shaded phase-boundary region in figure 

1.3, this region is described by the classical theory. In such cases, the phase transition 

takes place at a finite temperature. Moreover, the quantum energy is less than the 

thermal energy, and although quantum fluctuations are present at a microscopic level, 

they do not control the critical behavior. 

Figure 1.3 corresponds to a transition at which the ordered phase exists at non­

zero temperatures. In some cases, it exists only at absolute zero. The schematic 

phase diagram in a such situation is similar to that in figure 1.3; however, the finite­

temperature ferromagnetic region collapses on the pressure axis (see [17]). 

The statistical mechanics approaches to classical and quantum phase transitions 

are similar. In the case of a classical Hamiltonian, where the kinetic part H K depends 

on generalized momenta Pi and the potential part Hp depends only on the generalized 

coordinates qi, the partition function can be written as 

z = J II dpie-HK/kBT J II dqie-Hp/kBT . 
, t 

(14) 

The kinetic part of the partition function does not usually contribute to the singularity 

of the free energy density (i.e., equation (3)) since it has Gaussian terms and the 

Gaussian integrals are not singular. Therefore, phase transitions in such systems can 

be studied using a time-independent theory such as the Landau-Ginzburg-Wilson 

theory12. 

The statistical mechanics of a quantum phase transition in d dimension are 

closely related to those of a classical phase transition in d + z dimension 13. The map­

ping of a quantum phase transition onto a classical transition introduces an additional 

dimension of imaginary time. The reason is that the dynamics and the statics do not 

separate from each other for a quantum Hamiltonian in which the kinetic part H K 

and the potential part H p do not commute. In such a situation, the partition 

12Discussed below in section 2.2. 
13This concept is different from application of the classical theory to the shaded phase-boundary 

region in figure 1.3. 
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function can be rewritten by using Trotter decomposition14 , which introduces an ex­

tra dimension of the imaginary time T = {3 = -i8/ It, where 8 is the real time. At a 

non-zero temperature transition, the imaginary time has a finite spread, and due to 

dominant thermal fluctuations, does not influence the asymptotic critical behavior. 

The imaginary time, however, has an infinite spread at a zero-temperature transition. 

Therefore, the quantum phase transition in d dimension can be mapped onto a clas­

sical transition in d + z dimension 15 , and the scaling hypothesis of equation (6) can 

be generalized to 

(15) 

The approach of mapping a quantum phase transition onto a classical phase is 

limited to the thermodynamics of a quantum phase transition since it rewrites the 

partition function. Other approaches are required to address other features such as 

finite-temperature real-time dynamics. 

1.4. DISORDER AND DISSIPATION IN PHASE TRANSITIONS 

A real solid always contains disorder in the form of lattice defects, imperfec­

tions, or impurities. The following discussion is limited to the simplest kind of dis­

order, which is time independent, it is also known as a quenched or frozen disorder. 

Moreover, the disorder is assumed to have no qualitative influence on any of the bulk 

phases. Such disorder is called weak or random-Tc disorder. An experimental example 

of weak disorder arises from doping of nonmagnetic atoms in a classical ferromagnet . 

Under certain circumstances, weak disorder can influence a phase transition. 

Harris [21] found a condition under which the effects of weak disorder do not change 

critical behavior at a classical critical point. The same condition was later found to 

be applicable to quantum critical points. The Harris criterion states that a clean 

14The Trotter decomposition [19, 20] simplifies the partition function in imaginary time as follows. 

The Trotter formula for operators A and B is eA+B = limN-+oo (e4 e~) N. Thus, the kinetic and 

potential parts of the Hamiltonian are separated in the quantum case with an additional dimension 
of imaginary time. 

15The dimension is d + z and not d + 1 because time scales with the length as timervlengthz . 



11 

critical point is stable against weak disorder if 

dv > 2, (16) 

where d is the system dimension and v is the correlation-length critical exponent. 

This condition is derived by considering partial regions of size ~. Due to disorder, 

each region has a somewhat different critical temperature than the bulk critical tem­

perature of the impure system. If the variation in the reduced temperature from 

region to region is smaller than the reduced temperature of the clean system (i.e., 

the system without disorder), then order-parameter fluctuations caused by the weak 

disorder are suppressed at the phase transition. The central limit theorem gives the 

local variation in the reduced system temperature, which is proportional to ~-d/2. 

Using the relationship between r and ~, the local variation in the reduced system 

temperature can be rewritten as rdv/2. Thus, the condition for the suppressed weak 

disorder is rdv / 2 < r. This condition implies equation (16) at the critical point (i.e., 

r -t 0). 

In a phase transition, violation of the Harris criterion creates three possibilities: 

1. The critical behavior is affected such that the numerical value of the critical 

exponent v changes to meet the criteria. Thus, conventional power law scaling 

is observed at the critical point, but with a different value of v. 

2. The disorder destroys the conventional critical behavior. It leads to non-power­

law scaling behavior of the critical exponents. The disorder effects increase 

without limit at the critical point, which is called an infinite-randomness critical 

point. This scenario is discussed in chapter 3. 

3. The disorder can destroy the phase transition completely. The system has in­

dependent regions that undergo phase change at different critical temperatures. 

Therefore, the transition is smeared (see [22]) over a temperature range. 

Another consequence of disorder is Griffiths phases. An infinite disordered sys­

tem can have large spatial regions with no impurities, and the probability of finding 

these regions is exponentially small. These regions, called rare regions, tend to un­

dergo phase transition at the critical temperature of the clean system. The disordered 
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Griffiths phase16 [23, 24] is the region in the parameter space between the critical tem­

perature of a clean system and that of an impure system. An ordered Griffiths phase17 

also exists in the ordered phase of the transition. The dynamics of rare regions are 

slow because they require a change in the order parameter over a large volume. In 

the case of a classical system, rare regions contribute to the observed thermodynamic 

quantities in the form of a power law within their volume. Because the probability 

of finding these regions is exponentially small, the effects of Griffiths phases are weak 

in the quantities observed for a classical system; nevertheless, they are important for 

the long-term dynamics of a classical system. They are also important in a quan­

tum system, where the contribution of rare regions to the observed quantities can be 

exponentially large within their volume. 

Apart from disorder, dissipation influences the dynamics of a phase transition. 

Thus, order-parameter modes interact with other low-energy modes, creating a kind 

of 'friction force' similar to the damping force in a harmonic oscillator. Since dynamics 

and statics decouple in a classical phase transition, dissipation does not influence the 

transition. However, dissipation becomes important in a quantum phase transition in 

which dynamics and statics are coupled. Chapter 4 discusses experimental examples 

in which the effects of the disorder and the linear damping are apparent. 

The reminder of the thesis is organized as follows: Chapter 2 discusses the Lan­

dau theory and presents the Landau-Ginzburg-Wilson theory for the classical Ising 

spin model. Chapter 3 addresses the renormalization group method and studies the 

strong-disorder renormalization group method by applying it to the transverse-field 

Ising model. The main part of the thesis begins with chapter 4, which first describes 

experiments involving quantum phase transitions with dissipation and disorder. This 

chapter continues discussing the Landau-Ginzburg-Wilson theory suitable for inves­

tigation of these quantum phase transitions. The strong-disorder renormalization 

group method is applied to this theory, and recursion relations and flow equations 

are derived to find observable quantities. Finally, chapter 5 considers an extension of 

the problem in which the Ohmic (i.e., linear) damping in the experimental examples 

is replaced by the super-Ohmic damping. 

16The Griffiths phase is also known as the Griffiths region. 
17For a review of this topic see, e.g., [22, 15] 
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2. THE ORDER PARAMETER FIELD THEORY 

Initial attempts to describe phase transitions were of the mean-field theory18 

kind; that is, the interaction of a particle with the rest of the system was treated 

as the interaction with the average local field. The following discusses the Landau 

theory, which can be considered a unification of earlier mean-field theories. 

2.1. LANDAU THEORY 

Landau theory is based on the assumption that for a given phase transition, 

the free energy can be written as a power series expansion of the order-parameter's 

thermal average (cjJ) [25, 26, 27, 28, 29]. In a continuous phase transition, the order 

parameter increases continuously from zero in the ordered phase. In a first-order 

phase transition, on the other hand, the order parameter changes discontinuously 

at the transition temperature. Because the series expansion is relevant under the 

assumption of a small order parameter near the phase transition, the Landau theory 

is better controlled for a continuous phase transition than for a first-order phase 

transition. The expansion of the Landau free energy FL is 

(17) 

The values of parameters ao, a2, a3, and a4 19 are determined by the system's degrees 

of freedom, which exclude the order parameter, and these are dependent on external 

parameters such as temperature and pressure. The physical value of the thermal 

average of the order parameter is obtained by minimizing the free energy. 

18See e.g.,[13] 
19 The reason for the absence of a first-order term in the free energy expansion is that, depending 

on the value of a2, the free energy minimum is located either in the ordered phase or in the disordered 
phase. The system's state is specified by a partial derivative of this absolute minimum, i.e. 

Since the order parameter vanishes in the disordered phase (i.e., (¢) = 0), the above equation is 
satisfied for the condition al = 0; therefore, there is no first-order term in the Landau free energy 
expansion. 
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The Landau theory describes a first-order phase transition for a3 i= O. For 

a2 > a; (Figure 2.1(a)), where a; is the value of a2 at the phase transition, the 

absolute minimum of the free energy is located at (¢) = 0, and the system is in the 

disordered phase. The ordered phase appears as a second local minimum of the free 

energy, and at a2 = a;, where the Landau free energies of both phases coincide, it 

is located at (¢) i= 0 (Figure 2.1(b)). For a2 < a; (Figure 2.1(c)), the system is in 

the ordered phase, and the absolute minimum is located'at (¢) i= O. In this case, the 

system jumps discontinuously from the disordered phase (i.e., (¢) = 0) to the ordered 

phase (i.e., (¢) i= 0). 

The Landau theory describes a continuous phase transition for a3 = 0, which is 

usually due to symmetry. The critical point is located at a2 = 0 (Figure 2.2(b)). In 

case of a thermal continuous-phase transition, a2 gives the distance from the critical 

point (i.e., a2 is proportional to T - Tc). For a2 > 0, the system is in the disordered 

phase (Figure 2.2(a)). 

«I» «I» 

(a) (b) 

(c) 

Figure 2.1. Landau free energy in a first-order transition: Landau free energy as a 
function of the order parameter's thermal average at (a) a2 > a;, (b) 
a2 = a;, and (c) a2 < a;. 
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0,= 0 

(a) (b) 

(c) 

Figure 2.2. Landau free energy in a continuous phase transition: Landau free energy 
as a function of the order parameter's thermal average at (a) a2 > 0, (b) 
a2 = 0, and (c) a2 < o. 

In equation (17), if the term (¢) 5 and higher order terms are disregarded, then the 

minimum of free energy is located in the ordered phase at (¢) = ±~, as shown in 

Figure 2.2(c). Thus, the critical exponent {3 predicted by the Landau theory is 1/2. 

For a non-zero field h, which is conjugate to the order parameter, equation (17) has 

an extra term of -h (¢). The partial derivative of this free energy with respect to the 

order parameter's thermal average then gives 

(18) 

Using this equation of state, the Landau theory gives the critical exponents ,,(, 0:, and 

6. For example, the magnetic susceptibility can be found by differentiating equation 

(18) with respect to h (i.e., X = 8 (¢) /8h). This differentiation, in turn, gives 

(19) 
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Thus, the critical exponent I predicted by the Landau theory is 1. Similarly, a IS 

equal to 0 and 6 is equal to 3. 

The Landau theory uses the order-parameter mean while neglecting order­

parameter fluctuations about the mean. It can fail near the critical point regime, 

where order-parameter fluctuations about the mean are significant. The dominance 

of fluctuations usually decreases as the system dimension and the number of order­

parameter components increases. Ginzburg found that the Landau theory breaks 

down below a certain dimension dt, which is the upper critical dimension [30, 31]. 

This dimension is independent of the number of order-parameter components. There­

fore, magnetic systems of Ising and Heisenberg spin symmetries have the same upper 

critical dimension (i.e., dt = 4). The lower critical dimension d-;; gives the limit below 

which no phase transition is observed in the system. In such a case, no long range 

order is possible due to strong fluctuations. The lower critical dimension is 1 for the 

Ising and 2 for the Heisenberg spin symmetry. 

At the phase boundary, fluctuations become important in a system of dimension 

d, where d-;; < d < dt; accordingly, modifications in the Landau theory become 

necessary, as discussed in section 2.2. 

2.2. LANDAU-GINZBURG-WILSON THEORY 

A theory that includes fluctuations, at least those at the long wavelengths, is 

required to describe phase transitions for d < dt, the region where the Landau theory 

fails. The Landau-Ginzburg-Wilson theory proposes a free-energy functional20 that 

considers long-wavelength order-parameter fluctuations. The free-energy functional 

can be derived from a microscopic Hamiltonian or developed from symmetry consid­

erations. The following discusses the difference in formalism between a classical and 

a quantum Hamiltonian. 

20 A functional is a function of a function. It is also referred to as an action in the quantum field 
theory. 



17 

The Landau-Ginzburg-Wilson theory of a classical (thermal) transition 21 can 

be written as 

z = J D(¢) e-S[rf>(x)] = II J d¢(x) e-S[rf>(x)] , 

x 

(20) 

where S[¢(x)] is the Landau-Ginzburg-Wilson functional. For the simplest case of a 

scalar order parameter, S[¢(x)] in d dimension is 

(21) 

where FL(¢(X)) is the Landau free energy, and ~o is a microscopic length scale. The 

order parameter average ¢(x) is defined at the center position x of a cell. The size of 

the cell is usually larger than the distance between the particles or the range of their 

interaction. In the above functional, rapid order-parameter fluctuations are restricted 

by the term (\7¢(x))2. This term is relevant near the critical point, where the order 

parameter has long-wavelength fluctuations. 

The Landau-Ginzburg-Wilson functional is formulated in space and imaginary 

time variables for a quantum Hamiltonian, the kinetic and the potential parts of 

which cannot be separated. The partition function is 

z = II J d¢(x, T) e-S[rf>(X,T)] . 

X,T 

(22) 

As an example, the Landau-Ginzburg-Wilson functional for a d dimensional quantum 

Hamiltonian could be 

where TO is a microscopic time scale. The coefficients ~o and TO depend on the degrees 

of freedom other than the order parameter. 

21The partition function of this transition can be described by a time-independent formalism of 
equation (14) in section 1.3. 
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The Landau-Ginzburg-Wilson functional for the Ising model is derived here as 

an example. The Hamiltonian for the classical one-dimensional Ising model of N sites 

with no external field is 

(24) 

where Si, Sj = ±1 are the classical Ising spins at neighboring sites i and j with the 

interaction Jij . The partition function, then, is 

Z = L e-f3H = L e12:ij PijSiSj , (25) 
±1 ±l 

where ~j is equal to {3Jij . By applying the Hubbard-Stratanovich transformation 

[32, 33], the partition function can be written in terms of a classical field <P as 

(26) 

where C is equal to (detPij /(21f)N)1/2. Since the spin part is formally noninteracting, 

Si can be integrated out, leading to the Landau-Ginzburg-Wilson functional expressed 

as 

S( <p) = ~ L <Pi Pij 1 <Pj - L In(2 cosh( <Pi)) . 
ij i 

(27) 

The fourier transform of P, where P is an N x N matrix (the only non-zero elements 

of which represent nearest neighbor interaction), is 

P( q) = 2P cos( qa) , 

where a is the lattice spacing and P is equal to (3J. Therefore, for the long wave-
- -1 

lengths of the order parameter, P (q) is approximately equal to a2q2 / 4P, where 

the constants are absorbed in the Landau free energy expansion. The second term 

of equation (27) can be simplified by expanding the logarithmic term for small val­

ues of <p2/2 in the hyperbolic cosine expansion. Thus, the Landau-Ginzburg-Wilson 
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functional in the fourier space is 

S[¢(q)] = J dq [~b2 (¢(q)q2¢(_q)) + FL(¢(q))] , 

which is equation (21) for d = 1 in the fourier space. 

Finding the critical exponents in the Landau theory is simple; however, the 

Landau-Ginzburg-Wilson theory has complications of interacting many-particle sys­

tem. The renormalization group is used to solve the functional and thus to obtain 

the critical exponents. Chapter 3 discusses the renormalization group method. 
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3. STRONG-DISORDER RENORMALIZATION GROUP METHOD 

One of the methods used to study a zero-temperature phase transition in the 

presence of disorder is the strong-disorder renormalization group method [34]. Ini­

tially, this method was introduced to study random Heisenberg antiferromagnetic 

spin chains [35, 36]. The following provides an introduction to renormalization group 

methods in general (see, e.g., [37, 4, 38, 39]). 

3.1. RENORMALIZATION GROUP METHOD 

The renormalization group method is based on the notion that at the critical 

point, a system looks identical at all length scales. Correlation-length divergence 

at the critical point indicates dominance of long-wavelength order-parameter fluc­

tuations. Essentially, the renormalization group method eliminates the degrees of 

freedom that do not contribute to the critical behavior. In other words, the degrees 

of freedom contributing to short-wavelength order-parameter fluctuations are elimi­

nated by the coarse graining technique. After eliminating these degrees of freedom, 

a new Hamiltonian is written, which retains the old form, but has a reduced number 

of degrees of freedom. This new Hamiltonian is subjected to the same procedure 

and so on, which reveals the system at various length scales. Recursion relations 

that describe the changes in the Hamiltonian's parameters (i.e., coupling constants) 

under coarse graining are derived in this process. Infinite iterations of the recursion 

relations are carried out so that the unusual behavior of the system can be observed 

in the thermodynamic limit. The system behavior is studied in the parameter space, 

where the coupling constants are its axes. In this space, the iterative mapping re­

sults in the flow of the Hamiltonian. At the end of the process, the system may be 

found at a fixed point, where the point is mapped onto itself. A fixed point can be 

attractive, repulsive, or mixed. If the system starts near an attractive fixed point, 

then the iterations bring it back to the fixed point. On the other hand, if the system 

starts near a repulsive fixed point, it is driven away from that by the iterations. If the 

fixed point is mixed, the system is attracted in one direction and repelled in another 

direction. The various phases of the system are represented by stable fixed points. A 
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fixed point that is repulsive in one direction and attractive in all other directions is 

a critical point. Since the critical point is unstable in only one direction, the system 

can be brought to this point by tuning only one parameter. The correlation length 

can go to either zero or infinity at a fixed point. The latter case represents the critical 

point. 

3.2. STRONG-DISORDER RENORMALIZATION GROUP METHOD 

Renormalization group methods can be performed either in the Fourier space or 

in the real space. The strong-disorder renormalization group method belongs to the 

latter case. Although this method is considered a real-space renormalization group 

method, it is based on energy considerations. In a real-space renormalization method, 

the coarse graining procedure (e.g., in a magnetic system), consists in replacing a 

block of a few lattice spins by a single spin. All sites in a system having the disorder 

cannot be treated on the same footing. To overcome this problem, the coarse graining 

technique is developed such that the degrees of freedom contributing to high-energy 

modes are eliminated while the degrees of freedom that contribute to low-energy 

modes of the system are retained. 

As discussed in section 1.4 above, three types of disorder behavior are possible 

in a system under the coarse graining method: 

1. The disorder can approach a finite limit, leading the system to a finite-randomness 

(or disorder) fixed point. 

2. The disorder can increase without limit, leading the system to the fixed point 

known as an infinite-randomness fixed point. 

3. The disorder can decrease and eventually vanish, leading the system to a clean 

fixed point. 

The strong-disorder renormalization group method works particularly well in 

the second case because it relies on the breadth of the disorder distributions. In the 

following discussion, this method is applied to a quantum mechanical toy model for 

the magnetic behavior of LiHoF 4 [40] to illustrate its operation. 
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The Hamiltonian of the transverse-field Ising-spin chain model is given by 

(28) 

where Ji > 0 is the coupling (i.e., nearest neighbor interaction) and hi > 0 is the 

transverse field at a lattice site i. The quantum spin operators fj-Z and aX are repre­

sented by the Pauli matrices: 

AX (0 1) A (0 -i) A (1 0) cr = , cry = , cr Z = . 1 0 i 0 0 -1 (29) 

For the operator aZ
, Ising spin has two orthogonal eigenstates, I i) and 11). In the 

matrix representation, these are 

(30) 

Likewise, for the operator aX, Ising spin has two orthogonal eigenstates, 1---+) and If--.), 
which can be written as 

1---+) = Ii) + 11) If--.) = Ii) - 11) 
J2' J2 

(31) 

The first term in equation (28) represents the interaction between the z components 

of neighboring spins. When there is no transverse field (i.e., when hi is equal to 0), 

all spins tend be in either the Ii) or 11) eigenstate. The result is a ferromagnetic 

phase. When the transverse field is turned on (i.e., when hi is not equal to 0), 

tunneling is induced between those two eigenstates, an effect that destroys the parallel 

spins. Because all spins are pointing in x direction at a sufficiently large field, the 

system turns into the paramagnetic phase. The competition between couplings Jis 

and fields hiS at the lattice sites thus leads to paramagnetic-ferromagnetic quantum 

phase transition. 

The following discussion considers a disordered version of this model, that is, a 

model in which hi and Ji are drawn from some random distribution. The procedure 

for applying the strong-disorder renormalization group method to this model is as 
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follows [40,41]: The first step is to identify the largest local energy in the system (i.e., 

o = max(Ji , hi)). Among all Ji and hi of the Hamiltonian, the largest is considered 

first. The largest energy can be either a coupling between any two neighboring sites 

or a field at a site. If a coupling e.g., h is the largest energy, the next step is to find 

the ground state of the associated cluster. The unperturbed Hamiltonian -J3a3a4 
has a twofold degenerate ground state. The degenerate ground eigenstates are Iii) 
and Ill). The field terms at sites 3 and 4 ( i.e., -h3a3 - h4a4) are treated by 

the second-order degenerate perturbation theory. The excited states involving the 

coupling are then eliminated, and the new Hamiltonian is written with a reduced 

number of degrees of freedom. Thus, the excited states of the cluster Ii 1) and 11 j) 
involving J3 are eliminated. Consequently, the spins at sites 3 and 4 are collectively 

treated as a single spin with a magnetic moment equal to the sum of the magnetic 

moments of the combined spins. Using this effective spin, the new Hamiltonian is 

written as - h3a3 with the field h3 given by 

(32) 

For the effective spin, the spin operator in the transverse direction x is assumed to 

be the same as that of the spin at site 3. Likewise, the spin operator along the z 

direction is assumed to be similar to that of the spin at site 3. The Hamiltonian 

for the couplings of the effective spin is then written as -J2a2a3 - J4a3a5. These 

assumptions are valid if h is much greater than h3 and h4 . Hence, a Hamiltonian 

is obtained with a reduced number of degrees of freedom and a lower value of the 

maximum energy O. 

If a field e.g., h3 is the largest energy in the system, then the unperturbed 

Hamiltonian is -h3a3. The couplings between sites 3 and 2, and those between 

sites 3 and 4 ( i.e., -J2a2a3 - J3a3a4) are treated by the second-order degenerate 

perturbation theory. The spin at site 3 is then eliminated, along with its excited state 

If--) involving the field. Consequently, the spins at sites 2 and 4 are joined by the 

effective coupling J2 , where 

(33) 
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Thus, as in the earlier case, the process yields a new Hamiltonian with a reduced 

number of degrees of freedom and a lower value of n. These steps are repeated ad 

infinitum. 

If a coupling is the largest energy, its elimination favors cluster formation. 

Therefore, the iterative procedure of eliminating couplings leads to growth of the 

cluster size while the maximum energy of the system goes to zero. These conditions 

lead the system to the ferromagnetic phase. A cluster of infinite size is formed at 

n = O. In contrast, if a field is the largest energy, its elimination hinders cluster 

formation. Thus, the iterative procedure of eliminating fields does not form a cluster, 

and with n tending to 0, the system goes into the paramagnetic phase. 

The probability distribution functions of In J and In h change with the recursion 

relations (32) and (33). The flow equations for these distributions under repeated 

elimination of couplings and fields can be derived as explained in [41]. The solution 

of the flow equations gives three kinds of nontrivial fixed points, among which is a 

line of fixed points representing the quantum Griffiths paramagnet and another one 

representing the quantum Griffiths ferromagnet. The fixed point, which separates 

these two lines, is the quantum critical point. 

At the critical point, the length scale L of a surviving cluster is given by 

(34) 

where no is the initial energy of the system and 7jJ is the so-called tunneling critical 

exponent defined by 

Tc ex: exp ~'IjJ • (35) 

In this model, 7jJ is equal to 1/2. The correlation-length scaling law is given by 

~ ;::::: Irl-v. The distance from the critical point r is defined as 

In h -In J 
r = ----:--...,.-----:-----:-

var (In h) + var (In J) , 
(36) 

where In hand In J are the averages and var (In h) and var (In J) are the variances of 

the probability distribution functions. In this model, v is equal to 2. Near the 
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infinite randomness critical point, the width of probability distributions of the cou­

pling constants tend to infinity, justifying the method. If the spins are located at 

a specific distance, the resulting spin-spin correlation functions differ for those be­

longing to different clusters and for those belonging to a single cluster. This result 

causes variations in the typical and average values of physical quantities. Chapter 4 

elaborates on these results, deriving recursion relations similar to equations (32) and 

(33). 
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4. DISORDER AND DAMPING IN QUANTUM PHASE TRANSITION 

The main topic of the thesis is discussed in this chapter. The initial discussion 

is about the motivation for this study of quantum phase transitions with disorder and 

ohmic damping. 

4.1. THE EXPERIMENTAL MOTIVATION 

Following are three examples of quantum phase transitions exhibiting complex 

phenomena, including non-Fermi liquid behavior22 of observable quantities at low 

temperatures. 

4.1.1. Quantum phase transition in CePd1-xRhx' The tuning pa-

rameter of the quantum ferromagnetic-paramagnetic transition in CePd1-xRhx (Le., 

cerium-palladium-rhodium) is chemical composition. Figure 4.1 shows a temperature­

concentration phase diagram of this substance [44]. Pure CePd undergoes a thermal 

ferromagnetic-paramagnetic transition at 6.6°K. 

22 An extensive list of experiments in non-Fermi liquid behavior can be found in [42, 43J. 
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Figure 4.1. Magnetic phases of CePd1-xRhx as a function of temperature and 
rhodium concentration. Various techniques for measuring critical tem­
perature measurements are listed. The phase boundary has an unusual 
shape beyond a rhodium concentration of 0.65. (Reprinted figure with 
permission from J. G. Sereni, T. Westerkamp, R. Kiichler, N. Caraco­
Canales, P. Gegenwart, and C. Geibel, Physical Review B, 75, 024432 
(2007). Copyright (2007) by the American Physical Society.) 
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Rhodium forms a nonmagnetic ground state with the cerium; therefore, the ferro­

magnetic phase of the substance gets suppressed as the concentration of rhodium 

increases and that of palladium decreases. The shape of the phase boundary is un­

usual beyond a 0.65 concentration of rhodium. The apparent quantum critical point, 

X cr , is at a concentration of approximately 0.87. Figure 4.2 shows the susceptibility 

measurements as a function of temperature for various concentrations in the tail of the 

ferromagnetic phase [45]. The susceptibility can be fitted above the phase boundary 

by a nonuniversal power law, which is predicted by the quantum Griffiths scenario23 . 

In this quantum phase transition, the disorder is due to random positions of the 

rhodium atoms; the magnetization modes are damped by the conduction electrons 

because the system is metallic in both phases. 

4.1.2. Quantum phase transition in Ni1- x V x • Nickel undergoes a thermal 

ferromagnetic-paramagnetic transition at 630°K. The critical temperature drops as 

the concentration of vanadium increases and that of nickel decreases. 

23See section 1.4. 
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Figure 4.2. Magnetic susceptibility of CePd1- x Rhx : The log-log plot of the suscep­
tibility as a function of temperature near the critical concentration of 
rhodium. The term a is the Griffiths exponent with d as the system 
dimension and z as the dynamical critical exponent. (Reprinted figure 
with permission from T. Westerkamp, M. Deppe, R. Kuchler, M. Brando, 
C. Geibel, P. Gegenwart, A. P. Pikul, and F. Steglich, Physical Review 
Letters, 102, 206404 (2009). Copyright (2009) by the American Physical 
Society.) 
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Figure 4.3. Magnetic phases of Ni1- x V x as a function of temperature and Vanadium 
concentration showing ferromagnetic , paramagnetic and Griffiths para­
magnetic regions. (Reprinted figure with permission from Sara Ubaid­
Kassis, Thomas Vojta, and Almut Schroeder, Physical Review Letters, 
104, 066402 (2010). Copyright (2010) by the American Physical Society.) 

The system undergoes a quantum phase transition at a vanadium concentration of 

11.4%, as shown in figure 4.3. Figure 4.4 [46] shows the susceptibility of Nit-xV x as 

a function of temperature for various Vanadium concentrations. For temperatures 

above 10 K, the susceptibility can be described by nonuniversal power law (i .e ., X is 

proportional to T-'Y) . The disorder in this system arises from random positions of 

vanadium atoms, and the damping of magnetization modes is caused by conduction 

electrons. 

4.1.3. Quantum phase transition in a superconducting nanowire. 

Extremely thin nanowires made for example of MoGe, undergo a quantum phase 

transition from a metallic to a superconducting state as a function of their thickness 

[47, 48] . The magnetic impurities on the surface of the wire are believed to destroy the 

superconducting phase. In this transition , the disorder arises from random positions 

of magnetic impurities on the wire surface, and the damping of pairing modes is again 

caused by conduction electrons. 
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Figure 4.4. Magnetic susceptibility of Nil-xV x as a function of temperature near the 
critical concentration of Vanadium. (Reprinted figure with permission 
from Sara Ubaid-Kassis, Thomas Vojta, and Almut Schroeder, Physical 
Review Letters, 104, 066402 (2010). Copyright (2010) by the American 
Physical Society.) The dotted lines show power laws for T > lOoK. The 
solid lines represent a model that sums the Curie term and the quantum 
Griffiths law (see [46J for more details). 

4.2. LANDAU-GINZBURG-WILSON THEORY 

The following derives from a single-band electron model the Landau-Ginzburg­

Wilson functional for a quantum phase transition in the presence of disorder and 

damping. The discussion focuses first on the origin of single-band model 24 and the 

motivation for using this model. 

4.2.1. The Anderson and Kondo models. The transition metal (lan-

thanides and actinides) compounds studied here usually have more than one electron 

band close to the Fermi surface. In such compounds, these bands could be an s-band 

and a d-band. Anderson proposed a model to describe the interplay between two 

such bands in the presence of Coulomb interaction. This so-called periodic Anderson 

model or s - d model25 cannot be solved, therefore, a single impurity is considered to 

simplify the problem. The single-impurity Anderson model [52J considers magnetic 

moment formation caused by doping a single impurity in a nonmagnetic metal. The 

24See, e.g., [49, 50] 
25See, e.g., [51] 
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model treats valance electrons of the host metal as a band. An impurity is treated 

as a localized electron orbital that can be occupied by up to two electrons. The 

Hamiltonian of this model is 

H = L Ek ctscks + LEd nds + L Vkd ( Ctscds + C~sCkS) + U ndTndl , (37) 
ks s ks 

where cts and c~s are creation operators that create an electron of spin s in k state 

of conduction band and the impurity state d respectively. Likewise, Cks and Cds are 

annihilation operators that destroy an electron of spin s in the band and the impurity 

state. The term Ek is the band-electron energy in k state. An impurity electron has 

energy of Ed. Its number operator, nds, is equal to C~sCds. The term Vkd , which is a 

hybridization, represents a transition of an electron between the impurity state and 

a k state. The Coulomb interaction between the electrons in the impurity state is 

given by 

(38) 

where the orbital wave function is represented by <Pd(X). 

Hubbard estimated magnitudes of interactions between electrons in the impurity 

state [53]. The single-impurity Anderson model considers Coulomb repulsion between 

impurity electrons. This repulsion favors formation of local moments. The model 

discards both the Coulomb interaction between the impurity electrons at neighboring 

sites and the exchange interaction26 . 

Formation of local moments and the resulting characteristics of a metal at low 

temperatures differ from those at high temperatures. This distinction is caused by the 

spin interaction between an impurity electron and a band electron. Hence, the model 

proposed by Kondo for this low temperature phenomenon discards charge fluctuations 

in the impurity state and considers only spin fluctuations. The Hamiltonian of this 

26The electron exchange interaction results from electrons of similar spin orientations exchanging 
their spatial coordinates (see, e.g., [54]). 
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model is 

H = L Ek ctscks - L Jk,k' (cta-Ck,) . (C~a-Cd) , (39) 
ks k,k' 

where a- is equal to ~ [Xa-x + f)a-Y + za-Z
] and n is equal to 1. The terms a-x

, a-y
, and a- z 

are Pauli matrices. A singlet state formed by the interaction between a conduction 

band electron and an impurity electron at low temperatures is called the Kondo effect. 

Here the Kondo effect is assumed to be present at low temperatures in a quantum 

phase transition. 27 This effect leads to the formation of heavy quasi-particles, which 

bear spins of impurity electrons, near the Fermi surface. These particles possess 

degrees of freedom relevant to the quantum phase transition. Hence, a single-band 

model of these particles is used to represent the problem. 

4.2.2. Derivation of the Landau-Ginzburg-Wilson functional for fer­

romagnetic quantum phase transition. The standard techniques of [57,58,59] 

are used here to derive the Landau-Ginzburg-Wilson functional from a single-band 

microscopic model of interacting electrons. The steps of this derivation are outlined 

in section 2.2 above. Although, Hamiltonian formalism [57] can be used to derive 

this functional, the partition function representation in terms of Grassman fields [60] 

provides a more convenient approach. The partition function is 

where ibi(X, T) and 'l/Ji(X, T) are Grassman fields (i.e., anticommuting numbers) defined 

at a position x and imaginary time T with spin state i, which can be i or 1. The term 

Dibi(X, T) D'l/Ji(X, T) is the Grassman functional integral measure. The functional 8 is 

the sum of functionals for free fermions 80 and their interaction28 SJ given by 

27There are systems in which the Kondo effect is not observed at low temperatures. On this topic, 
see reviews [55, 56]. 

28Since the derivation here is for a ferromagnetic-paramagnetic transition, it considers only the 
spin-triplet interaction, which results in the ferromagnetic phase. This formulation omits spin-singlet 
and Cooper pair interactions [61]. The field theory derivation for a ferromagnet differs for a Fermi 
liquid from that for a Fermi gas [62, 63]; for simplicity, here the derivation is only for a Fermi gas. 



32 

and 

(41) 

where m, which is set equal to 1, is the mass of an electron, J-L is the chemical potential, 

(3 is equal to 1/ kBT, and u is a constant. The number density ni is equal to ,¢(l/Ji. 

Use of equation (A.l) in the continuum space expresses equation (41) as 

( 42) 

where ns(x, T) is a spin-density vector and u' is a constant. 

The thermal average of contribution of spin-triplet interaction to the functional 

is given by 

If Zo is equal to J D'l/Jt(x, T) D'l/Ji(X, T) e-so , then the partition function is 

Because Zo does not contribute to critical behavior, the singular part of the partition 

function is 

( 43) 

The spin-triplet interaction is decomposed using the Hubbard-Stratanovich trans­

formation, as shown in section 2.2 above. This decomposition yields the thermal 

average in terms of an order-parameter field, 'P(x, T): 

Use of expansion in terms of cumulants (i.e., equation (B.l)) simplifies the thermal 
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average. Because for noninteracting fermions 

\ -J dx l dT Nn,(x,T)' <p(x, T)) So = 0, 

the partition function is equal to 

The Fourier transform of the order-parameter field is given by 

cp(x, T) = T L J dq </J(q, wn ) e-i(q,x-WnT) , 

Wn 

(44) 

where Wn is a Matsubara frequency, which is equal to 2nrr / {3. Thus, the partition 

function in Fourier space is 

which considers the expansion up to the fourth cumulant. The reference-system 

dynamic susceptibility X is given by 

( 45) 

where x" is equal to x-x', and Til is equal to T-7'. The reference ensemble consists of 

free fermions. Hence, the derivation of dynamic susceptibility (in appendix E below) 

is easy within the relevant limits of ferromagnetic quantum phase transition. Thus, 

the partition function of the Landau-Ginzburg-Wilson theory is equal to 

J d¢>( q, w
n

) d¢>' (q, wn)e -T Lw. J dq [1-8","'. ('~F -.IF - 'I~.I) ]I<I(q,w.)I'+ ,oN 1<I(q,w.)I' 

( 46) 

The distance from the critical point for this transition is defined as 
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which reproduces the Stoner criterion [64]. For r greater than 0, the system is in a 

paramagnetic phase and for r less than 0, the system is in a ferromagnetic phase. The 

order-parameter-modes damping coefficient 1 in this transition is equal to 81f3U' Ct./ q 

and the microscopic length ~o is equal to U'1f2Ct./ K F . Thus, the Landau-Ginzburg­

Wilson functional for ferromagnetic-paramagnetic quantum phase transition is 

s = T~ J dq( r + ~oq2 + Ilwnl) 1¢(q,wn )1 2 + ;~ ~ J dq¢4(q,wn) . (47) 
Wn Wn 

4.2.3. Landau-Ginzburg-Wilson functional for antiferromagnetic quan­

tum phase transition. The derivation of the Landau-Ginzburg-Wilson functional 

for antiferromagnetic quantum phase transition is similar to that for the ferromag­

netic quantum phase transition. The antiferromagnet-paramagnet phase transition is 

observed at a nonzero wave vector Q at which the dynamic susceptibility has a peak. 

Thus, the expansion of dynamic susceptibility in terms of q', which is equal to q - Q, 

and Wn is necessary. This expansion yields the Landau-Ginzburg-Wilson functional: 

S = T ~ J dq' (r + ~oq'2 + Ilwnl) I¢(q' , Wn)12 + ;~ L J dq' ¢4(q',Wn) . (48) 
Wn Wn 

The Landau-Ginzburg-Wilson functional in equation (48) is for the phase tran­

sition without disorder. The disorder in this functional is introduced by making the 

distance from the critical point r, the damping coefficient I, the microscopic length 

scale ~o, and the coefficient u random functions of spatial position. 

4.2.4. Modifications to the Landau-Ginzburg-Wilson functional. 

Modifications to the Landau-Ginzburg-Wilson functional are necessary for application 

of the strong-disorder renormalization group method. The functional is expressed in 

discrete space because the strong-disorder renormalization group method is a real­

space method. To make this modification, rotor variables29 are introduced to 

29 A rotor is not observed in nature; it is a mathematical construction. It represents the effective 
degrees of freedom of the low-energy states of a small number of fermions with strong interactions. 
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represent the order-parameter average over a volume centered at a specific site3o . The 

spatial gradient of the order-parameter field appears as an interaction Jij between 

neighboring sites. 

The second modification concerns the number of order parameter components 

N. Although the physical value of this number is 3, the strong-disorder renormaliza­

tion group calculations are performed within the limit of large N. The fixed point 

of the strong-disorder renormalization group method is shown31 identical for all N 

greater than 1. For a large N, the quartic term in equation (48) can be replaced by 

the length constraint on the order-parameter component at each site: 

( 49) 

where k represents the order-parameter component index. The Lagrange multiplier Ai 

introduces this constraint in the Landau-Ginzburg-Wilson functional, which expresses 

the functional as 

S =TL L (ri + Ai + lilwnl) l¢i(Wn)12 
i Wn 

- T L L ¢i( -Wn) Jij ¢j(Wn) . (50) 
(i,j) Wn 

4.2.5. A single-site solution. The Landau-Ginzburg-Wilson functional for 

a single site is 

Wn 

The Lagrange multiplier A for a single site is given by the length constraint: 

(51) 

Use of the Fourier transform (i.e., equation (44)) yields the length constraint in terms 

30S0 far, the indices i and j have been used to represent spin states; henceforth, they will represent 
sites in the discrete space. 

31See subsection 4.5.3. 



The order-parameter average is 

Integrals in the above equation split for a frequency Wm: 

J d¢(wm) d¢*(wm) 1¢(wm)12 e-T(to+-ylwml) Icf>(wm )12 

J d¢(wm) d¢*(wm) e-T(e+,lwml) Icf>(wm)12 

J d¢(w
n

) d¢*(w
n

) e -T~wn;o!m (€+'yIWnl) Icf>(wnW 

x J d¢(w
n

) d¢*(w
n

) e -T~wn;o!m (e+l'lwnl) Icf>(Wn)12 , 
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(52) 

where E is equal to r + A. Use of equation (C.3) to solve the first term in this equation 

yields the order-parameter average: 

(53) 

The single-site constraint from equations (52) and (53) is 

(54) 

At absolute zero, the above summation can be transformed into an integral: 

where A is a microscopic cut-off frequency. Thus, the solution is In (1 + ¥) = 7f, . 
Because 'Y AI E is much greater than 1, this equation yields the relationship between 

the effective distance from the critical point E and the damping coefficient T 

(55) 
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Recursion relationships are derived here by applying the strong-disorder renor­

malization group method to the Landau-Ginzburg-Wilson functional (i.e., equation 

(50)) in a one-dimensional system32
. They show changes in the coupling constants 

during the elimination process for degrees of freedom contributing to higher energies. 

The coupling constants, which are a local distance from the critical point Ei and a 

bond Jij , are the competing energies in the system. Following the steps outlined in 

subsection 3.2.1 for the strong-disorder renormalization group method, the largest 

local energy n = max (Ei' Jij ) is first identified. Of the two cases of 0, the first to be 

discussed here is that of 0 equal to the effective distance from the critical point at 

site 2. 

4.3.1. Decimation of a site. If E2 is much greater than J12 and J23 , the 

rotor (P2 does not contribute to the order-parameter field. The large local energy, E2, 

inhibits polarization of this rotor. Hence, it is eliminated in the perturbation theory 

treatment, as shown in figure 4.5. 

32The generalization of recursion relationships to higher dimensions is straight forward. 

Figure 4.5. Decimation of a site for a large E. 
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The partition function for the cluster of sites 1, 2, and 3 is 

where 

Wn 

and 

Elimination of the rotor ¢2 by carrying out Gaussian integral over ¢2(Wn ) and ¢;(wn ) 

yields the partition function: 

where sites 1 and 3 are connected by an effective interaction 113 . The method of 

cumulant expansion (i.e., equation (B.1)) is used to find this interaction. Thus, 

Wn 

where (Sl)O implies the average of Sl with respect to So. The first term of the 

expansion is 

( ) _ -TLwn ¢l(-Wn ) J12 Jd¢2(wn )d¢;(wn ) ¢2(wn )e-SO 

Sl 0 - J d¢2(wn ) d¢2(wn ) e-so 

T Lwn ¢3(Wn ) J23 J d¢2(wn ) d¢;(wn )¢2( -wn ) e-so 

J d¢2(wn ) d¢2(wn ) e-so 



39 

Because the integrals in numerators run from -00 to +00, they vanish due to sym­

metry. Therefore, 

Because 

Wn 

the average, (Sr)o' in the second term of the expansion is 

(
S2) = T Lwn 1¢>1 (Wn ) 12 Jf2 J d¢>2(Wn ) d¢>;(wn ) 1¢>2(Wn ) 12 e-So 

1 0 J d¢>2(Wn ) d¢>2(wn ) e-So 

T Lw 1¢>3(Wn ) 12 Ji3 J d¢>2(Wn ) d¢>;(wn ) I¢>2 (Wn ) 12 e-So 

+ n J d¢>2(Wn ) d¢>2(wn ) e-So 

+ 2T Lwn ¢>1 (-Wn ) J12 h3 ¢>3(Wn ) J d¢>2(Wn ) d¢>;(wn ) 1¢>2(Wn ) 12 e-So 

J d¢>2(Wn ) d¢>;(wn ) e-So 

Use of this result in equation (C.3) yields 

(57) 

The first two terms in this equation provide a subleading correction to E1 and E3. The 

last term gives the effective interaction between the rotors at sites 1 and 3, which were 

interacting with rotor ¢>2. Its denominator can be simplified in the low frequency limit 

(i.e., 121wn l/E2 is much less than 1) as 

The denominator is then 

1 1 

E2 + 121wn l ~ E2 
(59) 



40 

in the low frequency limit. Thus, 

(60) 

which is derived by discarding higher-order cumulants in equation (56) and using 

equations (57) , (58) , and (59). 

4.3.2. Decimation of a bond. If the largest local energy is the bond J23 , 

then J23 is much greater than t2 and t3 in a cluster of sites 2 and 3. Therefore, rotors 

CP2 and CP3 tend to be parallel and contribute to the order-parameter field as if there 

were only one rotor, (/J2, as shown in figure 4.6. The functional of the cluster is 

Wn 

(61) 

The mixed terms of rotors CP2 and CP3 in the functional are simplified by transforming 

the functional into the eigenbasis of'l/J+ and 'l/J-. The matrix form of equation (61) is 

£1 £2 £3 £4 

~ 
£1 i = £2£3 £4 

J 23 

~ ~ 0 J 12 J 34 

Figure 4.6. Decimation of a bond for a large J. 



Eigenvalues and eigenvectors of above matrix are 

and 

(Q2 + 0:3) + V(0:2 - (3)2 + Ji3 
2 

(Q2 + (3) - V(Q2 - (3)2 + Ji3 
2 

1P+ = cos (~) <P2(Wn ) + sin (~) <P3(Wn ) , 

1P- = sin (~) <P2(Wn ) + cos (~) <P3(Wn ) 
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(62) 

(63) 

respectively, where tan e is equal to J23 / (Q3 - (2). Therefore, the functional (i.e., 

equation (61)) in the new basis is 

(64) 
Wn 

Expansion of equation (62) yields the energy eigenvalue E_ 

The higher order terms in above expansion can be discarded for J23 much greater 

than t2 and t3. Thus, the damping coefficient and the effective distance from critical 

point are 

:y = 12 + 13 

and 

respectively. Definition of two variables, Xl = t2 - .:tr and X 2 = t3 - .:tr, yields the 
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product of E2 and E3: 

Because the term X 1X 2 is much less than E, the effective distance from the critical 

point is 

(65) 

Appendix F implements the length constraint at sites 2 and 3 to reduce equation (65) 

to 

(66) 

The right hand side of this equation is a product of the single-site constraint (i.e., 

equation (55)) at sites 2 and 3. Hence, the effective distance from the critical point 

is 

(67) 

where Eg is equal to ,2Ae-7r'Y2 and Eg is equal to ,3Ae-7r'Y3 [65, 66]. Though this 

recursion relationship differs from equation (32) by a factor of 2, E is always less than 

Eg and E~ if J23 is much greater than Eg and Eg. Thus, the general form of recursion 

relationships for the decimation of sites and bonds is 

j- Ji-l i Ji HI 
i-li+l;::::; " 

, Ei 

o 0 
E, E'+1 E;::::; 2_t_t - . 

J. '+1 t,t 

The result of above decimation procedures is removal of a site and reduction in the 

maximum energy scale n. These decimations are iterated ad infinitum. 
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4.4. FLOW EQUATIONS AND THEIR SOLUTION 

Derivation of flow equations, which result from the above recursion relationships, 

is possible only for a one-dimensional system. Decimation of a site and decimation 

of a bond are statistically independent, therefore, flow equations are derived for the 

probability distributions of variables J and t, which are P and R respectively. 

4.4.1. Flow equations. The recursion relationships are multiplicative. 

Hence, formulation of flow equations is convenient in terms of logarithmic variables, 

which are 

(68) 

where OJ is the system's initial energy scale, which is reduced in the renormalization 

procedure. The energy scale 0 is reduced to a final energy scale 0 - dO during 

elimination of all rotors and bonds for which 0 > t > 0 - dO and 0 > J> 0 - dO. 

Thus, the energy scale changes from r to r + dr during decimations for which 

recursion relationships in equations (60) and (67) are redefined as ( = (2 + (3 and /3 = 

{32 + {33 respectively. The following discusses variations in the probability distribution 

functions due to these recursion relationships. The probability distribution function 

P( (, r) of bonds varies due to decimation of sites: 

P(, r + dr) ~{P((, r) - drR(O, r) P((, r) J d(, P((2, r) 

- dr R(O, r) P((, r) J d(3 P((3, r) 

+ dr R(O, r) J d(2 J d(, P((2, r)p((" r)6( - (2 - (3) } 

x [1 - dr(P(O, r) + R(O, r))r
1 

, (69) 

where P((, r + dr) and P((, r) are the respective probability distribution functions 

after and before the decimation. The term R(O, r) represents the probability distri­

bution function at t2 = O. The second and third terms in the curly brackets come 



44 

from the elimination of J12 and J23 respectively. The fourth term in the curly brackets 

comes from the addition of bond 113 . The multiplying term is for normalization of 

distribution functions. 

Because df(P(O, r) + R(O, r)) is much less than 1, the normalizing factor is 

[1 - df(P(O, f) + R(O, f))r 1 ~ [1 + df(P(O, r) + R(O, f))] . 

Because J d(2 P ((2, f) and J d(3P((3, f) are both equal to 1, equation (69) can be 

reduced to 

P{(, r + dr) = {P(C r) - 2dr R{O, r) P{C r) 

+ dr R{O, r) f d(, P«" r)P{( - (" r) } 

x [1 + df(P(O, r) + R(O, f))] . 

The higher order terms of df in above product are discarded because they are small. 

Hence, the above equation can be simplified as 

P((, r + df) = P((, f) - 2df R(O, r)P((, r) 

+ df R(O, r)[P((2) * P(( - (2)] 

+ df P(O, f)P((, r) + df R(O, r)p((, f), 

where P((2) * P(( - (2) is the convolution of P((2, r) and P(( - (2, r). Because 

dP =P(C" f + dr) - P((, r) 

= (8P df 8P d t ) = (8P _ ap) dr 
af + 8('" 8r 8( , 

equation (70) can be reduced to 

(70) 

8P 8P -
8r = 8( - R(O, r)p((, r) + R(O, r)[p((2) * P(( - (2)] + P(O, r)P((, r) . (71) 
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Thus, equation (71) gives the variation in the probability distribution, P((, r), for 

decimation of sites. 

Variation in the probability distribution function R((3, r) due to decimation of 

bonds is 

R(/3,r+ dr) ~{R({3,r) - dr p(O,r)R({3,r) f d/30R({32,r) 

- dr P(O, r)R((3, r) J d(33 R((33, r) 

+ dr P(O, r) f d{3, f d{33 R({3" r)R({33, r)b(/3 - /30 - {33) } 

x [1 - dr(p(O, r) + R(O, r))r 1 
, (72) 

where R(fj, r + dr) and R((3, r) are the respective probability distribution functions 

after and before the decimation. The term P(O, r) represents the probability distri­

bution function at J23 = !l. The second, third and fourth term on the right hand side 

come from the elimination of Eg, Eg and the addition of E respectively. The last term 

is due to normalization of distribution functions. 

In equation (72), J d(32R((32, r) and J d(33R((33, r) are both equal to 1. Using 

approximations similar to that used to obtain equation (70), equation (72) reduces 

to 

R(fj, r + dr) = R((3, r) - 2dr P(O, r)R((3, r) 

+ dr P(O, r)[R((32) * R(fj - (32)] 

+ dr R(O, r)R((3, r) + dr P(O, r)R((3, r). 

Because 

- (OR 8R) dR = R((3, r + dr) - R((3, r) = or - 8(3 dr, 

equation (73) is reduced to 

(73) 

8R 8R -
or = 8{3 - P(O, r)R((3, r) + P(O, r)[R((32) * R((3 - (32)] + R(O, r)R((3, r). (74) 
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Thus, equation (74) gives the variation in the probability distribution R({3, r) for the 

decimation of bonds. 

4.4.2. Probability distribution functions at and near the critical point. 

When the system goes to paramagnetic phase under iterations of recursion relation­

ships, variables J become small compared to variables E. Hence, the process of elimi­

nating rotors prevents formation of a large cluster. On the other hand, if the system 

goes to magnetic phase, then variables E become small compared to J. Thus, the 

process of combining two rotors leads to formation of a large cluster. At the critical 

point, the probability distributions of two variables are equal because the system is 

in neither phase. 

The following discusses the functional forms of the probability distribution func­

tions at the critical point. These functions are assumed33 to be 

P((, r) = po(r)e-Po(r)( and R({3, r) = Ro(r)e-~(r),6 . 

Substituting these trial functions in the flow equations (71) and (74) yields functional 

forms of po(r) and Ro(r), which in turn give the probability distribution functions 

at the critical point. The following illustrates the derivation of po(r). Substitution 

of trial functions in equation (71) yields: 

opo(r) (1 ) P((, r) or po(r) - ( = -po(r)p((, r) - Ro(r)P((, r) 

+ Ro(r)Po(r)(p((, r) + po(r)p((, r) , 

where P((2) * P(( - (2) = po(r)(p((, r), R(O, r) = Ro(r) = po(r) and P(O, r) = 

po(r). Thus, 

dP 2 
dr = -Po (r) , 

which is satisfied by Po(r) = l/r. Likewise, the use of trial functions in equation 

(74) yields Ro(r) = l/r. Hence, the probability distribution functions at the critical 

33 A rigorous derivation of probability distribution functions can be found in [41] and the references 
therein. 
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point are 

-~ -~ ere r 
P((, r) = rand R(f3, r) = r . (75) 

Therefore, because the energy scale n tends to 0, the logarithmic variable r diverges; 

consequently, both distribution functions become broad. In this situation, the ap­

proximate recursion relationships become exact because removal of a rotor or a bond 

corresponds to a small fractional change in the energy scale. 

For the system away from the critical point, the distance from that point is 

given by 

lnE -InJ 
r=--------

var(In E) + var(1n J) . 
(76) 

Invariance of r under the renormalization procedure justifies this definition. The 

system is in paramagnetic phase if r greater than 0 and in magnetic phase if r is less 

than O. The solutions [41] of equations (71) and (74) in the limit, -7 0 and r --t 00 

are 

2, (2(,) PC (, r) = 2 r exp - 2 r and 
e r -1 e r -1 

-2r (2(3,) 
R((3, r) = e-2rr _ 1 exp e-2rr _ 1 ' (77) 

which give the probability distribution functions near the critical point. 

4.4.3. Scaling forms of number density and moment. The number 

density nr is the number of clusters surviving at energy scale r. The bonds and sites 

for which the respective ( and (3 are approximately equal to 0 are removed when the 

energy scale changes from r to r + dr. If ns((, r) and nB((3, r) are the number of 

sites and bonds at energy scale r, then the number density at this scale varies as 

dnr 
df = -[Po(f) + Re(r)]nr , 

where Po(f) is equal to ns(O, r)/nr and Re(f) is equal to nB(O, r)/nr. The solution 
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of this equation at the critical point is 

which is the scaling form of number density at that point for a one-dimensional 

system. The number density relates the length to the energy scale of the system. 

Because typical cluster length L is approximately equal to I/nr, the above scaling 

form yields 

(78) 

which is the length scale of a surviving cluster given by equation (34). Thus, the 

critical exponent 'IjJ, defined in equation (35), is equal to 1/2. 

For the system at some distance from the critical point, r scales as 1/r, where 

r is the distance from the critical point given by equation (76). Thus, from the 

relationship between the length of the surviving cluster and the energy scale, the 

correlation length of the system is given by 

Hence, the correlation length critical exponent v is equal to 2. 

The analysis thus far is for a one-dimensional system. The strong-disorder 

renormalization group method cannot give a closed-form solution for higher dimen­

sions because the lattice topology changes under the recursion relationships. However, 

the scaling forms in one dimension can be generalized to higher dimensions. Thus, 

the scaling form of number density in d dimension is 

(79) 

In the limit x ~ 00, the scaling function N (x) is approximately equal to xdN e-cdx
, 

where c is a constant. The scaling function is constant in the limit x ~ o. Thus, in 

the Griffiths paramagnetic region (where r is greater than 0), the number density is 

nr ,....., rdve-rd/z, where the dynamical critical exponent z is equal to r-v'IjJ. 
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The moment of a rotor formed by combining two rotors is equal to the sum 

of the moments of those rotors. Thus, the exact solution [41] in one dimension for 

typical moment of the cluster at the critical point is 

Mr(r) = r</> , 

where ¢ is equal to (1 + vi5)/2. This scaling form of the typical moment in one 

dimension can be generalized to a higher dimension as 

(80) 

The scaling function M(x) is approximately equal to Xl-</> in the limit x -4 00, and 

it is constant in the limit x -4 o. Thus, the typical moment of the cluster J.Lr varies as 

r v ,p(1-</»r in this region. The scaling forms of number density and moment are used 

to find observable quantities as discussed below in section 4.5. 

4.5. OBSERVABLE QUANTITIES 

Thermodynamically observable quantities at some non-zero temperature Tare 

calculated by applying the strong-disorder renormalization group method up to a 

finite energy scale equal to T. The remaining clusters present at that stage in the 

renormalization group are nearly independent because their interaction energies are 

much smaller than the thermal energy; consequently, each cluster contributes indi­

vidually to the observed quantities. Therefore, the following first evaluates observed 

quantities of a cluster. 

4.5.1. Observable quantities of a cluster. The Landau-Ginzburg-Wilson 

functional of a cluster is 

Wn 

where H(wn ) is a source field conjugate to the order parameter. Hence, the partition 
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function of the cluster is 

therefore, the dynamic susceptibility is 

(81) 

The susceptibility at finite temperature is derived from the single-site constraint (i.e., 

equation (54)). At a non-zero temperature, the zero frequency term is treated sepa­

rately. Hence, the constraint is 

The solution of this equation is 

T 1 ( "jA) - + -In 1 + - = 1 . 
t 7r"j t 

It is simplified in the two limiting cases. In the first case, temperature is much smaller 

than to (i.e., "jT « to, where to is given by equation (55)). If t is equal to to + 0, 

where 0 is a small correction due to temperature, then the above solution can be 

reduced to 

T 1 ("jA) 0 -+-In - ---=1. 
to 7r"j to 7r"jto 

(82) 

Because 1/7r"j In (:~) is equal to 1, the small correction <5 is equal to 7r"jT. 

In the second case, temperature is much larger than to (i.e., "jT > > to). In this 

limit, the logarithmic term is very small; consequently, t is equal to T. Thus, 

The order parameter represents a cluster of moment jl, and its contribution to 
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uniform order-parameter susceptibility is proportional to /-l2. Moreover, its contribu­

tion to local susceptibility is proportional to /-l. Therefore, in the above two limiting 

cases, uniform and local susceptibilities of a cluster are given by 

(83) 

and 

Xcluster-loc = 
{ 

/-l I t if ,T < < t 

/-lIT if ,T» t 
(84) 

respectively. The dynamic susceptibility (i.e., equation (81)) of a cluster at absolute 

zero is 

Xcluster-dynamic = (t + ,Iwnl ) 

likewise, the dynamic local susceptibility of a cluster is 

Xcluster-dynamic-loc = (t + ,Iwnl ) 

The Wick rotation34 iWn --t W + i6, where 6 is very small, gives the above 

susceptibilities in real frequencies as 

Thus, 

/-l2 
Xcluster-dynamic = -~--:-

(t - i,w) 
and 

1m Xcluster-dynamic = ( 2 2 2) 
t +, w 

Xcluster-dynamic-loc = (t - i,w) 

and 
,flW 

1m Xcluster-dynamic-loc = ( 2 2 2) 
t +, w 

4.5.2. Observable quantities of the system. The following calculates 

observable quantities of the system by summing all surviving clusters. The renormal­

ization group technique is carried out to energy scale 0, which is equal to T, to find 

34The term -i'yw in the denominator of Xcluster-dynamic is a result of Wick rotation carried out 
before expading the logarithmic term in equation (E.3). 
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the uniform susceptibility at temperature T. Under this condition, the logarithmic 

variable r is equal to In(OdT). Equations (79), (80), and (83) yield the scaling form 

of the uniform susceptibility: 

x = ~nr(r)J.L~(r) , 

I.e. , 

(85) 

Therefore, the uniform susceptibility at the critical point (where r is equal to 0) is 

1 [ (DI) j2<1>-d
N 

X r-...J - In -
T T ' 

and in the Griffiths paramagnetic region it is 

The scaling form of uniform susceptibility determines the shape of the phase boundary 

near the critical point. The scaling function of equation (85) has a singularity at a 

finite temperature critical point for a constant critical value of its argument, i.e., 

Thus, the shape of the phase boundary near the critical point is 

(86) 

as shown in figure (4.7). The shape of the phase boundary agrees qualitatively with 

that of CePd1-xRhx in figure (4.1). 
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T 

IRFP r 
Figure 4.7. Phase diagram in the vicinity of an infinite randomness fixed point 

(IRFP). The shape of the phase boundary near the infinite randomness 
critical point is given by equation (86). The Griffiths paramagnetic re­
gion is represented by the quantum paramagnet (QPM). (Reprinted fig­
ure from Jose A. Hoyos, Chetan Kotabage, and Thomas Vojta , Physical 
Review Letters , 99, 230601 (2007) . Copyright (2007) by the American 
Physical Society.) 

The scaling form of the local susceptibility, 

nr(r)f.Lr(r) 
Xloc = T ' 

I.e. , 

1 [ (0)] <i>-dN 
Xloc = T In; N(r V

1/J In(OdT ))M(r v
1/J In(OI IT)) , (87) 

is obtained from equations (79), (80) , and (84). Thus, the local susceptibility at the 

critical point and in the Griffiths paramagnetic region is 

1 [ (O/)]<i>-d
N 

Xloc rv T In T 

and 

X rv Td/z-lrvd+v,p(!-<I» In (OJ) 
lac T 

respectively. 
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The energy contribution of the clusters is found by summing the energies of all 

clusters. Therefore, 

[ (
0 )]-dN 

f::.E = TnT(r) = T In; N(rl/1j; In(OdT)) . 

Thus, the specific heat is 

at the critical point and 

in the Griffiths paramagnetic region. 

The low-temperature order parameter dependence on the conjugate field is cal­

culated by applying the strong-disorder method down to energy OR, which is equal 

to pH. Clusters of energy € (which is much greater than OR) are decimated; hence, 

they do not contribute to the order parameter. But clusters of energy much less than 

OH are polarized; therefore, they do contribute to the order parameter. The scaling 

form of the order parameter is 

i.e., 

(88) 

At the critical point (where r is equal to 0), the order parameter is 

[ (OJ)] ¢-dN 
m"-' In If . 

If this relationship is compared with the definition of exponent 8 
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then 8 is formally infinity. This order parameter has a correction of 

(89) 

which comes from the scaling form of the moment (i.e., equation (80)). The order 

parameter in the Griffiths paramagnetic region is 

The scaling form of zero-temperature dynamic susceptibility at an external fre­

quency wand energy nw (which is equal to 'YJLw) is 

where 'Y is the damping coefficient of a single cluster. If the above correction (i.e., 

equation (89)) to the scaling form is discarded, then the dynamic susceptibility is 

at the critical point. In the Griffiths paramagnetic region, the dynamic susceptibility 

is 

The scaling form of local susceptibility is 

Thus, the local susceptibility is 
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at the critical point and 

in the Griffiths region. 

4.5.3. Observable quantities for all N greater than 1. The observable 

quantities calculated above are for a large number of order parameter components, 

i.e., for the large N. To show that these results are valid for all N greater than 1 

(i.e., for all continuous-symmetry cases), the recursion relationship for decimation of 

a site (i.e., equation (60)) and a bond (i.e., equation (67)) are considered. 

Equation (60) for decimation of a site is derived from the second-order pertur­

bation theory and is therefore valid for all N including the case of N = 1. The other 

recursion relationship in equation (67) for decimation of a bond combines two rotors. 

Previous research [67] has shown that for all continuous-symmetry cases of N greater 

than 1, the effective distance from the critical point t is 

where c is a constant and fl is the moment of the cluster. The exponential relationship 

between E and fl and this recursion relationship fulfill the condition that the moment 

of cluster formed by combining two rotors is equal to the sum of the moments of those 

rotors. Thus, this recursion relationship is valid for all N greater than 1. Therefore, 

the observable quantities found at and near the critical point for these recursion 

relationships are valid for all continuous-symmetry cases with N greater than 1. 

Chapter 6 below summarizes the results obtained for observable quantities and 

compares them with conventional critical behavior and experiments. 
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5. SUPEROHMIC DAMPING IN QUANTUM PHASE TRANSITIONS 

Chapter 4 considered the problem of a quantum phase transition in the presence 

of ohmic damping. This chapter considers a generalization of such a problem in 

which ohmic damping is replaced by superohmic damping. The motivation here is 

to investigate the changes in the characteristics of infinite randomness critical point 

when the damping gets weaker. 

5.1. THE LANDAU-GINZBURG-WILSON FUNCTIONAL 

The Landau-Ginzburg-Wilson functional derived in subsection 4.2.4 (i.e., equa­

tion (50)) can be generalized to 

i Wn 

- T L L <Pi ( -Wn ) Jij <pj(Wn ) . 

(i,j) Wn 

(90) 

Superohmic damping is qualitatively weaker than ohmic damping and the ex­

ponent Zo is between 1 and 2. For ohmic damping, Zo is equal to 2. Cases involving 

no damping (Le., Zo = 1) and sub ohmic damping (i.e., Zo > 2), which is qualitatively 

stronger than the ohmic damping, are discussed at the end of this chapter. The 

following discusses a single-site constraint for superohmic damping. 

The constraint for a single rotor is derived to find the relationship between the 

damping coefficient and the distance from the critical point. The single site constraint 

of equation (54) for the superohmic damping is 

1 TL 2/ = 1. 
W

Tn 
E + ,Iwm I zo 

(91) 

The sum can be transformed into an integral at absolute zero: 

(92) 



58 

The definition EX2/zo = ,(wm)2/zo simplifies this equation to 

~ 
E 2 -1 roo dx 
,zo/2 Jo 1 + x2/ zo = 7r . 

Because the above integral is a constant c, it yields the relationship between distance 

from the critical point E and the damping coefficient ,: 

E = c(1/,)zo/(2-zo) . (93) 

The distance from the critical point in superohmic damping has a power law 

dependence on the damping coefficient. For ohmic damping, however, the distance 

from the critical point is exponentially dependent on the damping coefficient (i.e. 

equation (55)). 

5.2. APPLICATION OF THE STRONG-DISORDER 

RENORMALIZATION GROUP METHOD 

The recursion relationships are derived below using technique similar to that 

outlined above in section 4.3 for ohmic damping. In the Landau-Ginzburg-Wilson 

functional of equation (90), the largest local energy (i.e., n = max(Ei,lij)) is first 

identified. In the first case discussed below, E2 is the largest local energy in a cluster 

of sites 1, 2, and 3. 

5.2.1. Decimation of a site. Rotor <P2 is eliminated because E2 is much 

greater than 112 and 1 23 , and the rotor does not contribute to the order parameter. 

For site 2, the partition function is 

with 

Wn 
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and 

The expansion in terms of cumulants (i.e., equation (B.1)) yields the effective inter­

action J13 between rotors at sites 1 and 3: 

wn 

and the partition function after elimination of rotor (P2 is 

The term (Sl)o, which is the average of Sl with respect to So, is given by 

( ) 
_ -T Ewn ¢1 (-wn ) J12 J d¢2(Wn ) d¢2(wn ) ¢2(Wn ) e-so 

51 o-----~----~~~--~~-=---------J d¢2(Wn ) d¢2(Wn ) e-so 

T Ewn ¢3(Wn ) J23 J d¢2(Wn ) d¢;{Wn )¢2( -wn ) e-so 

J d¢2(Wn ) d¢2(wn ) e-so 

The integrals vanish due to symmetry. Therefore, 

The term (Sr)o is given by 

/ S2) = T Ewn 1¢1 (Wn ) 12 Jf2 J d¢2(Wn ) d¢;{wn ) 1¢2(Wn ) 12 e-So 

\ 1 0 J d¢2(Wn ) d¢2(Wn ) e-So 

T Ew 1¢3(wn ) 12 Ji3 J d¢2(Wn ) d¢;{wn ) 1¢2(wn ) 12 e-So 

+ n J d¢2(Wn ) d¢2(Wn ) e-So 

+ 2T Ewn ¢1 (-Wn ) J12 h3 ¢3(Wn ) J d¢2(Wn ) d¢2(Wn ) 1¢2(wn ) 12 e-So 

J d¢2(Wn ) d¢2(Wn ) e-So ' 

(95) 
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which is solved by using equation (C.3): 

The first two terms in above equation are subleading corrections to El and E3 respec­

tively. The last term is the effective interaction between rotors (PI and <P3. In the low 

frequency limit, 12lwn l2/zo /E2 is less than 1. Hence, the denominator in the equation 

(96) can be simplified as 

1 1 
(97) 

Thus, equations (94), (95), (96), and (97) yield the effective interaction: 

(98) 

where higher order cumulants are discarded in the cumulant expansion. This recursion 

relationship is similar to that obtained for the ohmic damping (which is represented 

by equation (60)). In both cases, the recursion relationship comes from second-order 

perturbation theory; thus, it is independent of Zoo 

5.2.2. Decimation of a bond. A cluster of sites 2 and 3 is considered for 

the second case, where the bond J23 is the largest local energy. Hence, h3 is much 

greater than E2 and E3, and rotors <P2 and <P3 act as a single rotor ¢2. For this cluster, 

the functional is 

Wn 

(99) 

It is simplified in the eigenbasis of 'I/J+ and 'I/J-. Thus, equation (99) in the matrix 

form is 

Wn 
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where l:t2 is equal to E2 + 121wn12/ZQ and 0:3 is equal to E3 + 13Iwn I2/ zo . Eigenvalues of 

above matrix are 

E = (0:2 + 0:3) - J(l:t2 - l:t3)2 + Ji3 
- 2 

with eigenvectors 

'ljJ+ = cos (~) <P2(Wn ) + sin (~) <P3(Wn ) and 

~- = sin (~) ¢2(Wn ) + cos (~) <P3(Wn ) , 

where tan 0 is equal to J23 /(0:3 - l:t2)' Thus, the functional of equation (99) is 

Wn 

in the eigenbasis. 

The energy eigenvalue E_ (of equation (100)) is 

(100) 

(101) 

(102) 

where higher order terms in its expansion are discarded because J23 is much greater 

than E2 and E3. Therefore, the damping coefficient is 

l' = 12 + 13 , 

and the effective distance from the critical point is 

This distance is approximated as 
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where X 2 is equal to t2 - ~ and X3 is equal to t3 -~. The length constraint at sites 

2 and 3 are used to find this effective distance, which is shown below in appendix G. 

Thus, equation (G.ll) yields 

(103) 

where x is equal to 1 - 2/ zo, a is a constant, and t2, t3 are given by equation (93). 

Thus, the general form of recursion relationships for decimation of sites and 

bonds is 

1- Ji-I i Ji i+l 
i-I HI ::::::: " 

, tl 

The renormalization group flows and observable quantities for these recursion rela­

tionships in a one-dimensional system are calculated in [68] and the transition found 

is of Kosterlitz-Thouless35 type. The main difference between superohmic and ohmic 

damping is reflected in the dynamical scaling form, which is conventional power-law 

type in the former and activated in the latter. 

For the no-damping case (i.e., when Zo is equal to 1), dynamic scaling is of the 

power-law type, and equation (103) is reduced to 

1 1 1 
-=- ::::::: a( - + -) , 
t t2 t3 

which is the result derived in [69] for a one-dimensional system of bosons with strong 

disorder. The corresponding flow equations are given in [69], and the transition is 

again of Kosterlitz-Thouless type. 

For the sub ohmic case (i.e., when Zo is grater than 2), the integral in equation 

(92) is reduced to 

Ie = n(l - 2/ zo)A 2/zo-I 

in the limit t tending to O. The integral in equation (92) has no solution if the damping 

35For the details of Kosterlitz-Thouless transition see, e.g., [14, 4]. 
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coefficient I is greater than Ic. Thus, a cluster freezes for a damping coefficient greater 

than Ic. The damping coefficients are summed under the recursion relationships. 

Thus, the dynamics of the transition eventually freezes and the transition is destroyed 

by smearing [70]. 
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6. SUMMARY AND CONCLUSIONS 

In summary, quantum phase transitions with disorder were studied in the pres­

ence of ohmic damping. The Landau-Ginzburg-Wilson functional for these quantum 

phase transitions was derived using the standard techniques of [57,58,59]. The result­

ing functional was then modified by expressing it in discrete space and by making the 

number of order-parameter components N large. The first modification allows the ap­

plication of the strong-disorder renormalization group method to the functional. This 

method is a real space method and therefore, expressing the functional in discrete 

space is necessary. The second modification turns the functional into a self-consistent 

Gaussian problem that can be solved analytically. The strong-disorder renormal­

ization group method was applied to this modified functional to find the recursion 

relationships for the coupling constants. From these relationships, the renormaliza­

tion group flow equations were derived [41] and the critical behavior was studied. The 

observable quantities at and near the critical point were discussed. Although these 

calculations were performed within the limit of a large number of order-parameter 

components (i.e. for a large N), they were shown to be valid for all N greater than 1. 

A generalization of this problem, that is quantum phase transitions in the presence of 

superohmic damping, was also studied. The recursion relationships for this case were 

again derived by applying the strong-disorder renormalization group method. The 

critical behavior for these recursion relationships is obtained in [68]. The following 

discusses the limitations of this theory and provides a perspective of the results. 

The theory is developed on the basis of the so-called Hertz-Millis approach to 

quantum phase transitions. The assumption, which is suitable for transition metal 

compounds, in this approach is that the quasi-particles do not break up at the transi­

tion. For heavy-fermion systems, the theory relies on the assumption that the Kondo 

effect survives at low temperatures. Several experimental systems listed in [42, 43] are 

in contradiction with this assumption. Thus, the Landau-Ginzburg-Wilson functional 

is inappropriate for these systems. Apart from this difficulty, the Landau-Ginzburg­

Wilson functional does not take into account other complications such as long-range 

interactions between order-parameter fluctuations. These complications are present 
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in real systems and can affect the characteristics of a phase transition at absolute 

zero and at a very low temperature. Nevertheless, the results obtained here provide 

insight in a disorder-dominated quantum phase transition with ohmic damping. 

The investigation shows that quantum phase transitions in the presence of ohmic 

dissipation are strongly influenced by disorder. The critical point is an infinite­

randomness critical point, which is in the universality class same as that of random 

transverse-field Ising model [40,41]. This result is in agreement with the numerical 

study carried out in [71] for a one-dimensional Landau-Ginzburg-Wilson functional 

for a large N. At the critical point, the observable quantities (i.e., specific heat and 

susceptibility) follow activated scaling (i.e., power-law dependence of logarithmic vari­

ables) rather than conventional power-law dependence. The behavior of observable 

quantities is of power-law type in the quantum Griffiths paramagnetic region. From 

the general classification of rare regions in [22, 67], the dimension of rare regions in a 

quantum phase transition with ohmic dissipation is equal to the lower critical dimen­

sion of the system. The behavior of observable quantities at the critical point and in 

the Griffiths region are in agreement with this classification. 

The shape of the phase boundary near the critical point is derived from the 

scaling form of susceptibility. The critical temperature predicted in this region is 

proportional to e-r-vl/J, where r is the distance from the critical point. Critical tem­

peratures and the resulting shape of the phase boundary near the apparent critical 

point in CePd1-xRhx (i.e., figure (4.1)) are in agreement with this prediction. The 

susceptibility in the Griffiths paramagnetic phase is proportional to Td/z- 1 at a spe­

cific impurity concentration (i.e. at a constant r). The susceptibility measurements 

for CePd1-xRhx (i.e., figure (4.2)) and Ni1- x Vx (i.e., figure (4.4)) at various impurity 

concentrations display this power-law temperature dependence in the Griffiths para­

magnetic region. The susceptibility measurements for Ni1- x V x are in agreement with 

the theoretical prediction in the range of 10 to 300 K. The superconductor-metal phase 

transition in extremely thin nanowires [47, 48] occurring as a function of thickness of 

wire can also be explained by this theory. This transition is studied in the absence of 

disorder in references [72, 73] using one dimensional Landau-Ginzburg-Wilson func­

tional with ohmic dissipation. The magnetic impurities that are distributed randomly 
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on the surface of nanowires introduce disorder in the system. Hence, the thermody­

namics of this transition can be described by this theory. 

A brief discussion of other dissipation scenarios is as follows: The recursion 

relationships derived for superohmic damping are similar except for the one derived 

for the effective distance from the critical point. The resulting phase transition for 

these recursion relationships is of Kosterlitz-Thouless type [68] and has conventional 

power-law scaling. The transition for the subohmic damping case is destroyed by 

smearing. In the absence of dissipation, the recursion relationships are similar to a 

system of bosons with strong disorder. The transition for this case is of Kosterlitz­

Thouless type. 

The investigation so far has focused on the critical point and the disordered 

region of a phase diagram. Beyond this theory, there is much complex physics yet to be 

explored in these regions. The physics in the ordered phase of the phase diagram also 

poses challenges. It seems that a comprehensive theory of quantum phase transitions 

has a long way to go. 



APPENDIX A 

HUBBARD INTERACTION IN TERMS OF SPIN DENSITY 



68 

The Hubbard interaction can be represented in terms of the spin-density vector 

in discrete space, which is shown in the following. This result can be mapped to 

continuum space. 

In discrete space, the spin-density vector at a site is defined as 

i,j 

The dot product of the spin-density vector is 

Since nr is a product of creation and annihilation operators of a fermion, nf is equal 

to 1 or O. Thus, nf is equal to nj; likewise, nr is equal to nl. These results transform 

the above equation into 

For a lattice with l sites, the Hubbard interaction can thus be replaced as 

U Ln1rnll = - 2; Lnl s · nl s , 

I I 

(A.I) 

where the term (nr + nl) is absorbed in chemical potential as a shift. 



APPENDIX B 

EXPANSION IN TERMS OF CUMULANTS 



The expansion of In (eX)xo in terms of cumulants is 

In (eX)xo =(x)xo + (x2)xo - (x);o + (X3)xo - 3(X2)xo(x)xo + 2(x);o 

+ (X4)xo - 3(X2);o + 4(x)xo (X3)xo - 6(x);o + .. .. 

70 

(B.1) 



APPENDIX C 

INTEGRATION OVER A COMPLEX VARIABLE 



The following solves the integral 

J 1¢1 2 exp( -al¢12) d¢d¢* 

J exp( -al¢12) d¢d¢* 
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If 'Re¢' and 'Im¢' are real and imaginary parts of a rotor variable ¢, then the integral 

in the numerator yields 

where d¢ d¢* is equal to 2i d (Re¢) d (Im¢). Real and imaginary parts are separated 

to solve the integral. Thus, 

2i J (Re2¢) exp [-a (Re2¢)] d (Re¢) J exp [-a (Im2¢)] d (Im¢) 

+ 2i J (Im2¢) exp [-a (Im2¢)] d (Im¢) J exp [-a (Re2¢)] d (Re¢) 

The solution of Gaussian integrals yields the numerator: 

Using the same technique, the integral in the denominator is calculated as 

J ZH 
exp( _al¢1 2) d¢ d¢* = - . 

2a 

Thus, equations (C.l) and (C.2) yield 

J 1¢12 exp (-al¢1 2) d¢d¢* 1 

J exp (-al¢12) d¢ d¢* a 

(C.l) 

(C.2) 

(C.3) 



APPENDIX D 

EVALUATION OF AN INTEGRAL WITH A FERMI-STEP FUNCTION 
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The integral 

(D.l) 

2 
is evaluated here. The definition p = y + iWn reduces the above integral to 

Therefore, the solution yields 

J 8 (/L - ¥) 
dql 2 

ql· q + T + iWn 

211" [(K~ p2 ) PKp] = - - - - [In(-qKp + p) -In(qKp + p)]--
q 2 2q2 q 

(D.2) 



APPENDIX E 

DERIVATION OF DYNAMIC SUSCEPTIBILITY 
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The respective Fourier transforms of the creation and annihilation Grassman 

fields are 

'ljJi (x, T) = T L J dq 1/Ji (q, Wn) ei(q.X-WnT) and 
Wn 

i[;i(X,T) = TL J dqi[;i(q,wn)e-i(q.X-wnT). 
Wn 

Use of these to obtain So (i.e., equation (40)) in Fourier space yields 

So(q, wn) = T L J dq ~ [i[;i(q, wn) ( - ~2 + J-£ - iWn) 'ljJi(q, Wn)] (E.1) 
Wn 1 

Similarly, the product of spin-density vectors in Fourier space is 

lls(X,T)' lls(X',T') =T4 L J dql dq2dq3dq4ei[(q2-Ql)·X-(Wn2-Wnl)T] 
WnJ Wn2 Wn3 Wn4 

A A 

X L i[;i( ql' WnJ ) O"~j 'ljJj( q2' Wn2 ) . i[;d~, Wn3 ) O";jl 'ljJjl( q4' WnJ . 
iji'j' 

(E.2) 

Therefore, equations (E.1) and (E.2) yield the thermal average of spin-density vectors: 

IT J Dol .. DoT.. ( ) . (' ') -So(q,wn) 
( ( ) (

' ')) _ i 'f'~ 'f't lls x, T lls X ,T e 
lls x, T . lls X T So - IT J S ( ) 

i D'ljJi D1/Ji e- 0 q,wn 

Application of the Wick theorem36 contracts the Grassman fields i[;i (ql' wnJ ) 'ljJjl (q4' wn4 ) 

and 'ljJj (q2' wn2 ) i[;il (q3' wnJ. This contraction implies 

368ee, e.g., [54], [60]. 
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Hence, 

where a is equal to L::ij aij . aji. Therefore, the dynamic susceptibility x( q, wn ) (i.e., 

equation (45)) is given by 

x(q,Wn ) = a J dx" l i3 
dT"T2 L J dql dq2ei[(Q2-ql-q)'X"-(Wn2-Wnl-wn)T"1 

Wnl Wn2 

The sum over wn1 can be transformed into an integral: 

The integral over w nl is simplified by defining z as -i(wn1 + w n ). Thus, 

J J idz 
X(q,wn ) = a dql (z + iW

n 
- () (z _ (') , 

where ( is equal to ¥ - fJ, and (' is equal to (Ql ;q)2 - fJ,. The residue theorem gives 

the following solution: 

J [ 8(-(') 8(-() 1 
X( q, w n ) = 27W dql (' _ ( + iW

n 
- (' _ ( + iW

n 
' 

where 8 is the Fermi step function. Substitution of ( and (' in above equation yields 

2 . 2 
where q' is equal to ql + q. The definitions p' = --3- + 'lWn and p = T + iWn 
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reduce both integrals in the above equation to equation (D.l). Thus, the solution 

(i.e., equation (D.2)) of these integrals gives 

47f
2
a [ (K2 p2 ) [ ] X(q,wn) = -q- 2F - 2q2 In(-qKF+p) -In(qKF+p) 

( 
K2 P'2) [ ] (p' - p) K 1 + 2F - 2q2 In(-qKF + p') -In(qKF + p') + q F 

(E.3) 

Within the limit q/ KF « 1 and wn/qKF « 1, which is the relevant limit for 

the ferromagnetic quantum phase transition, the above logarithmic terms can be 

simplified as 

In( -qKF + p) = In (-1- 2;F + i q';F) + In(qKF) = i7fsgn(wn) + In(qKF)' 

In(qKF+p) = (-2;F +iq~F) +In(qKF)' 

In( -qKF + p') = In (-1 + K
q 

+ i wKn ) + In(qKF) = i7fsgn(wn) + In (qKF ), 
2 F q F 

and In(qKF + p') = (2;F + i q~F) + In(qKF) , 

where sgn is a sign function. Since p' = p + q2, the dynamic susceptibility reduces to 

Substitution of p and of the result wnsgn(wn) = Iwnl in the above equation yields 
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Since the last term in the above equation is a subleading term, the dynamic suscep­

tibility is 

(E.4) 



APPENDIX F 
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OHMIC DAMPING 
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The distance from the critical point of a cluster formed by combining rotors ¢2 

and ¢3 is given by equation (65) as 

The length constraints at sites 2 and 3 for a particular frequency simplify this 

expression. The following calculates this constraint at site 2 by using the thermal 

average of ¢2(Wm ), which is 

where 5 is defined in equation (61). This average is expressed in the eigenbasis 'l/J+ 

and 'l/J- using equation (63): 

J D['l/J+'l/J-] (wn) (cos2(B/2) I'l/J+(wm) 12 + sin2(B/2) I'l/J-(wm) 12) e-
SI 

J D['l/J+'l/J-](Wn) e-SI 

where D['l/J+'l/J-](wn) is equal to d'l/J+(wn)d'l/J~(wn)d'l/J-(wn)d'l/J~(wn) and 5' is defined 

in equation (64). For a frequency Wm , integrals in the numerator and the denominator 

split as 

J D['l/J+'l/J-](Wm)[cos2(B/2) I'l/J+ (Wm)12 + sin2(B/2) I'l/J-(wm) 12] e- SWTn 

J D['l/J+'l/J-l(wm) e-Swm 

J D['l/J+'l/J- ](Wn#m) e-SI 

x J D['l/J+'l/J-](Wn#m) e-SI , 



simplified as 

2 [f d'ljJ+(wm) d'¢~(Wm)I'¢+(wm)12 e-T E+I1/J+(w7n )1
2 

cos (8/2) f d'¢+(wm) d'ljJ'+(wm) e-T E+ 11/J+ (w7n)1 2 

X f d'¢_ (wm ) d'ljJ:' (wm ) e-T E_I1/J_(wm)1
2

] 

f d'ljJ_ (wm ) d'ljJ~ (wm ) e-T E_I1/J_(wm)12 

. 2 [f d'¢_(wm) d'¢:'(wm) 1,¢_(wm)12 e-T E_I1/J_(w7n )12 

+ sm (8/2) f d'¢_(wm) d'ljJ~(wm) e-T E-11/J_(wm)12 

f d'¢+(wm) d'ljJ~(wm) e-T E+I1/J+(Wm)1
2

] 

X f d'¢+(wm) d'ljJ'+(wm) e-T E+I1/J+(wmW . 

Use of equation (C.3) to solve above integrals yields the thermal average: 
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where (}:2 is equal to t2 + 121wn 1 and (}:3 is equal to t3 + 131wn I. However, because 

(F.l) 

the average is reduced to 

(F.2) 

Thus, the constraint (i.e., equation (52)) at site <P2(Wm ) is 

At zero temperature, the summation becomes an integral: 

(F.3) 



The integral is solved by defining 

(£3 + 13W)/'213 A C 
w2 + (£2/3 + 12£3)W/

'

213 + (4£2£3 - Ji3)/4

'

2/3 = B + w + D + w . 

Thus, 

AD+BC=~, 
1213 

B + D = £2 + £3 . 
12 13 

These equations yield B, D, A , and C: 

B _1 [(£2 £3) -- -+- + 
2 12 13 

D = 4£2£3 - Ji3 

4'213 B 
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(F.4) 

C = £3 - 13D . (F.5) 
1213(B - D) 

Hence, the integral (F.3) is 

l
A A lA C 

B dw + D dw = 7r , 
o +w 0 +w 

where A is a high-frequency cut-off. The solution of the above equation is 

(
B+A) (D+A) A In B + C In D = 7r . 

Because A is much greater than Band D, these fractions are defined as B~A :::::::; ~ and 

DtA :::::::; ~. Use of the definition of A + C (in equation (F.4)) modifies this equation 

to 

(F.6) 

Thus, the equation is derived from the constraint at site 2. It is used below with the 

constraint at site 3 to derive the distance from the critical point. The constraint at 

site 3 is derived in the following using similar steps. Hence, the thermal average of 
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where S is defined in equation (61). The thermal average in the eigenbasis 'l/J+ and 

'l/J- is 

J D['l/J+'l/J- ](wm) (sin2(O /2)1'l/J+(wm )12 + cos2(O /2)1'l/J- (wm )12) e-s' 

J D['l/J+'l/J-](wm) e-sl 

Integrals in the numerator and the denominator split for a frequency as 

J D['l/J+'l/J- ](wm) (sin2(O /2) I'l/J+(wm) 12 + cos2(O /2) I'l/J- (Wm) 12) e-Swm 

J D['l/J+'l/J-l(Wm) e-Swm 

J D['l/J+'l/J-l(wn#m) e-
SI 

x J D['l/J+'l/J-](Wn#m) e-SI . 

This equation can be further simplified as 

. 2 [J d'l/J+(wm) d'l/J+(wm) I'l/J+(wm)12 e-T E+I1/I+(wm)12 
sm (B /2) J d'l/J+(wm) d'l/J~(wm) e-T E+ 11/1+ (wm )12 

X J d'l/J-(wm) d'l/J:'(wm) e-TE_I1/I-(wmW] 
J d'l/J-(wm) d'l/J~(wm) e-T E_I1/I_(wm)12 

2 [J d'l/J-(wm) d'l/J:'(Wm)I'l/J-(wm)12 e-T E-I1/I-(wmW 
+COS (B/2) Jd'l/J_(Wm)d'l/J~(Wm)e-TE-I1/I-(W171)12 

J d'l/J+(wm) d'l/J+(wm) e-T E+I1/I+(W171W ] 
x J d'l/J+(wm) d'l/J~(wm) e-T E+I1/I+(w171 )12 . 

Thus, the solution of above equation yields 



Use of the definition in equation (P.l) simplifies this equation to 

Thus, the constraint for ¢3(Wm ) is 

which is 

at zero temperature. This integral is solved by defining 

( E 2 + '"'I2W) 1 '"'12'"'13 A' C' 
w2 + (E2'"'13 + '"'I2 E3)wl'"'I2'"'13 + (4E2E3 - J'#.3)/4'"'12'"'13 = B' + w + D' + W 

such that 

Thus, 

A' +C' = ~ 
'"'13 

B'D' = 4E2E3 - J'#.3 
4'"'12'"'13 

A'D' + B'C' = ~ 
'"'12'"'13 

B' + D' = ~ + E3 . 

'"'12 '"'13 

Therefore, the integral in equation (F.8) is 

lA A' lA C' 
B dw + D dw = 7r . 

o +w 0 +w 
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(F.7) 

(F.8) 

(F.9) 

(F.lO) 
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The solution of this equation is 

Because A is much greater than Band D, this equation can be reduced to 

(F.1l) 

where the definition of A' +C' in (F.9) is used. Thus, this equation gives the constraint 

for site 3. 

The sum of the constraints at sites 2 and 3 (i.e., equations (F.6) and (F.1l) 

respectively) gives 

The use of definitions of A, A' and B + D in equations (F.5)' (F.lO), and (F.4) 

respectively modifies the above equation to 

Thus, the effective distance from the critical point (i.e., equation (65)) in terms of 

damping coefficients at sites 2 and 3, and in terms of cut-off frequency is 

(F.12) 

in which BD is defined as in equation (F.4). 
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The thermal average of (!>2(wm ) yields the constraint at site 2. Thus, for the 

functional S defined in equation (99), it is 

Equation (101) yields this average in eigenbasis 'l/J+ and 'l/J-: 

J D['l/J+'l/J-](wn) (cos2(B/2) I'l/J+(wm)12 + sin2(B/2) I'l/J-(wm) 12) e-S' 

J D['l/J+'l/J-](Wn) e-SI 

with S' as defined in equation (102). For a frequency Wm , this equation is reduced to 

J D['l/J+'l/J- ](Wm) [cos2(B /2) I'l/J+ (Wm) 12 + sin2(O /2) I'l/J- (Wm) 12] e-Swm 

f D['l/J+'l/J-] (Wm) e-Swm 

J D[7jJ+'l/J-](Wn#m) e-
SI 

x J D[7jJ+ 7jJ_ ](Wn#m) e-SI 

with SWm = T(E+I'l/J+(wm)12+E_\'l/J_(wm)\2). The solution of the first term is obtained 

by using equation (C.3), which expresses the thermal average as 

(G.l) 

Thus, 

(G.2) 

Therefore, the constraint at site ¢2(Wm) is 
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At absolute zero, this equation becomes an integral: 

(G.3) 

This equation is solved by defining 

(E3 + '"'I3WY) / '"'12'"'13 A C 
w2y + (E2'"'13 + '"'I2E3 )wY / '"'I2'"Y3 + (4E2E3 - Ji3) /4'"'12'"'13 = B + wY + D + wY , 

where y is equal to 2/zo. The variables A, B, C, and D are similar to those defined 

in equation (F.5) in the ohmic case above. Thus, equation (G.3) is reduced to 

--- dw + dw = 7f . 100 A 100 

C 
o B +wY 0 D +wY 

The definition wY = BxY expresses the first integral above as 

ABZ roo dx 
Jo 1 + xY , 

where z is equal to l/y - 1. In this expression, the integral is a constant Cl. A similar 

technique is used to solve the second integral, which yields the constraint at site 2 

(i.e., equation (G.3)): 

(G.4) 

The effective distance from the critical point f. is derived below using this equation, 

along with the constraint at site 3. That constraint is derived using the thermal 

average of CP3(Wm ), which is 

J D[?);+?);_](wm ) (sin2(B/2)1?);+(wm )12 + cos2(O/2) I?);-(wm ) 12) e-SI 

J D[?);+?);_ ](wm ) e-SI 

in the eigenbasis ?);+ and ?);_. The steps outlined above for calculation of the constraint 
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at site 2 yield 

Thus, 

(G.5) 

which uses equation (G.1). Hence, 

which is the constraint for (h(wm ). At absolute zero, this equation is reduced to 

(G.6) 

Equation (G.6) is solved by defining 

(E2 + 12WY)/'2/3 A' C' 
w2y + (E2/3 + 12E3)WY /,2/3 + (4E2E3 - Ji3)/4'213 = B' + wY + D' + wY , 

where y is equal to 2/ Zoo The variables A', B', C', and D' are as defined above in 

equation (F.1D) for the ohmic case. The steps outlined above to calculate the integrals 

for site 2 yield the constraint at site 3 (i.e., equation (G.6)): 

(G.7) 

Definition of C in equation (F.4) and C' in equation (F.9) expresses equations (G.4) 

and (G.7) as 

12A(CIBZ - c2DZ) + C2Dz =7r/2 and 

,3A'(c1BZ - c2DZ) + C2Dz =7r/ 3 
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respectively. The sum of these two equations is 

where In b is equal to Cl BZ and In d is equal to C2Dz. Use of definition of A and A', 

given in equations (F.5) and (F.lO) respectively, expresses this equation as 

( ) _ 2(Blnb - Dlnd) (/,2 t3 + t2/'3 ) I (d) 
'if /'2 + /'3 - B _ D + /'2/'3 (B _ D) n b . 

The definition of B + D in equation (F.4) reduces this equation to 

( ) _ 2 (B In b - D In d) (B + D) I (d) 
'if /'2 + /'3 - B _ D + B _ D n b ' 

which can be further simplified as 

(G.8) 

This equation is solved using the definitions of Band B + D in equations (F.5) and 

(F.4) respectively. The following redefines B as 

B =~ [X2 + J23 /2 + X3 + J23 /2 + ((X2 + ~23/2)2 
2 /'2 /'3 /'2 

(X3 + h3/2)2 _ 2(X2 + J23 /2)(X3 + J23 /2) + Ji3) 1/2] 
+ 2 ' 

/'3 /'2/'3 

where the substitutions t2 = X 2 + J23 /2 and t3 = X3 + J23 /2 are used. This equation 

can be simplified as 

The term (.Kz. - &) 2 is discarded because it is small. Thus, this equation is reduced 
/2 /3 
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to 

B =~ [(X2 + X3 + J23 (~ + ~) ) 
2 "12 "13 2 "12 "13 

4 (~ + ~ X2+X3) 1/2] 
_ J23 (~+~) (1 + 12 13 - 1213 ) 

2 "12 "13 J23 (1.. + 1..) 
12 13 

The expansion of the square root term yields 

Thus, 

(G.9) 

Similarly, D is equal to 

~ [(~ + E3) _ 
2 "12 "13 

which uses the definition of B + D in equation (F.4) and B in equation (F.5). The 

steps outlined above in the simplification of B express D as 

(G.10) 

Thus, equations (G.9) and (G.10) express equation (G.8) as 

(G.ll) 
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