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ABSTRACT 

The unprecedented precision achieved both in the experimental measurements 

as well as in the theoretical description of atomic bound states make them an ideal 

study object for fundamental physics and the determination of fundamental constants. 

This requires a careful study of the effects from quantum electrodynamics (QED) on 

the interaction between the electron and the nucleus. 

The two theoretical approaches for the evaluation of QED corrections are pre­

sented and discussed. Due to the presence of two energy scales from the binding 

potential and the radiation field, an overlapping parameter has to be used in both 

approaches in order to separate the energy scales. The different choices for the over­

lapping parameter in the two methods are further illustrated in a model example. 

With the nonrelativistic theory, relativistic corrections in order (Za)2 to the 

two-photon decay rate of ionic states are calculated, as well as the leading radiative 

corrections of a(Za)2In[(Za)-2]. It is shown that the corrections is gauge-invariant 

under a "hybrid" gauge transformation between Coulomb and Yennie gauge. 

Furthermore, QED corrections for Rydberg states in one-electron ions are inves­

tigated. The smallness of the corrections and the absence of nuclear size corrections 

enable very accurate theoretical predictions. Measuring transition frequencies and 

comparing them to the theoretical predictions, QED theory can be tested more pre­

cisely. In turn, this could yield a more accurate value for the Rydberg constant. 

Using a transition in a nucleus with a well determined mass, acting as a reference, a 

comparison to transition in other nuclei can even allow to determined nuclear masses. 

Finally, in order to avoid an additional uncertainty in nuclei with non zero 

nuclear spin, QED self-energy corrections to the hyperfine structure up to order 

a(Za)2~EHFS are determined for highly excited Rydberg states. 
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1. INTRODUCTION 

This work investigates the fundamentals of the electromagnetic interactions. 

Already since the formulation of the mathematical foundations of classical electrody­

namics by Maxwell, its theoretical investigation lead to a lot of discoveries in many 

different fields of physics. For example, the appearance of a velocity independent of 

the reference system namely the speed of light, required a new theory of relativity, 

Einstein's theory of special and later general relativity. 

An especially interesting subsection of electrodynamics is studied: bound-states. 

This means that two oppositely charged objects form a stable system. The usual lay 

man's example would be the planets circling the sun in the case of the gravitational 

interaction. Interestingly, in electrodynamics on the first glance oppositely charged 

objects cannot form bound-state like that because a charge moving on a circle emits 

radiation. In turn, it therefore loses energy and would ultimately crash into the other 

object. Electromagnetic bound-states are only possible for quantum objects at small 

distances where their wave-like behavior allows standing-wave like states which are 

stable. 

The focus is set on the most well-known electromagnetic bound-system, the 

atom. More specifically atoms with only one electron are considered. As the aim is 

to understand the fundamental interaction of the electron and the core, interactions 

between electrons would only lead to unnecessary perturbations. Moreover, in one­

electron atoms not only numerical but also analytical methods can be employed, 

whereas it is mathematically impossible to solve three-body problems analytically. 

This can increase our understanding because analytical steps can offer a more detailed 

view on the systematics of the interaction. 

Early in the development of quantum mechanics a solution for the bound-states 

of a one-electron atom was found by Schrodinger [1]. This solution was based upon 

a non relativistic approach as relativistic effects are small in hydrogen. It not only 

explained why the bound-states are stable but also allowed to predict the energy 

difference which is emitted as light if an electron changes from one state to another. 

This specific spectral emission of atoms still is one of the most important tools to 
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experimentally investigate atomic physics. While relativistic effects were included 

shortly afterwards by Dirac [2], precise spectroscopical measurements by Lamb and 

Retherford [3J observed slight differences from the theoretical prediction. 

So what was missing? So far the same Coulomb potential as in classical elec­

trodynamics was used. In it light is describe as a wave and a wave alone. However, 

from Einstein's famous work on the photo-effect [4J and initial work by Planck on 

the Black body radiation [5J, it is known that light is also quantized and also be­

haves like a particle. This is not yet included in the theory, even though some effects 

can be calculated with a fluctuating classical field. It seems, however, better to go 

all the way and use a fully quantized theory for the electromagnetic interaction. So 

fundamentally the photon nature of light also has to be included to gain a deeper 

understanding of the electromagnetic interaction. 

One of these quantum effects of electrodynamics is the interaction of an electron 

with its own radiation field. This cannot be solved in classical electrodynamics. Even 

in the quantum theory the mass of the electron has to be chosen to already include 

this interaction because it is not possible to observe an electron without its radiation 

field. However, for a bound state this effect is in fact observable and contributes a 

major part to the Lamb shift [6], which is the shift of the lines from the Dirac values 

as observed by Lamb and Retherford [3]. 

As this elucidates, may of the properties of the quantum world were discovered 

in atoms and much of the modern quantum field theories was partially derived in order 

to better understand the energy levels of the electrons in it. Even now because of the 

very precise predictions and experimental measurements atoms are one of the prime 

study objects for fundamental physics and specifically for quantum electrodynamics 

(QED). 

There is one big complication, however, for the theoretical study of bound states 

compared to free particles in high-energy reaction and that is the presence of the 

binding potential. For a free electron the effects of the quantized field are calculated 

by a perturbative expansion in the number of interactions between the electron and 

the quantized field. As only electromagnetic interactions are considered, the coupling 
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strength is given by the strength of the electromagnetic interaction 

e2 1 
a= ~---

47rEonc 137.036 ' 
(1) 

the so-called fine-structure constant. The results are consequently obtained as a series 

expansion in a. Because the fine-structure constant is relatively small, this series is 

naturally ordered in so far as the higher-order corrections diminish in magnitude due 

to the higher order in a. 

For a bound electron on the other hand, the expansion in interactions with 

the radiation field is still carried out but it is complicated by the fact that each 

order of interaction with the quantized field receives contributions from all orders of 

interactions with the binding potential. Since the nucleus can consist of a number of 

positive charges, the strength of the interaction with the binding potential is given 

by Za, where Z is the nuclear charge number. As the result, the natural order in the 

series expansion is lost. 

Mohr in Refs. [7,8] developed a method using the fully relativistic formalism 

of QED to obtain results in the first order of interaction with the radiation field but 

to all orders of interaction with the binding coulomb potential. It is based upon a 

separation of energy scales in the expression into two parts. In the first part, the low­

energy part, the binding energy is the dominant scale while in the second part, the 

high-energy part, the energy of the radiation field dominates. The resulting expression 

in both parts can then be evaluated numerically. The exact procedure is explained 

in detail in Sec. 3. 

Alternatively, the ordered structure of the resulting series can be restored us­

ing the formalism explained in Sec. 4. For this purpose the expression is also split 

into a low- and high-energy part, though this time with an infinitesimal overlapping 

parameter. In the low-energy part a nonrelativistic expansion of the fully relativistic 

expression is carried out using the Foldy-Wouthuysen transformation. In the high­

energy part a perturbative expansion in the binding potential is employed. While 

it is fairly apparent that the expansion in the high~energy part is an expansion in 

the binding strength Za, interestingly, the expansion in the low-energy part is as 

well. The reason lies in the scaling of the velocity of a bound electron such that the 
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nonrelativistic expansion parameter vic ~ Za. Consequently, the result is given as 

a double series in a for the interaction with the radiation field and in Za for the 

binding potential. 

For further illustration of the application of the overlapping parameter, in Sec. 5 

the method is studied by considering a model example. 

The question now arises which are the most interesting systems for a study of 

fundamental physics using the known methods. Following the idea that new effects 

are more likely to be discovered at high energies, it would appear that it is preferable 

to study strong binding fields. Due to the dependence of the binding field i.e. the 

electric field of the nucleus on the nuclear charge number Z which is depicted in 

Fig. 1.1, it would appear that ions with a large Z are favorable. 

1 20 40 60 80 

Figure 1.1. Magnitude of the electric field of the nucleus at the Bohr radius as a 
function of the nuclear charge number Z. 
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Nevertheless, such an investigation can only lead to a better understanding if ex­

perimental results can be obtained with a comparable accuracy thus allowing to check 

whether the theoretical prediction is actually realized in nature. The experimental 

precision achieved in measurements of transition frequencies is shown in Fig. 1.2. 

1/ 

b,.1/ 

10
14 

~.Ref. [9] 

1013 

1012 

1011 x Ref. [10] x Ref. [19] 

1010 

109 

108 

107 

10
6 

x Ref. [20] /.~f. [21] 

x 10 
····~.Ref. [14] 

· .............. xRef. [18] 

xRef. [13J 

x Ref. [16] R f [ ] 
x Ref. [17] xttef. [11] /1· 15 

x x 
/ 

Ref. [12] 
~---r----r----r----r----r----r---~----~--~~r-I~Z 
1 20 40 60 80 95 

Figure 1.2. Relative accuracy 1// b,.1/ of the experimental measurements of the tran­
sition frequency for a selected number of nuclear charge number Z with the corre­
sponding references. 
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Unfortunately, this provides that the experimental accuracy reached for heavy 

atoms is significantly less than for ions with a low nuclear charge. The especially 

astonishing ultra-high precision results in Fig. 1.2 from Refs. [9, 10, 19] have been 

obtained using optical frequency combs which require transitions in the optical and 

near optical range. Hence, systems should be studied where there are transitions 

suited for an interrogation with optical frequency combs. 

The experimental accuracy is, in fact, not the only argument for light atoms as 

being favorable for the study of the basis of QED. There is a problem with heavy nuclei 

and that is the nuclear size. At the high level of precision in the theoretical description, 

it can no longer be assumed that the nucleus is point-like. While the shift of the 

transition frequencies this introduces has been calculated, the large uncertainties of 

the experimentally determined radii make it the by far largest theoretical uncertainty. 

The ratio of the energy shift due to the QED self-energy correction to the energy shift 

because of the nuclear size is shown in Fig. 1.3. The figure makes it clear that the 

QED effects, which are studied here, are much larger compared to the spurious nuclear 

size correction for low Z. 

Even though the nuclear size correction in hydrogen is small, it is still the major 

reason why the theoretical predictions in it are on the same level as the experimen­

tal accuracy. The problem can be avoided by considering so-called highly excited 

Rydberg states. In these states the electron is highly excited and thus so far away 

from the nucleus that the nuclear size correction becomes negligibly small. With 

the right choice for a combination of small to medium nuclear charge number and 

principal quantum number, transitions between such Rydberg states can be in the 

optical and near-optical regime and consequently accessible to measurements using 

optical frequency combs. Hence, Rydberg states are the ideal study object for the 

fundamental electromagnetic interaction because they constitute a nearly pure QED 

system as well as allow for very accurate experimental measurements. 

Such experimental measurements of transition frequencies often employ two­

photon transitions like for example the lS-28 transition in Ref. [9]. The accuracy 

thereby is limited by the decay width of the line. For this reason, as a first appli­

cation of the method of the nonrelativistic expansion of the fully relativistic theory 
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described in Sec. 4, relativistic corrections to the two-photon decay width for lower­

lying states are calculated in Sec. 6. The calculation also turns out to be conceptually 

interesting because it illustrates how the nonrelativistic theory allows to identify the 

physical origin of corrections. Moreover, the invariance of the corrections under gauge 

transformations of the quantized field is shown explicitly. 

100 

10 

6EsE = h lISE (Za) 

6&is = hllNs(1'N, Za) 

~1~------~2~O--------~~~--------~OO~------~~~·~----~~~~Z 

Figure 1.3. Ratio of the energy shift because of the QED self-energy correction to 
the energy shift due to the nuclear size correction shown in dependence of the nuclear 
charge number Z. TN is the radius of the nucleus. 

In order to reduce theoretical uncertainties in the QED predictions for Rydberg 

states, in Sec. 7 QED self-energy correction of order a(Za)6 are determined for a 

number of highly excited Rydberg states within the framework of the nonrelativistic 

theory from Sec. 4. This does not only allow to test the theory up to very high 

accuracy but also to use a comparison of theory and experiment under the assumption 

that the theory is correct to obtain very accurate values for fundamental constants. 
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These are constants which cannot be determined by theory but rather have to be 

experimentally measured. The most accurately known of the fundamental constants 

is the Rydberg constant [22]. It is specifically interesting because it appears in every 

spectroscopic prediction. A comparison of theory and experiment in Rydberg states 

might allow to deduce a more accurate value for the Rydberg constant. All necessary 

as well as some experimental considerations are also discussed in this section. 

For nuclei with non zero nuclear spin, the hyperfine interaction between the 

nuclear spin and the total angular momentum of the electron leads to a further 

shift of energy levels. Because this could introduce additional uncertainties into the 

determination of the Rydberg constant, QED self-energy corrections to the hyperfine 

splitting up to order a(Za)2~EHFS are determined for highly excited Rydberg states 

in Sec. 8. 

This work is organized as follows. The theoretical methods are presented and 

explained in Secs. 3, 4, and 5. Calculations which have been carried out using the 

nonrelativistic expansion of the fully relativistic theory are then presented in the 

Secs. 6, 7, and 8. In Sec. 6 relativistic corrections to the two-photon decay rate are 

determined and the gauge invariance of the theory is shown explicitly. QED self­

energy corrections to the Lamb shift of Rydberg states are calculated in Sec. 7 where 

also possible applications of these results for a determination of the Rydberg constant 

and nuclear masses are presented. For these highly excited states QED self-energy 

corrections to the hyperfine splitting are then calculated in Sec. 8. Finally, conclusions 

are drawn in Sec. 9. 
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2. UNITS AND CONVENTIONS 

In this section an overview over all conventions and units is given which will be 

used in this work, in order to prevent any confusion. 

• In the analytic part of the calculation the Heaviside-Lorentz unit system is used. 

In it the speed of light c, the Planck quantum n and the electric constant EO 

are set equal to one (EO = n = c = 1). With this the one remaining physical 

dimension is chosen to be the length which is labeled as Ae. 

• For the numerical part of the calculation atomic units are used. 

• The common index notation is employed in which Greek indices go through the 

values of o ... 3, while Arabic indices go from 1 ... 3. 

• Contravariant indices are placed as superscripts. Therefore kO = w denotes the 

Oth component of the four-vector k. 

• The metric tensor in this work is 

1 

-1 
9J.LV = 

-1 

-1 

where the blank spaces are zero. 

• x is used for the four-vector (t, x). In spherical coordinates x stands for the two 

angular coordinates (), 'P and r for the radial coordinate. 

• Whenever Greek or Arabic indices are repeated, the Einstein summation con­

vention is employed. 

• 'If denotes taking the trace of a matrix. 
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The Heaviside-Lorentz Unit System. Here, a short look is taken at the 

transition from the SI to the Heaviside-Lorentz unit system, which starts from Coulomb's 

law 

F = ko qlq2 = _1_qlq2 . 
r2 47rEo r2 

As mentioned above the units are chosen in such a way that EO = 1. Also the units 

of length and time are set so that c = 1. Finally, the unit of energy is set in order to 

have Ii = 1 in these units. Consequently, Coulomb's law takes the form 

2 e2 koe2 

e = -- = 47r-- = 47ra because EO = Ii = c = 1. 
Eolic Iic ' 

The advantage of these units is that the electric charge is now a dimensionless quan­

tity. For later reference the Coulomb potential of an electron attracted by a number 

Z of positive charges in the origin is rewritten in the form 

V(T) = __ I_Ze
2 

= __ 1_47rZa = _ Za. 
47rEo r 47rEo r r 

Accordingly, the inhomogeneous Maxwell equation in covariant formulation in the 

Heaviside-Lorentz unit system takes the simple form 

Atomic Units. As the name suggest, atomic units are used almost exclusively 

in atomic physics. In it the scale of units are chosen in such a way that they are 

oriented on the hydrogen atom. Starting from the Gaussian unit system, the charge 

of the electron e, the mass of the electron me and the Planck quantum Ii are chosen 

as the units. From these units the other units can be derived, which are 

• The unit of length is obtained to be the Bohr radius ao . 

• As unit of energy one has the atomic binding energy (Za)2me . 
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3. THEORY: FULLY RELATIVISTIC QED 

3.1. RELATIVISTIC DESCRIPTION OF THE ELECTRON 

The fully relativistic equation which describes the behavior of the electron wave 

function 'ljJ(x) in a Coulomb potential has been found by Dirac in Ref. [2]. In con­

trast to the well known Schrodinger equation it is based on the relativistic energy­

momentum relation. Moreover, it also contains an inherent description of the spin. 

The solution can be obtained in basically the same way as shown in textbooks for the 

nonrelativistic Schrodinger equation, by first separating off the time-dependent part 

because the equation is time-independent to give 

(2) 

The remaining part of the wave function can then be found by solving the equation 

( 
... Za ) HD 1'ljJ) = -ia· V - --:;:- + f3m e 1'ljJ) = ED 1'ljJ) , (3) 

where the matrices a and f3 are given in the representation here as 

o (0 a) a=,1= a 0 ' (4) 

o (1 0) f3 =, = o -1 
(5) 
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A further separation into a radial and an angular part allows to obtain for the wave 

function in position space 

'IjJ(x) = (6) 

with the radial functions 

g(r) = _ Jf(2, + (n -Ilil) + 1) 1 + € ( 2Z ) ~ e- ::0 (2Zr)'"Y-l 
f(2, + l)J(n -Ilil)! 4N(N - Ii) Nao Nao 

x [-(n - 11i1)F ( -(n - llil) + 1,2, + 1, ~:) (7) 

+ (N - Ii)F ( -(n -Ilil), 2, + 1, ~~) 1 ' 

and 

where ao = l/me fY. is the Bohr radius and }'f,m(x) the spherical harmonics as defined 

in Ref. [23]. These equations are given in terms of the Dirac quantum number Ii with 

(9) 

the sometimes called "apparent principal quantum number" N 

(10) 



13 

the parameter €, which is the eigenenergy divided by the rest mass of the electron, 

€= (11) 

and I 

,= y'K,2 - (Za)2. (12) 

A detailed derivation can be found in Ref. [24]. The resulting energies of the states 

are then 

(13) 

In contrast to the experimental measurements of Lamb and Retherford [3], the so­

lution of the Dirac equation predicts that states with the same absolute value of 

K" which means equal total angular momentum J = f + S, have the same energy. 

This Lamb shift can only be explained by including the quantization of the electro­

magnetic field [6] into our considerations of the electron. This quantized theory of 

electromagnetism is called quantum electrodynamics (QED). In the next section, the 

quantization of the electromagnetic field is discussed. Afterwards, it will be shown 

how to combine QED with the Dirac theory of the electron and show how the quan­

tized field alters the energy levels of Dirac theory. 

3.2. QUANTIZED FIELD 

So far, the electron has been treated in all its detail but kept the electromagnetic 

field like in the classical Maxwell theory. The next step is to quantize the electro­

magnetic field in order to include the particle nature of the photon as well as its wave 

nature which is contained in classical electrodynamics. Because the quantum theory 

has to agree Maxwell's theory in the classical limit (high energies, many photons), 

Maxwell's equations in covariant formulation are recalled, which in this unit system 



are given as 

where FJw is defined by 

14 

(14) 

(15) 

(16) 

The four-vector potential AI' is combined of the scalar potential 'ljJ and the vector 

potential A 

(17) 

Similarly, the four-vector current is 

(18) 

Using the Hamiltonian principle and the Euler-Lagrange equation similar to classi­

cal mechanics the inhomogeneous Maxwell equation (14) can be obtained from the 

Lagrange density 

.c - Ipl'vF 'J.lA em--'4 I'V-) 1" (19) 

The homogeneous Maxwell equation (15) is automatically fulfilled by the use of the 

four-vector potential. Following the Noether theorem invariance of the action 

(20) 

under a transformation leads to a conserved quantity, In this way for example the 

conservation of the electromagnetic current or the continuity equation 

(21) 



15 

can be shown. As one might recall from electrodynamics the four-vector potentials 

can be gauge transformed according to 

(22) 

while the electric and magnetic field are invariant under this gauge transformation 

[25]. Now, this gauge transformation is applied to the Lagrange density in Eq. (19), 

which gives 

(23) 

Because the current is conserved and, therefore, 8JLjJL = 0, the term 8JLjIL A = 0 can 

be added to the Lagrangian which yields 

(24) 

The last term is a total derivative which does not change the action in Eq. (20). 

This means that the action is invariant under the gauge transformation. Although 

this gauge freedom can be very useful for the actual calculations, it complicates the 

quantization of the theory as a specific gauge has to be chosen prior to quantization. 

Here, Coulomb gauge is used 

(25) 

even though it is not Lorentz-invariant. However, this gauge will mainly be used 

in this work and moreover its quantization developed by Gupta and Bleuler is very 

instructi ve. 

In quantum mechanics momentum and position are elevated to operators, which 

have to fulfill the commutation relation 

(26) 

For the quantization of the electromagnetic field, the procedure is similar and the 

vector potential is elevated into an operator. In order to get an similar commutation 
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relation the conjugate momentum is required. This conjugate momentum is denoted 

as 7f and is obtained in a similar way as in classical mechanics with a derivative of 

the Lagrangian with respect to the time-derivative of the field 

(27) 

The Lagrangian, of which the derivative is taken, in Coulomb gauge takes the form 

10 - 1 2. 1 0 0 1 02.0 () e = -8 A-aoAJ --(8-A-) +)-A+-8-A-8-A-+8 A-a-A +-(8-A ) -)oA . 28 2 ~ 2J~ ~~ 2tJJ~ tl 2~ 

So, the conjugate momenta are obtained as 

o 8e 
7f = 8(ao Ao) = 0, (29) 

""i = 8e a Ai a AO Ei 
/I 8(80 Ai) = - 0 - i = . (30) 

Here, the advantage of our choice of gauge also can be elucidated. The potential 

has no dynamics of its own and is given entirely by the charge distribution. This 

allows to continue to work with the classical Coulomb potential of the electron proton 

interaction and only quantize the vector potential. 

With the conjugate momenta a Legendre transformation can be used to receive 

the Hamilton density for the free field with ji = 0 

k 1 ( ..... 2 .... 2) 
1tfree = 7f Ak - e = '2 E + B . (31) 

It has the form of a harmonic oscillator but as it is a density, it is in fact a contin­

uous chain of massless harmonic oscillators. Accordingly, the quantization is nearly 

the same as for the normal harmonic oscillator. Therefore, it will not be reiterated 

here. A detailed derivation can for example be found in Ref. [26]. Just discuss the 

commutation relations are investigated which are 

[Ai(t,x),Aj(t,X')] = 0, 

[ni(t,x),nj(t,X')] = 0, 

(32) 

(33) 
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where the hat is used to make clear that one is dealing with operators now. It is 

important to note here that these relations are always for equal times. Normally, the 

commutation relation between A and 7r are expected to look like 

(34) 

Unfortunately, this is not correct because of the gauge condition, which can be seen 

by taking the divergence of the commutator 

(35) 

while 

(36) 

The right idea can be envisioned by looking at a certain choice to fulfill the gauge 

condition of the vector potential 8iAi = 0 which can be imposed by a projection 

operator 

(37) 

Applying this projection operator on the 0 distribution gives us 

(Oi j - 8~~j) o(i - X') = J (~:~3 (Oij - k~~j) eiko(x-x
l

) = o-L,ij(i - X') 0 (38) 

This transverse 0 distribution now gives the right commutation relation 

(39) 

All this leads us to the quantized vector potential for a free field [27] 



where the polarization vectors f)..Ck) fulfill the relations 

f)..(k) . fN (k) = 8)..)..1 , 

k· f)..(k) = 0 
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(41) 

(42) 

( 43) 

which accounts for the fact that there are no longitudinal photons i.e. light is a 

transversal wave. Plugging in the obtained quantized A(x) into the Hamiltonian in 

Eq. (31) leads to a Hamiltonian of the same form as for the harmonic oscillator 

(44) 

The 8 distribution is usually neglected even though it represents an infinite energy 

shift. Still, it is not observable because the energy of a photon cannot be measured 

without it. 

For completeness, all the four-vector potentials for other gauges are given which 

appear in this work. The corresponding derivations can be found in the literature [28]. 

A general expression for the four-vector potential is 

(45) 

where 

( 46) 

The two cases which are important in this work are Feynman gauge (~ = 1) which is 

commonly used in QED for free unbound particles and Yennie gauge [29] with ~ = 3 

as the length gauge which can allow some simplifications. This will be encountered 

in the treatment of the two-photon decay which will be studied in Sec. 6. 



19 

Unfortunately, it is not possible to just use this quantized vector potential in the 

Dirac equation and obtain another analytical solution. Similar to quantum electrody­

namics for free electrons a perturbative approach to include the interactions with the 

quantize field is required. In the next section the formal derivation for a perturbative 

treatment of bound-state QED will be shown and explained. 

3.3. FULLY RELATIVISTIC QED AND ENERGY SHIFTS 

After the quantization of the electromagnetic field, it is time to show how its 

effects can be included into the Dirac equation for the electron. The simple ansatz 

would be to add the electromagnetic interaction term JIL AIL' which couples the elec­

tron's current to the quantized radiation field, to the Dirac Hamiltonian from Eq. (3). 

This yields 

... Za J 3 H = -in· \7 - --:;:- + f3me + d xjIL(x)AIL(X). (47) 

It would be nice if this equation could be solved like the Dirac equation without the 

interaction. However, this is not possible because the current jJL (x) depends on the 

electron's wave function. It is assumed that this interaction term constitutes only 

a small perturbation, since it only slightly shifts the energy levels. So, perturbation 

theory is used and it is treated as a perturbation to the bound eigenstates of the 

Dirac equation. The unperturbed Hamiltonian is then 

Ho 1'1/') = (-in· V - Za + f3me) 1'1/') = Eo 1'1/') . 
r 

( 48) 

and its eigenfunctions are the unperturbed states. The aim is to solve the full Hamil­

tonian 

HI\lI) = EI\lI) , (49) 

so the interaction Hamiltonian is added to the unperturbed problem which is done 

by adiabatic damping 

(50) 
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The interaction is slowly turned on in the infinite past and damps out again in the in­

finite future. That means that at infinite times the eigenfunctions of the unperturbed 

Dirac Hamiltonian are also eigenfunctions of the full problem and one has 

He;(t = 0) = H = Ho + gHl , lim He;(t) = Ho. 
t ...... ±oo 

(51) 

As can be seen here, the perturbation is time-dependent and makes a time-dependent 

treatment necessary. The tool used is time-ordered perturbation theory based on the 

formalism outlined by Dyson (see for example Ref. [30]). The interaction between 

the electron's current and the QED radiative field is then included perturbatively by 

the interaction Hamiltonian 

(52) 

The dependence on the spatial variables can be integrated out to give 

(53) 

The interaction picture [31] is employed for the calculations which when using the 

bound-state Dirac Hamiltonian as Ho is commonly called the Furry picture [32], 

accordingly one has the equations 

(54) 

with 

(55) 

With this Hamiltonian, the equation for the time evolution operator can be written 

as 

(56) 
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As evident, the exponential becomes equal to unity in the limit c ---+ 0 and also the 

perturbed eigenfunctions are equal to the unperturbed solutions ofthe Coulomb-Dirac 

equation in the infinite past and future. This allows to write 

(57) 

However, it is not possible to just take the limit c ---+ 0 in order to obtain the in­

teracting bound states as this limit does not exist [33]. The way to obtain the right 

limit has been shown by Cell-Mann and Low in Ref. [34]. Following the derivation in 

Ref. [33], the equation 

(58) 

is considered. Using the known Dyson series for the time evolution operator yields 

(59) 

The commutator can now be evaluated with the help of the Heisenberg equation 

(60) 

to give 

[Ho, T(HI(td··· HI(tn ))] = [Ho, HI(tit)··· HI(tin )] 

= [Ho, HI(tit)]H1 (t i2 ) ... HI (tiJ + ... + HI (ti] ) ... HI (tin_J[Ho, HI (tiJ] 

. 8HI(tit) . 8H1(tiJ 
= (-1) at. Hl(ti2) .. ·HI(tiJ + ... + H1(tiJ ... HI(tin_t)(-1) 8. 

t] ttn 
n 8 

= (-i) L at.H1(tit) ... HI (tiJ 
i=O 1 

(61) 

n 8 
= (-i) L at. T(HI (td ... HI (tn )) . 

i=O t 
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This means for Eq. (58) 

00 (.)n 1° 1° (Ho - Eo) Iwg ) = L -=T-gn dh... dtnegtl+ ... +tn 
n=O n. -00 -00 

n 8 
x (-i) L at. T(HI (tl) ... HI (tn)) 11P) 

i=O t (62) 

because all derivatives are equivalent as the integrand is symmetric under permutation 

of the time arguments. The remaining time derivative can be integrated out using 

partial integration 

10 dt I egt1 88 T ( HI (t I) ... HI (tn)) = 
-00 tl 

= egtlT(Hl(tl)'" HI (tn)) [00 -1: dtl(~l egtl)T(HI(tl)'" Hl(tn)) (63) 

= Hl(O)T(Hl(t2)'" HI(tn)) - E 1: dtlegtIT(Hl(tl)'" Hl(tn)). 

Plugging this result into Eq. (62) yields 

(Ho - Eo) Iwg ) = -gH1(O) f: i _~n-)ll gn- 1 1° dt2 .. . 1° dtnegt2+ ... +tn 
n=l n 1. -00 -00 

00 (_.)n-l 
X T(Hl (t2) ... Hl(tn)) 11P) + Eg ~ (n ~ l),gn-l 

x I: dt l .·· I: dtnegtl+ ... +tnT(Hl(tl)'" Hl(tn)) 11P) 

8 00 (-i)n ( ) 
= -gH1(O)Ug(O, -00) 11P) + iEg 8g ~ ~gn 64 

x I: dtl.·· I: dtnegtl+ ... +tnT(HI(tl)'" HI (tn)) 11P) 

= -gHl (O)Ug(O, -00) 11P) + iEg :g Ug(O, -00) 11P) 

= -gH1(O) Iwg ) + iEg ~ Iwg ) • 
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With the full Hamiltonian this equation can be shortened to give 

(65) 

As mentioned earlier, it is not possible to just take the limit of the wave function. This 

point can be elucidated here because in the limit c -+ 0 the full and the unperturbed 

state in Eq. (65) would have the same energy which in turn would imply that there is 

no energy shift. Since this is not the case, something is done wrong here. The correct 

solution can be obtained by dividing Eq. (65) by the overlap of the unperturbed and 

the perturbed state ('¢IWg). With some manipulations 

(66) 

is obtained, which can also be written as 

(67) 

As requirement for the application of the Gell-Mann Low theorem the limit 

has to be well defined in all orders of the perturbative expansion. If this is the case, 

then the situation is not altered by the derivative with respect to g. In turn, this 

means that because of the linear factor of c the right hand side of Eq. (67) vanishes 

in the limit c -+ O. So, one finds 

(68) 
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Thus, the constructed state is an eigenvector of H with eigenvalue E as intended. 

Consequently, this also gives the energy shift between the energy of the unperturbed 

state and the real eigenstate of the perturbed system, which can be read off Eq. (68) 

to be 

flE = E - Eo = Eo + limicg
a

a 
In ('1/11 We) - Eo = limicg

a

a 
In ('1/11 We) . (69) 

e--+O 9 e--+O 9 

This result can also be expressed in different ways using the time-evolution operator 

flE = limicg
a

a 
In ('1/1 IUe(O, -00)1 '1/1) = -limicg

a

a 
In ('1/1 IUe(O, 00)1 '1/1) (70) 

e--+O 9 e--+O 9 

= ~limicgaa In('I/IIUe(oo,-oo)I'I/I). (71) 
2 e--+O 9 

The time-evolution operator from -00 to 00 is generally called the S matrix [35] 

Se,g = Ue,g( 00, -00) . (72) 

Furthermore, all disconnected diagrams can also be dropped from the S matrix, this 

means diagrams which have no connection to the in and out states do not have to be 

considered. Thus, when also the logarithmic derivate is expanded, the energy shift 

can be written as 

(73) 

In this case, the energy shift still depends on the value introduced for the coupling 

parameter, as it is not good to change or vary the electric charge, the parameter 9 is 

used and the limit 9 ~ 1 is taken at the end of the calculation. 

In order to be able to evaluate the expression for the energy shift now, the 

perturbative expansion of the S matrix has to be used 

00 

Se,g = 1 + LS~~ (74) 
k=l 
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with 

S(k) - (_ig)k J d4 J d4 -e:ltll -e:ltkIT(H () H ( )) e:,g - k! Xl . . . Xk e ... e 1 Xl ... 1 Xk , (75) 

as it has been defined in Ref. [36]. With this now a perturbative expansion for the 

energy shift of the bound system is found [36] 

/g (?jJ 1 Se:,g 1 ?jJ) I ( ?jJ ISP) I ?jJ) + 2 (?jJ IS~2) 1?jJ) + 3 (?jJ IS~3) I ?jJ) + .. . 
(?jJ ISe:,gl?jJ) g=l - 1 + (?jJ IS~l) 1?jJ) + (?jJ ISP) 1?jJ) + (?jJ IS~3) 1?jJ) + .. . 

= (?jJ IS~l) I ?jJ) + 2 (?jJ IS~2) I ?jJ) - (?jJ IS~l) I ?jJ) 
2 

+ 3 (?jJ IS~3) I ?jJ) - 3 (?jJ IS~l) I ?jJ) (?jJ IS~2) I ?jJ) (76) 

+ (?jJ I S~l) I ?jJ) 
3 + 4 (?jJ I s~4) I ?jJ) 

_ 4 (?jJ I S~l) I ?jJ) (?jJ I S~3) I ?jJ) - 2 (?jJ I S~2) I ?jJ) 
2 

+ 4 (?jJ I SP) I ?jJ) 
2 

(?jJ I s~2) I ?jJ) - (?jJ I S~l) I ?jJ) 
4 + .... 

For the energy shift this leads to 

!:lEn = !~ i; [<?jJ IS~l) I ?jJ) + 2 (?jJ IS~2) I ?jJ) - (?jJ IS~l) 1?jJ) 
2 + 3 <?jJ Is~3) I ?jJ) 

_ 3 (?jJ I S~l) I ?jJ) (?jJ I S~2) I ?jJ) + (?jJ I S~l) I ?jJ) 
3 + 4 (?jJ I s~4) I ?jJ) 

_ 4 (?jJ I S~l) I ?jJ) (?jJ I S~3) I ?jJ) - 2 (?jJ I S~2) I ?jJ) 
2 

+ 4 (?jJ I S~ 1) I ?jJ) 
2 

(?jJ I S~2) I ?jJ) - (?jJ I S~ 1) I ?jJ) 
4 + ... J. 

(77) 

In this way, a perturbative expansion has been found which allows to compute 

the level shift in every order of perturbation theory. 

3.4. APPLICATION OF THE GELL-MANN LOW THEOREM 

After the general expression for the energy shift of a bound-state due to an 

interaction has been derived. It will be applied to the problem under study. The 

method outlined in Refs. [7,8,36,37] is explained which will lead to fully relativistic 

equations for the energy shift for a bound electron due to its interaction with its own 

radiation field. This is called the self-energy. In addition, the methods employed there 



26 

to transform the resulting equations into a form suited for a numerical calculation 

are shown. 

In the beginning the quantities from the last section have to be chosen according 

to the problem at hand. Following the derivation in Ref. [36] the electron mass can 

be extracted from the Dirac equation. This simplifies the calculation. Consequently, 

Eq. (3) takes the form 

[ - ia . V - ~ a + (3 - En 1 Wn (i) = 0 , (78) 

where the time dependence of the solutions is given by 

(79) 

The electron mass will be reintroduced in the end of the calculation. For the further 

calculation, however, the fully quantized electron-positron field operator is required 

to account for all the effects the radiation field has on the electron. It can be ex­

pressed in terms of electron and positron annihilation and creation operators and the 

eigenfunctions of the Dirac equation as 

(80) 

Here, an is the annihilation operator for an electron in state n with En > O. bJn is the 

creation operator for a positron in the state m with Em < O. These operators fulfill 

the usual anti-commutation relations for fermion operators 

(81 ) 

and analog relations for the positron operators. When these operators act on the 

vacuum, the unperturbed states can be obtained 

In) = a~ 10) . (82) 
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For such states the unperturbed energy operator is given by the normal ordered 

expression 

Ho = J d3x :Wt(x)HnW(x): = ~ Ena~an - ~ Emb~bm' 
En>O ETn<O 

(83) 

Normal ordering means that all creation operators are to the left of all annihilation 

operators. In this way, the vacuum expectation value of a normal ordered expression 

is O. 

After defining the Hamiltonian and field operators, now also the interaction 

Hamiltonian, which introduces the level shift, needs to be defined. As discussed 

earlier, the electron-positron field in the external potential is now coupled to the 

radiative QED photon field which can be achieved by the interaction Hamiltonian 

(84) 

with the current operator 

(85) 

which couples to the quantized photon field operator A~(x). The commutator is 

defined to only commute the operators and not the Dirac matrices, such that 

(86) 
Em>O,En>O 

The last term 15M (x) is the mass renormalization term. It has to be included here to 

account for the fact that the electron mass cannot be measured without the effects 

of the quantized field and it is given by 

(87) 

The magnitude of the mass counter term coefficient 15m basically has to be fixed by 

the condition that without the Coulomb field the electron should have its known rest 
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mass or 

(88) 

One may ask why the commutator is used here instead of the usual product. The rea­

son is that also time-ordering at equal times has to be included because the Coulomb 

field is instantaneous and does not contain retardation. The equal time products 

cause the vacuum polarization which otherwise cannot be obtained. [36]. 

3.4.1. Energy Shift. The energy shift of a level n in first order in a (second 

in e) can be read off Eq. (77) and gives 

(89) 

where the superscript on S denotes the order in perturbation theory the terms are 

mixed here because there is a contribution (i.e. the mass renormalization) which 

appears in first order and is of order e2. This phenomenon is encountered later on as 

well. The first term is given as 

(n IS~l)1 m) = i J d4xe-e:l tl (n 18M(x)1 m) 

= i8m L J dteit(Enl-Em/)-e:ltl J d3xif;nl (x)'lj;ml (x) (n I ~[a~/ ami] I m) (90) 
n'm' 

= i8m ~ (Enl _ ~:/)2 + €2 J d3x'lj;~/(x)"l'lj;m/(x) (n IHa~/ am/]/ m) . 

In the limit € ---+ 0 the replacement [36] 

lim 2 € 2 = ~ 8 (x) . 
e:---+O X + € € 

(91) 

can be used to simplify the expression to 

(n IS~l)1 m) = ~i 8m L J d3x'lj;~/(X)''l'lj;m/(x)8(Enl' Em/) (n /a~/am'/ m), (92) 
n'm' 
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where 

(93) 

Before the second term can be considered, a closer look has to be taken at the states 

on which the operators act. While the fermion field operator 'IjJ(x) acts on the initial 

and final state of the electron, the electromagnetic field operator AJL (x) acts on the 

photon vacuum. This means that the state In) is actually the Fock-state In,O). So, 

this yields 

(n Is)2) I m) = (~)' J d"Xl J d"x2e-,lt,le-'lt,1 {n,OI T( [~(X2)'{' >li(X2)] 

x AII (X2) [~(XI)"yJL, 'l1(XI)] AJL(xd) Im,O) 

= - ~ J d4xI J d4x2e-cltIie-clt21 DF (X2 - Xl) 

x (nl T( [~(X2)rJL' 'l1(X2)] [W(XI)rJL, \lJ(Xl)]) 1m) , 

with the photon propagator DF defined by 

It is given as 

(94) 

(95) 

(96) 

In this way, the photon degrees of freedom have been separated away. The Wick 

theorem [26] is applied for the fermion field operators, which means all possible con­

tractions have to be constructed. In the case of bound state problems one has to 

be extra careful as equal time contraction have to be considered which are usually 

neglected in free field theory. In the bound theory these equal time contractions lead 

to vacuum polarization. In Ref. [36] this is explained in more detail. Here, it is just 



30 

mentioned that if equal times are not considered, the following identity holds 

T[AB~(CD - DC)EF] = T[ABCDEF] . (97) 

This allows to simplify the current for unequal times while the commutator in its 

definition has to be used for equal times. This way the following contractions are 

obtained 

(n IS~2)1 m) = - e; J d4xI J d4x2e-eltlle-elt2IDp(X2 - xd 

x { (dii(X2hJ(X2)~(xd"t"4(Xl) Il, ~) 
+ (~(x2hl1 i(X2)t(XI)"yI1i(xd I~) 

I I I I 
+ (~I w(x2hl1 W(X2)\f,(Xlhl1w(xd 1m) 

- (~I i(X2)~(X2hl1t(Xlhl1i(XI) I~) 

- (~(x2h" ,J,(x2)4(Xl)i(xd'f I';') } . 

(98) 

To evaluate this expression it is necessary to know what the contraction of two fermion 

field operators is equal to. This can be derived in the following [26] 

with 

Sp(X2' Xl) = (0 IT (W(X2)~(XI)) 10) 
I I 

= (0 I :W(X2)~(XI): 10) + (01 W(X2)~(XI) 10) 

{ 
+ {W+(X2), ~-(XI)} if t2 > tl 

=0+ 
- {~+(XI)' W-(X2)} if t2 < tl 

(99) 

(100) 

(101) 
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and { , } is the anti-commutator. Thus, the anti-commutators yield 

(103) 

In order to use the propagator without explicitly looking at the time, use can be made 

of the time-evolution of the states. So, the propagator can be written as 

(104) 

- L 'l/JmUC2)"/'I/J!n(Xl)e-iETn(t2-tl)(}(tl - t2) 
ETn<O 

This can also be expressed in terms of an integral over a dummy variable z in the 

complex plane using the Cauchy theorem. The function 

e-iz(t2- t l) 

J(z) = En - z(l - ib) (105) 

has a pole at the energy of the states. If this energy is negative the pole is shifted into 

the (positive imaginary) upper half of the complex plane, while for positive energy 

the pole is shifted to the lower half of the plane. In a contour integration for t2 > tl or 

t2 - tl > 0 the circle has to be closed in the lower half to pick up a negative imaginary 

part for z so the exponent is always negative (negative argument in front of the b.t) 

so that the integral of the circle part vanishes. Using the Cauchy theorem, therefore 

only the enclosed poles are picked up which are ones with positive energy. For the 

case of t2 < tl or t2 - tl < 0, the circle has to closed in the upper half of the complex 

plane, in order to get a decaying exponential (positive argument in front of the b.t). 

So for this case all the negative energy poles are picked up. With these arguments, 
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thus, the fermion propagator is written as 

(106) 

After the contraction of the inner products, the expressions of Eq. (98) can be eval­

uated further 

(n IS~2)1 m) = - e
2

2 J d4xI J d4x2e-gltlle-clt2IDF(X2 - Xl) 

x {~¢n'(X2)-yp,pm'(X2) 

x L if;k' (Xlhl1.'l/JI'(Xt} (n, k la~/al,allam/ll, m) 
kIll 

+ 2 L if;n,(X2hI1.SF(X2, xlhl1.'lj;m/(xt) (n la~/am/l m) 
n'm' 

- 2 TrbI1.SF(X2, X2)] L if;n'(XI)~yI1.'lj;m/(Xl) (n la~/am/l m) } . 
n'm' 

(107) 

The trace has to be used when a propagator with two equal coordinates appears, since 

this is at least here a fermion loop [26]. The two times are transformed according to 

a = t2 - tl, 

b-a 
---+ tl = -2- , 

b = t2 + tl 
a+b 

t2 = -2-

(108) 

(109) 
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which gives an additional factor of -~ from the Jacobian. With these variables 

Eq. (107) becomes 

(n IS~2) 1m) = : J d3XI J d3X2 J da J dbe-clale-£lbIDF(X2 - Xl) 

x L ei~(En'+ETn'){ ifn,(X2hJ1.1/Jm,(X2) L ifk,(xd''''/1/Jdx I) 
n'm' k'l' 

X \ n, k la~,at,al,am'll, m) ei~(En'+Ek'-ETn'-EI')ei~(Ek'+EI') 
+ 2ifn,(X2hJ1.SF(X2, XI)"yJ1.1/Jm,(XI) \ n la~,am'l m) ei~(En'-ETn') 
- 2 TrbJ1.SF(X2, X2)] ifn,(XlhJ1.1/Jm,(xd 

x \ n la~,am'l m) ei~(En-Em)} . 

(110) 

Only the integration with respect to the new variable b is carried out. In this case, it 

is not necessary to look into the time dependence of the propagators which depend 

on the time difference a alone and one finds 

(n IS~2) 1m) = : J d3XI J d3X2 J dae-£la ID F(X2 - Xl) 

x L ei~(En'+ETn'){ifn'(X2hJ1.1/Jm'(X2) L ifk,(Xl), .. ,t1/JI,(Xl) 
n'm' k'l' 

X \ n, k la~,at,al,am'll, m) ei~(Ek,+EI') 
8e x (111) 

(En' + Ek, - Em' - EI,)2 + 4e2 

+ (En' - :~,)2 + 4e2 [2ifn,( X2 hJ1.SF(X2, xd,J1.1j;m,(Xl) 

X \ n la~,am'l m) - 2 TrbJ1.Sp(X2' X2)] ifn' (xlhJ1.1/Jm' (Xl) 

X \ n I a~, am' 1m) 1 } . 

In the limit of e ----+ 0 the integrals over the exponentials give 

. 8e 2 
lIm (E E E E)2 4 2 = -8(En' + Ek " Em' + El,) 
£-+0 n' + k' - m' - I' + e e 

lim (E ;e)2 4 2 = ~8(En" Em')' 
£-+0 n' - m' + e e 

(112) 

(113) 
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Now, all the partial expressions have been obtained and Eq. (89) can be rewrit­

ten to give the energy shift 

!::.E~2) = i;2 J d3XI J d3X2 J d(t2 - tl)Dp(X2 - Xl) 

x {~ifin,(x,hp,pm'(x,) ~ ifi,'(Xlh',pI,(xd 

x \ n, k la~/al,al,am/ll, m) 5(Enl + Ek/ Eml + Ell) 

+ ~ a( En" Em' ) [ 2ifin' (X,h,SF (x" XI)-y',pm' (Xl) ( n la~'<lm' 1m) 
(114) 

- 2 TrbIlSP(X2, x2)]7/Jnl(xd,ll1/Jm/(XI) \ n la~/am/l m) 1 } 
- Om L J d3x7/Jnl(X)1/Jm/(x)5(En/, Em/) \ n la~/am/l m) . 

n'm' 

The first of the terms in Eq. (114) describes bound electron-electron scattering which 

vanishes here because only one-electron atoms are investigated here. This leaves the 

second term which describes the self-energy depicted in Fig. 3.1 and the third which 

describes vacuum polarization. The fourth term describes the mass renormalization 

which is included in the self-energy as it arises from the self-energy of a free electron. 

The focus is on the self-energy and vacuum polarization is discussed in short in a 

separate section later. 

Figure 3.1. Feynman diagram of the self-energy of a bound electron. The double 
line represents the electron in the binding Coulomb potential and the wiggly line the 
virtual photon. 
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3.4.2. Self-energy. Starting from the just derived expression and Kronecker 

deltas are applied to the sums. In addition, it is used that ifin = 'ljJ~ ,0, as well as 

e2 = 47ra in order to write the energy shift because of the self-energy as 

.6.E~2)SE = 47ria J d3XI J d3X2 J d(t2 - t l )DF(X2 - Xl) 

+ L 'ljJ~, (x2)aIL SF(x2, xd,lL'ljJn' (Xl) \ n la~,an'l n) 
n' 

(115) 

- Om L J d3x'ljJ~,(x);3'ljJn'(X) \ n la~,an'l n) . 
n' 

Since a~,an' is the number operator, there only is a contribution for the state in which 

the electron is sitting. This state is denoted as the reference state n, then 

L \ n la~,an'l n) = LOnn' = 1 (116) 
n' n' 

and with this 

.6.E~2)SE = 47ria J d3XI J d3X2 J d(t2 - t 1)DF(X2 - xd 

x 'ljJ~(x2)aILSF(x2' XI)rIL'ljJn(XI) - Om J d3x'ljJ~(X)(3'ljJn(X). (117) 

In order to plug in the photon propagator from Eq. (96), this expression has to be 

regularized and with it the integral to avoid the divergences at large photon mo­

mentum. Pauli-Villars regularization [26] is employed so that the regularized photon 

propagator is given by 

(118) 



36 

This is the photon propagator which is plugged into Eq. (117) together with the 

bound fermion propagator from Eq. (106) to give 

(119) 

Using the time-evolution of the bound states leads to 

(120) 

The time integration is carried out with the known identity 

00 

1 J . - dk exp [lk(x - a)] = c5(x - a) 
27l' 

(121) 

-00 



to obtain 

D.E(2)SE = 2ia J d3x J d3x r dz J d3q J dq e-iq.(i2-i J) 
n,A (21f)3 I 2 iC

F 
0 

X [q5 - ~ + if - q5 - tP ~ A 2 + if] 

x 'IjJ~(X2)aJ.L H _ zt1 _ ic5) aJ.L'ljJn(x1)c5((En - Z) - qO) 

- 15m J d3x'IjJ~(x){3'IjJnUi) 
= 2ia J d3x J d3x J d3q r dz e- iq.(i2-i l) 

(21f)3 I 2 iCF 

x [(En- Z)2
1
-tP+if - (En- Z)2-

1
tf2-A2+ic] 

x 'IjJ~(X2)aJ.L H _ zt1 _ ic5) aJ.L'ljJn(X1) 

- 15m J d3x'IjJ~(x){3'IjJnUi) . 
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(122) 

The angle between if and (X2 - Xl) is chosen to be ()q (choosing if to be in the z 

direction) in order to compute the angular integral of q 

D.Ei~lsE = (~~~3 J d3X1 J d3X2 LF dz J dqq2 J d'IjJq J d()qsin(()q) 

x e-iq!X2-Xl!COS(Oq) [ 1 - 1 ] 
(En - Z)2 - q2 + if (En - z)2 - q2 - A2 + if 

x 'IjJ~(x2)aJ.L H _ zt1 _ ic5) aJ.L'ljJn(Xl) - 15m J d3x'IjJ~(X){3'IjJn(X) 
1 

= (~~~2 J d3x1 J d3X2 J dqq2 LF dz J due-iqr21u 
-1 

x [(En _ z); _ q2 + if - (En _ Z)2 _1q2 - A2 + if] 

X 'IjJ~(X2)aJ.L H _ zt1 _ ic5) aJ.L'ljJn(X1) 

- 8m J d3x'IjJ~(X){3'IjJn(X) , 

(123) 
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with r2l = IX2 - xII. For further transformations of this equation the following rela­

tion is required 

1 

(En - Z) 2 - q2 - A 2 + if 

= ;q C; (En - Z)2 ~ A 2 + if - q - vi (En - Z)2 ~ A 2 + i<+ q) 
(124) 

and the analogous relation for A = o. Thus, Eq. (123) yields 

00 

.6.E~2~SE = 2ia 2 J d3 Xl J d3 X2! dz J dqq2 -. _1_ ~ [eiqr21 - e -iqr21 ] 
, (27r) CF lqr2l 2q 

o 

[ 
1 1 

J(En - Z)2 + if - q J(En - z)2 + it + q 

_ 1 + --;::::====1===_] 
J(En - Z)2 - A2 + if - q J(En - Z)2 - A2 + it + q 

x 'I/J~(X2)afJ. H _ Z~l _ i15) afJ.'ljJn(Xl) - 15m J d3x'I/J~(X){3'I/Jn(X) 
(125) 
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This follows from 

/
OOdq(eiqr_e-iqr) [ 1 _ 1 1 

' va-q va+q 
o 

- /00 dqeiqr [ 1 _ 1 1 + /-00 dq' eiqlr [ 1 _ 1 1 
- va-q va+q va+q' va-q' 

o 0 

/
00 . [Ill /0 ,. , [Ill - dqe1qr _ _ dq e1q 

r ( -1 ) - ----==---
- va-q va+q va-q' va+q' (126) 

o -00 

/
00.[ III /0.[ III = dqe1qr _ + dqe1qr _ ----=:---

va-q va+q va-q va+q 
o -00 

The integration with respect to q in Eq. (125) can now be carried out with the help 

of the Cauchy theorem. The contour is closed through the upper half of the complex 

plane to get a damping in the exponential. Therefore only poles above the real axis 

(those with q - va) are picked up. This gives 

b..E~~lsE = ~~a / d3Xl / d3X2LF dz (exp [i IX2 - xII J(En - z)2 + it] 

- exp [i IX2 - xII J(En - Z)2 - A2 + it]) IX2 ~ xII (127) 

x 'I/J~(X2)a~ H _ Z~l _ i6) a~'l/Jn(Xl) - 15m / d3x'I/J~(X){3'I/Jn(X), 

As is well known, the complex square root has a certain ambiguity and normally 

a branch cut along the negative real axis to get rid of this ambiguity. Here, one has 

to deal with the root of a complex square displaced by a small imaginary part. For 

a real number, the square root of a square is defined by .JX2 = Ixl. Accordingly, 

the sign information present in x is lost, as both x and -x get assigned the same 

value. Following this idea, it is adopted here for complex numbers by defining that 

the square root of the square of an imaginary number has positive imaginary part. 

Thus, the square root is chosen to always have a positive imaginary part, which leads 
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to the branch cut because the function has a non analytic point at x = o. This choice 

is very useful for numerical calculation as it provides an exponential damping for the 

high-energy part and therefore allows to separate off the divergent parts as they need 

to have r2l = 0 [36]. As the x here is in fact more complicated a branch cut as shown 

in Fig. 3.2 is obtained. For simplicity, in accordance with Refs. [7,36,37] band b' are 

defined by 

b = -iJ(En - Z)2 + it, 

b' = -iJ(En - z)2 - A2 + it, 

which consequently always have a positive real part. 

Im(z) 

-----:-~1----::71-'~---::::::::~~~ Re(z) 

(128) 

(129) 

Figure 3.2. Integration contour CF for the integration of the self-energy. The branch­
cut closely below the real axis is due to the electron propagator, the other branch-cut 
is due to the square-roots band b'. Bound state poles are denoted as x. 

The next step is to alter the path of the z integration. This is possible as the 

function which has to be integrated over is analytic. Following Ref. [36] the path 

is transformed as shown in Fig. 3.3 and split into two sections into a high-energy 

contour CH and a low-energy contour CL , which will be discussed separately. The 

separation is required because a low-energy photon leads to a change in the excitation 

of a bound electron, whereas a highly energetic photon can scatter the electron into 

a highly relativistic free state. This necessitates a different treatment for different 
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photon energies and constitutes a major complication of bound-state field theory 

over free field theory. 

Im(z) 
lR ..... -_ 

---...... -iR 

Figure 3.3. New path of the integration contour. The low-energy part of the contour 
from Zl to Z2 is denoted as CL and the high-energy part, which is the rest of the 
contour, is denoted as CH . 

3.5. LOW-ENERGY PART 

In the beginning the low-energy part is considered which is the integration 

along the contour CL . The low-energy part is finite without considering the mass 

renormalization which will be treated together with the high energy part. As it turns 

out, though, a finite part of the renormalization appears in the result. Form the first 

calculation of the self-energy contribution to the Lamb shift by Bethe in Ref. [6] it is 

known that the effect is of order (Za)4In(Za)-2. However, terms of lower order than 

this will appear in the result and can be extracted by an expansion in Za. 
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The next step is another alteration of the integration contour but this time just 

for the low-energy contour CL . For this CL is considered in the limits E --+ 0 and 

Zl, Z2 --+ O. The endpoints of the contour thus meet at 0 and the two branches of 

b meet at En, which is illustrated in Fig. 3.4. The branch cut and the poles of the 

electron propagator are moved away from the real axis by the addition of a small 

imaginary part i8. Thereby, possible ambiguities of the resulting expressions can be 

avoided. In order to obtain the energy shift the limit A --+ 00 has to be considered, 

which means A > En. Consequently, the part containing A has no singularities and 

is analytic. As now CL is a closed contour, the part containing A vanishes. 

a) Im(z) 

.:========::::::4-~~~C~L~ ______ ~ Re(z) En ____ 

En+v'=IE / .. -
1-16 

• 
-1-i6 

b) Im(z) 

ZLZ2 ------.... --+----....... Re(z) 

-1-i6 l-i6 

Figure 3.4. Alteration of the low-energy contour CL in the limits E --+ 0 and Zl, Z2 --+ O. 

Afterwards, the contour C L for the low-energy part consists of two parts, one 

part above the real axis denoted as C A and one below the real axis labeled as C B. 
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Recalling the definition of the exponent b, it is found that above and below the real 

axis b takes the values 

b = -i(En - z) for z on C B , 

b = + i (En - z) for z on CA. 

Thus, the integral becomes 

En 

flE~~lSE = ~ J d3XI J d3X2 J dz ;i (exp [i IX2 - xII (En - Z)] 
o 

- exp [-i IX2 - xII (En - z)]) 1-0 1 -0 I 
X2 - Xl 

X 'I/J~(X2)a~ H _ zt1 _ io) a~'l/JnUid 
En 

= aJd3 Jd3 Jd sin[1X2- XII(En -z)] 
Xl X2 z 1-0 -0 I 

7r X2 - Xl 
o 

X 'I/J~(X2)a~ H _ zt1 _ io) a~'ljJn(XI) . 

(130) 

(131) 

(132) 

Remembering and in a sense undoing an integration carried out earlier, it can be seen 

that 

sin [I X2 - xII (En - z)] _ ~ J dO [. -0. (-0 _ -0 )] 
1

-0 -0 I - 4 Hq exp lq X2 Xl , 
X2 - Xl 7r 

(133) 

with q = Iql = En - z. FUrthermore, this is used to transform the variable of 

integration from z = En - q to q with dz = -dq. When changing the boundaries of 

the integral accordingly, the result is 
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('lj;n I I'lj;n) denotes the expectation value on the bound state. P is written here to 

make it clear that this integration procedure leads to a principal value prescription for 

the integral. Since oP = Id the time-like component can be taken care of right away. 

For this, a very important relation has to be used which will encountered frequently 

._- 1 ._- 1 
e

1q

•

X 

H E 8e-
1q

•

X 

= -- -- -- -- V (3 E 8 . (135) - n+q-i a·p-a·q+ + - n+q-i 

The denominator is expanded for small a . if using a common relation for expanding 

the propagator and get 

1· 1 

a . p - ii . if + v + (3 - En + q - i8 ii . P + V + (3 - En + q 
1 __ __ 1 

+ -- -- V (3 E a·q __ -- V (3 E a·p+ + - n+q a·p+ + - n+q 
1 __ __ 1 

+ -- -- V (3 E a·q __ -- -- -- V (3 E .~ a . p + + - n + q a . p - a . q + + - n + q - Iv 

(136) 

xii·if __ -- V 1(3 E +0(8). 
a·p+ + - n+q 

For J-l = 0, the outer propagators can directly act on the wave functions for which 

(ii· P + V + (3 - En)'lj;n(x) = 0 holds. This means 

Thus Eq. 134 yields 

(138) 

because the angular integral over ii· if vanishes. Already from the term En it be­

comes evident that a finite part of the renormalization is carried along, which can be 

extracted out of the expression by an expansion in Za. 
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Z a gives the strength of the Coulomb potential and scales the momentum, 

energy and radial position of the electron. Such a scaling is also typical for bound 

states of gravity. Thereby, the magnitudes of the relevant parameters can be identified 

1 
r rv Z a' Ipi rv Z a , 

Za 2 V rv - rv (Za) , 
r 

En rv 1 - (Z a ) 2 
• 

(139) 

(140) 

(141) 

Because these quantities are operators, the expansion is carried out by expanding 

the denominator in Eq. (138) in powers of ex· p, V and, finally, in powers of (12 -

E~). In order to extract the physical part of the low-energy part, which is of order 

(Za)4ln(Za)-2, only terms of lower order than this are kept . It will become clear 

that these lower order terms cancel when added with the high-energy part justifying 

the procedure. The expansion and the following evaluation of the resulting expression 

are given in Ref. [37] with the result 

(142) 

where f L (Z a) is the physical part of the low-energy part in the commonly used 

scaling. For the evaluation, as described in Refs. [36,37], Eq. (138) is rewritten in 

position space as 

(143) 

with r21 = IX2 - xII. The possibility to separate the angular and radial part, allows 

to carry out the angular integration and a integral over the radial part remains which 
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can be written as [37] 

(144) 

where fn,l(r) is the radial Dirac eigenfunction g(r) for the reference state nand 

accordingly fn,2(r) = f(r). The components G~ of the radial Coulomb-Dirac Green's 

function, as well as those from the angular integration of the photon propagator A~ 

are given in Refs. [7,8,36]. The remaining integrations are carried out numerically, the 

details are given in Ref. [8]. It is important to mention that because of the principal 

value prescription in Eq. (144), contributions from poles along the integration contour 

have to be calculated separately. The analytically calculated contributions from the 

poles have to be subtracted from the expression prior to numerical integration to 

avoid divergences. The lower-order terms can be subtracted afterwards to determine 

a value for JL(Za). 

3.6. HIGH-ENERGY PART 

In the high-energy part the integration proceeds along the contour CH depicted 

in Fig. 3.4. In it, the regularization of the photon propagator has to be considered as 

well as the mass renormalization. Therefore, the expression for the high-energy part 

is 

(145) 

As its name implies, the high-energy part treats the photons, which have a energy 

larger than En. Compared to the high energy of the photon here, the potential is just 

a perturbation. Therefore, the bound electron Green's function G can be expanded 

in terms of free electron Green's function F without a potential and interactions with 

the binding potential V in a perturbative expansion. This expansion is graphically 
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illustrated in Fig. 4.2 using Feynman diagrams [26] and gives 

G(X2' Xl, z) = F(X2' Xl, z) - J d3X3F(X2' X3, z)V(r3)F(X3, Xl, z) 

+ J d3X3 J d3x4F(X2' X4, z)V(r4)F(X4' X3, z)V(r3)F(X3, Xl, z) + .... 
(146) 

For large Izl the expression in Eq. (145) is exponentially damped up to the region 

where r2l ~ O. In turn, this means that for large Izl the major contribution will come 

from these terms. It has been suggested in Ref. [37] to use an expansion of the wave 

function at Xl around X2. This not only allows to extract divergent terms at T2l ~ 0 

but to find the terms of lower order than the physical part of the high-energy part as 

well. The expansion of the wave function gives 

(147) 

Finally, an expansion for the potential 

(148) 

is used as well. The divergent and the lower order terms in Eq. (145) can be extracted 

as the analytic part fj.EA which is the sum of four terms 

where the index i in fj.El/ counts the order in V, while j gives the order in the 

power series in Eq. (147). The expansions simplifies the integration with respect to 

X2 which can be carried out analytically. After that, the integration with respect to z 

is tackled. As explained in Ref. [7] the structure of the function causes the integrals 

over the circle parts to vanish and thus z is only integrated from -ioo to ioo, which 

is depicted in Fig. 3.5. This enables to transform it to y = -iz above and to y = iz 

below the real axis. With the help of the definition of band b', the resulting integrals 

over y extend from 0 to 00 and can be carried out analytically. The calculation is 
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explained in detail in Ref. [37] and just the results are restated here, they are 

(150a) 

(150b) 

(150d) 

Im{z) 

Figure 3.5. Because the integral over the parts of the circle vanish, the high-energy 
contour CH takes this form in the limits € ~ 0 and Zl, Z2 ~ O. The lines below the 
real axis denote the branch cut of the electron propagator and the line above is the 
branch cut of b. 
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As can be seen there, all terms except f).E~2 contain a term proportional to 

In(A 2) which is logarithmically divergent in the limit A ~ 00. These terms cancel 

with the mass renormalization which in these units is [7,26,36, 37} 

(151) 

An expansion in powers of 1 - E~ again allows to extract the terms of order lower 

than (Za)4ln(Za)-2 and gives 

(152) 

with the help of the identity ('l/Jn 1,81 'l/Jn) = En for the Coulomb potential. The physical 

part of D..EA is given by the remaining terms in Eq. (150) and is stated in Eq. (48) 

in Ref. [37]. 

This analytical calculation is necessary again to extract divergences from the 

numerical integration. After they have been taken care off, it is possible to define 

functions which allow a point wise subtraction of these divergences from the numerical 

integral which has to be calculated. These subtraction functions K i,j(r2, rI, z) have 

been defined in Ref. [37] by 

(153) 

In this way, the analytically calculated part can be subtracted from the initial 

integral and the expression which is integrated numerically is then [37] 

/!,.EB ~ 2:i LH dz 100 

dr,r; 100 

drlr; (~;tl [In,;(r,}~/(r2' r" z) 

x fn,j(rI)A~(r2' rd - fn,3-i(r2)G~j(r2' rI, z)fn,3-j(rdA~(r2' rl)] (154) 

- K A (r2, rI, z)) , 
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Note, that the functions A~(r2' rt) are different from those in Eq. (144) and are given 

in Refs. [7,8]. t1EB does not contain terms of lower order than (Za)4ln(Za)-2. 

Consequently, it is possible to write 

(Za)4 
t1EB = 3 fB(Za) , 

n 

and, therefore, the total high energy part as 

with fH(Za) = fA(Za) + fB(Za). 

(155) 

(156) 

Finally, the low-energy and the high-energy part are added in order to obtain 

a result for the energy shift. As can be seen from a comparison of Eqs. (152) and 

(142), this will lead to a cancellation of all the lower order terms. The final result, 

where the electron mass can be reintroduced again, is thus obtained as 

(157) 

where 

(158) 



51 

4. THEORY: EXPANSION ABOUT NONRELATIVISTIC THEORY 

4.1. NONRELATIVISTIC DESCRIPTION OF THE ELECTRON 

The fully relativistic formalism provides means to evaluate the QED corrections 

to the energy levels. These calculations, unfortunately, require a large amount of 

computer time. In addition, the relativistic formalism often does not allow to iden­

tify the physical origin of the investigated corrections. In many cases, though, the 

nonrelativistic description of the electron provides an accurate enough approximation 

and greatly simplifies the computations. With the nonrelativistic framework, due to 

the special character of time, the interaction with the quantized field can be included 

using time-independent perturbation theory. In this section, it is explained how a 

nonrelativistic description of the electron QED interaction can be obtained and how 

the relativistic corrections can be included. These corrections improve the approxi­

mation tremendously, while the simplicity of the nonrelativistic calculations can be 

retained. As will become apparent, the relativistic corrections can be expressed as 

effective operators, which, interestingly, very clearly show their physical origin. 

In the usual description of the quantum mechanics, the bound state of an elec­

tron in the potential of a nucleus is given by the Schrodinger equation [1]. For a 

nucleus with a nuclear charge number Z which is infinitely heavy, the bound states 

for the electron can be obtained as solutions of the equation 

Hsif?(i) = (2~e - ~Q) if?(i') = Esif?(i) . (159) 

The time dependence of the state is thereby given by 

(160) 

The solution of this problem can be found in many books on quantum mechanics. 

Therefore, it is given here without derivation. It can be obtained by separating the 

problem into a radial and an angular part. This feature is very important and will be 

used throughout this work since it allows for many simplifications in our calculations. 
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The solution is described by three quantum numbers: the principal quantum number 

n, the orbital angular momentum quantum number f and the magnetic quantum 

number m. The eigenfunctions are then obtained [24,38] as 

(161) 

where Ye,m(x) is the spherical harmonic as defined in Ref. [23]. While a solution of the 

differential equation for the radial part can, in fact, always be found using a power 

series in r, a normalizable solution can only be obtained for a bound state E < 0 

with n 2': f + 1. Under these conditions the power series breaks off and the radial 

wave function Rnt (r) is given in terms of the generalized Laguerre polynomials L;;:/ 
which are finite 

Rnt(r) = - (162) 

where ao = 1jmea is the Bohr radius. Alternatively, the power series can be written 

as a hypergeometric function which reduces to the finite Laguerre polynomials for the 

above conditions [39]. The respective energies are then 

(163) 

where Roo = ~mea2 is the Rydberg constant. While the predicted energy levels ex­

plain the Balmer series, they do not explain the fine-structure of the spectral lines. 

There are two reasons for this. The first is that the Schrodinger equation does not 

contain the spin of the electron. The second reason lies in the energy momentum 

relation used in the Schrodinger equation which is basically E rv p2. This is the non­

relativistic energy momentum relation and therefore relativistic effects are neglected. 

It is, however, possible to include both of these effects as perturbations into the 

Schrodinger equation by using the perturbation Hamiltonian 

(164) 
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where iJ are the Pauli matrices. The first term arises from the relativistic kinetic 

energy and the second from the zitterbewegung of the electron. The last term comes 

from the interaction of the spin with the magnetic field generated by the core in the 

rest frame of the electron. This magnetic field is generated because in the rest frame 

of the electron the core circles it with angular momentum f. 

In order to allow a perturbative treatment, it is necessary to include the spin 

in the wave function of the unperturbed Schrodinger Hamiltonian in Eq. (161). This 

changes the spherical harmonic Yf,m into a Pauli spinor X~ 

(165) 

The spinor is defined by 

(166) 

with the Dirac quantum number /'l, = (-1 )j+l+~ (j + ~) and the total angular mo­

mentum; = f + ~iJ. The Dirac quantum number is another way of writing the total 

angular momentum though in terms of integer numbers. For example, the so-called 

Pl/2 state with orbital angular momentum f = 1 and total angular momentum j = ~, 

has /'l, = 1. While the state 8 1/ 2 , which has the same total angular momentum of 

j = ~ as the P1/ 2 state, has a Dirac quantum number of /'l, = -1 because the orbital 

angular momentum is f = O. Hence, the sign allows to differentiate states with the 

same total angular momentum due to the difference in orbital angular momentum. 

Even though the complete Hamiltonian Hs + oHs cannot be solved, the eigen­

function of the unperturbed Hamiltonian Hs with inclusion of the spin can be used 

to calculate the energy shift due to oHs in first order of perturbation theory. The 

result is 

E (<p loH I <p) = E . = _ me(Za)2 me(Za)4 (~ __ 1_) 
n + s nJ 2 2 + 2 3 4 . + 1 n n n J '2 

(167) 
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In contrast to En, in which the energy only depends on the principal quantum number 

n, the energy En,j depends on both the principal quantum number as well as the total 

angular momentum j. Interestingly, this result agrees with the energy prediction 

by the Dirac equation expanded in Za up to and including O((Za)4) [24]. When 

atoms with a low nuclear charge number Z are considered, these higher order terms 

are negligible. This means that the electron for such atoms, when some corrections 

and the spin are included, is very well described by the nonrelativistic Schrodinger 

equation. 

The next step is now to include the effects, which arise because of the quantum 

nature of the electromagnetic field, as well. But before this can be done, it has to be 

explained how the electromagnetic field can be quantized, which will be done in the 

next section. 

4.2. QUANTIZED FIELD 

After the treatment of the electron, this section will discuss how the electro­

magnetic field can be transformed from the classical Maxwell theory to a quantum 

theory. The aim is to quantize the electromagnetic field in order to include the par­

ticle nature of the photon as well as its wave nature which is contained in classical 

electrodynamics. Because the quantum theory has to agree with Maxwell's theory 

in the classical limit (high energies, many photons), the starting point is to recall 

Maxwell's equations in covariant formulation which in the unit system in this work 

are given as [25] 

8J.tFJ.tv = f, 

tJ.tvpu 8P FJ.tv = 0, 

where FJ.tv is defined by 

(168) 

(169) 

(170) 
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The four-vector potential AI-' is combined of the scalar potential ¢ and the vector 

potential A 

(171) 

Similarly, the four-vector current is 

(172) 

Using the Hamiltonian principle and the Euler-Lagrange equation similar to classi­

cal mechanics the inhomogeneous Maxwell equation (168) can be obtained from the 

Lagrange density 

(173) 

The homogeneous Maxwell equation (169) is automatically fulfilled by the use of the 

four-vector potential. Following the Noether theorem, invariance of the action 

(174) 

under a transformation leads to a conserved quantity. In this way for example the 

conservation of the electromagnetic current or the continuity equation 

(175) 

can be shown. As one might recall from electrodynamics the four-vector potentials 

can be gauge transformed according to 

(176) 

while the electric and magnetic field are invariant under this gauge transformation 

[25]. Now, this gauge transformation is applied to the Lagrange density in Eq. (173) 
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to obtain 

(177) 

Because the current is conserved and therefore oJ.tF' = 0, the term oJ.tjJ.t A = 0 can be 

added to the Lagrangian which yields 

(178) 

The last term is a total derivative which does not change the action in Eq. (174). 

This means that the action is invariant under the gauge transformation. Although 

this gauge freedom can be very useful for the actual calculations, it complicates the 

quantization of the theory as a specific gauge has to be chosen prior to quantization. 

Here, in fact, Coulomb gauge will be used 

(179) 

even though it is not Lorentz-invariant. 

For the quantization of the field, it is important to recall that in quantum 

mechanics momentum and position are elevated to operators. They have to fulfill the 

commutation relation 

(180) 

For the quantization of the electromagnetic field, the vector potential is elevated 

into an operator. In order to get analogue commutation relations, the conjugate 

momentum is required. The conjugate momentum is called 7f and it is obtained in a 

similar way as in classical mechanics with a derivative of the Lagrangian with respect 

to the time-derivative of the field 

(181) 



57 

The Lagrangian in Coulomb gauge takes the form 

So for the conjugate momenta this yields 

(183) 

(184) 

Here, the advantage of our choice of gauge can be elucidated. The potential has no 

dynamics of its own and is given entirely by the charge distribution. This allows 

to continue to work with the classical Coulomb potential of the electron nucleus 

interaction and only quantize the vector potential. Thereby, the effects from the 

bound state potential and the quantized field are separated. Moreover, in this way 

the unphysical time-like photons are excluded and only the longitudinal photons 

have to be eliminated in the following. In the Gupta-Bleuler quantization for other 

gauges [35], at this point both time-like and longitudinal photons have to be extracted 

as degrees of freedom because the time-like conjugate momentum is non zero. In 

general, the quantization of a gauge theory is a very intricate subject [26J because all 

degrees of freedom are required in the calculation but some are unphysical and can 

therefore not appear in the final results. 

With the conjugate momenta a Legendre transformation can be employed to 

receive the Hamilton density for the free field with jJ.L = 0 

k 1 ( .... 2 .... 2) 
Hfree = 7f Ak - £, ="2 E + B . (185) 

It has the form of a harmonic oscillator but as a density. It is, in fact, a continuous 

chain of massless harmonic oscillators. Accordingly, the quantization is nearly the 

same as for the normal harmonic oscillator. Therefore, it is not reiterated here. 

A detailed derivation can for example be found in Refs. [27, 35J. Here, just the 



commutation relations are discussed. They are 

[Ai(t,x),Aj(t,X')] = 0, 

[iri(t,X),irj(t,X')] = 0, 
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(186) 

(187) 

where the hat is used to make clear that these are operators now. It is important to 

note here that these relations are always for equal times. Normally, one would expect 

the commutation relation between A and 7r to look like 

(188) 

Unfortunately, this is not correct because of the gauge condition, which can be seen 

by taking the divergence of the commutator 

while 

(190) 

The right idea can be envisioned by looking at a certain choice to fulfill the gauge 

condition of the vector potential OiAi = 0 which can be imposed by a projection 

operator 

(191) 

Applying this projection operator to the t5 distribution gives 

This transverse t5 distribution now leads to the right commutation relation 

(193) 
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The quantized vector potential for a free field in the Schrodinger picture is then [27] 

where the polarization vectors EACk) fulfill the relations 

EA (k) . EN (k) = 6AN , 

.... A .... 
k· E (k) = 0 

(194) 

(195) 

(196) 

(197) 

which accounts for the fact that there are no longitudinal photons i.e. light is a 

transversal wave. Plugging in the obtained quantized A(x) into the Hamiltonian in 

Eq. (185) leads to a Hamiltonian of the same form as for the harmonic oscillator 

(198) 

where the 6 distributions have been neglected [38]. 

4.3. COUPLED ELECTRON AND FIELD 

After the quantization of the field, it is considered how this field can be coupled 

to the electron. When atoms with a low nuclear charge number Z like hydrogen are 

considered, it has become clear that the discussed nonrelativistic description was in 

fact sufficiently accurate. Therefore, it is now tempting to try and keep the nonrela­

tivistic description of the electron while coupling it to the quantized electromagnetic 

field because it is much easier to handle. In principle one can just get the effect of the 

quantized field by using the known Schrodinger Hamiltonian in an electromagnetic 

field [39]. Because Coulomb gauge was used in the quantization of the field, the elec­

tric potential is unaltered by the quantization procedure and only the vector potential 

A has to be treated differently. Moreover, in nonrelativistic quantum mechanics time 

can be treated differently than space variables, which allows to use the quantized field 

in the Schrodinger picture where it is time-independent. The coupling term between 
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the electron and the field can then just be read off from the coupled Hamiltonian He 

1 ( -0)2 Za He = - P - eA(x) --
2~e r 

-02 -0 .... 2 Z P p.... .... .... .... p e .... 2 .... a 
= - - e- . A(x) - eA(x) . - + -A (x) - -. 

2~e 2~e 2~e 2me r 

(199) 

It is possible to simplify the coupling term -e2!e . A(x) - eA(x) . 2!e. In Coulomb 

gauge the vector potential and the momentum commute because of V . A( i) = 0 and 

thus 

.... 2 -0 2 Z P p.... .... e .... 2 .... a 
He = - - e- ·A(x) + -A (x) --. 

2~e ~e 2~e r 
(200) 

This also gives a perturbation to the SchrOdinger Hamiltonian whose effects can be 

included using perturbation theory. In contrast to using perturbation theory with a 

classical field, this interaction does not just couple the electron states but also the 

photon states. Therefore, for a complete treatment the states have to be constructed 

as Fock states out of the electron state and the Fock state for the photons. This also 

means that the energy is given as the sum of the energy of the electron and the photon 

field. Consequently, the Hamiltonian which gives the energy of the intermediate 

states also has to give the energy of the electron and of the photon field. Thus, the 

unperturbed Hamiltonian is the sum of the Schrodinger Hamiltonian for the electron 

and the free field Hamiltonian for the photon 

2 Z 2 J p a 1 3 A .... A .... 
Ho = Hs + Hcree = - - - + -" d kWfa ,t(k)a (k) 

2~e r 2 L..t 
A=l 

and the interaction Hamiltonian is 

.... 2 p.... e .... 2 HI = -e- . A(i) + -A (i). 
~e 2me 

(201) 

(202) 

Here it is restated again that all quantities are given in the Schrodinger picture, which 

will be employed in this calculation. A time-independent perturbation series [27,38] 

in orders of the electron charge e is used. 
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The effect of the one-photon self-energy is to be analyzed which is represented 

graphically in Fig. 4.1 by the corresponding Feynman diagram. That this is the lowest 

order term can be seen from the fact that the first order term in e vanishes due to 

symmetry arguments [38]. The second order term 2~/P(X) vanishes for the same 

reasons. The initial state is a Fock state combined out of the state of the electron 

and the vacuum for the electromagnetic field, as only the effect from the field of the 

electron and no outer field is to be investigated. The general second order expression 

is 

(203) 

Plugging in the appropriate expressions for the self-energy yields 

Figure 4.1. One photon self-energy of a bound electron. The double line denotes a 
bounded electron and the wiggly line the virtual photon. 

The energy of the initial state E~,o is just that of the electron in state <P, E~ , 

because the energy of the photon vacuum is zero. Furthermore, it can be inferred 

that only the creation operator in the last line will give a contribution because the 
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annihilation operator acting on the vacuum gives zero. Thus, one photon is created 

out of the vacuum in the intermediate state. This photon is then annihilated again by 

the annihilation operator in the first line of Eq. (204). There, the creation operator 

gives no contribution as the photon field has to go back to its vacuum state without 

photons. Accordingly, the equation simplifies to 

6:..E~2) = e2/ <I> , 01 P .J d3~ taN (k')f),' (k')e iP .x 
\ me J(2n) 2Wkl >.'=1 

X (E~,o _ H s - ~ Lim ~ 1 J ~ km w.,,,a A, tm (k<") aAm (km )) , 

X p.J d
3
k" t a),"t(k")E'),1I (k")e-ik".xl<I>, 0) . 

me J(2n)32wk" ),"=1 

(205) 

Since there is only one photon in the intermediate state, a complete basis set of the 

form 

1 "" 3 .... 1 .... ( ) '1 2 I) \ 1 = ~ ~ d k ~,l),(k) ~, l),(k) E~,o - Ho 1 photoo ,1_"" ,A~l J E~ - E, - Wi 

(206) 

is introduced. The sum over ~ represents a sum over the complete bound spectrum 

as well as an integral over the complete unbound spectrum. Here, use has been made 

out of the earlier discussion because there can only be one photon in the intermediate 

state. The energy of this photon is then returned by the free field Hamiltonian and 

added to the energy of the intermediate electron state. The expression, thus, takes 

the form 
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With the relation 

this can be simplified with the result 

(209) 

Recalling the expression in Eq. (197) for the polarization vectors fY{k) in Coulomb 

gauge, this can be written as 

(210) 

Now the question arises how to deal with the exponential in the matrix element. It 

would be nice if an expansion of the exponential would be possible. But what would 

be the parameter to expand it in since it is not known whether k or x are really small. 

In order to figure that out, it is instructive to analyze the magnitude of momenta and 

energies in the process as well as the relevant length scale. The length scale is about 

the size of the atom which is given by the average distance of the electron from the 

core. This is can be found to be the Bohr radius over the nuclear charge number [38] . 

In 81 units it is 

ao _ Ii ~ Z-10.53 X 10-10 m . 
Z Zo:mec 

The momentum scale is given by the momentum of the electron which is just the 

mass of the electron times the average velocity of the bound electron. The later can 

be found the easiest by a calculation using the simple Bohr model with the result 
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(v) = Za. The momentum scale is then 

In SI units this gives p I'V Zamec = Z· 3.7keV Ie. Following the virial theorem [39] 

the energy scale for the electron can be expressed in terms of its kinetic energy 

This gives the well known Z2·27.2eV. It is found later that it is necessary to constrain 

this approach to photon energies where the photon just changes the state of the 

electron and not its nonrelativistic behavior. Then the photon energy is about the 

size of the electron energy 

In the efforts of finding a sensible expansion parameter, the following magnitudes for 

the important quantities have been derived 

Ikl = w ~ E ~ me( Z a)2 , 

Ixl ~ ~ = (meZa)-l , 

IPl = meV ~ me(Za). 

(211a) 

(21lb) 

(21lc) 

For the magnitude of the exponential one finds accordingly k·x ~ Za. This parameter 

now is small, Za « 1, for systems where Z is not large. Thus, a parameter in which 

the exponential can be expanded is found. This expansion in powers of Za gives 

-if.x ...... ..... 1 (.... ....) 2 
e =1-~-2 k·x + .... 

(Z a:) ""-v--' 
(Za:)2 

(212) 

This is often called a multi pole expansion because in correspondence to the multipole 

expansion of 111x - X'I in classical electrodynamics [25], a scalar function is expanded 

into terms with increasing tensor dimension [23,25]. This means that a scalar function 
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is expanded into a series, where the first term transforms like a scalar i.e. 1, the second 

term like a vector and the third like a tensor of rank 2. In the beginning, only the 

lowest order tenn is considered. Furthermore, since the states \<p) and \~) are both 

eigenstates of the Schrodinger Hamiltonian, they can be expressed in terms of the 

quantum numbers n, f, m. With the substitutions 1<1» = Infm) and I~) = In'em') the 

expression takes the form 

f:).E(2) = e2 J d 3k _1_ (8ij _ k~kj) '"' (nfm ILl n'f'm') 
nlm (27f)32w- k2 ~ me 

k n'f'm' 

X E _ ~ __ / n'f'm'l pi I nfm) , 
n n' W k \ me 

(213) 

where En is written because the energy in the Schrodinger equation only depends 

on the principal quantum number n. In the next step the angular integration with 

respect to k can be carried out. For this the relations 

(214) 

(215) 

are required. Thus, the integration yields 

f:).E~~~ = ~a roo dWfWf L / nfm I pi I n'tm') 
7f } 0 'f' ,\ me n m 

X 1 / n'tm'lLI nfm) , En - En' - wf \ me 

(216) 

where Ikl = wf and e2 = 47fa are used. Unfortunately, the derived expression diverges 

when the integration with respect to wI; is carried out with the given boundaries. 

A further investigation reveals that at the vertex where the photon is emitted (see 

Fig. 4.1) four-momentum is not conserved. The initial state with pi" = (E,p) changes 

into an intermediate state with pI'" = (E - wk' ji). While Ik\ can be neglected against 

Ipl in the region where wI; is small because of the discussion in Eq. (211), it is not 

possible for the region where wf is large in the integration in Eq. (216). This implies 

that the procedure used to couple the nonrelativistic electron to the field is valid only 
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if the quantum field in the nonrelativistic limit is considered i.e. wk «me. It will be 

invalid as soon as wk becomes large. In this region, the considerations which allowed 

to expand the exponential are also incorrect. The way to deal with this is to introduce 

a cutoff to the integration over wk [27,38]. This cutoff is denoted as f, which leads to 

~El~~m = 2; r dwkwk L / nfm ILl n'f'm') 
3 io 'BI , \ me 

n~ m 

X E _ ~ __ / n'f'm'ILI nfm) 
n n' wk \ me 

(217) 

In turn, this implies that Eq. (217) only describes the low-energy part of the energy 

shift and that the part, where large photon energies are considered, has to be treated 

differently. Therefore, the subscript L is used to denote that this only describes the 

low-energy part. With the cutoff the integration with respect to wk can be carried 

out with the result 

(218) 

In the integration a principal value prescription has been used to deal with the poles. 

The poles arise when wk = En - En'. Using the relation 

1 1. 
--. = p- - 17ro(x) , 
X + Ie: x 

(219) 

where P denotes the principal value, Eq. (218) can be identified as the real part of 

the self-energy and the imaginary part is found to be 

In this way, it becomes visible that the self-energy shift is in fact a complex number. 

The real part gives the energy shift while the imaginary part gives the decay rate r. 



This is usually expressed as 

i 
6.E = Re(.6.E) - "2r . 

Therefore, the one-photon decay rate is given as 
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(221) 

The sum has to be constraint to states with a lower energy than the initial state. 

Otherwise, a spontaneous decay is not possible. Using a periodic external classical 

field, this result can also be obtained with time-dependent perturbation theory. It is, 

in fact, a classical example for the application of Fermi's Golden Rule [38]. Although 

talking about the decay rate here may look like a detour, it is important to mention 

that the subtraction of the poles is a major complication if a numerical integration is 

used for the photon energy, especially, when highly excited states are treated which 

have many possible decay channels. Moreover, the two-photon decay rate will be 

investigated as well. 

Coming back to the real part of the self-energy (Eq. (218)), a way has to be 

found to deal with the terms containing c. There are two main ways to deal with 

the term linear in c. Th~ first is to subtract the self-energy of a free electron from 

the expression in Eq. (218). The argument is that the electron cannot be observed 

without the interaction with its own radiation field and therefore only differences to 

an electron with the interaction can be observed. This is the method employed in the 

original calculation by Bethe in Ref. [6]. Here, a method presented in Ref. [40] will 

be employed. In it c acts as an overlapping parameter between the low- and high­

energy part and will cancel when both parts are matched together at the end of the 

calculation. The real part of low-energy part is expanded in c and terms which have 

an order higher than cO are neglected [41]. Carrying out this expansion in Eq. (218) 
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yields 

(223) 

where a scaling parameter ~me(Za)2 = Z2 Roo is introduced to split the logarithm 

with E from the finite logarithm. Dropping the complete basis set for the first expres­

sion this can be written as 

The first matrix element can be expressed using a commutator [27] 

For states with angular momentum f 2 1, which are considered in this work, this term 

vanishes. The second matrix element is defined as the Bethe logarithm In ko(n, f) by 

() n3 '"' ( ) (21En' - Enl) 
In ko n , f = 2(Za)4me nfe::n, En' - En In me(Za)2 

x (nfm I~J n'f'm') (n'f'm' I~J nfm) . 

(226) 

The angular integration in this expression can be carried out by employing the 

Wigner-Eckhart theorem [23,38]. A detailed calculation can be found in Refs. [27,42] 



69 

with the result 

{ £ + 1 (/00 2 ( d £) ) 2 x 2£ + 1 drr R,.1l+l(r) dr -;: Rnl(r) (227) 
o 

£ (/00 2 ( d £ + 1) ) 2 } + 2f + 1 drr R,.'l-l(r) dr + -r- Rn£(r) . 
o 

The low-energy part of the self-energy is then given for £ 2:: 1 as 

R b.E(2) = _ 4a (Za)4m
e In k ( £) e L nl 3 3 0 n, , , 7f n 

(228) 

with the Bethe logarithm In ko(n, £) which is given in Eq. (227). This expression is 

already known since 1947 [6] and is of order a(Za)4In[(Zat2]. From the multipole 

expansion of the exponential in Eq. (212) it is known that there are higher order 

terms in Za, which have not been considered, yet. Unfortunately, these multipole 

corrections are not the only higher order terms. Similar to the relativistic and spin 

corrections for the Schrodinger Hamiltonian in Eq. (164) there also are relativistic 

corrections to the Schrodinger Hamiltonian coupled to the quantized field. Hence, 

finding all corrections of order a(Za)6In[(Za)-2], requires a systematic derivation to 

make sure all relevant terms are discovered. A theory which provides all these term 

is nonrelativistic quantum electrodynamics (NRQED) [43]. 

NRQED is a so-called effective field theory because it is a transformation of a 

high-energy field theory for lower energy scales which gives the same effects but can 

allow for some simplifications at these lower energy scales. In the case of QED it 

basically decreases the resolution of the theory. For illustration let us look at the 

effect of vacuum polarization. Simply speaking, it means that the vacuum behaves 

like a dielectric medium and the real charge of the electron is screened by the dielectric 

vacuum. If one goes down to a very small length scale, the screening effect can be 

resolved and the real charge observed. At a larger length scale instead only a screened 

charge can be observed. However, this charge can be used as an effective charge at the 

length scale one works at and what happens at a smaller length scale can be ignored. 
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In field theory, this can be achieved by methods of the renormalization group 

[26]. When these are applied to QED, the renormalization scale, which is basically 

the resolution of the theory, is reduced down to the electron mass. Fortunately, there 

is an alternate way of deriving the NRQED Hamiltonian, the Foldy-Wouthuysen 

transformation [44] of the the full Dirac equation coupled to a fully relativistic field, 

which will be investigated in the next section. 

4.4. FOLDY-WOUTHUYSEN TRANSFORMATION 

In the last section the already known result form Bethe [6] has been re-derived 

for the low-energy part of the self-energy shift for a bound electron. In order to find a 

better approximation to the fully relativistic description of the electron, necessary for 

for today's accuracy in spectroscopy, corrections from the fully relativistic description 

have to be included. Therefore, all the relativistic correction terms to this result of rel­

ative order (Za)2 have to be identified. In the calculation so far multipole corrections 

to Bethe's result have been found but it is not possible to guess whether these are all 

terms. As there are relativistic and spin corrections of the Schrodinger Hamiltonian, 

similar corrections for the coupling are expected as well but there should be a way to 

deduce these terms systematically. The Foldy-Wouthuysen transformation provides 

such a systematic derivation and will be able to establish the relativistic corrections 

to the Schrodinger equation which so far have just been explained by general argu­

ments. Moreover, with the Foldy-Wouthuysen transformation all relevant multipole, 

relativistic and spin corrections to the interaction current can be deduced and even 

higher order corrections can be derived. Through this expansion of the relativistic 

theory about its nonrelativistic limit, which is physical relevant in atomic systems, 

effects of higher order in Z Q can be included. These can be used for calculations 

in both relativistic atomic physics and nonrelativistic field theory. Although, the 

Foldy-Wouthuysen transformation is contained in many older textbooks, for exam­

ple Refs. [35,38], its usefulness for the derivation of relativistic corrections is rarely 

explored. 
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For a systematic derivation it is necessary to start from the fully relativistic 

treatment for the electron coupled to the quantized field provided by the Dirac Hamil­

tonian 

(229) 

with V = -Za/r. Only in this way can it be ensured that all effects are included. 

The Hamiltonian is given in terms of 4 x 4 matrices for which the Dirac representation 

is used and acts on a four-component Dirac spinor. All this are major complications 

compared to the Schrodinger equation even when the spin is included. Consequently, 

the eigenstates are more complicated as well [38]. The question is whether all these 

complications are really necessary because the Schrodinger Hamiltonian with rela­

tivistic and spin corrections already leads to the same energy predictions as the Dirac 

Hamiltonian, at least for the regime Za « 1 which is considered here. An analysis 

of the solution of the Dirac equation also shows that in the nonrelativistic regime the 

upper two components are much larger than the lower two components [38]. This 

means that the state is mainly described by the upper two components. Unfortu­

nately, the a matrix in front of the momentum operator leads to a mixing of the large 

and small components. When the larger upper components are denoted by ¢ and the 

smaller, lower components by T/, the Dirac equation can be written as 

(230) 

The idea would now be to diagonalize this matrix in order to decouple the larger 

and smaller components of the wave function using a unitary transformation. This 

is the Foldy-Wouthuysen transformation. Unfortunately, a complete decoupling is 

not possible [35,38]. Rather, the decoupling is only possible in orders of the bound­

state potential. From the analysis of the corresponding magnitude in Eq. (211) one 

finds IVI = (Za)/r I'V O(Za)2. Interestingly, this is also the magnitude of the 

usual nonrelativistic expansion parameter v2/c2 for which V2/C2 
I'V O(Za)2 is found. 

Therefore, the Foldy-Wouthuysen transformation also is an expansion of the Dirac 

Hamiltonian for nonrelativistic velocities. 
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For the transformation the part which mixes the components and which should 

be transformed way has to be found. It can be identified as the part with the a 

matrix and it is called the odd part O. While terms diagonal in this sense are called 

the even part and labeled £ accordingly. The f3 matrix is in that sense not totally 

classified and therefore kept as a entity. The Dirac equation can then be written in 

terms of these parts as 

HD = is· (p - e 1) + V + f3me 

= 0 +£ +f3me, 
(231) 

In the beginning the external vector potential is set to zero, 1 = O. This is not really 

necessary but is done here for the sake of simplicity and clarity. 

The odd part with the a matrix is then given as 

(232) 

while the even part is 

£=V. (233) 

Since H is hermitian, so are both the odd part 0 and the even part £. 

Here, time is taken to recall the Dirac representation and some important re­

lations for the Dirac matrices is and f3 because they make the calculations more 

apparent. For f3 these are 

f3 = ,0 = (1 0) 
o -1 ' 

f3£=£f3, 

f30 = -0 f3 

(234) 

(235) 

(236) 



and for a 

o (0 if) 5=,1= if 0 ' 

aiaj = 8ij + if.ijk'E,k , 

a i a1 + a j a i = 2 8ij 
, 

f3 5 = -5 f3 . 

The generator of the Poincare group is defined by 

i 
'E,ItV = 2 bit, ,V] , 

"'ltV _ ",II: 
~ - -f.ItVII:~ . 

In the Schrodinger picture the operators are time-independent and therefore 

aH =0 at . 
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(237) 

(238) 

(239) 

(240) 

(241) 

(242) 

(243) 

A unitary transformation U is considered which acts on the relativistic wave function 

1'IjI') = U 1'IjI)· 

Using this transformation to transform the Dirac equation, yields 

From which follows 

if U is also time-independent 

au =0 at . 

(244) 

(245) 

(246) 

(247) 



74 

The next step is to find the transformation which decouples the upper and lower 

components of the four spinor. The ansatz is the following [35] 

U = eiS with 8 = -iLO 
2me 

For a unitary transformation the operator 8 has to be hermitian and fulfill 

which follows from 

(248) 

(249) 

(250) 

using that the constituting operators are hermitian and employing the commutation 

relations. The transformation can be applied by employing the Baker-Campbell­

Hausdorff identity which can be written as 

(251) 

where n[8, H] is the n commutator of 8 and H (0[8, H] = H). The aim is to transform 

the odd terms away up to excluding order (Za)6. Therefore, only terms up to that 

order are considered while higher order terms are neglected. The relevant terms 

(commutators) are all given in Ref. [35]. The first commutator is explicitly discussed 

for illustrative purposes here 

i[8, H] = -0 + 2{3 [0,£] + ~{302. 
me me 

(252) 

Evidently from Eq. (252) the odd term in Eq. (231) is canceled. However, new odd 

terms of higher order arise. The new Hamiltonian after the first transformation up 

to order (Za)4 is now given as 

, ( 0
2 

0
4 

) 1 {3 0
3 

H ={3 m e +-
2
---8 3 +£--8 3[0,[0'£]]+-2-[0'£]--3 2 

me me me me me (253) 

= {3me + £' + 0' . 
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The new odd part 

V' = L[v t']- V
3 

2me ' 3m~ 
(254) 

is of order (Za)4. In order to get rid of this part as well, another transformation is 

required. The procedure is exactly the same as before and therefore the generator of 

the transformation is chosen to be 

(255) 

Again, the first commutator is considered explicitly 

(256) 

where terms of higher order than (Za)4 are neglected again. For the second transfor­

mation only this commutator is required and the transformed Hamiltonian is obtained 

as 

( 
V2 V 4 

) 1 
HFW = {3 me + -2 - - -8 3 + t' - -8 2 [V, [V, t'll . 

me me me 
(257) 

With the definitions in Eqs. (232) and (233) of V and t' the double commutator can 

be evaluated and gives 

(258) 
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where p -t -iV has been used. While the a matrices can be combined applying the 

relations in Eq. (238) 

obtained with the known identities 

(259) 

(260) 

(261) 

and the properties of the E tensor. Finally, the Foldy-Wouthuysen transformation 

yields the Hamiltonian 

For the upper components this gives 

(263) 

When the wave function is constraint to the upper components, the relativistic cor­

rections to the Schr6dinger Hamiltonian have been derived because the correction 

terms of order (Za)4me are found to be identical to 8Hs . For the lower components 

the Foldy-Wouthuysen Hamiltonian has the form 
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It is visible that the potential here is repulsive because it has the opposite sign of me 

and p2/2me . The Hamiltonian therefore describes positrons, which cannot arise at 

low energy. Accordingly, the lower components can be neglected. 

The Foldy-Wouthuysen transformation thus is a general approach to deduce 

relativistic and other corrections. It not only provides a systematic derivation for the 

relativistic and spin correction terms for a bound electron, it also allows to derive 

higher order terms if necessary. Even the relativistic, spin and multi pole corrections 

to the nonrelativistic current can be obtained when the same transformation acts on 

the relativistic current. The transformation of the current will be considered next. 

4.4.1. Transformation of the Current. There are in fact two ways to cal­

culate the relativistic corrections to the interaction Hamiltonian. Here, it is discussed 

how these terms can be obtained by applying the Foldy-Wouthuysen to the relativis­

tic current which couples to the vector potential. In this way relativistic corrections 

8] to the nonrelativistic current operator] = fJ/me are obtained. The relativistic 

current is [42] 

i1 = a exp [ik. x] (265) 

The application of the transformation follows the same steps as for the Hamiltonian. 

Again, there is no time-dependence. The transformation is then 

(266) 

The Foldy-Wouthuysen transformation of the currents has to use the same trans­

formations as for the Hamiltonian and only terms up to order (Za)4 are kept. To 

facilitate this, the current is expanded in Za first. For the expansion it is important 

to note the order in Za of k is O((Za)2) and the order of r is O((Za)-l). Therefore, 

the expansion of the exponential is also an expansion in Za. The terms in each order 



are 

Y6=~ 

y{ = ~(ik. x) 

. .1 -- 2 
~=aJ2(ik.x) , 
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(267) 

(268) 

(269) 

In principle, the term ~ is of order (Za)4, Because it is odd, it is neglected as later 

all odd current terms are neglected, The reason is that because the small component 

of the wave function, which it couples to, is suppressed by (Za)4 and, therefore, these 

term are of a higher order. Let us recall the first Foldy-Wouthuysen transformation 

(') .... --
S '{3 , oa· P = -1 - = -1,), --. 

2me 2me 

Here, all commutators are considered as they are rather simple, They are 

Accordingly, for the lowest order current operator it is found 

The second transformation is 

and again only the first commutator is relevant up to the considered order 

y" = y' + i[ S', y'] + higher order . 

(270) 

(271) 

(272) 

(273) 

(274) 

(275) 

(276) 
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Actually of the first commutator only the a j term is relevant for yb since all other 

terms would be of higher order. The commutator is then 

'[S' '] '[S' ~j] [( 1 [ ........ V] ",,0 (a . f/)3) j] 
1 ,Yo = 1 ,(X' = 4m~ a . p, - 6m~ , a 

1(. , ) 1 '2 
= -2 2 [pJ, V] - ex" [a . p, V] - -3 3 (pJ P ). 

me me 

(277) 

Plugging in Eqs. (277) and (274) into Eq. (276) yields 

, 'o(pi 1 '2) 1, y~.FW = ex" + 'Y - - -2 3 (pJp) - -2 2pJ (a. j!) 
me me me 

1 ' 1, 
--aJ [a·p .... V]+_r....1 V] 

2 2 ' 2 2 1}',· me me 

(278) 

For the terms y{ and y~ only the commutator with S has to be considered. All other 

contributions are of a higher order. Consequently, in the second transformation in 

Eq. (276) only the y' term is relevant and no commutator has to be calculated. At 

first y{ is calculated which is given as 

yi FW = y{ + irS, y{] = aj(ik. x) + i[-iLa. p, aj(ik. x)] 
. 2me 

= a.i(ik. x) + La. pa.i(ik. x) - a.i(ik. x)La. p 
2me 2me 

(279) 

= a.i(ik. x) + 2~e (a. pa.i(k. x) + a.i(k. x)a· p) . 

From Eq. (239) one can derive aiaj = 28ij - a j ai, which simplifies Eq. (279) to 

y{ FW = a j (ik . x) + if3 (28ij
pi(k. x) - a.i a i pi(k . x) + a j (k . x)( a i pi)) 

. 2me 

= aj(ik. x) + i(J (-aj[a. p, k. x] + 2pi(k. x)) . 
2me 

(280) 

Again, substituting the momentum operator p ---+ -iV, yields the expression 

Y{.FW = a.i(ik. x) + 2~ (-a.i[a. p, k· x] + 2(k. x)pi - 2i k
j ) . (281) 

e 
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An analogue calculation for Y~ leads to 

This is rewritten to 

In the following, the odd terms in these expressions will be neglected. For the fi­

nal expression of the YFW, the remaining products and commutators containing a 

matrices will be evaluated with the result 

a-i[&. p, V] = aiaipiV - aiVaipi 

= pi8jiV + ifjikpiVI:k _ Vpi8ji _ ifjikVpiI:k (284) 

where in the second step Eq. (238) and in the following step Eq. (260) have been 

used. The known relation 

(285) 

is recalled, which is applied together with the definition of the cross product using 

the f tensor, to yield 

. . Za ( .... )j 
a-1 [& . p, V] = [p7, Vj + ~ x x I: . (286) 



The other commutators give analogous 

and 

ai [5. p, k. xl = aiaipi(k' x) - o:i(k. x)aipi 

= Oiipi[k . X] + iEjikpi[k . X]~k 

= -ikj + Eiikki~k = -ikj + (k x fy 

a j [5. p, (k. X)2] = ajaipi(k' X)2 - o:j(k. X)2o:ipi 

= Oiipi(k . X)2 + iEjikpi[(k . X)2]~k - (k. X)2ojipi 

= [pi, (k . X)2] + 2Eiik(k . X)ki~k 

= [pi , (k. X)2] + 2(k. x) (k x fy . 
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(287) 

(288) 

After the transformation the lower components are suppressed by (Zo:)4 and therefore 

the odd terms which couple to the lower components can be neglected. Thus, the 

Hamiltonian can be constrained to the upper components and, therefore, only the 

upper components of all matrices i. e. ,0 --+ 1 and f --+ a are considered. The final 

result for the currents yf,Fw is then 

n j pi 1".j .... 2 1 Z a (.... ....)i YClFW=----yp ----- xxa , 
0, m 2m3 2m2 r3 e e e 

(289a) 

. i (.... )j i (.... ). ki 

Yi,FW = - 2me k x (j + me k· x rl + 2me' (289b) 

. 1 (.... ) 2. 1 (.... ) (.... )j 1 ..... 2 
JA,FW = - 2me k· x rl + 2me k· X k x (j + 2me [rJ, (k . x) ] . (289c) 

Through the Foldy-Wouthuysen transformation the corrections to the nonrelativistic 

current pi jme have been derived. The second term in Eq. (289a) gives the correction 

due to the relativistic momentum and the third is the correction due to the physical 

momentum p - eA coupling to the spin. The first term in Eq. (289b) gives the 

coupling of the spin to the magnetic field of the quantized field and the second one 

is the dipole correction to the coupling. The first term of Eq. (289c) is an octupole 

correction, while the second is a quadrupole correction to the magnetic coupling. The 

last terms of both Eq. (289b) and Eq. (289c) are terms arising from commutators of 
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p and multipole corrections and vanish when contracted with bij - kilJ /k2. These 

current corrections are relevant for the correction of the interaction current for both 

the coupling to virtual photons, which give rise to the QED corrections, as well as for 

the coupling to real photons, which lead to relativistic corrections in atomic physics. 

4.4.2. Alternative Derivation. For simplicities sake, only the separate 

transformations of the Hamiltonian without a quantized radiation field and the rela­

tivistic current coupling to this quantized field have been considered. It is nevertheless 

possible to transform the complete Hamiltonian of a bound electron coupled to the 

quantized field. It is however better to start from a modified Hamiltonian which in­

cludes not only the coupling of the electron to the quantized radiation field but also 

contains the major QED radiative corrections [26]. In fact for some applications it is 

even necessary to use the transformation of the complete Hamiltonian because only 

in this way certain terms can be obtained, namely the seagull terms. The details 

of the calculation can be found in Ref. [45] or in Eq. (2.9b) of Ref. [46]. Following 

the analogue procedure, one obtains the Foldy-Wouthuysen Hamiltonian up to order 

including order of (Za)4 which is 

..... --f 2 ..... --f 4 

H m _ (p - eA) V e .... B.... (p - eA) 1 n2v 
FW - + - --(7 . - + -- v 

2me 2me 8m~ 8m~ 
e a ........ e [ ..... .... ] + --\7. A + - 8· (\7V x if) - 8· (px \7V) 

8m2 at 8m2 
e e 

(290) 

e (a.... ) e (........) 6 + -8· -A x P - -8· \7V x A + O((Za) ). 
4m2 at 4m2 

e e 

For A = 0, this again yields Eq. (262). It is important to note that in the nonrelativis­

tic Schrodinger equation in an electromagnetic field the interaction parts are the ones 

related to the vector potential A. Alternatively, this can be seen from the normal cou­

pling interaction Hamiltonian to the radiation field which is given as Hint = -eJ. A. 
In fact, it is basically derived form the above. In the same way the relativistic cor­

rections to this interaction Hamiltonian can be obtained by taking the terms linear 
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in A which yields 

(291) 

Note that because Coulomb gauge is used, one has V . A = O. For the action of the 

V operator the expression for the quantized radiation field in Eq. (194) is considered. 

For the annihilation part, this means V exp(if . x) = if exp(if . x). Further­

more the exponentials are again expanded in their argument as mentioned before this 

corresponds to a Zo::-expansion. So up to and including order (Zo::)4 the following 

current is obtained 

jj = ~e ( 1 + if· x - ~(f. x)2) + 2~e (8 x f)j (1 + if· x) 
.-J ..... 2· 1 Z 
y P lW ( .....;:t\j 0:: (..... .....)j 

- -- - -- (J x PI - ---- X X (J • 
2m3 4m2 4m2 r3 e e e 

(292) 

While the result in the last section was 

(293) 

On the first glance these are different, but it can be shown that they are equivalent 

using the relation 

(<I>I - 4 i 2 (8 x if) W = (<1>1-~ (8 x if) [(Hs - Es + w) - (Hs - Es)]. (294) 
me 4me 
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Now the term with (Hs - Es+w) does not give a finite contribution to the low-energy 

part of the self-energy. So one has 

(295) 

The term can then be combined with the last term in Eq. (292). With a few more 

transformations described in Ref. [42], finally the two results coincide and can be 

further simplified with the result 

. ':::+2 
. j pJ (1 ·k........ 1 (k.... ....)2) pJp 1 Za (.... ....)i J = - + 1 . X - - • x - -- - ---- x x (7 , 

m 2 2m3 4m2 r3 e e e 
(296) 

with the current correction 

. · .... 2 
A -j pJ (·k........ 1 (k.... ....)2) pJp 1 Za (.... ....)i UJ = - 1 . X - - • x - -- - ---- x x (7 . 

m 2 2m3 4m2 r3 e e e 
(297) 

The terms proportional to .42 in Eq. (290) give the seagull terms which describe 

the simultaneous emission of two-photons. They are proportional to e2 = 47ra and 

two-loop effects, thus they appear in a different order in perturbation theory. 

4.5. LOW-ENERGY PART 

So far the low-energy part of the self-energy is found to be 

R AE(2) = _ 4a (Za)4m
e 1 k ( 0) eu L nf 3 3 non, {. , , 7r n (298) 

which was derived from the expression 

(299) 
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Pij has been used therein to denote the matrix element 

(300) 

The expression is of order a(Za)4In[(Za)-2]. In this section the aim is to obtain 

the self-energy shift up to order a(Za)6In [(Za)-2] by including correction terms to 

Bethe's result. In the last section the Foldy-Wouthuysen transformation yielded a 

complete expression for the multipole, spin and relativistic corrections up to relative 

order (Za)2 to the current. This correction has to be added in the matrix element 

by changing the current operator from pi/me to pi/me + 8ji with 

. .~ 

~.j p1 (·k-> .... l(k .... .... )2) p1p 1 Za( ........ )j uJ = - 1 • X - - • X - -- - ---- X X (J . 
m 2 2m3 4m2 r3 e e e 

(301) 

The Foldy-Wouthuysen transformation not only allowed to find the correction to the 

current but also the correction to the Schrodinger Hamiltonian. This correction is also 

of relative order (Za)2 with respect to the Schrodinger Hamiltonian and therefore also 

has to be included in all corrections of relative order (Za)2 to Eq. (300) and changes 

the Hamiltonian from Hs to Hs + 8Hs with 

(302) 

This correction to the Hamiltonian also leads to a correction of the energy of the 

initial state of the same order which has to be altered from Eq, to Eq, + 8E with 

8E = (<1> 18HI <1» in first order of perturbation theory. Another effect of relative 

order (Za)2 of 8Hs to Eq. (300) is a correction to the wave function. The first order 

perturbation to the wave function can be obtained by [38] 

(303) 
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Including all the corrections Eq. (300) takes the form 

(304) 

In order to find the right expression for the corrections to Bethe's result [6] in order 

a(Za)6In[(Za)-2], the matrix element above has to be expanded such that only one 

correction term of relative order (Za)2 appears in the resulting matrix elements. A 

term containing two such correction terms would be of relative order (Za)4 which is 

a too high order for our analysis here. This can be achieved by writing 

Pij = (<1>1 L 1 pi 1<1» 
me Eq, - Hs - Wfme 

pi 1 . 
+ 2 . (<1>1- 8j3 1<1» 

me Eq, - Hs - W;; 

_ (<1>1 L 1 8E 1 pi 1<1» 
me Eq, - Hs - w;; Eq, - Hs - w;; me 

(305) 

+ (<1>1 L 1 8Hs 1 pi 1<1» 
me Eq, - Hs - w;; Eq, - Hs - w;; me 

+ 2· (<1>1 ~e Eq, _ ~s _ w;; ~e 18<1» + O((Za)4). 

The first term is the leading term and leads to the discussed result by Bethe 

All the other terms are now all corrections to this result of relative order (Z a) 2 . 

Due to the Foldy-Wouthuysen transformation one can be sure that no term has been 

forgotten. In the following all these correction term will be listed. The first term 
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comes from the formerly neglected higher multipoles which gives 

Re~E(2) = 1 d
3 
k 27ra (bij _ k~kj) 

L,iP,nq (27r)3 w- k2 
Wk<~ k 

X {(<1>1 L (ik. x) E~ pi (-ik. x) 1<1» (307) 
me iP - S - wI;, me 

_ (<1>1 L (k. X)2 1 pi 1<1»}. 
me EiP - Hs - WI;, me 

Then there are the relativistic momentum correction, the spin coupling to the physical 

momentum and the quadrupole correction to the magnetic coupling to the interaction 

current which give rise to the terms 

Re~E(2) i 2 = 1 d
3 
k 27ra (bij _ k~kj) 

L,iP,p p (27r)3 w- k2 
Wk<~ k 

x (<1>1 L 1 _pip2 1<1» , 
m E .... - Hs - w- m 3 

e ~ k e 

(308) 

(309) 

(310) 

1<1» . 

The shift of the energy because of the relativistic corrections {) H s gives the term 

(311) 
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8Hs leads to the contribution 

3 ( i j) i Re~E(2) _ _ ~ 27Ta 8ij _ k k <1> L 1 
L,4>,oHs - 1 (27T)3 w- k .... 2 (I m E - H - w-w;;<£ k e 4> S k 

X (f14 _ Za E. a) 1 pJ 1<1» . 
8m~ 4m~r3 E4> - H s - wk me 

(312) 

In 8Hs , the Darwin term is neglected because in this work only states with angular 

momentum f 2: 2 are considered for which this term vanishes. Finally, the relativistic 

corrections to the wave function yield the term 

(313) 

The details of the calculation are not shown here because they follow the basic prin­

ciples outlined for the leading term. It is just mentioned that a logarithmic term with 

€ arises, which is commonly called At>1, as well as a logarithmic part without €, which 

leads to a term similar to the Bethe logarithm. In it, only the relativistic corrections 

are contained. Therefore, it is called the relativistic Bethe logarithm {JSE. 

The total low-energy part for states with f 2: 2 is then given by 

(314) 

with 

(315) 

This expression does still contain the parameter € which was introduced to regular­

ize divergences. The final self-energy shift cannot depend on it. This is why the 

effect from highly energetic photons have to be considered, which will be done in the 

following section. 
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4.6. HIGH-ENERGY PART 

In the calculation of the low-energy part using NRQED it became clear that 

the theory is only valid at low photon energy. This made it necessary to cut off the 

integrals over the photon momentum at a photon energy (Za)2me « E «me. The 

results obtained for the low-energy part are then dependent on this cutoff. If there is 

a real physical, observable energy shift due to the self-energy, the final result cannot 

contain this parameter E. Moreover, there has to be a different treatment which allows 

to evaluate the effect on a bound electron from high photon energies. Adding both 

results for the different parts should then cancel the cutoff and allow to obtain a result 

independent of E. 

This is indeed the case. At high photon energies the photon energy becomes 

much larger than the binding energy. This enables to treat the Coulomb potential as 

a perturbation in the high-energy part. The second approximation is to assume that 

the electron is on the mass shell En ~ me. In the arising expressions some terms will 

depend on E and cancel the terms containing E coming form the low-energy part when 

both are added. 

The high-energy part is discussed in a graphical way by considering the expan­

sion depicted in Fig. 4.2. In the zeroth order diagram the electron has no interaction 

with the core while the photon is "underway". This means the electron is basically 

free. The term therefore cancels with the self-energy of free electron which has to be 

subtracted because the electron cannot be observed without this radiative effect and 

to keep the expression finite. 

The first order diagram in Fig. 4.2 has the form of the so-called vertex correc­

tion [26]. Its effect is that it alters the way the electron interacts with the electromag­

netic field. For example, the vertex correction causes the electron magnetic moment 

anomaly i.e. the difference between the observed magnetic moment of the electron 

from the value 2 predicted by Dirac theory. Formally, it changes the coupling of the 

four-vector potential in the Dirac equation [38] 

(316) 
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where rlL(p, p') is given as [26] 

(317) 

wi th q = p - p' and I;ILV = ~ blL ,)'V] as well as the form factors FI and F2 . Conse­

quently, the vertex correction alters the Dirac Hamiltonian to 

+ 

(all orders) (Oth order) 

I 
I 
I 
I 
I 

* (lst order) 

+ I 
I 
I 
I 
I 

* * (2nd order) 

(318) 

Figure 4.2. Expansion of the full bound propagator in terms of the binding Coulomb 
potential. The double line denotes a bounded electron, a single line a free electron, 
the dashed line represents the instantaneous Coulomb interactions and the wiggly 
line the virtual photon. 

The momentum operator q can also be written as a derivative. With the use of 

the equation for the electric field [25] 

this allows to simplify the term with F2 to 

",Oaa "'aO!l · . 
_u __ a 0,4, _u_Vi_O aA __ 1_ 0 a (-8 ,4, _ a A ) _ 0_1_ .... E .... 
2 )' If' + 2 )' a - 2 )')' a If' 0 a -)' 2 )' . 

me me me me 
(319) 
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Moreover, with the definition of the magnetic field 

(320) 

can be obtained. This modified Dirac Hamiltonian which includes the vertex correc­

tion thus takes the form 

Without an external magnetic field, B and A can in fact be set to 0, <P is given by 

e¢> = VCr) = -Zajr. The energy shift from the additional terms compared to the 

unmodified Dirac equation [38] can then be obtained by first order of perturbation 

theory with the relativistic wave function. The first term which is different from the 

unmodified Dirac Hamiltonian is 

(322) 

For an electron on mass shell q ~ 0, the expressions can be expanded in \72 

VI = F{ (0)(\72
) (_ ~a) 

(323) 

= F{(0)47rZab(x). 

The corresponding matrix element can be calculated with the non relativistic wave 

function and F{(O) = 37r~~ [In ~ + ~!l [27] gives 

(324) 

This is correction therefore is only non zero for states with £ = 0 and vanishes for 

the states with f. ~ 2 which are considered here. The second relevant matrix element 
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is given by the term, where the magnetic form factor F2 couples to the electric field 

eE = V Zo:/r in Eq. (321). It is 

(325) 

Here, the matrix element has to be evaluated with the fully relativistic wave function 

expanded in powers of Zo:o In this way divergences when using the unexpanded wave 

function can be avoided and it is easier to match the respective orders in Zo: with 

the low-energy part. An expansion around q ~ 0 is carried out once more. For 

the magnetic form factor F2 the known Schwinger value F2 = 2': [26] is used. The 

resulting integral has been evaluated in Ref. [47] with the help of generalized virial 

theorems and integrals in Ref. [48] with the result 

where the contribution of relative order (Zo:)2 is denoted here as 2. Here, again the 

Dirac quantum number is K, = (-1 )i-l+1/ 2 (j + ~) and J = I + s is the total angular 

momentum. 

The last contribution to the high-energy part comes from the last diagram in 

Fig. 4.2, where two interactions between the core and the electron take place between 

the emission and absorption of the photon. The effect from the two vertex interaction 

can be expressed as a further Hamiltonian. Similar to the term llEi-T,nfm it also 

exhibits an infrared divergence. Regularizing this divergence with the overlapping 

parameter E, allows to match it with the low-energy part and cancel the divergence 

for large photon energy there. It has been derived in a different regularization scheme 



93 

in Ref. [46]. In the regularization used in this work it can be written as [47] 

(327) 

The energy shift from this correction can be calculated with the non relativistic wave 

function. The corresponding matrix element is commonly called the A61 coefficient 

and given by 

A61 = ~ (;~)4 (nfm I (m:r)41 nfm) 

3n2 - f(f + 1) 
- 3n2 (f + ~)(f + 1)(f + ~)f(f - ~) . 

(328) 

For states with f ;::: 2 considered in this work, the result can be obtained by the 

identity 

and the known results for (r- 2)nl and (r-3)nf. 

The total high-energy part is then given by 

R AE(2) = a (Za)4m
e F ( ) 

eLl Hcf> 3 H € , 
, 7r n (329) 

with 

(330) 

Adding the high- and low-energy part, the terms containing € cancel exactly and (Za)2 

arises as the natural scale for the logarithms. The final result for the self-energy of a 

bound electron is then given as 

(331) 
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with 

F = FL(€) + FH(€) = -~ In ko + (Za)2 { A61 [In ((Za;2
me

) + ~ 1 + {3SE} 

- 2~ (2~ + 1) + (Za? {A61 [In (;;) - ~ + ~~l + 3} (332) 

=-2~(2~+1) -~lnko+(Za?{A61 [In (2(;a)2) + ~~l +3+ {3SE} ' 
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5. THEORY: OVERLAPPING PARAMETER 

5.1. MODEL EXAMPLE 

In the previous section, two approaches to calculate the one-photon self-energy 

effect on a bound electron have been presented. Since both basically evaluate the 

same quantity just in different ways, they should give the same result. Otherwise, 

one or both of them contain errors. 

Before comparing actual results of calculations with both methods, it seems 

worthwhile to take the time and consider, why mathematically both ways of evaluation 

are possible and why the apparent differences arise. To elucidate the point, a model 

problem is studied, which is given by the integral 

1= t dww y'w
2 

+ (Za)2 (-8W + 256 w2 _ 20w3 ) 

Jo VI - w2 37f 
(333) 

As explained in Refs. [42,49]' the factor y'w2 + (Za)2 corresponds to the full Cou-
1 

lomb-Dirac propagator, while the factor (1-w2 )-2 basically arises from transforming 

the boundaries of the integrals from 0 to 00 to 0 to 1. Another important point this 

example shall illustrate is that while with a concrete cutoff spurious lower order terms 

can arise, they can be avoided if an infinitesimal overlapping parameter is used. 

Before this integral is investigated using both presented methods, a look is taken 

at the final result for this integral. In contrast to the bound electron self-energy, this 

model problem can be treated without a separation, which provides a check of the 

calculation. For all numerical integrations in this section, the parameter Z is set to 1 

and for a the value a-I = 137.036 is used. With these values a numerical integration 

of Eq. (333) yields 

I = 9.213 X 10-9 (334) 
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Additionally, I can also be expressed in terms of elliptical integrals, which can be 

expanded in a semi-analytic series in Za: with the result 

(Za)4 [ ( 8 ) 37] 5512 
I = 2 In (Za:)2 - 6 + (Za:) 457r 

3(Za:)6 [ (8)] 7 + 4 1 -In (Za)2 + O((Za:) ). 

(335) 

In the above series (Za:) can be replaced by its numerical value which gives the result 

in Eq. (334) as well. 

In the following, this integral will be treated by both methods discussed so far. 

Finally, both results will be compared in the end. Even though it might seem weird 

to start from the solution, and then look into both discussed methods in solving the 

integral, knowing the order of the physical part of the integral helps to extract terms 

up to the right order in the numerical method. In fact, in case of the self-energy shift 

the magnitude of the physical part was also known before the numerical method was 

developed. 

5.1.1. Numerical Method. In the beginning the methods of Sec. 3 are 

investigated. As in both methods, the integral is split into a high- and a low-energy 

part. For the numerical integration, a numerical overlapping parameter is required, 

for which the value 1~ is chosen. Therefore, in the low-energy part the integral 

11/10 J w2 + /32 
( 256 ) 

I 1epn = dw w -8w + _w2 
- 20w3 

, 
, 0 VI - w2 37r 

(336) 

where lep denotes the low-energy part and n denotes that the numerical method is 

used, has to be evaluated. This is done numerically with the result 

I1ep,n = -1.50335567 x 10-4
. (337) 

the obtained result is much larger in magnitude than the final numerical result. This 

means that in the numerical integral terms of order lower than the physical part of 

the low-energy part are contained as well. In accordance with the method explained 

in Sec. 3, therefore, an expansion in Za: is carried out in order to extract these terms 

of lower order. From the complete expansion it is known that the physical part is 
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of order (Za)4In(Za)-2. The expansion is carried out by expressing the integral in 

Eq. (336) in terms of elliptical integrals and logarithms which can be expanded in 

Za. This yields 

I = 120603Jli _ 604Jli Jli(Z)2 (321 _ 16) O((Z )4In (Za)-2). (338) 
lep,n 25000 6257r + 25 0: 4 7r + a 

The physical part can then be extracted by subtracting the lower order terms form 

the numerical result. Therefore, the definition 

hep,n = N1ep,n + .Rep,n (339) 

is used with the nonphysical lower order part of the integral of the low-energy part 

N = 120603Jli _ 604Jli VU(Za)2 (321 _ 16) 
lep,n 25000 6257r + 25 4 7r 

(340) 

and the physical part 

.Rep,n = Ilep,n - N1ep,n = 7.833 x 10-9 
. (341) 

Consequently, in the high-energy part the integral 

11 Jw2 + /32 ( 256 2 3) 
Ihep,n = dw vi W -8w + -3 w - 20w , 

1/10 1 - w2 7r 
(342) 

is evaluated numerically with the result 

hep,n = 1.50336947 x 10-4 
. (343) 

Here, hep is used to denote the high-energy part. Again, the lower order contributions 

are extracted by expanding the integral in Zo:, which gives 

I = _ 120603Jli 604Jli _ VU(Zo:)2 (321 _ 16) 
hep,n 25000 + 6257r 25 4 7r (344) 

+ O((Za)41n(Za)-2). 
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Analogue to the low-energy part the physical and nonphysical lower order part is 

defined again by 

hep,n = Nhep,n + Phep,n (345) 

with the nonphysical part 

N __ 120603v'IT 604v'IT _ v'IT(Z )2 (321 _ 16) 
hep,n - 25000 + 6257r 25 a 4 7r (346) 

and the physical part 

Phep,n = Ihep,n - Nhep,n = 1.380 X 10-9 
. (347) 

When the nonphysical part of the low- and the high-energy part are added, the terms 

cancel exactly i.e. 

N1ep,n + Nhep,n = 0 . (348) 

The total value for the integral can thus be obtained by adding both physical parts 

with the result 

In = llep,n + Phep,n = 9.213 X 10-9 (349) 

in agreement with Eq. (334). 

5.1.2. Analytical Method. In this section, the analytic method will be 

applied to the integral in Eq. (333). Initially, the low-energy part of the integral, in 

which w is integrated from 0 to c, is considered. In this region w is small and it is 

possible to use the expansion 

1 w2 3w4 

VI - w2 = 1 + 2 + 8 + ... (350) 

for the denominator in Eq. (333). Similar to the application of the analytic method 

to the bound electron self-energy, the analogue to the propagator "';w2 + (Za)2 is left 
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intact. Therefore, the integral, which has to be evaluated for the low-energy part, is 

(351) 

where a denotes that the analytic method and lep once more that this is the low­

energy part. The integration is carried out analytically. The result is then expanded 

in Zo: followed by an expansion in c. As the final result for the low-energy part 

I = (Z )4 [In (~) - !] 512(Zo:)5 
iep,a 0: Z 0: 4 + 4571" 

+ 3(Zo:)6 [~+ ~ _ 32 -In (~)] + .... 
2 12 6c2 971"c Zo: 

(352) 

is obtained. 

The integral for the high-energy part extends from c to 1. In Sec. 4 the Coulomb­

Dirac propagator was expanded in terms of the external potential which represents 

an expansion in Zo:o The corresponding procedure here is to expand y'w2 + (Zo:)2 

in powers of Zo: which gives 

y' 2 (Z)2 _ ( ! (Zo:)2 _! (Zo:)4 .2:.. (Zo:)6 ) 
W + 0: - W 1 + 2 w2 8 w4 + 16 w 6 + ... (353) 

Consequently, the integral for the high-energy part is 

(354) 

This integral also illustrates an interesting point. Because in order (Zo:)4 the inte­

gral is divergent at w = 0, the overlapping parameter c acts as a so-called infrared 

regulator. As a consequence terms rv In c arise in the integration. 
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The result of integration is expanded in c to obtain 

When the low- and the high-energy parts are added, the terms containing c cancel. 

Up to order (Za)6 the integral is found to be 

(Za)4 [ ( 16) 37] 5512 
Ia = I1ep,a + hep,a = 2 In (Za)2 - 6 + (Za) 457T 

3(Za)6 [ (16)] + 4 1 - In (Z a)2 + . . . , 
(356) 

which agrees with the expansion of the elliptical integrals for the whole integral in 

Eq. (335). For the numerical values considered here, this gives 

Ia = 9.213 X 10-9 (357) 

which agrees with the result from the numerical method as well as the result from 

the numerical integration of the whole integral. 

The analysis of this model very nicely illustrates, for which region of nuclear 

charge number Z the two presented methods to treat self-energy corrections for a 

bound electron are suited best. 

For low nuclear charge number Z the parameter Z a is small. This means that 

the numerical calculation is dominated by the terms of lower order than the physical 

part. As the result is obtained by subtracting two about equally large numbers, 

one usually loses a few significant figures (in this model example here about 5) of 

numerical precision. In the analytic approach no such lower order terms arise and 

therefore no such problem is present. Moreover, because the parameter Za is small, 

the error introduced due to missing higher order terms is small. 

For large nuclear charge number Z, Za becomes close to unity. In turn, the 

magnitude of the physical part due to the scaling with Z becomes large, whereas the 

magnitude of the nonphysical does not change as much. Therefore, less significant 

figures are lost by the subtraction of the lower order terms. In the analytic method, 

on the other hand, the higher-order terms are no longer negligible if Za is close to 1. 
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It is not possible to reach an arbitrary high precision in the numerical calculation 

as well as to go up to arbitrary high orders in the expansion in the analytic method 

for practical reasons. As a consequence, the analytic method is generally more suited 

for lower Z, while the numerical method is more suited for higher Z. 

5.2. APPLICATION TO VACUUM POLARIZATION 

It is the aim of this section to show that the separation of an integral using an 

overlapping parameter is not only interesting to illustrate this procedure in bound 

self-energy calculation but can, in fact, be very useful for many integrals. For this a 

physical example is considered which is also very important for the study of quantum 

electrodynamics in bound systems, the vacuum polarization. Vacuum polarization is 

the second very important effect of the quantum nature of the photon field and, as 

seen in Sec. 3, it contributes to the energy shift. The effect of vacuum polarization 

in first loop order is to give a correction potential to the Coulomb potential. This 

additional potential is the Uehling potential [50]. Here, the method is applied to find 

the leading asymptotic behavior of this potential for r ----+ O. 

The question may arise, why the energy shift due to this potential has not 

appeared in the presented calculation of the energy shift due to the quantum nature 

of the photon field. The reason is that in one-electron ions the Uehling potential can 

be approximated by [26] 

IT ( .... )=_Q:47fZQ:~( .... ) 
V vp x 5 2 u X . 

7f 1 me 
(358) 

Therefore, only the energy levels of states with .e = 0 are shifted and the effect can be 

neglected for the highly excited states which are considered in this work. Interestingly, 

the energy shift due to vacuum polarization has the opposite sign of the self-energy 

level shift. 

When the electron is exchanged with a muon, this approximation is no longer 

valid and it becomes necessary to calculate the effect in more depth. In general, 

the potential is calculated by a Fourier transform of the photon propagator, which 

was already encountered in Sees. 3 and 4. There, the photon propagator without 

vacuum polarization was used. Its Fourier transform gives the Coulomb potential. 
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The inclusion of vacuum polarization alters the photon propagator and leads to the 

following expression for the Uehling Potential [26J 

a [ zaj21°° e-qr ~m2 ( 2m2) Vv(r)=- -- - dq- l __ e l+_e 
p 7r r 3 2me q q2 q2 

(359) 

When r is larger than the Compton wavelength of the electron lime, this leads to 

the known screening effects of vacuum polarization due to virtual pairs of electrons 

and positrons. Here, the asymptotic behavior for r ---+ 0 is investigated which will 

be calculated using the analytical method with an overlapping parameter. In order 

to obtain a similar structure as in our model example, the substitution q = 2meu is 

used. In turn, the integral takes the form 

a [ zaj 100 
";u2 

- 1 (2u
2 + 1) 

Vvp(r) = 7r -7 1 du exp[-2meurJ 3u4 . (360) 

This is the integral, which was evaluated in Ref. [51J. Here, another substitution, 

which is u = (1 - v2 ) 1/2, is employed in order to arrive at the integral in Ref. [52J 

(361) 

Consequently, the integral has the same boundaries as the model problem discussed 

so far in this section. However, the problematic region now is where v ~ 1. Hence, 

the integral is split into a low-energy part from 0 to 1 - E and into a high-energy part 

from 1 - E to 1. In fact the naming is correct here because the region where v ~ 1 

corresponds to large photon momentum q in the original integral in Eq. (359). In the 

model problem the first expansion parameter was Za. As the asymptotic behavior 

of the Uehling potential for r ---+ 0 is to be investigated, the corresponding expansion 

parameter here is r instead. The second expansion is still carried out in E. 

Again, the analysis starts with the low-energy part of the integral which is 

(362) 
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In contrast to the model problem, the low-energy part does not contain the problem­

atic region for an expansion in the first expansion parameter r. Thus, the exponential 

is expanded in r before the integration. The integral for the low-energy part is then 

a [ zall1-e v
2 (1- v3

2

) [ 2mer 1 Vvp,lep(r, €) = - -- dv 1 2 1 - + O(r) . 
7r r 0 - v -/1 - v2 

(363) 

Carrying out the integration and expanding the obtained result in € yields 

a [2V2zame 7r 5Za Za (€) 1 
Vvp,Jep(r, €) = 7r 3}f - "2 Zame + 9-:;:- + 3r In 2 + O(r) (364) 

For the high-energy part the integral 

(365) 

has to be considered. Because in the region considered for the high-energy part, the 

integral is divergent if an expansion in r is carried out, a similar expansion to the 

low-energy part in the model problem has to be found. There, (1 - w2)-1/2 was 

expanded for w ~ O. In fact, this leads to the right idea for the integral here but in 

contrast to the model the expansion is carried out around v ~ 1. This procedure is 

greatly facilitated by transforming the integral first, using v2 = 1 - h, which yields 

the integral 

(366) 

Expanding this integral around h = 0 gives 

(367) 
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The resulting expression is expanded in r before the expansion in E is carried out. 

The high-energy part of the integral is then obtained as 

a { 2V2Zame Za [ (2mer)] } Vvp,hep(r, E) = 7r - 3J€ + 3r 2,E + In -E- + O(r) , (368) 

where ,E is the Euler gamma. Once more, matching both the high- and the low­

energy part together the overlapping parameter cancels and the result is independent 

of E. In agreement with Ref. [53] it is found 

a Za [2 ( ) 7r 5] Vvp(r) = -- - ,E + In(mer ) - -mer + - + O(r). 
7r r 3 2 9 

(369) 

It is important to mention that the argument of the logarithm is, in fact, unitless as 

in Heavyside-Lorentz units the mass is given in inverse length units. Moreover, the 

leading term I"V In(mer)lr constitutes an attractive potential for distances r < lime 

since the logarithm is negative if the argument is smaller than 1. 



105 

6. CALCULATION: RELATIVISTIC CORRECTIONS IN ATOMS 

6.1. ORIENTATION 

The first problem that is investigated here with the nonrelativistic expansion of 

the fully relativistic theory, is a problem of atomic physics, namely the two-photon 

decay. In it an initial state decays via the emission of two real photons into a final 

state. With the formalism developed in Sec. 4, relativistic corrections to the Hamil­

tonian but also to the interaction current, which is relevant for the emission of real 

as well as virtual photons, are deduced. Applying it to the two-photon decay allows 

to obtain the relativistic corrections in order (Za)2 to the two-photon decay rate 

which is a problem of relativistic atomic physics. Before coming to that, two different 

formulation of the problem are discussed. The coupling of the electron to the photon 

can be expressed in Coulomb or velocity gauge which was used in Sec. 4 but also in 

Yennie or length gauge. This is done in the next section. 

6.2. VELOCITY VS LENGTH GAUGE 

While some time was spent in the derivation of the quantized field on the gauge 

freedom, so far only Coulomb gauge was used in the calculations. However, all the 

calculations can also be carried in a different gauge and the same results should be 

obtained. Actually, in some cases the calculation can be simplified when a different 

gauge is used. Fried and Yennie in Ref. [29] discovered that a specific choice for 

the gauge allowed to avoid problems in QED calculation, which were encountered 

in a different gauge. Because the results obtained so far in Coulomb gauge should 

be independent of the choice of gauge, gauge invariance provides a highly nontrivial 

check of the calculation. 

The choice of gauge from Fried and Yennie in Ref. [29] is indeed very useful for 

many problems in QED. It corresponds to setting ~ = 3 in the photon propagator 

in Eq. (46). As described in Ref. [451 the corresponding Hamiltonian for NRQED 
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can be obtained by two consecutive Power-Zienau transformations [54] of the Foldy­

Wouthuysen Hamiltonian for the upper components coupled to a quantized field 

if2 ZQ 0 e... -+ if4 
HFw = -- - - + eA - --(J . B - --

2me r 2me 8m~ 

7f Z Q J:( -+) Z Q... X ... + --u X + --(J . - X 7f 
2m; 4m; r3 (370) 

-~ [V . E + (i (EX if - if x E)] 
.8me 

+ 8:~ {a. 13if2 + if2a ·13 + f); [if. Bif· (i + if . (iif .13]} , 

where if = P - eX denotes the physical momentum in presence of the quantized field. 

This Hamiltonian is now transformed with the first of the Power-Zienau transforma­

tions. The transformed Hamiltonian is obtained from the equation 

(371) 

with ¢ given by 

¢ = e 11 du X· A(ux) . (372) 

Here, the so-called long wavelength approximation is made, i.e. the field X varies 

only slowly over a short distance. This allows to perform an expansion of X around 

x:::::: 0 

With this, also ¢ can be expanded to give 

(374) 

Here, the subscript separated by commas denotes the spatial derivatives with respect 

to the indicated Cartesian coordinates, evaluated at the origin [45], which is defined 

to be the location of the ionic nucleus. The (0, t) which goes with every field will 

be suppressed in the following. Applying this first transformation, the transformed 
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Hamiltonian is, thus found, to be [45] 

It is important to note that the electric field E in this Hamiltonian is the electric field 

of the quantized field 

(376) 

because of the different gauge used. Equally, the magnetic field B is the magnetic 

field of the quantized field 

and not an external field. 

For the second Power-Zienau transformation ¢ is chosen to be [45] 

Jl (i) e -+ ~ ..... ..... e _ -+ ..... x -+ -+ 

¢ = - dU(j· E(ux) x x = -4 -(j E x x + -E x x + ... 
4me me 2 

(378) 

o 
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The resulting Hamiltonian thus has the form [45] 

This is the NRQED Hamiltonian ofYennie gauge. Due to the long wavelength approx­

imation used to obtain it, this Hamiltonian is often referred to as the long-wavelength 

Hamiltonian. A comparison to the Foldy-Wouthuysen Hamiltonian reveals that, while 

the noninteracting terms of the Hamiltonian did not change, the part coupled to the 

quantized field has changed. Because in lowest order now x couples to the quantized 

electric field, this choice of gauge is called length gauge. In Coulomb gauge, p/me , i.e 

the velocity couples to the quantized vector potential in lowest order. For this reason 

it is called velocity gauge. Extracting the terms coupled to the electric and mag­

netic field of the quantized field up to including order (Za)4, yields the interaction 

Hamiltonian in length gauge 

2 

Hint = -e x· E - _e_ (l + a) . B - !: xixj Ei. + _e_(x x B)2 
2me 2 J 8me 

e .. ... e··. e2 .... .... 
- 6m (£txJ + xJ £1)B:j - 2m (JtxJ B:j + 8m2 (ii x E) . (x x B) (380) 

e e e 

- !: xixixk E i
k + _e_ ii . (E x x) . 

6 ,J 4me 

It has a very different form from the interaction Hamiltonian in Coulomb gauge, still 

the result obtained with either should be the same. In Yennie or length gauge, the 

Hamiltonian is expressed exclusively in terms of observable field strength, whereas in 

Coulomb or velocity gauge the effects from the quantized field are contained in the 

vector potential alone. 

However, the highly non trivial dependence on the coordinates of the nonrela­

tivistic gauge transformation given by the Power-Zienau transformation and problems 

related to the physical interpretation of non-gauge invariant quantities [55-57], lead 
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to a few subtleties in the study of gauge invariance. In general, gauge transformation 

in bound-state problems always have to be considered very carefully. 

In the case of the one-photon self-energy the method of the overlapping pa­

rameter provides the advantage that the remainder terms which arise in the gauge 

transformation are of order O(t) and therefore do not contribute to the finite part 

of the low-energy part [45J . Here, the problem of gauge invariance is discussed in a 

purely nonrelativistic problem with a definite cutoff, the two-photon decay rate. For 

the radiative corrections to the two-photon decay rate for example it has been shown 

in Ref. [58J that the results are invariant under a "hybrid" gauge transformation [56J. 

In it only the interaction Hamiltonian is gauge transformed, while the gauge trans­

formation of the wave function is neglected. In general, properties of atomic states, 

which can be expressed using the formalism of adiabatic 5-matrix theory discussed 

in Sec. 3, are invariant under this kind of hybrid gauge transformation. In genuinely 

time-dependent problems, even more care has to be taken in the choice of gauge and 

gauge transformations [55-57J. 

In the next section, the gauge invariance of the relativistic corrections to the 

two-photon decay rate under this kind of hybrid gauge transformation will be shown. 

This result has been published in Ref. [59] and adds to the leading logarithmic QED 

corrections, which have been calculated and proven to be gauge invariant in Ref. [58] . 

6.3. TWO-PHOTON DECAY 

The decay processes in one-electron ions proceeding through the emission of 

two real photons are of special interest for many reason. The transition frequency, 

which has been measured with the highest accuracy in Ref. [9], is the two-photon 

transition between the 25 and the 15 level in hydrogen. One of the reasons lies in 

the very small line width of this transition, which is based on the metastability of the 

25 level. This level decays predominantly through a two-photon transition, which 

has a much smaller transition rate compared to single photon dipole transitions. A 

further point, which has sparked much interest lately, is the discussion of two-photon 

transition through a cascade [60-{)9] i.e. a transition which can take place through 

a two-photon transition or by a cascade through two one-photon transition over an 

intermediate state. 
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The first study of the two-photon decay was carried out by Geppert-Mayer 

already in 1931 [70], where the decay rate r for the two-photon decay of the 28 was 

calculated nonrelativistically. The obtained result 

(381) 

could also be verified experimentally [71-73]. 

Again, for the determination of the corrections to this result in this work the 

non-recoil limit will be used. In it the nucleus is assumed to be infinitely heavy. Then, 

the leading correction is given by the relativistic corrections of relative order (Za)2. 

The leading QED radiative corrections of relative order a(Za)2ln[(Za)-2] can also be 

obtained. In NRQED the corrections are usually included by writing the two-photon 

decay rate in form of an expansion for small Za which is 

r =r 0 [1 + /2 (Za)2 + /3 ~ (Za)2 In[(Za)-2] + ... ] (382) 

Here, the coefficient /2 for the relativistic corrections will be determined which has 

not be computed so far. The coefficient /3 for the leading QED correction is only 

known for the 28-18 transition [58, 74] and results for more transitions will be given 

in this section. In contrast to Sec. 4, a multiplicative expansion is used where the 

corrections are normalized by the nonrelativistic result. The next higher-order term 

is expected to be a nonlogarithmic radiative correction of relative order a(Za)2 so 

the treatment is complete up to order a 3 ln( a). 

6.3.1. Deriving the Formal Expression. As the one-photon decay rate 

is the imaginary part of the one-photon self-energy, the two-photon decay rate is the 

imaginary part of the two-photon self-energy. Similar to the discussion in Sec. 4, 

initially only the leading term of the interaction current in Coulomb gauge, p / m e, is 

considered and the corrections are included later. The energy of the first photon will 

be denoted as WI and the energy of the second as W2 respectively. In contrast to Sec. 4, 

the denominators will written in the from Hs - E4> + W which is the notation used 

in Ref. [58]. The relevant terms of the leading NRQED expression for the two-loop 
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self-energy for our considerations here are [58, 75] 

(383) 

This correction arises in fourth order of perturbation theory, hence the superscript 

(4). The other terms given in Refs. [58,75] do not contribute to the two-photon decay 

width, which is obtained from the above expression by introducing a complete set of 

bases for the propagator 

(384) 

The sum over E again represents the sum over all discrete as well as the integral 

over all continuum states. In order to extract the imaginary part this propagator 

introduces when integrated with respect to W2, the identity from Eq.(219) is used to 

write 

Since the decay rate is the imaginary part of this expression, the Dirac 6 can be 

used to carry out the integration with respect to W2, which gives the condition for 

W2 = E4> - EE, - Wi. In turn, this constrains the range of integration of Wi because it 

also implies E4> - EE, = Wi +W2. Therefore, Wi can only go up to the maximum energy 

wmax = E4> - Ef. for W2 = O. This corresponds to a natural cutoff of the photon-energy 

integral, where the upper boundary is of the order (Za)2 at least if only transition 

between bound states are considered. For these, the decay rate in leading order can 
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thus be written as 

Instead of calculating the complete decay rate of the reference state cI>, the rate of 

decay from the reference state to one definite final state, which is denoted as if> f, is 

determined. Accordingly, the reference state is the initial state of the decay and is 

denoted as cI>i in the following. For the decay rate of the state cI>i to the final state 

cI> f using the binomial theorem then the expression 

4 (a)2 l wmax 

[( Ipi 1 pil) r = -IT - Re dwi WI W2 cI>f - cI>i 
9 IT 0 me H s - Eq,; + W2 + if me 

( I 
pi 1 pi I )]2 + cI>f - - cI>. 
me H s - Eq,; + WI + if me t 

(387) 

is found. Following the discussion in Refs. [65-67], a if prescription is used and 

the real part of the resulting expression is considered. This allows to deal with the 

problematic poles if cascade transitions are possible. This expression was derived from 

the interaction Hamiltonian with the quantized field in velocity (Coulomb) gauge, 

which is 

(388) 

It already contains the leading term proportional to A 2, called seagull term, whose 

effects will be discussed later. Here, the superscript c; for the decay rate in velocity 

gauge is introduced and the denominators are expressed in Eq. (387) in terms of WI 
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exclusively, which yields for the nonrelativistic two-photon decay rate 

(389) 

where W2 = E4>i - E4>f - WI and Wmax = E4>i - E4>r 

In the beginning of this section, the interaction Hamiltonian in length (Yennie) 

gauge is derived, whose leading term is 

(390) 

This Hamiltonian can also be used to derive an expression for the two-photon decay 

rate from an initial state <Pi to a final state <PI' An analogue derivation to the one 

presented leads to the expression in length gauge 

(391) 

where the superscript ( was introduced to differentiate this expression from the one in 

velocity gauge. The gauge invariance of the nonrelativistic result for the two-photon 

decay rate under the gauge transformation carried out in Sec. 6.2 can now be proven 

if it can be shown that the above expressions are equivalent. That this is indeed the 

case follows form the relation [55, 76] 

( <I> +; Hs _ ;., _ w/I <1>;) + ( <1>/ Ipi Hs - ~.; + w/I <1>;) 

= -m;wlw2 [\ <PI Ixi 
HS-;ipf- WI xjl if>i)+( <PI Ixi HS-~ipi+Wl xjl <Pi) 1 

(392) 

If a set of bases is used for the representation of the intermediate propagator, special 

care has to be taken to make sure the set is complete because otherwise this relation 

is not valid. 
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Relativistic corrections to this result of relative order (Za)2 are now included 

in the same way as in Sec. 4.5. In both gauges the relativistic corrections to non­

interacting part of the Hamiltonian i.e. the Schrodinger Hamiltonian Hs are the same. 

Likewise, they can be included by 

Hs ---+ Hs + oHs , 

p2 Za 
Hs=---

2me r 

5:H _ (if2) 2 
7r Za 5:( .... ) Za.... iJ 

u s - --- + --u X + (J. {.. 
8m3 2m2 4m2r3 e e e 

(393) 

Because the analysis now also includes S states, the Darwin term, which describes 

the zitterbewegung of the electron, has to be included additionally to the correction 

due to relativistic kinetic energy and the spin-orbit coupling term. Consequently, the 

relativistic corrections of the Hamiltonian also cause relativistic corrections of the 

energy and the wave function, which read as follows 

Eq, ---+ Eq, + oEq, = Eq, + (<I> 10Hsi <1» , (394) 

1<1» ---+ 1<1» + 10<1» = 1<1» + (Eq, ~ Hs)' oHs 1<1» . (395) 

This correction is the same for both gauges, whereas the differences arise in the inclu­

sion of the relativistic corrections to the interaction current. In velocity (Coulomb) 

gauge, the interaction part of the Foldy-Wouthuysen Hamiltonian is given by 

eA. p e ( .... ).... e (.... ) 2 Hint =------ Bx\l .A+--
3 

A·if if 
me 2me 2me 

e oA e ( .... ).... .... .... - - (B xf/). - - - B X \lV . A _ -eJ . A. 
4m2 at 4m2 

e e 

(396) 

The photon degrees of freedom contained in the vector potential can be traced out 

as in Sec. 4.3 and in Eq. (296). The interaction current J is thus 

iii .... 2 
P 5:Ji P (1 . k"".... 1 (k.... ....)2) P P -+u =- -1 'X-'2 'X ---3 
me me 2me 

1 Za ("" .... )i i ("" k",,)i ( . k"" .... ) - ---- X X (J - -- (J X 1 - 1 . X 
2m2 r3 2m e e 

(397) 
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As mentioned earlier, in contrast to the one-photon self-energy the contribution from 

the terms proportional to A 2 also have to be taken into account because they represent 

the emission of two photons from the same vertex. They are contained in the so-called 

seagull Hamiltonian which is given by combining all terms proportional to A 2 in the 

Foldy-Wouthuysen Hamiltonian. It is given by 

(398) 

All its terms are of a different order in a compared to the normal interaction Hamil­

tonian and therefore appear in a different order of perturbation theory. The photon 

degrees of freedom are traced out once again. This is achieved here by only considering 

the creation part of the photon operators and expanding the associated exponential 

exp( -i k . f) up to lowest order for the last two terms, which already carry a power 

(Za)2 from the momentum operators but up to order (Za)2 for the first term. Be­

cause the expansion has to be carried out for each of the two photons emitted through 

the seagull term separately, the corresponding correction after this process is 

i' 2 
J:Sij _ 1 (k'" ... )2 J:ij 1 (k'" -)2 J:ij P Ii' P J:i j 
U ---- I'X u --- 2' X u --3----3u . 

2me 2me me 2me 
(399) 

Interestingly, the matrix element of the leading seagull term - -2 I fJij vanishes and 
me 

it does therefore not contribute to the two-photon decay rate. There is, however, a 

correction term with this leading seagull acting on the perturbed wave function but 

the total correction introduced by this term can be shown to vanish as well. 

The interaction Hamiltonian in length gauge was already extracted out of the 

long-wavelength Hamiltonian in Eq. (380). For our purposes here, the relevant terms 

are 

(400) 
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The corresponding interaction current, which for length gauge will be denoted as 1, 
can be extracted in the same way as before to give 

(401) 

where {A, B} = A B + B A is the anticommutator. After the discussion of the 

relativistic corrections arising in both gauges, it is now possible to turn to how these 

terms correct the nonrelativistic result and how the resulting matrix elements can be 

derived in the different gauges, starting with the velocity gauge. 

6.3.2. Velocity Gauge. In accordance with the notation used in Refs. [58,59] 

the nonrelativistic two-photon decay rate in velocity gauge given in Eq. (389) is 

written in the shortened form 

(402) 

where ~ denotes the sum of the matrix elements in velocity gauge 

~=6+6 (403a) 

with 

(403b) 

(403c) 

In order to keep the notation compact, the tensor indices ij of the tensor ~ are 

suppressed but it is implied that e = ~ij ~ij, where the indices i and j are summed 

over, and that ~8~ - ~ij 8~ij. 6~ therein is defined as the sum of all the correction 

terms due to the relativistic corrections. In the way described in Ref. [58], the first 

order relativistic correction 8r{ to the decay rate in velocity gauge can thus be written 
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as 

(404) 

Compared to the self-energy corrections in Sec. 4.5, an additional correction of the 

photon energy arises. It is necessary to ensure that after the inclusion of the rela­

tivistic energy corrections, energy conservation is still fulfilled. Therefore, one has 

(405a) 

(405b) 

The correction bE;, is now obtained in a similar manner as in Sec. 4.5, where the 

relativistic corrections to the self-energy are deduced. However, because here one has 

a final and initial state as well as two different matrix elements, the number of terms 

is much greater. For the correction to the wave function for example corrections for 

both the initial and the final wave function have to be considered for each of the 

two matrix elements 6 and 6. This gives rise to four correction terms from the 

wave function alone, compared to just one in the case of the self-energy. In total the 

correction bE;, is given as the sum of 15 such correction matrix elements 

(406) 

The first two corrections arise due to the relativistic correction to the energy of the 

initial and final state 

(407a) 

( 407b) 
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Then the mentioned four correction matrix elements for the initial and final wave 

function are 

( 407c) 

(407d) 

( 407e) 

(407f) 

The correction of the Hamiltonian in 6 and 6 leads to the two terms 

( 407g) 

( 407h) 

The corrections to the interaction current now leads to four terms because acting the 

correction on the initial or the final state gives rise to different corrections, so one has 

( 407i) 

( 407j) 

( 407k) 

( 4071) 

The relativistic corrections to the seagull term lead to the term 

(407m) 

The seagull term represents the emission of two photons from the same vertex and is 

therefore of a different order in perturbation theory than the one-photon emission. To 

obtain its second-order perturbation, it has to be applied in first order perturbation 
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theory. The minus sign arises because in this section the perturbation series is written 

in the "l/(H - E)" form. The matrix element of the leading order seagull term 

e2A2/(2me) vanishes when applied to the unperturbed wave function. In relative 

order (Za)2 it can be applied to the perturbed wave function. The resulting matrix 

elements found in Ref. [58] are then 

064 = - ~e (~fl (E~i ~ Hs)' OHsl~i) Oij
, 

665 = - ~" (<pfloHs (EO! ~ HJI<p.) o'i. 

( 407n) 

(4070) 

These terms can be simplified by introducing a complete basis set of hydrogen eigen­

functions and writing the initial and final state in terms of the usual quantum number 

I~i) = Inifdimi) which gives 

(408) 

Because there is no operator in between one of the matrix elements, it can only take a 

nonvanishing value if both states are identical due to the orthonormality of hydrogen 

eigenfunctions. This leads to 

(409) 

and, thus, the sum 0~14 + 065 vanishes. 
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6.3.3. Length Gauge. With the same shortened notation used for the 

velocity gauge the corresponding length gauge expression in Eq. (391) is written as 

(410) 

where the superscript ( denotes the length-gauge expression. Here, W2 is defined as 

in Eq. (402), and the length-gauge matrix elements are 

( = (1 + (2, 

(l=/<I>flxiH ~ xjl<I>i) , 
\ s - <Pi +Wl 

(2 = (1)+' Hs _;., _ w, 011>,) . 

(41la) 

(41lb) 

(41lc) 

The corrections to this result are obtained in the same manner as for the velocity 

gauge and the first-order correction to the two-photon decay rate in length gauge 

thus is 

(412) 

The sum of all the different correction matrix elements due to the different relativistic 

corrections in length gauge is denoted as 8(. In contrast to the velocity gauge, it only 

consists of twelve terms due to the absence of seagull terms 

(413) 

In the following, all the different corrections will be given, starting with the relativistic 

corrections of the initial and final state energy 

(414a) 

(414b) 
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The next terms are due to the perturbations of the initial and final state wave func­

tions 

8(3 ~ (<1>+' Hs- ~., +Wl xi (E., ~ HJ 8HSI <I>.), 

8(4 ~ ( <l>f Ix' Hs _ ;., _ W, xi (Eo, ~ HS)' 8HSI <I>.} , 

8(5 ~ (<I>f 1
8HS (E., ~ HS)' x' Hs _ ~., +W, xii <I>.}, 

8(. ~ ( <l>f 1
8HS (E., ~ HS)' x' Hs _ ;., _ W, xii <I>.} . 

The correction to the Hamiltonian is accounted for by the two terms 

(414c) 

(414d) 

(414e) 

(414f) 

(414g) 

(414h) 

Finally, the relativistic corrections to the interaction current gives rise to the last four 

terms 

(414i) 

(414j) 

(414k) 

( 4141) 

6.4. PROOF OF GAUGE INVARIANCE 

In this section, the equivalence of the length and velocity gauge expression is 

proven. Thereby, the gauge invariance of the two-photon decay rate under a hybrid 

gauge transformation, where the gauge transformation of the wave function is ignored, 

is shown. In order to ease the understanding and illustrate the interlinking of the 

different corrections, the calculation is divided into three parts. In the first part, the 
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generalized corrections because of the relativistic Hamiltonian are considered. In this 

correction, current and seagull terms will arise, which would not be linked to the 

relativistic Hamiltonian a priori, hence the term generalized. The second part deals 

with the quadrupole corrections to the electron's interaction current. In the third 

part it will be shown that the remaining terms, which mainly are due to the magnetic 

interactions, vanish separately. 

6.4.1. Correction to the Hamiltonian. For the proof of gauge invariance 

for the corrections to the Hamiltonian, the expression in velocity gauge will be trans­

formed into the corresponding length-gauge expression. In the shortened notation, 

where the velocity-gauge form is denoted as ~ and the length-gauge form as (, the 

gauge invariance of the leading nonrelativistic result can be traced to the formula in 

Eq. (392), which is written as 

(415) 

where the tensor indices ij are suppressed as explained previously. The first terms, 

which are due to the relativistic correction of the Hamiltonian, are the correction 

terms <5~I and <56 of the initial and final state energy in velocity gauge. They can be 

brought into length with the relations 

pi = ime [Hs - E + W, Xi], 

W2 = Eq,i - Eq, f - WI . 

The transformation of <56 leads to 

(416) 

(417) 

(418) 



An analogous relation also holds for 86, 

(
pi ( 1 )2 pi ) M;,2 = ipf - H E - ipi (ipfI8Hs lipf) 
me s - cP f - WI me 

= -WIW, ( if!t Xi (H
s 

_ ;~f _ wJ ',,; if!i) (if!tI8Hslif!t) 

+ (WI - W2) \ ipf Ix
i 
Hs _ ~CPf _ WI xjl ipi) (ipfI8Hs lipf) 

+ (ipf Ixixjl ipi! (ipfI 8Hslipf)· 

123 

(419) 

The relations from Ref. [58] for a radiative corrections potential are generalized to 

the relativistic corrections of the Hamiltonian. While this does not alter the relation 

for the energy, the transformation of the correction to the wave function takes a new 

form. For the following corrections it is useful to recall the relation 

(Hs - Eq, + W) (Eq, ~ Hs)' 8Hs 14» 

= [(Hs - Eq,) (E ~ H )' +w (E ~ H )'] 8Hs 14» 
q, s q, s (420) 

[ { ( 1) 14» (4) 1 } ( 1 ) '] 
= (Hs - Eq,) Eq, _ Hs - Eq, _ (4)1 Hs 14» + W E", _ Hs 8Hs 14» 

= [-1+14>)(4)I+w(Eq,~Hs)']8Hsl4>). 
Thus, 86 gives 
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For 8~4 this yields 

(422) 

For the correction 8~5 to the final-state wave function 
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and for 0~6 

0~6 = / ipj 10Hs ( 1 )' .t. 1 ~I ipi} 
\ EiP f - H s me H s - EiP f - WI me 

~ -w,w, ( <Pf IOHs (Eo, ~ Hs )' Xi Hs _ ;0, _ w, xii <Pi} 

+W2 (ipj 10Hsi ipj) (ipj Ixi 
Hs _ ;iP

f 
_ WI xjl ipi) + (ipj 10Hsxixjl ipi) (424) 

+ ( <Pf IOHs (Eo, ~ Hs)' xi(Hs - Eo, + w,):J I <Pi) 
, , 

v 
=T4 

- (ip j 10Hsi ip j) (ipj Ixixj I ipi) - W2 ( ip j 10Hsx
i 
Hs _ ;iPf _ WI x

j 
I ipi) 

are obtained. In the transformation of the corrections to the wave function remainder 

terms, which have been denoted as TI to T4 arise. They can be further simplified by 

combining them and carrying out another transformation, which leads to 

TI + T2 = ~e ( ip j I (EiPi ~ H s)' 0 H slip i } oij (425) 

+ (ipj Ixixjl ipi) (ipi 10Hsi ipi) - (ipj IXixioHI ipi) , 

T, + T4 ~ ~, (<pf IOHs (Eo, ~ HJI <Pi) 0'; (426) 

+ (ipj 10Hsi ipj) (ipj Ixixjl ipi) - (ipj 10Hsxixjl ipi) . 

The first term of Eq. (425) is the negative of the seagull corrections 064 and the 

first term of Eq. (426) is the negative of 065. So, these terms cancel the seagull 

terms in the transition from velocity to length gauge as it is expected because the 

length-gauge expression does not contain seagull terms. This makes it apparent that 

in the transition from velocity to length gauge of the Hamiltonian corrections terms 

are generated, which cancel correction present in velocity gauge but not in length 

gauge. The other terms on the right-hand side will be treated separately, later. 
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The final Hamiltonian corrections are those of the Hamiltonian itself, which can 

be brought into length gauge form in the following way: 

(427) 

For the second correction to the Hamiltonian 8~8 the analogue transformation gives 

(428) 

Combining all the discussed corrections the result reads as follows, 

where 8wmax is defined in Eq. (405b). Evaluating the commutator [xj
, 8Hsl gives 

[ 
..... 4] [ Z 1 i ..... 2 . Z i i P i Q.... .p P 1 Q... .... i 

[x,8Hsl= x'--8 3 + x'4 23 a .£ =-1--3 --4 2-3 (xxa) ,(430) 
me mer 2me me r 
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with which the terms containing this commutator can be further simplified yielding 

(431) 

In it the current correction of the Hamiltonian 8J1 is given by the current corrections 

due to the relativistic correction of the momentum and due to the coupling of the 

physical momentum to the spin. So, it is defined as 

i ..... 2 1 Z 
~Ji _ P P a (..... .....)i 
U H - --- - ---- x x (J . 

2m3 4m2 r3 e e 

(432) 

It can be seen that these corrections are very closely related to the Hamiltonian and 

are canceled in the transition from velocity to length gauge by terms arising form the 

Hamiltonian corrections. The interesting implication of this is that these corrections 

in velocity gauge are included in the Hamiltonian corrections in length gauge. 

Incorporating this result into Eq. (429) yields 

8 12 I 
~ 8(i + ~ 8(i oJ=oJH 

8 
(433) 

= -WIW2 L 8(i - 8W2Wl (- 8(14 - 8(15 + (<PI 1[[Xi, 8Hs], xjll <Pi) . 
i=1 

The remaining double commutator can be evaluated to give 

[ [ "'4]] [ i 2] 2' i . . . p . p p. .. p pJp .. 
[[xt 8Hsl XJl = x' --- XJ = -i -- XJ = -8'J ---- = 8StJ 

" , 8 3 ' 2 3' 2 3 3 H' me me me me 
(434) 
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which is defined as the seagull correction due to the Hamiltonian. The transformation 

of the Hamiltonian corrections in velocity gauge can thus be written as 

tO~i+ fO~il = -WIW2 to(i- OW2Wl (-0631 -064- 065. (435) 
i=l i=9 IiJ=IiJH i=l IiS=IiSH 

When the Hamiltonian corrections in velocity gauge are defined as 

(436) 

and the Hamiltonian corrections in length gauge as 

8 

O(H = LO(i' (437) 
i=l 

then the gauge invariance relation takes the simple form 

(438) 

This relation used in Eq. (404) allows to prove the gauge invariance of the corrections 

to the two-photon decay rate O~H due to the relativistic Hamiltonian with the addition 

of current and seagull terms, which are seen to be generated in the transition, 

(439) 

Here, again, the superscript ~ denotes the velocity gauge, whereas ( denotes the 

length gauge. 
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6.4.2. Quadrupole Corrections. The quadrupole correction is a pure cor­

rection of the interaction current. In the discussion of the one-photon self-energy it 

was explained, how the quadrupole correction in velocity gauge arises due to the ex­

pansion of the exponential associated with the vector potential. For the quadrupole 

correction of the two-photon decay rate only the multipole corrections to the non­

relativistic interaction current are considered. Multipole corrections to the magnetic 

interactions are treated separately in the next section. 

(440) 

In the case of the two-photon decay, the first term does actually not contribute be­

cause it vanishes after angular integration. Similar to the Hamiltonian correction, the 

quadrupole correction in velocity gauge also includes the multipole correction to the 

seagull term in relative order (Za)2, which is 

£Sij _ 1 (k.... ....)2 £ij 1 (k- -)2 £ij 
U Q - --- l' X U - -- 2' Xu. 

2me 2me 
(441) 

Now, the sum of ~S~ and ~S~ is the full higher-order seagull term ~Sij given in 

Eq. (399). 

In length gauge, the quadrupole correction to the interaction is given by the mul­

tipole correction to the nonrelativistic interaction current but here, also the magnetic 

coupling to the angular momentum of the electron has to be included. Actually, the 

quadrupole corrections in both gauges are the multipole corrections to those terms of 

the interaction currents, which do not contain the electron's spin. The spin-dependent 

terms will be treated in the next section and can be shown to vanish entirely [59]. 
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The quadrupole correction to the interaction current in length gauge is then 

. . ( i.... 1.... 2) 1........ . 8IQ = xt - - k . x - - (k . x) + -- (.e x k) t 
2 6 2mew 

- 6~eW [(1 x k)i(k . x) + (k . x) (1 x k)i] 

.( 1.... 2) 
---7 xt -"6(k. x) 

- _i _ [(1 x k)i(k. x) + (f. x) (1 x k/] , 
6mew 

(442) 

where in the last step again the terms that vanish after angular integration have been 

taken out. For the following calculations, it is practical to rewrite the last part of this 

interaction current into the form 

For the proof of gauge invariance of the quadrupole correction, it is more convenient 

to start from the length gauge expression. As the quadrupole term is a correction 

to the interaction current, only the terms 8(9...12 are relevant. Applying the same 

relations as in the last section, the first correction term 8(9 is transformed with the 

result 

(444) 
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The analogue transformation of 8(10 leads to 

(445) 

For the correction 8(11 with the current acting on the left side this yields 

(446) 

and finally for 8(12, 

(447) 
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The sum of these four corrections then gives 

(448) 

The rather long remainder terms can be greatly simplified by commuting the momen­

tum operators to the right side, which leads to the much shorter expression 

(449) 

The last two terms on the right-hand side of the equation can be identified as the 

quadrupole correction to the seagull term in velocity gauge and thus this can be 

written as 

(450) 

Defining the quadrupole correction in velocity gauge as 

(451) 
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and the corresponding correction in length gauge as 

(452) 

the above gauge relation takes the simple form 

(453) 

Having now obtained the gauge relation for the quadrupole correction, it can be shown 

that 

(454) 

which proves the gauge invariance of the quadrupole correction to the two-photon 

decay rate. 

6.4.3. Spin-Dependent Corrections. So far all corrections due to the 

Hamiltonian, the quadrupole and the seagull term have been treated. The remaining 

corrections are all spin-dependent corrections to the interaction current. In velocity 

gauge these remaining terms are 

c5J~ = c5J i 
- c5J1- c5Jb 

i ( .... )i 1 ( .... ) i (....) 1 Za . = - -- if x k - -- if x k k . i - --2 -3 (i x ifr· 
2me 2me 4me r 

(455) 
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From the considerations at the end of Sec. 4.4, the following replacements can be 

recalled 

1 ( .... )i (.....) iw . - -- jj x k k . i - ---2 (jj x p/ , 
2me 4me 

1 Zo. (..... .....)i iw (..... ;;'Ii - ---- x x ()" - -- ()" x pj , 
4m2 r3 4m2 

e e 

(456) 

which occur when the terms on the left-hand side are contracted with the photon 

propagator [42,77]. Therefore, the last two terms of Eq. (455) cancel. For the re­

maining term, the sum of the two corrections 8Eg and 861 with it is considered 

(457) 

The Schrodinger Hamiltonian does not contain any spin dependence and does there­

fore commute with the spin operator. This allows to let the denominator act on one 

of the outer wave functions and leads to 

(458) 

because the momentum operator also commutes with jj and kl . The same can be 

shown for the sum of 8ElO and 862 where the kl has to be replaced with k2 . Therefore, 

the entire contribution from the remaining corrections to the current vanishes in the 

velocity gauge. 

The remaining spin-dependent corrections to interaction current in length gauge 

are 

. 1 ( ..... )i i ( ..... )i (..... ) iw . 8Ik = -- jj x k - -- jj x k k . i + -- (jj x ir . 
2mew 2mew 4me 

(459) 
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.... 
Because the position operator also commutes with both 8 and k, the considerations in 

Eq. (458) are also valid for the corresponding length gauge expression. Consequently, 

the contribution from the first term in Eq. (459) vanishes. Contracting the second 

term with the photon propagator leads to 

__ i _ (8 x f) i (f . x) = _ iw (8 x x) i , 

2mew 4me 
(460) 

which exactly cancels the third term of Eq. (459). 

Hence, the corresponding corrections 

( 461) 

and 

(462) 

are both equal to 0 and thus trivially gauge independent. This completes the proof 

of the gauge invariance of the two-photon decay rate. 

6.5. NUMERICAL RESULTS 

Numerical results for the relativistic corrections to the two-photon decay rate 

are obtained by carrying out the integration with respect to WI for both the velocity 

gauge expression in Eq. (404) as well as the length gauge expression in Eq. (412). 

The propagator is represented by a sum over the complete bound spectrum and an 

integral over all continuum states as in the case of the self-energy in Sec. 4. For a 

numerical evaluation of the expression the angular integration is carried out using 

algebraic methods detailed in Ref. [23]. The remaining radial integration is carried 

out by lattice techniques developed in Ref. [78]. In this method the intermediate 

basis set in the equation is represented by eigenstates of the Hamiltonian which 

is a matrix in a finite lattice. Thus, its eigenstates are then just the eigenvectors 

of this matrix. They represent the discrete bound states but also yield a pseudo 

spectrum of the continuum unbound states. Then letting both the operators act 
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on the reference state and discretizing the resulting wave function on the lattice, 

the matrix element of these with all the intermediate states can be evaluated. For 

this purpose, the lattice code employed for the calculation of self-energy corrections, 

described in detail in Ref. [42], is generalized to the calculation of the two-photon 

decay rate. The evaluation is carried out in both length and velocity gauge and the 

results are seen to agree. 

6.5.1. 28-18 Decay. For the results it is interesting to see them and have 

them discussed on one particular example. Due to the absence of cascade contribu­

tions and its importance for high-precision spectroscopy, here, the 2S-1S decay is 

chosen. The results from the different contributions are all given separately. 

For the gauge-invariant result of the correction to the decay rate due to the 

relativistic Hamiltonian, from Sec. 6.4.1, 

6TH = ro [-0.5082 (Za)2] (463) 

is obtained. For the quadrupole correction, the gauge-invariant result is (see Sec. 6.4.2) 

(464) 

As shown in Sec. 6.4.3, the remaining current corrections vanish, i.e. 

(465) 

The total result for the relativistic correction to the two-photon decay rate is the sum 

of the above terms and thus reads 

(466) 

The coefficient "/2 is then 

"/2 = -0.6636. (467) 

It can be interesting to consider the different contributions which make up the the 

total Hamiltonian correction. This is particularly helpful because the zitterbewegung 
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term is up to a different scaling identical to the leading radiative correction. Following 

Eq. (393), the different Hamiltonian corrections are the zitterbewegung (zb) term, 

the kinetic energy (ke) term, 

and the spin-orbit (LS) coupling 

Za e· (] 
8HLS = -4 2-3-' 

me r 

The corresponding results read, for the 2S-1S decay, 

8rzb = ro [-0.7577(Za)2] , 

8rke = ro [0.2495 (Za)2] , 

8rLS = O. 

(468) 

(469) 

(470) 

(471a) 

(471b) 

( 471c) 

6.5.2. Higher Excited States. When this approach is generalized for higher­

excited states, there is one particular problem which requires special attention, the 

cascade decay. In this process a higher-excited states decays via two one-photon 

decays over a real intermediate state. For example the 3S state can decay via such 

cascade through the 2P state. In the two-photon decay this means that, when the 

2P state is the virtual intermediate state in both denominators, a double pole in the 

photon energy integration arises. This causes the problem, how this pole is treated in 

the integration because in principle a quadratic singularity is a priori not integrable. 

In fact, such a case, where the decay can take place through a cascade of intermediate 

states, even the exact definition of the two-photon decay rate is troublesome [60-{)5, 

67-69]. 

Here, a principal value prescription for the problematic double poles is used. It 

is based on the principles of the deformation of the integration contour from Ref. [7], 

which are discussed in Sec. 3, and an rigorous handling of the if prescriptions in 
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the denominators. The details of this procedure for the two-photon decay rate are 

explained in Refs. [67,68]. While the gauge invariance of the corrections is preserved, 

discriminating between the cascade decay, which consists of two one-photon decays, 

and the "real" two-photon decay is troublesome. This problem is still being discussed 

in the community [67-69]. 

With the lattice methods using the described procedure to deal with the poles, 

the relativistic corrections are calculated for many higher excited. The results are 

given in Table 6.1 which is published Ref. [59]. 

Table 6.1. Results for the,2 coefficient as defined in Eq. (382). This coefficient gives 
the relativistic corrections to the two-photon decay rate. 

/<Pf) = 1181/2) /<Pf) = 1281/2) 

l<Pi) = 1281/2) -0.6636 

l<Pi) = 1381/2) -2.6637 1.7038 

/<Pi) = 1481/2) -4.5192 7.8530 

l<Pi) = 13D3/2) -2.2978 7.8533 

l<Pi) = 13Ds/2) -1.0981 -22.2671 

6.5.3. Leading Logarithmic QED Corrections. In the calculation of the 

low and the high-energy part in Sec. 4, it becomes apparent that the leading QED 

radiative correction is basically given by the effective Lamb-shift radiation Hamilto­

nian [79,80] 

(472) 
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Because the difference between this Hamiltonian and the zitterbewegung term in the 

relativistic Hamiltonian 

0(£) 
OHzb = 7rZa--

2me 
(473) 

is only a prefactor, the ')'3 coefficient can be obtained as 8 ')'2,zb/3 from ')'2,zb, which 

is the contribution to ')'2 caused exclusively by the zitterbewegung term. The result 

found in this way for the 28-1S transition, which according to Eg. (471a) is given 

by ')'3 = ~(-0.7577) = -2.0205, agrees with the results previously obtained for this 

correction in Refs. [58, 74]. The result for other transition, which are presented in 

Ref. [59], are given in Table 6.2. 

Table 6.2. Results for ')'3 as defined in Eq. (382). 

I<pj) = 1 1S1/2} I<pj) = 12S1/2} 

l<Pi) = 1281/2} 2.0203 

l<Pi) = 13S1/2} 9.6521 16.0424 

l<Pi) = 14S1/2} 20.7364 61.7499 

l<Pi) = 13D3/2} 5.4681 144.3639 

l<Pi) = 13D5/2} 5.4681 144.3639 

6.5.4. Comparison of Analytic and Numerical Results. The results 

presented in this section are obtained using the methods of NRQED described in 

Sec. 4. Also calculations exist which were carried using the approach discussed in 

Sec. 3 and employ fully relativistic, numerical QED calculations. In this work both of 

these approaches have been discussed. Here, the opportunity is taken to compare the 

results obtained with both methods and to show that they agree. Such a comparison 
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provides a highly nontrivial and rigorous check of the results and allows to excludes 

conceivable errors. 

A fully relativistic numerical calculation of the 2S-1S two-photon decay rate 

has been carried out in Ref. [81]. From these results a fit to a convenient functional 

form in Zo'. leading to an approximate formula valid across the whole range of nuclear 

charge numbers Z was obtained. It is given in Refs. [81,82] and reads 

r ~ r 1 + 3.9448 (ZO'.)2 - 2.040 (ZO'.)4 
o 1 + 4.6019(ZO'.)2 

(474) 

In order for this to yield an estimate for the correction term in relative order (Z 0'.)2, 

this expression has to be re-expanded in Zo'.. Indeed, the coefficient of relative order 

(ZO'.)2, which this expansion yields, /2 ~ -0.6571, is in fair agreement with the result 

with the NRQED result in Eq. (467), /2 = -0.6636. 

In Ref. [66] fully relativistic, numerical results for the 3S-1S two-photon de­

cay rate were presented. In it the decay rate, including all corrections, has been 

determined for different values of the nuclear charge number Z. To allow for a com­

parison in this case, the relativistic correction /2 of relative order (ZO'.)2, presented 

in this work, has to be used to correct the nonrelativistic decay rate for different 

values of Z. The corrected decay rate for the 3S-1S two-photon decay is then 

r ~ 1.61 (Z = 40)6 rad/s. In Ref. [66] the result for the EIEI two-photon decay 

rate is given as r = 1.60 (Z = 40)6 rad/s. Both of these results are again in good 

agreement. 
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7. CALCULATION: SELF-ENERGY AND THE LAMB SHIFT 

7.1. ORIENTATION 

In this section, the nonrelativistic theory is applied in order to obtain corrections 

of relative order (Za)2 to the self-energy correction of the Lamb shift. In contrast 

to the previous section there is only one photon but this photon is virtual. The 

obtained correction are therefore additional QED corrections to the Lamb shift. The 

focus is on highly-excited Rydberg states because these calculations are required for 

an ongoing project at NIST. The QED results obtained for this project in Ref. [83,84] 

are necessary to reduce theoretical uncertainties and could allow to deduce a more 

accurate value for the Rydberg constant. Starting from the theory explained in Sec. 4, 

it is shown how the corrections are evaluated for Rydberg states. 

Following Sec. 4 the calculation is split into two parts. In the low-energy part 

only contributions from virtual photon at low photon energies are considered, whereas 

in the high-energy part the effect from highly energetic virtual photons are deter­

mined. This separation is necessary because of the two energy scales in the problem 

from the virtual photon and the binding Coulomb potential. The investigation start 

with the low-energy part. 

7.2. LOW-ENERGY PART 

7.2.1. Orientation. Here, the relativistic corrections of order (Za)2 to 

Bethe's result for the self-energy correction for highly excited Rydberg states are 

calculated. Following the theoretical derivation in Sec. 4, the low-energy part of the 

self-energy correction is given by 

(475) 
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According to Sec. 4.5, the matrix element pij reads 

pij = (<1>1 L 1 pi 1<1» 
me Eq, - Hs - Wfme 

pi 1 . 
+ 2 . (<1>1- of 1<1» 

me Eq, - H s - Wf 

_ (<1>1 L 1 oE 1 pi 1<1» 
me Eq, - Hs - wf Eq, - Hs - Wfm e 

(476) 

pi 1 1 pi 
+ (<1>1- oHs -1<1» 

me Eq, - Hs - Wf Eq, - Hs - Wf me 

+ 2 . (<1>1 ~ie Eq, _ ~s _ Wf ~e 10<1» + O((Zol) , 

where the first term is Bethe's classic result [6] and the other terms are the relativistic 

corrections of order (Za)2 to it, which are investigated here. The effective correction 

operators have been derived in Sec. 4.4 by a Foldy-Wouthuysen transformation of the 

fully relativistic Hamiltonian and current operator. While the resulting correction 

are given in Sec. 4.5, they are restated here for easier referencing. It is convenient 

to break up the interaction current correction into its constituents in Eq. (297) 

because the angular integration is different for each of the terms. This results in the 

following terms: 

the nonrelativistic multipole correction 

Re~E(2) = 1 d
3 
k 27ra (Oi j _ k

i 
kj) 

L,q"nq (27r)3 w- k"'2 W;;<€ k 

x {(<1>1 L (ik. i) 1 pi (-ik. i) 1<1» (477) 
me Eq, - Hs - wfme 

_ (<1> I L (k . i) 2 1 pi 1<1»}. 
me Eq, - H s - wf me 

the relativistic momentum correction 

Re~E(2) i 2 = 1 d
3 
k 27ra (8ij _ k~ kj) 

L,q"p p (27r)3 w- k2 W;;<€ k 

x (<1>1 L 1 _pip2 1<1» , 
m E", - Hs - w- m 3 

e ~ k e 

(478) 
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the correction due to the spin coupling to the physical momentum 

Re.6.E(2) = 1 d
3 
k 27ra (Oi j _ k~kj) 

L,cI>,rxu (27r)3 w- k2 
wk<€ k 

X (<I> I L 1 ( - Z a (x x a)j) I <I» , 
m E ... - Hs - w- m 2r3 e .... k e 

(479) 

the quadrupole correction to the magnetic coupling 

(480) 

I <I» . 

This concludes the corrections due to the relativistic corrections of the interaction 

current. 

The next correction arise because of the relativistic correction to the reference-

state energy 

( 481) 

The relativistic correction of the Hamiltonian leads to the contribution 

R "E(2) _ 1 d
3 
k 27ra (rij k

i 
kj) (<I> 1 pi 1 eLl LcI><5H - - ---- u - -- --

" s (27r)3 w- k .... 2 m E ... - Hs - w-wk <€ k e 'i' k 

( 

.... 4 ) . x L _ Za E. a 1 ~ I<I» . 
8m~ 4m~r3 EcI> - Hs - wf me 

(482) 

In 0 H s the Darwin term is neglected because Rydberg states are considered here and 

this term vanishes for states with angular momentum £ 2: 1. 



144 

The last correction is due to the relativistic correction of the wave function 

and is 

(483) 

These terms are now derived and evaluated separately. 

7.2.2. Nonrelativistic Multipole Correction. The nonrelativistic multi­

pole corrections are due to the expansion eik-x in the nonrelativistic interaction current 

and are given in Eq. (477) as 

Re~E(2) = 1 d
3 
k 2rra (Oi j _ k~kj) 

L,4>,nq (2rr)3 w- k2 
Wk<f k 

x {(eI>1 L (ik. x) E~ pi (-ik. x) leI» (484) 
me 4> - S - Wk me 

_ (eI> I L (k . x) 2 1 pi 1eI»}. 
me E4> - Hs -wkme 

In order to extract the k dependence from the matrix element, the index notation is 

used, in which the expression takes the form 

Writing d3k = dOk w~ dWk and multiplying out the transverse 0, yields 

(486) 
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The dependence on k is extracted and the integration with respect to dnf can be 

carried out again using Eqs. (214) and (215) as well as 

(487) 

When the momentum operator is also replaced according to pi ----+ iV'i, the result is 

Re~Ei~~,nq = - r dWf ~{-±- (<1>1 V'ixj E;} XjV'i 1<1» Jo 7rme 15 <l> - S - Wf 

3 

_ ~ (<1>1 V'iXi wf XiV'i 1<1» 
15 E<l>-HS-Wf 

3 

_ ~ (<1>1 V'ixj Wf xiV'j 1<1» 
15 E<l>-HS-Wf 

(488) 

3 - -±- (<1>1 V'ixixj wf V'i 1<1» 
15 E<l> - Hs - wf 

+ ~ (<1>1 V'iXixj w~ V'j 1<1»} . 
15 E<l> - Hs - Wf 

The angular integration is carried out for each of the five terms separately in the 

following. Thereby, the Wigner-Eckhart theorem as well as the Racah algebra [23] 

are employed and the calculation is carried out algebraically. This algebraic methods 

requires the use of spherical coordinates. The Cartesian scalar product in spherical 

coordinates is given by 

AiBi = 2:)-l)qAqB_q, (489) 
q 

which makes an easy change of coordinates in these calculations possible. 

The first term of Eq. (488) is denoted as Ma in the following and is 

3 

Ma = (<1>1 V'ixj Wf XjV'i 1<1» . 
E<l> - Hs -Wf 

(490) 

Similar to the evaluation of the leading low-energy part in Sec. 4, a complete set of 

Schrodinger eigenfunctions of the hydrogen atom is introduced. Both the reference 

state as well as the basis set are expressed in terms of the relevant quantum numbers. 
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Ma is thus written as 

3 

Ma = '" (nfml \7 i xj In'£'m') WI; (n'f'm'l xi\7 i Infm) . (491) 
~ E -H ,-w-

n'f/m' n n k 

The Wigner-Eckhart theorem now allows to reduce the manifold of magnetic projec­

tions m of the orbital angular momentum f to one particular choice, which is m = 0 

in this section. Moreover, switching to spherical coordinates yields 

Because it allows some simplifications later, a complete set of angular basis states is 

introduced between the x and the \7 -operator which leads to 

n' ,l' ,m' q,q' £" ,m" ,l'll ,mill 

3 

X E _ ~ , _ W- (n' f'm'l X-
q
' Iflllmlll ) (fll/mllli \7-q InfO) . 

n n k 

(493) 

Using formulas from Ref. [23] and grouping terms with q and q' together, one obtains 

(494) 

C' 1 f"') ( en 1 e' ) 
-m' -q' mil/ -m" q' m' 

x (f"OI XO In' £'0) (n' £'01 XO IfIllO) 

e~') (: ~) (e' 1 1 

o 0 0 
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Combining the sum over q' can be achieved by making use of Eq. (8.4.5/6) and 

Eq. (12.1.3) from Ref. [23] and gives 

C' 1 
em) ( e' 1 £' ) L(-li(-l)m' , , 
mill -m" q' m' q',m' -m -q 

( t' 1 t) (_I)1+f+t ( I 
J!' ~m) (495) 

= L ( -1 )q' ( -1 )m' " 
q',m' -m q' m' -q' -m' 

( _l)m" 
= 6elll e"omlll m" . 

21!" + l' , 

The resulting Kronecker delta allows to contract the sum over q in a similar manner, 

which leads to 

( f" 1 f) (f 1 f" ) L(-l)q(-l)m" " 
q,m" -m -q 0 0 q m" 

= L ( -1) q ( -1 ) m" ( -1 ) 1 +l+e" ( 1 J!" oe) (eo 1 e" ) 
q,m" -q -m" q m" 

(496) 

1 
2e + 1 . 

Through these simplifications the matrix element can be expressed as 

1 1 (e" 1 e) -2 (e' 1 r) -2 w3 

Ma = 2e + 1 n~" 2e" + 1 0 0 0 0 0 0 En - En' - wk (497) 

X (neOI VO W'O) (£"01 XO In'e'O) (n'e'OI XO le"o) (f"OI VO IneO) . 

The action of the V-operator on the wave function is given by Eqs. (13.2.23/24) of 

Ref. [23] and reads 

(nL + 10lV 10 IN LO) 

L + 1 JOO 2 ( d L) = .j d" RnL+l(') -d - - RNL(') 
(2L + 1)(2L + 3) , , 

° 

(498) 
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and 

(nL - 101\710 INLO) 

L JOO (d L+ 1) (499) 
= J drr2 RnL-l(r) -d + -- RNL(r). 

(2L + 1)(2L - 1) r r 
o 

The squares of the 3j-symbols can be obtained by 

(
I!' 1 £) 2 = {(2£+1)e(2e_l) for £1 = £ - 1 , 

o 0 0 £+1 C 01 - 0 1 
(2£+1)(2£+3) lor {. - {. + . 

(500) 

Consequently, the final result for Ma is found to be 

M _ ~ w~ { £ + 1 £ + 2 
a - ~ E - E , - w- 2£ + 1 2£ + 3 

n' n n k 

00 2 

X (J drr
2 
Rn'£+2(r) (r :r - £) Rne(r)) 

o 

+ :e: II:e: 13 (] drr' R..,,(r) (r :r ~ e) R..,(r}), (501) 
o 

+ 2e: 12e ~ 1 (] drr' R..,,(r) (r ! + (f+ 1}) R",(r}), 
o 

£ £ - 1 (JOO 2 ( d ) ) 2 } + 2£ + 12£ _ 1 drr Rn'l-2(r) r dr + (£ + 1) Rne(r) , 
o 

where Rne(r) are the radial eigenfunctions of the Schrodinger equation defined in 

Eq. (162). 

The second term in Eq. (488), which is denoted here as Mb can be calculated 

following an analogue procedure. There is, however, a shorter way to solve the angular 

integration. It is based upon the observation that in 

(502) 
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- d x·V=r­
dr 
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(503) 

does not carry any dependence on the angular coordinates. Thus Mb is simply given 

by 

(

00 ) 2 
3 

Wi;, 2 d 
Mb = L E _ E ,_ W- Jdrr Rn'£(r)r drRnt(r) , 

, n n k 
n 0 

(504) 

where again a complete basis set was used to represent the propagator. 

The third term in Eq. (488) 

3 

Me = (<1>1 vixj Wi;, xivj 1<1» 
Eip - Hs - Wi;, 

(505) 

is again determined following the same steps as for the first term. After the intro­

duction of a complete set of basis states and the transition to spherical coordinates, 

it is found to be 

n' ,i' ,m' q,q' i" ,mil ,i"l ,m'll 

W~ 
X k (nlglm/l X- q le"lmlll) (.e'" mill I V-q' IneO) . 

En - En' - Wi;, 

(506) 



150 

Reducing the matrix elements to the z component and the projection m = 0 leads to 

n',£' ,m' i" ,mil ,l'" ,m'll q,q' 

(507) 

With Eq. (12.1.8) from Ref. [23] this can be simplified to give 

1 { 1 f!" f!} (f!1II 1 
Me = 2f! + 1 n' 'f~' ,f' 1 f!1II f!' 0 0 

~) -1 (~ ~ f~')-I 

( )

-1 ( W~ f! 1 f!" f!II 
X En - E:, - W k 0 0 0 0 

1 f!')-1 
o 0 

(508) 
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Evaluation of all expression allows to write the final result as 

M _ '" w~ { I: + 1 I: + 2 
c - ~ E - E I - w- 21: + 1 21: + 3 

n
' 

n n k 

00 2 

X (J drr2RnI H2(r) (r! -I:) Rne(r)) 
o 

I: + 1 1 (JOO 2 (d) ) 2 + (21: + 1)221: + 3 drr Rn1e(r) r dr - I: Rne(r) 
o 

x (] drr'R..,,(r) (r :r - £) R..,(r)) 
o 

+ (2£! 1)' 2£ ~ 1 (] drr' R..,,(r) (r :r + (f + 1)) R,.,(r)), 
o 

+ 2£: 1 ~ -=-11 (] drr' R..,,_,(r) (r :r + (£ + 1)) R,.,(r)) 1 
o 

The fourth term of Eq. (488): 

(510) 
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is relatively easy to determine. The reason is that r2 is scalar and, thus, only the 

radial equation compared to Eq. (227) has to be changed with the result 

~ wf {£ JOO 2 ( d £ + 1) 
Md = ~ En _ En' - Wf 2£ + 1 drr Rn'e-l(r) dr + -r- Rn£(r) 

n 0 
00 

X J drr2Rn'e_l(r) (r2! + (£+ l)r) Rn£(r) 
o 

£ + 1 JOO 2 ( d £) + 2£ + 1 drr Rn'Hl(r) dr - -:;: Rne(r) 
o 

00 

X J drr2Rn'Hl(r) (r2 :r - £r) Rne(r)}. 
o 

(511) 

Finally, the last contribution from the nonrelativistic multipole is given by 

(512) 

Recalling that piXi is a scalar, the determination of this term is completely analogue 

to the one before with the result 

3 00 

~ wf { £ + 1 J 2 ) 2 d () Me = ~ E _ E , _ w- 2f + 1 drr Rn'Hl(r r dr Rne r 
, n n k 

n 0 
00 

X J drr
2
F}n'Hl(r) (:r -~) Rne(r) 

o 
00 

(513) 

£ J 2 2d () + 2£ + 1 drr Rn'e-l (r)r dr Rne r 
o 

Joo 2 (d £+1) } 
X drr Rn'e-l(r) dr + -r- Rne(r) . 

o 

The dependence on the energy can be extracted from each of the terms. If 

the remaining integrals without the energy dependence is denoted as Mn" then the 
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photon energy integration can be carried out as follows 

(514) 

Following the explanation of the analytical method in Sec. 4, only the finite term 

contributes to the low-energy part. It leads to a Bethe logarithm type of correction. 

Consequently, the order in a and Za is extracted from this finite part to define what 

is called the relativistic Bethe logarithm (3SE 

(515) 
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The nonrelativistic multipole correction to this relativistic Bethe logarithm is thus 

n
3 

'"' 3 ( I En' - En I ) 1 [ £ + 2 (£ + 1) 
{3SE,nq(n£j) = (Za)6m~ ~(Enl - En) In (Za)2me 15 -32£ + 32£ + 1 

x (] drr' R,.'H,(r) (r ! -£) R,.,(r)), + 4:£:\ 
o 

00 00 

x 1 drr2 Rn1f+l(r) (! -~) Rne(r) 1 drr2 Rn'f+l(r) (r2 ! -£r) Rne(r) 
o 0 

00 00 

- 2;£:\ 1 drr
2 
Rn'f+ 1 (r)r

2 
:rRne(r) 1 drr

2
Rn1f+l(r) (! - f) Rne(r) 

o 0 

2 00 2 

_ (4(2£ + 1)(£ + 1) - (£ + 1)) (Jd 2Rn, ( ) ( .!i - £) Rnt( )) 
(2£ + 1 )2(2£ + 3) rr err dr r 

o 
00 

- 22£ ~ 1;£: 11 (1 drr
2 
Rn1e(r) (r :r + (£ + 1)) Rne(r)) 

o 

x (1 drr' R,.,,(r) (r ! -£) R,.,(r)) + (l drr' R,.,,(r)r ! R,.,(r)) , (516) 

(
4 £ £ £ 1) 

2£ + 1 2£ - 1 (2£ + 1) 2 2£ - 1 
00 2 

X (1 drr2Rn'e(r) (r! + (£+ 1)) Rne(r)) 
o 

00 

+ 42£ ~ 1 1 drr
2 
Rn'e-l (r) (r2 :r + (£ + l)r) Rne(r) 

o 

100 2 ( d £ + 1) £ 
x drr Rn'e-l(r) dr + -r- Rne(r) - 22£ + 1 

o 

£ £ - 1 (100 

2 ( d ) ) 2] - 32£ + 12£ _ 1 drr Rn'e-2(r) r dr + (£ + 1) Rne(r) . 
o 
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7.2.3. Relativistic Momentum Correction. The relativistic momentum 

correction in Eq. (478) has a structure very similar to the leading term evaluated in 

Eq. (227). Therefore, the angular integration as well as the integration with respect 

to the photon energy are completely analog. For this purpose the reference state is 

written in terms of the hydrogen quantum numbers and a complete set of basis is 

used. This yields 

ReD.E(2) i 2 = 1 d
3 

k 2na (r5ij - k~kj) ~ (nRm 1 Lin' R' m') 
L,4>,p p (2n)3 w- k2 ~ m 

w;;<€ k n'e'm' e 

( I
· 21 ) 1 " , -pJp 

x _ E _ _ n .e m --3- nRm , 
En n' wk me 

(517) 

where the sum extends over all bound and unbound states. Because the operators do 

not depend on k, the angular integration with respect to k can be carried out with 

the relations in Eqs. (214) and (215) with the result 

2 i f (I i 1 ) (2) a P '" ReD.EL 4> i 2 = - dwfWf ~ nRm - nRm 
, ,p p 3n 0 ~ me 

n'e'm' 

1 ( 1 pip21 ) X n'R'm' -- nRm , 
E - E, -w- m 3 

n n k e 

(518) 

In the integration with respect to the photon energy, only the finite term contributes 

to the low-energy part, as shown in Sec. 4. From Eq. (223) the analogue finite 

contribution here can be identified. With (Za)2me as the scaling parameter in the 

logarithm, the finite contribution for the relativistic momentum correction yields 

(519) 

Recalling the relation 

(520) 
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as well as that In£m) is an eigenstate of {2 and the result for the Bethe logarithm in 

Eq. (227), one obtains for the relativistic Bethe logarithm contribution f3sE,pip2 

00 
x / drr

2
Rn'e+1(r) (:r -~) Rne(r) 

o 

/
00 2 ( d £) 1 d ( 2 d) x drr Rn I Hl(r) - - - -- r - J?m(r) 

dr r r2 dr dr 
o 

+ 2e: 17 drr' Rn"-l(r) (! + e ~ 1) Rn,(r) 
o 

x 7 drr' Rn"-l(r) (:r + e ~ 1) :'! (r' ! ) Rn,(r) (521) 
o 

£ + 1 /00 2 ( d £) - drr RnI Hl(r) - - - Rne(r) 
2£ + 1 dr r 

o 
00 

/ 

2 ( d £) £(£ + 1) x drr RnI Hl(r) dr -; r2 Rne(r) 
o 

£ /00 2 (d £+1) 
- 2£ + 1 drr Rn'l-l(r) dr + -r- Rne(r) 

o 

/
00 2 (d £+1) £(£+1) } 

x drr Rn'e-l(r) dr + -r- r2 Rne(r) . 
o 

7.2.4. Spin Coupling to Physical Momentum Correction. The spin 

dependence of the next correction given in Eq. (479) necessitates the use of the Pauli 

wave function from Eq. (165), which includes the spin into the Schrodinger wave 

function and is denoted by In£jm). The integration with respect to the photon 

energy is again completely analogue because there is no k dependence in the integral 
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and the finite part is 

pq (x x iJ)-q 
x (nfjml-In'f'j'm') (n'f'j'm'l Infjm) . m m 2r 3 e e 

(522) 

Compared to the angular integration in Sec. 7.2.2 the addition of the spin leads to 

a few complications. For example, the matrix elements are no longer reduced to 

the orbital angular momentum projection m = 0 but rather to the total angular 

momentum projection m = ~. The reduction process here now has the form 

j 1 j' 
, 

1 -m q mIl 

and 

(X x iJ)-q 
(n'f'j'm'l Infjm) r3 

V~, ~q ~) 
= (_l)-m+~ (~'~ ~ D 

One of these 3j-symbols can be rewritten as 

( 
j 1 j') 

-m q m' 
= (_l)Hl+i' (j j' 1) 

-m m' q 

(523) 

(524) 

(525) 

Analogue, one of the 3j-symbols in the denominator can be transformed into the other. 

The 3j-symbols in the numerator can be combined using relations from Ref. [23] to 
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give 

2) _1)-m'+l-m+q( _l)J'+1+j (j j', 1) ( j', 1 j) 
m'q -m m q -m -q m 

=( _1)i-m+1 L( _l)1+J'-m'-q (j j' 1) ( j', 1 j) 
m'q -m m' q -m -q m 

(526) 

=(_1)2j +1 1 
2j + 1 ' 

where (-l)q = (-1)-q is employed because q is a whole number. A formula for the 

matrix element with p is given in Eq. (7.1.24) in Ref. [23]. The x x (j matrix element 

can be determined with the following relation for the cross product 

(527) 

and a combination of Eqs. (7.1.26) and (7.1.28) from Ref. [23]. The finite contribution 

from the spin coupling to the physical momentum to the low-energy part is thus given 

by 

00 

x 1 drr
2
Rn'i+l(r) (:r -~) Rne(r) 

o 
00 

1 2 1 
x drr Rn'i+l(r\2 Rne (r) 

o 

K+11
OO 

2 (d £+1) + 2£ + 1 drr Rn'e-l(r) dr + -r- Rne(r) 
o 

00 

x 1 drr2Rn'e_l(r):2Rne(r)} , 
o 

. i 1 
where K = (-1 )J+ +'2 (j + ~) is the Dirac quantum number. 

(528) 
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7.2.5. Quadrupole Correction to the Magnetic Coupling. This cor­

rection given in Eq. (480) is 

(529) 

As this depends on f, a similar procedure to Sec. 7.2.2 has to be applied and the f 
dependence has to be extracted. For this the index notation is employed in which 

(530) 

is obtained. Taking w = If I out of the first f, yields 

(531) 

The first of the terms in the numerator cancels the denominator. Consequently, it 

would be proportional to c after the integration and does not contribute in the finite 

order co. Therefore, the terms is neglected. The second term can be taken care off 

with the relation in Eq. (416), which leads to 

(532) 
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Analogue for the second k it is found 

(533) 

where the relation 

(534) 

is used. The identities in Eqs. (214),(215) and (487) allow to carry out the angular 
-integration with respect to k which gives 

(535) 

Because of the total antisymmetry of the E-tensor the third term vanishes while the 

second and fourth term cancel exactly, thus 

R AE(2) a lE -J. . 1 (<1>1 i 1 Za iad a d 1<1» eu £ <I> krkxu = --3 uwk W k- P E H -3 E r (J 
, , 7rme 0 3 <I> - S - Wk r 

a lE d (<1>1 i 1 Za (- -)i 1<1» = - -- wk Wid P - r x (J 

37rm~ 0 Ecp - Hs - wk r3 
(536) 

1 (2) 
= --Re~E£ cp rxu 2 ' , 

and accordingly 

(537) 
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7.2.6. Correction to Energy, Hamiltonian and Wave Function. The 

relativistic correction of the reference-state energy is given in Eq. (481) as 

(538) 

Once more, a complete set of basis states is introduced to yield 

Re~E(2) = -1 d
3
k 2nD! (8ij _ k~kj) 8E ~ ( 1 ) 2 

L,4>,8E (2n)3 w-m2 k2 L.J E - E , - w-
W k<€ ken' ,j,l,m' n n k (539) 

x (n€jmlpi In'tj'm') (n'f'j'm'lpi In€jm) . 

The relativistic correction of the reference-state energy is found in the literature [38] 

to be 

(540) 

The evaluation of the matrix element is now the same as for the previous corrections 

and therefore not discussed. Carrying out the remaining integration with respect to 

the photon energy the contribution to the relativistic Bethe logarithm is obtained as 

(3sE"dnEj ) = 3m;tza)' (4~ - j ~ ~) ~ [In ('f;~,!':') + 1] 
x {:£:11 (] drr'Rn,+l(r) (! -n Rn,(r)) , (541) 

o 

+ 2£: 1 (] drr'R..t-l(r) Ur + R ~ 1) Rn,(r) n 
o 

As it turns out, the evaluation of the contribution from the relativistic correc­

tions to the Hamiltonian is the most complicated in the low-energy part. Discussing 

the spin-orbit coupling and the relativistic kinetic energy correction separately, has 

proven to be the most convenient approach. Here, the starting point is the spin-orbit 
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coupling correction from Eq. (482), which is found to be 

(542) 

For this correction a new Hamiltonian is defined, in which the spin-orbit coupling is 

infinitesimally included 

(543) 

The above correction can then be obtained by taking the derivative with respect to 

'T}, which gives 

8 1 I 
8'T} Eq, - H('T}) - wf 1/=0 

The idea is now to calculate the contribution just like for the Bethe logarithm only 

with this perturbed Hamiltonian, and obtain the contribution from the energy cor­

rection as the derivative of it with respect to 'T}. For this the matrix element 

(545) 

has to be evaluated. Due to the dependence of the Hamiltonian on both spin and or­

bital angular momentum, the angular algebra has to be considered very carefully and 

all possible configurations in the intermediate states have to be taken into account. In 

the usual way a complete basis set is used to represent the propagator, here, however, 

it is the complete basis of H('T}) and not that of the Schrodinger Hamiltonian. These 

basis states of H('T}) are denoted as I )' and allow to write 

M8H(LS) = L (-1)q (nt'jml V'lq In't"j'm')' 
n' ,j' ,f' ,m' ,q (546) 

x '(n' t" j'm'l 1 In' t" j' m')' '(n' t" j'm'l V'l-q Int'jm) 
Eq, - H('T}) - wf 
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in spherical coordinates. It is possible to extract the angular dependence of the 

perturbed Hamiltonian, which is just given by i· a, in order to obtain a perturbed 

energy E~'(TJ) independent of it. Together with the equations from Sec. 7.2.4 the 

matrix element can be written as 

(547) 

It is possible to simplify this further and obtain an expression in which the sum over 

the intermediate total angular momenta is already carried out. For this, the two 

possible total angular momenta j for the reference state, j = £ - ~ and j = £ + ~, are 

considered. Moreover, the results for £' -+ £ - 1 and £' -+ £ + 1 in the intermediate 

state without the factor i· a are denoted as QL-l and QL+l respectively. If the 

reference state has j = £ - !, then for £' -+ £ + 1 the total angular momentum j' in 

the intermediate state can only be j' -+ j + 1. This means the sum over j' in the case 

I!' -+ £ + 1 contains only one term and one finds 

( ........ ) ( )2 1 2 3) £. (J Qf+! = (£ + 1 -"4 - £ - 3£ - 2 -"4 QL+l 
(548) 

= -(£ + 2)Qf+l . 

If the the intermediate orbital angular momentum is now I!' -+ £ - 1, there are two 

terms with different total angular momentum j', which have to be added weighted 
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by the factor f· 5. Unfortunately, this also contains pre-factors which are contained 

in QL-l, thus making it necessary to divide by these pre-factors. Denoting the total 

angular factor as V Q yields 

(549) 

where A and B are the pre-factors, which would arise from the angular algebra without 

f· 5. The result is 

VQ _ (e -1)(1- e - 2e2)Q __ (e + 1)(e - 1)Q 
- e(2e - 1) £-1 - e £-1· (550) 

The calculation for total angular momentum j of the reference state being j = e + ~ 
is analogue, but now there are two terms for the case e' ----t e + 1 and only one for 

e' ----t e - 1. As the result 

( ........ ) (2 1 2 3) £. (J QL-l = £ - 4 - £ + £ - 4 QL-l 

= (£ -1)QL-l 

VQ _ (£ + 2)(1- (£ + 1)(2£ + 1))Q _ £(£ + 2)Q 
- (£ + 1)(2£ + 3) L+1 - £ + 1 L+l 

(551) 

(552) 

is obtained. Using R'ne(r, TJ) to denote the radial eigenfunction of the perturbed Hamil­

tonian, the finite contribution to the low-energy part is found to be 
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For the relativistic kinetic energy correction the same approach is used. Based 

upon its contribution 

(554) 

again a perturbed Hamiltonian is defined by 

fl2 Za fl4 
H(17) = - - - -17-

3
. 

2me r 8me 
(555) 

Due to 

o 1 I 
017 Erp - H(17) -W;; 1'/=0 

1 fl4 1 

Erp - H s - w;; 8m~ Erp - H s - wf . 
(556) 

the finite contribution to the low-energy part can be found in an analogous manner 

by taking a derivative of the term calculated with the perturbed energy and wave 

function. While the numerical lattice method, which is used to calculate the radial 

integrals, is able to obtain basis states for the Hamiltonian perturbed by 1/r3
, the 

even more singular behavior of p4 requires a different method to find the perturbed 

radial functions. In this case one resorts to first order perturbation theory in order 

to find the perturbed eigenstates which are given by [38] 

1 -4 
Infjm)' = Infjm) -17 L Ikfjm) E E (kfjml ~ Infjm). 

ki-n n - k Bme 
(557) 

The matrix element is diagonal in the angular quantum numbers and can be fur­

ther simplified by expressing p2 in terms of the Schrodinger Hamiltonian minus the 

Coulomb potential, i.e. 

(558) 
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Thus the perturbed radial eigenfunctions can be determined by 

(559) 

Additionally, the perturbed eigenenergy has to be found which is again determined 

using first order perturbation theory. From the literature [38] one finds the equation 

--4 

E~(7]) = En -7] (nRjml ~ Injlm) , 
8m 

which in this case can be evaluated to be 

( 7] (2 JOO 2 ( Zo: (Zo:)2) 2 ( )) En 7]) = En - 2m En + drr 2En 7 + r2 Rnl r . 
o 

(560) 

(561) 

With the such determined perturbed wave function and energy the contribution to 

the low-energy part of this term is 

The final low-energy contribution arise from the first order, relativistic correction 

of the wave function given in Eq. (483). The evaluation of the angular algebra is in 

principle analogue to the Bethe logarithm in Eq. (227) with the only difference being 

the multiplication of the wave function correction matrix element. Fortunately, this 

matrix element is diagonal in the angular quantum numbers. The finite contribution 
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to the low-energy part is then just 

00 

x (J drr2~/Hl(r) (:r -~) ~e(r)) 
(563) 

o 

f (Joo 2 ( d f + 1) ) + 2£ + 1 drr ~/e-l(r) dr + -r- Rke(r) 
o 

where /'i, = (_1)jH+~ (j + ~) again is the Dirac quantum number. 

7.2.7. Summary of Corrections in the Low-Energy Part. In order 

to obtain the total low-energy part of the self-energy correction all these separate 

contributions have to be added. However, there is also a contribution of order a(Za)6, 

which contains a logarithm of E and thus the non finite contribution to the low-energy 

part. So far this term has been neglected. While its derivation is not given here (it 

can be found for example in Ref. [46]), it has to be included to receive the complete 

result. By also taking into account Bethe's results, which is shown in Eq. (227), the 

low-energy part of the self-energy correction for highly excited Rydberg states with 

f 2: 2 is found to be 

(564) 
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or in terms of the scaled self-energy function F defined in Sees. 3 and 4 by 

(565) 

as 

(566) 

In both cases In ko denotes the Bethe logarithm given in Eq. (227) and f3SE denotes the 

relativistic Bethe logarithm which is given by the sum of all the finite contributions 

from the terms discussed in this section 

f3sE(nRj) = f3sE.nq(nRj ) + f3sE.pi p2(nRj ) + f3SE.rxa nRj) + f3SE.krkxa(nRj ) 
(567) 

+ f3sE,liE(nRj ) + f3SE.oH(LS) (nRj ) + f3SE.OH(p4) (nRj ) + f3sE.O<l> (nRj ) . 

7.2.8. Numerical Evaluation and Results. So far the functional form of 

the relativistic Bethe logarithms has been given as integrals involving the sum over 

all bound and unbound radial eigenfunctions of the Schrodinger equation, these are 

evaluated numerically using lattice methods. The values for the relativistic Bethe 

logarithm obtained by us with this method for numerous highly excited states are 

given in Table 7.1. These results have been published in Refs. [83-85]. 

A detailed description of the lattice method can be found in Ref. [78] and here 

only a short overview over the most important points is given. A finite lattice is 

used to represent the remaining radial variable in the expressions obtained for f3sE . 

Due to the structure of the wave function the lattice spacing is not equidistant but 

exponentially scaled such that the lattice spacing closer to the origin is denser than 

far away from the origin. This allows for a better representation of the wave function 

with fewer lattice points. Consequently, the integrals reduce to sum over all lattice 

points. 

Moreover, the Schrodinger equation in this exponential lattice spacing also be­

comes discrete. It is given in Ref. [78]. The derivative in it is consequently replaced by 

a discretized derivative, for which a ll-point discrete derivative formula is employed 
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in our calculations in this work. For the first points closest to the origin this formula 

is altered as described in Ref. [78] to account for the missing points outside of the 

lattice. 

Table 7.1. Values obtained by the numerical lattice method for the relativistic Bethe 
logarithm /3sE . The numbers in parentheses are standard uncertainties in the last 
figure. 

n £ 2j /'i, /3sE 2j /'i, /3SE 
16 15 29 15 0.629871(5) x 10-5 31 -16 0.625545(5) x 10-5 

16 14 27 14 0.902533(5) x 10-5 29 -15 0.895491(5) x 10-5 

15 14 27 14 0.859850(5) x 10-5 29 -15 0.853375(5) x 10-5 

15 13 25 13 1.262399(5) x 10-5 27 -14 1.251506(5) x 10-5 

14 13 25 13 1.199921(5) x 10-5 27 -14 1.189658(5) x 10-5 

14 12 23 12 1.811 052(5) x 10-5 25 -13 1.793624(5) x 10-5 

13 12 23 12 1. 716173(5) x 10-5 25 -13 1.700273(5) x 10-5 

13 11 21 11 2.675867(5) x 10-5 23 -12 2.646861(5) x 10-5 

12 11 21 11 2.527776(5) x 10-5 23 -12 2.501428(5) x 10-5 

12 10 19 10 3.962364(5) x 10-5 21 -11 3.898005(5) x 10-5 

11 10 19 10 3.853354(5) x 10-5 21 -11 3.807626(5) x 10-5 

11 9 17 9 6.526732(5) x 10-5 19 -10 6.433497(5) x 10-5 

10 9 17 9 6.120418(5) x 10-5 19 -10 6.036525(5) x 10-5 

10 8 15 8 10.945050(5) x 10-5 17 - 9 10.761067(5) x 10-5 

9 8 15 8 10.219540(5) x 10-5 17 - 9 10.054823(5) x 10-5 

9 7 13 7 19.539646(5) x 10-5 15 - 8 19.144495(5) x 10-5 

8 7 13 7 18.157546(5) x 10-5 15 - 8 17.805538(5) x 10-5 

8 6 11 6 37.774523(5) X 10-5 13 - 7 36.828860(5) x 10-5 

7 6 11 6 34.920620(5) x 10-5 13 - 7 34.081999(5) x 10-5 

7 5 9 5 81.068312(5) x 10-5 11 - 6 78.458727(5) x 10-5 

6 5 9 5 74.539820(5) x 10-5 11 - 6 72.232654(5) x 10-5 

6 4 7 4 200.519845(5) x 10-5 9 - 5 191.776916(5) x 10-5 

5 4 7 4 183.482753(5) x 10-5 9 - 5 175.747109(5) X 10-5 

5 3 5 3 604.539039(5) x 10-5 7 - 4 566.224291(5) x 10-5 
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In this way, a matrix for the Schrodinger equation at every lattice point is 

obtained. Using the LAPACK package for FORTRAN, this matrix is diagonalized 

and its eigenvectors and eigenvalues are determined. The eigenvalues give the energy 

of the intermediate state and the eigenvectors are used as the intermediate states at 

every lattice point. A certain amount of these eigenvectors have a negative eigenvalue 

and thus represent the complete bound spectrum, but eigenvectors with a positive 

eigenvalue are also obtained. This is the big advantage of the lattice method because 

it yields a pseudo spectrum representing the continuum of unbound states as well. 

The operator acting on the reference state wave function is calculated in continuum 

space and then discretized to the lattice. 

7.3. HIGH-ENERGY PART 

7.3.1. One-Vertex Contribution. As explained in Sec. 4.6, for high photon 

energy it is possible to expand in the binding Coulomb potential and consider the 

contributions separately for each number of interactions with the Coulomb potential. 

Because here only the self-energy correction of order a(Za)6 is determined, the zero­

vertex part, which cancels the mass renormalization, as well as the the one-vertex 

contribution of order a(Za)4 given in Eq. (324), which also vanishes for the highly 

excited states investigated here, are not discussed. The contribution from the one­

vertex part of order a( Z a)6 is due to the F2 form factor correction to the electric 

interaction. From Eq. (325) it is found to be 

(568) 

Expanding F2(~2) in powers of Za in lowest order leads to the term 

(569) 

with F2 (0) = a/27r. Counting the orders of Za, it becomes clear that in order to 

obtain the correction of order a(Za)6 this has to be evaluated on the relativistic wave 

function expanded in Za up to relative order (Za)2 . The reason is that this correction 

evaluated on the nonrelativistic wave function would lead to a contribution in order 

a(Za)4, so in order to get to a(Za)6 corrections of the wave function of relative 
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order (Za)2 have to be included as well. This matrix element has been evaluated in 

Ref. [47] for general states with £ ~ 2 based upon results in Ref. [48] to be 

(570) 

The first part is actually of order a(Za)4 and part of the magnetic moment anomaly 

of the electron, which contributes to the self-energy in basically all orders of a but 

every time in order (Za)4 in the nonrelativistic expansion. 

The contribution from the first order term of the expansion of F2(\72
) is 

b.E1,1(n£j) = <7/;+1 F~(0)\72 2: i1· E I7/;) . 
e 

(571) 

Because this is already of order a(Za)6, it can be evaluated on the nonrelativistic wave 

function. For higher excited states though this correction vanishes. The reason lies 

in the fact that \72 E is proportional to Vo(x) which evaluated on the nonrelativistic 

wave function is zero for states with f ~ 2. 

Thus, there is only one contribution from the one-vertex part. 

7.3.2. Two-Vertex Contribution. For this contribution in Ref. [46], a 

Hamiltonian has been found. There, it is given in dimensional regularization, for the 

infinitesimal overlapping parameter E used here, the so-called photon-energy regular­

ization, it is given in Ref. [47] as 

(572) 

This Hamiltonian is directly of order a(Za)6 and can, therefore, be evaluated on the 

nonrelativistic wave function. Using \7V = Za/r2 and the result in Eq. (328), the 
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corresponding energy shift is found to be 

~E1(nf., E) = ex (Zex)6 me [In (me) _ ~ + 17] 
J 7f n3 2E E 15 

3n2-f(f+l) 
(573) 

x 3n2 (f + ~)(f + 1)(f + ~)f(f - ~) . 

7.3.3. Summary of Corrections in the High-Energy Part. For highly 

excited Rydberg states the total contribution from the high-energy part is given by 

the sum of the two non-vanishing terms as 

~EH(nfj, E) = ~E1,o(nfj) + ~E1(nfj, E) 

ex (Zex)4 me 1 

7f n3 2~(2f+ 1) 

ex (Zex)6 me ( 12~2 - 1 
+ 7f n 3 2 (2j + 1) ~2 (2~ - 1) (2~ + 1)2 

1 3 1 8~ - 3 ) 
-~ 4~2 (2~ + 1) + n2 2 (2j + 1) (2~ - 1) (2~ + 1) 

(574) 

+ ex (Zex)6 me [In (me) _ ~ + 17] 
7f n3 2E E 15 

3n2 -f(f+ 1) 

x 3n2 (f + ~)(f + 1)(f + ~)f(f - ~) . 

As the first term of the last equation, which is already contained in Bethe's result, is 

of order ex( Z ex)4, the high-energy part of the self-energy correction of order ex( Z ex)6 

is found to be 

(575) 

x 3n2 (f + ~)(f + 1)(f + ~)f(f - D . 

Due to common scaling of the corrections, the corrections are generally expressed in 

terms of the scaled self-energy function F, as was already done in Sees. 3 and 4. The 
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high-energy part of this function is given by 

(576) 

Consequently, for highly excited Rydberg states FH is 

1 2 ( 12~2 - 1 
FH(nfj , Za, €) = 2~ (2f + 1) + (Za) - 2 (2j + 1) ~2 (2~ - 1) (2~ + 1)2 

1 3 1 8~ - 3 
- :;; 4~2 (2~ + 1) + n2 2 (2j + 1) (2~ - 1) (2~ + 1) (577) 

[
1 (me) 1 17] 3n2-f(f+l) ) 

+ n 2E - ~ + 15 3n2 (f + ~)(f + 1)(£ + ~)f(f - ~) 

7.4. RESULTS 

The complete self-energy correction can be obtained by adding the low- and 

the high-energy part. As explained in Sec. 4, the terms, which are dependent on the 

overlapping parameter €, exactly cancel each other in this matching procedure (see 

Eq. (332)). The results for both parts from Eqs. (566) and (574) for highly excited 

Rydberg states lead to 

!:1E(nij ) = !:1EL (n£j, €) + !:1EH(n£j, €) 

= a (Za)3
4me 

F(nij, Za) 
7r n 

(578) 

with the scaled self-energy function F, defined in Secs. 3 and 4, which for these states 

is given as the sum of its Iow- and high-energy part as 

F(nij, Za) = Fdnij, Za, €) + FH(nij, Za, €) 

= - 2~ (2~ + 1) - ~ In ko + (Za)2 { [In (2(da)2 ) + ~~] 
3n2 

- £(£ + 1) 
x 3n2 (i + ~)(f + 1)(£ + ~)e(i _ ~) (579) 

12~2 - 1 1 3 

2 (2j + 1) ~2 (2~ - 1) (2~ + 1)2 n 4~2 (2~ + 1) 

1 8~ - 3 } 
+ n2 2 (2j + 1) (2~ - 1) (2~ + 1) + (3sE(nij ) . 
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In the common QED notation, F is usually written as 

The letter denotes the order in a and A thus is order a. Within the Za expansion 

the first subscript denotes the order in Za, and the second the power of the loga­

rithm In[(Za)-2] which goes with this coefficient. In this way the coefficients can be 

identified for highly excited Rydberg states with I! 2: 2 as 

(581) 

(582) 

and 

2 (2j + 1) /\,2 (2/\' - 1) (2/\, + 1)2 
(583) 

1 3 1 8/\' - 3 - - + - -------:---,----,---,----
n 4/\,2 (2/\, + 1) n 2 2 (2j + 1) (2/\, - 1) (2/\, + 1) , 

while all other explicitly written coefficients vanish. Higher-order terms denoted as 

ellipsis are so far unknown. 

Numerical Results for the A60 coefficient for highly excited Rydberg states based 

upon the results for the relativistic Bethe logarithm (3SE obtained with the numerical 

lattice method and presented here in Table 7.1, are given in Table 7.2. These results 

have been published in Refs. [83-85]. Their application for predictions of transition 

frequencies in one-electron ions is explained in the next section. 
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Table 7.2. Values obtained for the A60 coefficient in Eq. (583) with the values for (3SE 

from Table 7.1. The numbers in parentheses are standard uncertainties in the last 
figure. 

n f 2j K, A60 2j K, A60 

16 15 29 15 0.121 749(5) x 10-5 31 -16 1.059674(5) x 10-5 

16 14 27 14 0.155786(5) x 10-5 29 -15 0.540181(5) x 10-5 

15 14 27 14 0.189309(5) x 10-5 29 -15 1.420631(5) x 10-5 

15 13 25 13 0.252108(5) x 10-5 27 -14 2.116050(5) x 10-5 

14 13 25 13 0.296641(5) x 10-5 27 -14 1.945279(5) x 10-5 

14 12 23 12 0.410 825(5) x 10-5 25 -13 2.979937(5) x 10-5 

13 12 23 12 0.469973(5) x 10-5 25 -13 2.729475(5) x 10-5 

13 11 21 11 0.679575(5) x 10-5 23 -12 4.318998(5) x 10-5 

12 11 21 11 0.759620(5) x 10-5 23 -12 3.940256(5) x 10-5 

12 10 19 10 1.019187(5) x 10-5 21 -11 6.331080(5) x 10-5 

11 10 19 10 1.259580(5) x 10-5 21 -11 5.882197(5) x 10-5 

11 9 17 9 2.008438(5) x 10-5 19 -10 10.111871(5) x 10-5 

10 9 17 9 2.158923(5) x 10-5 19 -10 9.141150(5) x 10-5 

10 8 15 8 3.655111(5) x 10-5 17 - 9 16.589245(5) x 10-5 

9 8 15 8 3.860349(5) x 10-5 17 - 9 14.918400(5) x 10-5 

9 7 13 7 7.018373(5) x 10-5 15 - 8 28.939225(5) x 10-5 

8 7 13 7 7.286141(5) x 10-5 15 - 8 25.876638(5) x 10-5 

8 6 11 6 14.449671(5) x 10-5 13 - 7 54.593341(5) x 10-5 

7 6 11 6 14.743922(5) x 10-5 13 - 7 48.518597(5) x 10-5 

7 5 9 5 32.590282(5) x 10-5 11 - 6 114.160310(5) x 10-5 

6 5 9 5 32.667 627( 5) x 10-5 11 - 6 100.820108(5) x 10-5 

6 4 7 4 82.746781(5) x 10-5 9 - 5 274.825060(5) x 10-5 

5 4 7 4 81.441471(5) X 10-5 9 - 5 241.292908(5) x 10-5 

5 3 5 3 240.315141(5) x 10-5 7 - 4 808.701545(5) X 10-5 
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7.5. IMPACT OF THE QED RESULTS 

7.5.1. Overview of Corrections. In the previous sections the energy shift 

due to the self-energy was given in terms of the scaled function F (see Eqs. (157) and 

(331) ). When switching to SI units this relation is given by 

(584) 

where c is the speed of light, h Planck's constant and Roo = a 2m ec/2h the Rydberg 

constant. Here, the states are denoted in the spectroscopic notation nRj . The scaled 

self-energy function is commonly expanded into a semi-analytic series in Za whose 

general from is [22,84,86] 

F(nRj , Za) = A41 (nRj ) In [(Za)-2] + A40(nRj) + (Za)Aso(nRj) 

+ (Za)2 {A62(nRj) In2 [(Za)-2] + A61 (nRj ) In [(Za)-2] + GsE(nRj , Za)} (585) 

+ ; [B40 + ... ] + (;) 2 [C40 + ... ] + .. , . 

The A coefficients arise from the one-photon QED corrections, while the Band C 

coefficients are due to two- and three-photon corrections respectively. The first of 

subscript numbers gives the power in Za and the second denotes the power of the 

logarithm In [(Za)-2]. GSE is the one-photon QED self-energy remainder function. 

Comparing this general expression to the result of Sec. 4, it becomes clear that a lot 

of these term vanish for the highly excited states considered in this work. Indeed, the 

overview over the general expressions which can be found in Refs. [22,86] confirms 

this and for R ~ 2 the expression takes the simpler form 

F(nRj , Za) = A40(nRj) + (Za? {A61 (nRj ) In [(Za)-2] + GsE(nCj , Za)} 

+ ; [B40 + ... ] + (;r [C40 + ... J + .... 
(586) 
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At the end of Sec. 4, the A61 coefficient is already stated for the states considered in 

Eq. (328) to be 

A (n£.) _ 3n
2 

- £(£ + 1) 
61 J - 3n2 (£ + ~)(£ + 1)(£ + ~)£(£ _ ~) 

(587) 
32 3n2 - £(£ + 1) (2£ - 2)! 
3 n2 (2£ + 3)! . 

The leading term of Eq. (332), is identified as the A40 coefficient in Eq. (581), which 

is 

(588) 

with the Dirac quantum number K, = (_1)j-f+1/2(j + ~). The source of first term in 

the above equation is in fact the one-photon contribution from the magnetic moment 

anomaly of the electron ae = (g - 2)/2. The contributions from the two- and three­

photon level to this electric moment anomaly are known [87] and thus all known terms 

of F lead to 

F( £. Z ) = _ ae 7r _ ~l k ( £) 323n
2 

-£(£+ 1) 
n J, a K,(2£ + 1) a 3 non, + 3 n2 

(2£-2)! 2 [-2] 2 
X (2£ + 3)! (Za) In (Za) + (Za) GSE(nfj , Za) . 

(589) 

The self-energy remainder function GSE can be calculated by either the fully relativis­

tic numerical method described in Sec. 3 or by the analytic expansion in Za described 

in Sec. 4. 

For the fully relativistic numerical evaluation the complete one-photon, self­

energy function GSE is considered. Its calculation follows the methods outlined in 

Sec. 3. For higher excited states only the extraction procedure of lower order terms 

also includes term of order (Za)4, i.e the nonrelativistic result is extracted with the 

spurious lower order terms. This slightly different procedure to the one described 

here, which allows for results even for low Z, is explained in Ref. [86]. The problems 

which have to be faced in order to obtain results for highly excited states and how 

they have been overcome are detailed in Ref. [88]. 
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For the method of Sec. 4, a nonrelativistic expansion of GSE is carried out. 

Again, the nonrelativistic expansion is given by the semi-analytic expansion in Za 

and it is here 

From a comparison to Eq. (332) the A60 coefficient can be found to be 

(591) 

with '2(nfj) defined in Eq. (326) and the relativistic Bethe logarithm f3sE(nfj). While 

for the most terms of A60 general expression for arbitrary states are known, the 

relativistic Bethe logarithm f3SE has to be determined numerically with the numerical 

lattice method, based on Ref. [78] and detailed in Ref. [42], for every state under 

study. 

Of the higher order terms, only for B60 calculations exist for states with £ ::; 5 

[89] and the vacuum polarization contribution to Aso is known which is given in 

Ref. [90] and is extremely small. All other terms are unknown. Based on the trend 

exhibited for highly excited states compared to lower lying states, the magnitude of 

the QED correction decreases with higher principal quantum number n and orbital 

angular momentum f, which for example can be seen from the values of A60 in Ta­

ble 7.2. Therefore it becomes possible to neglect the unknown higher order terms in 

GSE and approximate it by its value for (Za) -+ 0 which is 

(592) 

In general, this definition is used to compare the results obtained with the methods 

of Secs. 3 and 4. For this, GSE is evaluated with the fully relativistic, numerical 

method for different values of Z and the results are extrapolated to Z = o. The value 

extrapolated from the numerical method should then agree with the A60 coefficient 

obtained through the Za expansion. Such an analysis is for example carried out and 

described in Ref. [86]. 
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Due to the described trend for highly excited Rydberg states the results of both 

methods can basically be compared directly because it is assumed that the higher 

order corrections are very small. Indeed, a comparison of the A60 coefficients, which 

are obtained for Rydberg states and presented in Ref. [83], and a nonperturbative (in 

Za) calculation of GSE , with the results given in Ref. [88], shows a excellent agreement 

of both values even for rather high nuclear charge numbers Z up to Z = 16. In this 

way errors, which cannot be excluded in such complicated computations otherwise, 

seem rather unlikely because the results are checked in a highly nontrivial way. It 

is important to note that numerical calculations for highly excited Rydberg states 

constitute a highly complicated task. Moreover, an additional comparison for the 

lower Rydberg states in Ref. [85] shows a very good agreement of both values. In 

fact, the deviation IGsE(Za) - A601 numerically is less than 10-4 for all states and all 

nuclear charge numbers considered therein. 

Therefore, for the states considered in this work the scaled self-energy function 

F can be written as 

F( f · Z ) = _ ae 7r _ ~ 1 k ( f) 323n
2 

- f(f + 1) 
n J' a K:(2f + 1) a 3 non, + 3 n2 

(2f - 2)! )2 [)-2] 2 
X (2f + 3)! (Za In (Za + (Za) A60(nfj) + ... , 

(593) 

where the dots denote the contributions from higher loop orders. 

Hence, the energy shift due to QED radiative effects of a state with f ~ 2 can 

be formulated by plugging this into Eq. (584) which leads to 

D.E(nf .) = 2hRooc Z4 a
2 {_ ae _ ~ [~ln ko(n f) + 323n

2 
- f(f + 1) 

J n 3 K(2f + 1) 7r 3 ' 3 n2 

(2f - 2)! 2 [-2] 2 )] } x (2f + 3)! (Za) In (Za) + (Za) Aoo(nfj + .... 
(594) 

One may now ask why in Sec. 3 the effort is undertaken to describe the fully 

relativistic QED theory, which allows to evaluate GSE , while it is not used here. The 

reason is that it not only helps to understand the efforts and techniques involved in 

the determination of GSE to allow for such a comparison, but also illustrates many 

of the challenges in QED for bound states. It also provides the reasons and incentive 
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for the development of the nonrelativistic formalism. Indeed, as explained in Sec. 4, 

the nonrelativistic theory is directly based upon the nonrelativistic expansion of the 

fully relativistic expression. 

In addition, Sec. 3 illustratively and thoroughly describes the formal separation 

of the integral into the two parts using a deformation of the integration contour. 

For the nonrelativistic theory in Sec. 4 just the separation point is the infinitesimal 

E instead of En. This then enables the nonrelativistic expansion in the low-energy 

part. As shown in the model example in Sec. 5, with the infinitesimal overlapping 

parameter, no spurious lower order terms, which are present in the fully relativistic 

method, arise. These lower-order remainder terms are the reason, why the fully 

relativistic method requires demanding high precision calculations because, as seen 

in the model in Sec. 5, they induce a severe loss of numerical precision. This loss is 

especially prevalent for low Z. 

The region of low nuclear charge number Z is where the nonrelativistic formalism 

particularly excels because it is an expansion in Za, which is small in this region. 

With results also available for low Z from the fully relativistic formalism, the theory 

can be cross checked in a highly nontrivial way and shows outstanding agreement of 

both approaches. In addition, the overview over both methods allows to appreciate 

the clarity of the nonrelativistic formalism as well as its illustrative power to provide 

a more accessible physical origin of the correction terms. 

So far, the expressions are given in the non recoil limit, where the nuclear mass 

is assumed to be infinite, in order to simplify the calculations. The effects from a 

finite nuclear mass can be included into the QED radiative level shift by use of the 

reduced mass 

mr = 1 + r(N) (595) 

with the electron to nucleus mass ratio r(N) = me/mN(N) and the mass of the 

nucleus mN(N), instead of the electron mass me. In writing mN(N), the subscript N 

is used in order to denote the nuclear mass, and the argument N is reserved in order 

to differentiate a specific nucleus under investigation. Thereby the notation used in 

Ref. [85] is adopted. 
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Experimentally, transition frequencies for a transition between different levels 

are measured. This transition frequency is related to the energy of the levels by 

(596) 

for a transition between quantum states \1) and \2), where h is Planck's constant. 

This is used here to define the bound-state energy as a bound-state frequency 

(597) 

which means 

(598) 

In this way, the energy shift due to QED radiative correction can be reformulated 

into a frequency. Out of Eq. (594) it is obtained with the inclusion of the reduced 

mass effects for the highly excited states under investigation to be 

v (n£.) _ Rooc 2Z
4
a

2 
{_ 1 ae 1 

QED J - 1 + r(N) n3 1 + r(N) /'£(2£ + 1) + [1 + r(N)12 

a[_il k ( £) 323n2-£(£+1)(2£-2)! 
x 7r 3 non, + 3 n2 (2£ + 3)! (599) 

( 2 (1 + r(N)) )2 )] } x Za) In (Za)2 + (Za A60(n£j + .... 

However, with the inclusion of effects from finite nuclear mass also the non recoil 

limit was dropped. In turn, this implies that recoil effects have to be considered 

and for a accurate prediction of transition frequencies of one-electron atoms more 

corrections arise. Now, these other necessary contribution of the transition frequency 

between atomic states will be discussed. A more detailed overview over these terms 

and their derivation and concerning references can be found in Refs. [22,83,84,91,92]. 

The by far largest term is evidently the contribution from the Dirac energy, 

which here is expressed as a Dirac frequency VD. With the rest mass subtracted and 
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corrections from the nuclear motion included it is commonly given as 

Rooc {. r(N) a 2 
. ]2} 

VD = 1 + r(N) 2 f(n,)) -1- 2[1 +r(N)j2 [f(n,)) -1 , (600) 

with the function f(n, j) given as 

[ ]
-~ 

. (Za)2 
f(n,))= 1+ 2 . 

(n - j - ~ + V(j + ~)2 - (Za)2) 
(601) 

The next term arises for finite nuclear mass from the two-body Breit-Hamil­

tonian, it is called the Barker-Glover term [93] and is 

(602) 

The final contribution is then from relativistic recoil corrections which lead to a change 

of the frequency for states with .e ;::: 2 by [94-97] 

Rooc 2 r(N) Z5a 3 { 1 [8 
VRR = 1 + r(N) 7m3 [1 + r(N)J2 -Jln ko(n,.e) 

7 1 1 - 3 .e(.e + 1)(2.e + 1) + 7rZa [1 + r(N)] (603) 

[ 
.e(.e + 1) 2 1 } 

x 3- n2 (4Z2-1)(2.e+3) + ... , 

where In ko again is the (nonrelativistic) Bethe logarithm that depends on nand .e. 
The ellipses at the end, stand for the unknown terms of higher order. 

If the nucleus has a non zero spin, this spin can couple to the total angular 

momentum of the electron. This cause the hyperfine structure of the electron levels. 

The corresponding frequency for the hyperfine splitting can be found from Ref. [98] 
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Rooc Z3a 2 r(N) K 

lIhfs = 1 + r(N) n3 1 + r(N) ~ 

x (2K + ~(K2 _ ~) [J(J + 1) - J(I + 1) - j(j + 1)] 

31 1 ( ) 2K C'Y + n - 1 K I) - N {I a 1 } 
x n K 2K + 1 N4 (4 2) + - -4 ' ,,-1 7rK 
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(604) 

where gN is the nuclear 9 factor, f = f + J the total angular momentum of the one­

electron ion, , = VK2 - (Za)2 and N = v(n -IKI)2 + 2(n -IKlh + K2. The self­

energy corrections to this result, of which the lowest order term is already included, 

are derived in Sec. 8. The additional self-energy corrections of relative order (Za)2 

can be found in Eq. (692). 

This concludes the discussion of all contributions to the transition frequencies 

between states with e 2: 2 in one-electron atoms known so far. A comparison with 

similar investigations for states with lower orbital angular momentum like in Refs. [22, 

86] reveals that the expression simplify considerably. 

Especially, the troublesome nuclear-size correction is absent. Moreover, as al­

ready mentioned in the discussion of the QED radiative corrections, the magnitude 

of the contribution reduces. In turn, this increases the accuracy of the theoretical 

prediction which can be achieved with the known terms. The total frequency of a 

specific level is then the sum 

lIi = lI]) + lIBC + lIRR + lIQED . (605) 

where i = 1,2 is defined in the spirit of Eq. (598) and lIhfs is assumed to have been 

subtracted; if necessary, the hyperfine-fine structure mixing terms can be calculated 

according to the approach outline in Sec. III of Ref. [99]. 

The most important advantage of Rydberg states is however the absence of the 

nuclear size correction for these states, which is negligible small. The reason lies in 

the fact that these states are so far away from the nucleus and the overlap with the 

nucleus is extremely small. In fact, the probability for a Rydberg state of an one­

electron ion with principal quantum number n and orbital momentum e = n - 1 to 
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be within a radius r within the nucleus is [84] 

1 1 (2Z )2n+l 
P(r) = d3x \\lI(x) \2 ~ (2 1)' _r , 

Ixl<r n + . nao 
(606) 

where ao is the Bohr radius. If r is assumed to be the nuclear charge radius, then 

the high-power (rjao)2n+l together with the factorial lead to an almost complete 

suppression of effects from the nuclear radius for the states under investigation. Es­

pecially, in view of the recent measurement in Ref. [100] of the proton charge radius 

in muonic hydrogen which disagrees with the charge radius obtained in electronic 

hydrogen through spectroscopy [22] as well as with the proton charge radius from 

scattering experiments [101], this fact becomes even more important. 

7.5.2. Estimate of Theoretical Uncertainties. After the overview over 

all relevant theoretical expressions to calculate transition frequencies between Ry­

dberg states, it is important to investigate how accurate the predictions are which 

can be made with them. Otherwise, a sensible comparison between the theoretical 

predictions and experimental measurements is not possible. 

There are, in fact, two different sources of uncertainty in the theoretical predic­

tions. The first is due to the fundamental constants and nuclear masses required for 

the evaluation of the theoretical frequencies. These cannot be determined by theory 

from first principle but rather have to be measured in experiments and their value 

determined by a comparison of theory and experiment. Therefore, their values carry 

an uncertainty. All fundamental constants and nuclear masses, as well as their asso­

ciated uncertainties, which have been employed in the calculations of the transition 

frequencies, are given in Table 7.3. The values of the fundamental constants have 

been taken from CODATA2006 [22], the values for the required nuclear masses are 

from the 2003 Atomic Mass Evaluation [102] (AME2003). It is important to note that 

the masses given therein are the atomic masses of the nucleus and the electrons. The 

nuclear mass is obtained by subtracting the mass of the electrons and their binding 

energies from the atomic mass. This procedure is explained in Ref. [103]. The values 

for the ionization energies are taken from Refs. [103,104]. All of the masses are given 

in the atomic mass unit u, in which they are more accurately known than in kg. In 

fact, currently there are efforts to use the atomic mass unit to define the SI unit 
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kilogram. Unfortunately, they have not been met with success so far and therefore 

the conversion factor, which is the Avogadro number N A , still has a rather large rel­

ative uncertainty of 5.0 x 10-8 . However, because the theoretical expression for the 

transition frequency only depend on the mass ratio and also masses determined in 

Penning traps are given in the atomic mass unit, it will be used throughout this work. 

In order to reduce uncertainties from the theoretical determination of the electron's 

magnetic moment anomaly ae , the experimentally determined value [105] is used. 

Table 7.3. Fundamental constants and masses used as input parameters for the 
evaluation of the theoretical expression and error estimates. In parentheses, the 
standard uncertainty is indicated. The masses mA(N) correspond to the atomic 
mass of an atom (including the bound electrons) with nucleus N. By contrast, the 
nuclear mass is denoted as mN(N) in this work (it excludes the mass of the bound 
electrons and their binding energies). 

Constant 

mA(1H) 
mA(2H) 
mA(4He) 

mA(2°Ne) 

Value 
3.289841960361(22) x 1015 Hz 

7.2973525376(50) x 10-3 

1.15965218073(28) x 10-3 

5.4857990943(23) x 10-4 u 

1.00782503207(10) u 

2.014101 778040(80) u 

4.002603254131(62) u 

19.9924401754(19) u 

The other source of uncertainty for the theoretical prediction arises because 

higher order terms in the theoretical formulas are not known and so a prediction made 

from them is only accurate up to effects from these higher order terms. In order to 

obtain the uncertainty of the theoretical prediction, the effects from the uncalculated 

higher-order terms, denoted as dots in the expressions in the last section, have to 

be estimated. The uncertainty of the QED radiative corrections is assumed to be 

dominated by the B60 coefficient, which is not known for Rydberg states. Form a 
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comparison of B60 and A60 for lower lying states, B60 seems to be about four times 

larger in magnitude. Thus, 4A60a/1f is used as the uncertainty of the QED corrections 

involving more photons. Because not for all transitions so far results for GSE exist, 

also an uncertainty estimate for the higher order terms in Za is included for safety. 

For this the magnitude of ASI is estimated as that of A 60 , which means the associated 

uncertainty is estimated as (Za)2In[(Za)-2]A6o. For the relativistic recoil corrections 

the uncertainty is estimated as Za In [(Za)-2] times the last known term. These are 

the estimates which are already used in Refs. [83-85]. Possible asymmetries of the 

line-shape have been investigated by Low in Ref. [106] and found to be of the order 

a(Za)2 EQED . They can be calculated with the formalism therein if required. 

As an example, the theoretical prediction for transition frequency between Ryd­

berg states is evaluated. The results for different nuclei are given in Table 7.4. In the 

following two subsections applications of such very accurate theoretical predictions 

for Rydberg states are investigated. 

Table 7.4. Theoretical predictions for transition frequencies in the one-electron ion 
of helium and neon. The transition from the initial level 11) with quantum numbers 
n = 15, f = 14, and j = 29/2 to the level 12) with quantum numbers n = 16, f = 15, 
and j = 31/2 is considered. The individual contributions are listed in Eq. (605). 

Term 4He+ v(THz) 2oHe9+ v(THz) 

VD 7.081 331 all 067 13(4736) 177.054 575479 0197(11840) 

lIBG 0.000 000 000 000 01 0.000 000 000 0002 

VRR 0.000 000 000 000 11 0.000 000 000 0625 

VQED -0.000 000 001 261 66 0.000 000 788 808 8 
Total 7.081 331 009 805 59(4736) 177.054 574690 2737(11840) 

7.5.3. Rydberg States and the Rydberg Constant. While the lS-

2S transition in hydrogen has been measured with the astonishing relative accuracy 

of 1.4 x 10-14 [9], the Rydberg constant is only known with a relative accuracy 

of 6.6 x 10-12 [22]. This is due to theoretical uncertainties from the nuclear size 
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correction. Though the measurement of the transition frequency can be used to 

deduce a value for the root mean squared (RMS) charge radius of the proton, the 

uncertainty of other measurements of this charge radius do not allow a deduction of 

a more accurate value for the Rydberg constant. 

As stated before, highly excited Rydberg states are now basically independent 

of the nuclear size. Thereby, a problematic theoretical uncertainty can be avoided. 

The second discussed advantage of Rydberg states, is the reduction of the magnitude 

of QED and other corrections. For example the A60 coefficient for the Rydberg states, 

which are considered in Ref. [83], is about a factor 10-6 times smaller than the A60 

coefficient for the 28 state. Moreover as evident from the comparison carried out 

in Ref. [88] the A60 coefficient accounts for bulk of the one-photon QED corrections 

in Rydberg states. This is not the case for 8 states which can be seen from the 

values for GSE and A60 given in Ref. [22]. Also, in the two-photon self-energy some 

of the known terms have been shown to vanish for Rydberg states. All of this makes 

Rydberg states very attractive for a determination of the Rydberg constant, from a 

theoretical point of view. Apart from the Rydberg constant which limits the accuracy 

of the theoretical prediction, all other uncertainties appear to be on or even below the 

level of accuracy as in the seminal measurements of the 18-2S transition in hydrogen 

in Ref. [9]. 

In Table 7.4 transition frequencies between the highest-j states with n = 15 and 

n = 16 in the one-electron ion of helium and neon have been calculated using the 

formulas in Eqs. (599),(600),(602),(603) and the fundamental constants in Table 7.3 . 

Because the nuclei considered have zero nuclear spin, no hyperfine structure correc­

tions are necessary. The sources of uncertainties and an estimate of their size based 

upon the discussion in Sec. 7.5.2 are given in Table 7.5 for the transition frequencies 

from Table 7.4. As evident form Table 7.5 the highest uncertainty arise from the 

Rydberg constant. Assuming the theory is correct, a comparison of an experimental 

measurement for the transition frequency with an accuracy higher than the accuracy 

of the Rydberg constant, can thus be used in order to deduce a more accurate value 

for the Rydberg constant. Because the uncertainty of the electron to nucleus mass ra­

tion can be a limiting factor, it is important to carry out the measurement in systems 

with a well known nuclear mass. 
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Experimentally, transition frequencies between Rydberg states of hydrogen have 

been measured in an 80 K atomic beam in the millimeter region [107]. Though the 

achieved accuracy of 2.1 x 10-11 [107,108] is not enough to reduce the uncertainty 

of the Rydberg constant, it shows the feasibility of high-precision spectroscopy in 

Rydberg states. In lower-lying states the unprecedented precision in the measure­

ments become possible with the advent of optical frequency combs [109], which can, 

in principle, provide relative frequency measurements with uncertainties approaching 

1019 over 100 THz of bandwidth [110]. Considering recent advances in the accu­

racy of frequency standards [111], a further increase of spectroscopical precision over 

even today's impressive level [9], could be possible. Efforts are currently underway at 

NIST [83,84,88] to measure transitions between Rydberg states with optical frequency 

combs. 

Table 7.5. Sources and estimated relative standard uncertainties in the theoretical 
value of the transition frequency between the highest-j states with n = 15 and n = 16 
in hydrogen-like helium and hydrogen-like neon. 

Source He+ Ne9+ 

Rydberg constant 6.6 x 10-12 6.6 X 10-12 

Fine-structure constant 6.1 x 10-16 1.5 X 10-14 

Electron-nucleus mass ratio 5.8 x 10-14 1.2 X 10-14 

ae 4.2 x 10-20 1.0 X 10-18 

Theory 1.6 x 10-17 2.7 X 10-14 

For an interrogation with optical frequency combs circular Rydberg states in 

one-electron ions with a low nuclear charge number Z seem to most favorable. Per­

turbations from the laser field and other sources are smaller for heavier ions with a 

larger Z, though. In general, a large variety of measurements in ions with different 

Z and for many different transitions could be useful for experimental optimization 

and internal consistency checks. Achieving a relative uncertainty smaller than the 

relative uncertainty of the Rydberg constant in the experimental measurements of 



189 

the transition frequency, a comparison of theory and experiment could thus allow to 

determine a more accurate value for the Rydberg constant. 

A more accurate value for the Rydberg constant is not only interesting for a 

deeper understanding of fundamental constants in general but can also help to clear 

up the current problem of disagreeing values for the RMS charge radius of the proton. 

If the measurements can be reproduced and conceivable errors ruled out, using the 

RMS charge radius determined in muonic hydrogen would require to alter the Rydberg 

constant to keep the frequency predictions in hydrogen in agreement. A measurement 

of the Rydberg constant in a system, which is independent of nuclear size effects, 

is therefore very desirable to uncover the source of the disagreement. A Rydberg 

constant determined in such a way would thus be free of any possible mixing of QED 

and nuclear effects, which might be contained in the Rydberg constant determined in 

lower-lying states. Moreover, the exact magnitude of the non QED effects i.e. nuclear 

size or possible other effects can be quantified. 

The investigation provided that nuclear masses can be a limiting factor in highly 

precise theoretical predictions for Rydberg states. This opens up the possibility to 

envision the determination of electron to nucleus mass ratios and nuclear masses, 

which will be studied in the next section. 

7.5.4. Rydberg States and the Nuclear Masses. Due to the unprece­

dented precision of measurements of transition frequencies, which can reached with 

optical frequency combs, and the very accurate theoretical predictions, which can be 

made for Rydberg states, they are interesting for more than the determination of 

the Rydberg constant. For such a possible determination of the Rydberg constant 

in highly excited states, atoms with a well known nuclear mass are most interest­

ing because the electron to nucleus mass ratio can constitute a large portion of the 

theoretical uncertainty. In one-electron ions, where the nuclear mass has a large un­

certainty, this uncertainty could prohibit to deduce a more accurate value for the 

Rydberg constant. In such an ion, though, a comparison of highly precise experimen­

tal frequency measurements and the theoretical prediction can be used to deduce a 

more accurate value for the nuclear mass. While the possibility of a determination of 

nuclear mass with high-precision spectroscopy has been investigated for molecules in 

Ref. [112,113]' the described simplifications for Rydberg states, make them appear 
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more attractive for such efforts. Therefore, the possible determination of nuclear mass 

with high-precision spectroscopy in highly excited Rydberg states of one-electron ions 

is investigated here, based on our analysis in Ref. [85]. 

Now the question is how can the masses be determined with high-precision spec­

troscopy. For this purpose it is instructive to recall the expression for the frequencies 

of Rydberg states in Eqs. (599), (600), (602), and (603). It can be observed that 

all frequencies are directly proportional to the Rydberg constant but even to rather 

high accuracy (rv 10-14 ) they are also nearly proportional to (1 + r (N) ) -1 . This 

dependence on the electron to nucleus mass ratio and therefore on the nuclear mass, 

allows the determination of the nuclear mass from the transition frequency. 

In principle, there are now two methods to do that. For the first method (method 

l) isotopes of a given charge number Z are considered. The transition frequencies of 

one specific transition is only different between the isotopes because of the different 

nuclear masses. If one isotope has a very well determined mass, its mass can be used 

as a reference. This nucleus is denoted as NR and its mass as mN(NR). The other 

isotope, whose mass mN(NM ) is to be determined, is denoted as N M . A specific 

transition frequency is then measured in the reference isotope, which is denoted as 

Vf .... 2. The same transition is also measured in the isotope, whose mass is to be 

determined, which gives the frequency Vt!...2. The measured frequencies can then be 

written as equations by using the experimental value as the left-hand side in Eq. (605) 

and the theoretical expression as the right-hand side. The resulting system of two 

equations can be solved for two variables, namely the Rydberg constant and the 

unknown nuclear mass mN(N M). The general idea behind it is that the Rydberg 

constant currently is the biggest source of uncertainty and the current uncertainty is 

not enough to enable accurate mass determinations. This point was elucidated in the 

discussion of Tables 7.4 and 7.5. With the isotope shift, this problem can be avoided 

because the Rydberg constant can be eliminated in the system of two equations. 

For the next method in principle again two frequencies have to be measured, one 

in a system with a well-known reference mass and one in a the system, whose mass 

is to be determined. The first resulting equation in the system with the well-known 

mass is solved for the Rydberg constant. This is plugged into the second equation, 

which is then solved for the unknown mass. Hence, the first measurement is in 
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fact a determination of the Rydberg constant. As discussed in Sec. 7.5.3 efforts are 

undertaken at NIST to deduce a improved value for the Rydberg constant in Rydberg 

states. There is also an experiment at the National Physics Laboratory (NPL) in the 

United Kingdom, where the 2S-8D transition in hydrogen is investigated with the 

aim of determining the Rydberg constant [114]. Should these efforts be crowned with 

success and the uncertainty of the Rydberg constant be reduced significantly to a 

relative accuracy between 10-13 ... 10-14, using the frequency in the reference system 

to solve for the Rydberg constant is no longer necessary. Thus, a transition frequency 

Vf!..2 measured in an one-electron ion with an inaccurately known nuclear mass can 

directly be compared to the theoretical value and the mass mN(NM ) determined by 

solving for it. This is known as method II in this work. Alternatively, the equation 

can be solved for the electron to nucleus mass ratio r(N M) instead, this is method III. 

After these considerations the explicit formulas for each method will be derived. 

As explained earlier the theoretical expressions are all directly proportional to the Ry­

dberg constant but carry very different dependencies on the electron to nucleus mass 

ratio. In the Dirac value Eq. (600) for example, the first term is directly proportional 

to the ratio of the reduced mass to the electron mass itT/me = 1/ (1 + r(N))), while 

the second is proportional to r(N) (ltr/me)3. Despite this complicated dependence, it 

is possible to assume an approximate proportionality to the ratio of the reduced mass 

to the electron mass. Extracting these two proportionalities out of the transition 

frequency V1 ..... 2 a scaled frequency ft ..... 2 can be defined by 

(607) 

Because the proportionality to (1+r(N))-1 is only approximate, the scaled frequency 

11 ..... 2, which is given by theory, still carries a residual mass dependence. Fortunately, 

at least for stable/long living nuclei equal in mass or heavier than lithium, if known 

electron to nucleus mass ratios are used for the residual dependence of ft ..... 2, the 

uncertainty introduced by this does not contribute to the uncertainty on a level 

required for the nuclear mass determination. With this the required formulas can 

now be derived. 
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Formulas for method I: one isotope with a well determined mass is required. 

It acts as the reference mass and accordingly, its transition frequency, mass ratio 

and theoretical value are labeled Vf .... 2' r(NR ), and ff ...... 2) respectively. The transition 

frequency, mass ratio and theoretical value, which will be labeled V~2' r(N M), and 

f~2' of another isotope with a inaccurately known mass, are then determined. The 

mass of this isotope m N (N M) can then by expressed in terms of the reference mass 

mN(NR ) by solving the equations 

By taking the ratio of the two frequencies the Rydberg constant cancels and 

Vr .... 2 ff .... 2 1 + r(NM ) 

Vt'!...2 = f~2 1 + r(NR ) 

mN(NR )ff ..... 2 mN(NM) + me 

mN(NM)f~2 mN(NR ) +me 

is obtained. Solving for the nuclear mass mN(NM ) yields 

(608) 

(609) 

(610) 

(611) 

This allows us to determine the nuclear mass of one isotope mN(NM) from a mea­

surement of a transition frequency vf'!..2 in this isotope, and a reference transition 

frequency vr .... 2 in an isotope with nuclear mass mN(NR). 

Formulas for method II: For the second method it is assumed that a more pre­

cise value for the Rydberg constant is available with a relative uncertainty between 

10-13 ... 10-14 . This could be provided by the on-going experiments with this aim 

like the joint theoretical and experimental project with the National Institute of Stan­

dards and Technology (NIST), presented in Refs. [83,84,88]. Its details have been 

discussed in the previous section Sec. 7.5.3. Furthermore, there is a project at the 
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National Physics Laboratory (NPL) in the United Kingdom where the 2S-8D tran­

sition in hydrogen is intended to be used in order to improve the accuracy of the 

Rydberg constant [114]. 

This would provide the first frequency solved for the Rydberg constant. Thus, 

only the transition frequency Vt!-.2 in the one-electron ion, whose mass is to be deter­

mined, has to be measured. The nuclear mass mN(NM ) can directly be obtained by 

solving Eq. (607) yielding 

(612) 

The crux of the mass determination lies in the numerical loss in the conversion of 

frequency measurements into a determination of the mass. This numerical loss arises 

because 

(613) 

where r(NM ) is rather small (~ 10-4 •.. 10-5 in typical cases), whereas the two terms 

on the left hand side are of order unity. 

Alternatively, this equation can be solved for the electron to nucleus mass ratio, 

which gives 

(614) 

The resulting determination of r(N M) is denoted as method III in the following. 

Again, there is a loss in numerical significance of about four decimals. 

For illustrative purposes the determination of the electron to nucleus mass ratio 

using method III for 1 H, 2H from Ref. [85] is reiterated here. The electron to nucleus 

mass ratios in hydrogen and deuterium are important for precision spectroscopy in 

these systems and can be very helpful for the on-going efforts of a comparison of 

transition frequencies in hydrogen and anti-hydrogen [115]. Examples for method I 

and method II are treated in Ref. [85]. 

One specific transition is considered, which is the two-photon transition from the 

state 11) with quantum numbers n = 9, f = 8, j = 15/2 to a state 12) with quantum 
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numbers n = 16, £ = 10, j = 19/2. This specific transition is studied because 

for states with j = £ - ~ the QED correction are generally smaller and therefore 

also their associated uncertainties. Moreover, two-photon transitions are interesting 

due to the smaller line width. Based upon the theoretical formulas in Sec. 7.5 with 

the fundamental constants and masses from Table 7.3 the transition frequencies for 

hydrogen and deuterium have been calculated, which are given in Table 7.6. The 

transition frequencies do not include the hyperfine structure. For hydrogen, which 

has a nuclear spin of I = ~, and deuterium with 1= 1, the hyperfine splitting can be 

evaluated using Eq. (604). Moreover, hyperfine-mixing corrections can be determined 

with the formalism described in Ref. [99]. It is assumed that these corrections have 

been subtracted from the experimentally measured frequencies. 

Table 7.6. Theoretical predictions for two-photon transition frequencies in atomic 
hydrogen and deuterium. The transition from the initial level 11) with quantum 
numbers n = 9, £ = 8, and j = 15/2 to the level 12) with quantum numbers n = 16, 
£ = 10, and j = 19/2 is considered. For the upper state, the higher-order self-energy 
coefficient reads A60{n = 16,£ = 10,j = Ii) = 1.026705(5) X 10-5. The individual 
contributions are listed in Eq. (605). 

Term IH v(THz) 2H v{THz) 

VD 27.7492826987469(1857) 27.756 833 254 1589(1856) 

VBG 0.000 000 000 0005 0.000 000 000 0001 

lIRR 0.000 000 000 0009 0.000 000 000 0004 

VQED 0.000 000 003 4893 0.000 000 003 4911 

Total 27.749 282 702 2366(1857) 27.756 833 2576503(1856) 

With a similar analysis of the sources of uncertainty as in the last section, 

one finds that the dominant source of uncertainty is again the Rydberg constant. 

However, the second largest contribution to the uncertainty in these systems comes 

from the electron to nucleus mass ratios which have the following relative accuracies: 

6r(1H) -10 
r(1H) = 4.3 x 10 , (615) 
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The relative uncertainty of the theoretical predicted transition frequency in both 

these systems caused by the uncertainty of the electron to nucleus mass ratio is of the 

order 10-13 , making them unattractive for improving the accuracy of the Rydberg 

constant. With a more accurate value for the Rydberg constant of the order of 10-14 , 

the accuracy of the electron to nucleus mass ratio would in fact be the limiting factor 

of the theoretical prediction. Thus, such an accurate value for the Rydberg constant 

and a frequency measurement of the same relative accuracy of about 10-14 , would 

allow to determine a more precise value for the electron to nucleus mass ratio in these 

systems. 

The theoretically determined transition frequencies in Table 7.6 can be used for 

a more quantitative analysis of the sources of uncertainty and the reachable accuracy 

based on Eq. (614). Similar, to the last section the fundamental constants, the 

masses and the theoretical predictions lead to uncertainties. Based on the formal 

dependence given by Eq. (614) of the electron to nucleus mass ratio on them and 

the uncertainty introduced by them can be estimated. The attained experimental 

accuracy is kept as a variable. In this way, it can be illustrated how accurate a 

determination of the Rydberg constant and the transition frequency has to be for 

a certain accuracy of the electron to nucleus mass ratio. For the case of deuterium 

N M = 2H these are given in Table 7.7 and for the case of hydrogen N M = 1 H they can 

be found in Table 7.8. The first contribution in both cases to the relative uncertainty 

or(NM)/r(NM) of the electron to nucleus mass ratio, r(NM), to be measured, comes 

from the residual dependence of the scaled frequency f on r(N M). It can be seen 

that it does not contribute on a relevant level to the total uncertainty, which also 

justifies the approximate proportionality used in the described methods. The second 

uncertainty is introduced by the fine-structure constant. Then the experimentally 

determined value for the electron magnetic moment anomaly ae causes the uncertainty 

in the third line of both tables. The last contribution above the horizontal line is 

then due to the neglected higher-order terms in the theoretical prediction, which 

interestingly become very small due to the functional dependence for the mass ratio. 

This is not the case for both method I and method II, where the theoretical uncertainty 

plays a more important role (see Ref. [85]). Below the horizontal line, the uncertainty 

introduced by the experimental measurement of the transition frequency and the 
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experimentally determined Rydberg constant are given in terms of the respective 

relative accuracies. 

Table 7.7. Application of method III (see text) for the determination of the electron 
to nucleus mass ratio for NM = 2H. The transition is \1) ~ \2) where \1) is the 
state with quantum numbers n = 9, f = 8, and j = 15/2, and \2) has quantum 
numbers n = 16, f = 10 and j = 19/2. The contributions to the relative uncertainty 
8r(NM )/r(NM ) of the electron to deuteron mass ratio due to the 2006 CODATA 
values for the fundamental constants and masses required for the evaluation of the 
theoretical expressions are given above the horizontal line. Contributions due to the 
assumed spectroscopic measurements are given below the horizontal line. 

Source 
8r(NM ) 

r(NM ) 

1 or (NM ) 

r(NM ) or(NM ) 8r(NM ) 
9.1 x 10-17 

1 or(NM )8a 
r(NM ) on 

1.4 x 10-12 

1 or(NM ) 8 
r(N M ) oae ae 1.2 x 10-16 

8ft!-. 2 6.8 x 10-33 

1 or(NM ) M 
3.7 x 103 (8vt-2 ) (N ) 0 M 8vl+->2 r M v1 .... 2 v1 .... 2 

1 or(NM ) 
3.7 x 103 (

8R
ooC) 

r(N M) oRooc 8Rooc Rooc 

For a conservative estimate of the experimentally possible accuracy of a mea­

surement of the transition frequency in such a system a study of the ratio of the 

energy of the transition E to the decay width of the line r is required. From a gen­

eral calculation of one-photon decay widths of Rydberg states in Ref. [116], Ref. [83] 

used the estimate for the Q factor for transitions from n to n - 1 of near circular 
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Rydberg states 

Q = En - En- 1 = 3n
2 

r n + r n-l 4a(Za)2 . 
(616) 

Table 7.8. Application of method III (see text) for the determination of the electron 
to nucleus mass ratio for N M = 1 H. The transition is 11) ~ 12) where 11) is the state 
with quantum numbers n = 9, f = 8, and j = 15/2, and 12) has quantum numbers 
n = 16, f = 10 and j = 19/2. Again, contributions to the relative uncertainty 
or(N M ) / r(N M) of the mass ratio are separated into those caused by theoretical input 
data which are given above the horizontal line, and contributions due to the assumed 
spectroscopic measurements are given below the horizontal line. 

Source 
Or (NM) 
r(NM) 

1 or(NM) 
r(NM) or(NM) or(NM) 9.3 x 10-17 

1 or(NM)oa 
r(NM) oa 

7.0 x 10-13 

1 or(NM) 0 
r(NM) oae ae 5.8 x 10-17 

Oft!-.2 1.3 x 10-32 

1 or(NM) M 
1.8 x 103 (OVt-2 ) (N ) 0 M OVl+-+2 r M VI +-+2 VI +-+2 

1 or(NM)OR 
r(N M) oRooc ooC 

1.8 x 103 ( ORooc) 
Rooc 

As different transitions are considered in this work a complete calculation of 

the decay width is carried out based on the formulas in Ref. [24] which are discussed 

shortly in Sec. 4. The result for the Q factor for the studied transition in hydrogen, 
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published in Ref. [85], is found to be 

Q(H)[n = 16,e = 10 --+ n = 9,e = 8] = 7.2 X 108
. (617) 

In experimental measurements of the 2P Lamb shift, the energy of the line has been 

measured within 10-4 of the width of the line [117, 118]. This corresponds to a 

conservative estimate of the relative uncertainty of the experimental determination 

of the transition frequency of 1.4 x 10-13 which is used as the relative uncertainty of 

the Rydberg constant as well. By adding all uncertainties quadratically, the electron 

to deuteron mass ratio could then by determined with a relative uncertainty of 7.3 x 

10-10• The value for the mass ratio in the 2006 CODATA has a relative uncertainty 

of 4.2 x 10-10 [22], so the level of accuracy is comparable. 

In the same way and with the same relative uncertainty in the frequency and 

Rydberg measurement, in hydrogen the electron to proton mass ratio could be deter­

mine with a relative uncertainty of 3.6 x 10-10 . Here, a comparison to the relative 

uncertainty of the 2006 CODATA value with a relative uncertainty of 4.3 x 10-10 [22], 

reveals that this is even slightly better. Should the experimental techniques, which 

might have to be developed for the mentioned project at NIST [83,84,88]' enable 

more accurate measurement of transition frequencies in Rydberg states, more accu­

rate value for both mass ratios could be obtained as well. 
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8. CALCULATION: QED AND HYPERFINE SPLITTING 

8.1. ORIENTATION 

So far only the effect of QED on the plain states of the Dirac equation has 

been considered. This already includes the effect of the magnetic moment of the 

electron due to its spin in its rest frame interacting with the magnetic field of the 

nucleus circling the electron. Because the nucleus has a spin as well, the spin of the 

nucleus can also interact with the magnetic field generated by the electron circling 

the nucleus. Another level shift, the so called hyperfine structure is the consequence. 

All these discussed level shifts are illustrated in Fig. 8.1. 

Schrodinger Dirac QED Hyperfine 

n=2,e=1,0 
n=2,e=l,j=3/2 

n=2,l=l,j=3/2/ 

n=2,e=0,j = 1/2 n=2,l=0,j= 1/2,/ = 1 

/ • <: Iv = 177MHz 

'-_.L..-_~ v = 1057 MHz n=2,e=0,j=I/2/=0 
n=2,l=1,0,j=I/z-.-... t ' 

n=2,l= l,j = 1/2 

Figure 8.1. Level structure of the n = 2 states in atomic hydrogen. 

From this figure, it can be seen that the effect from the hyperfine structure has to 

be considered in all predictions to the transition frequencies for nuclei with non-zero 

nuclear spin. Otherwise, the necessary accuracy cannot be reached. Interestingly, 

the hyperfine structure Hamiltonian does not commute with the Hamiltonian of the 

fine structure and therefore levels with different j coupling to the same total angular 

momentum of the ion f are mixed in the hyperfine structure. This is explained 

in detail for the muonic hydrogen in Refs. [51, 119]. This effect will however be 

neglected here. In this section the self-energy corrections to the hyperfine structure 
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for states with .e ::; 2 are investigated. Basically, the effect of the magnetic moment 

of the nucleus is to generate an external magnetic field in which the electron moves. 

While so far in the Foldy-Wouthuysen transformation the external magnetic field 

was set to 0, the external magnetic field is now the magnetic field of the nucleus. 

Since the transformation starts from the fully relativistic Dirac Hamiltonian it is 

necessary to include the hyperfine interaction into this Hamiltonian first. The self­

energy correction to the hyperfine structure can then identified to be the additional 

terms that will be obtained compared to the self-energy correction in the last section. 

Following the derivation in Ref. [120] the magnetic field of the nucleus is given 

by the vector potential 

....... 1j1xx 
Ahfs(X) = --4 --3 - , 

7r r 
(618) 

where j1 denotes the the operator of the nuclear magnetic moment. As usual the curl 

of this vector potential yields the magnetic field 

(619) 

The coupling to the Dirac Hamiltonian is obtained by adding the vector potential 

of the hyperfine interaction to the quantized field. Returning to the approximation 

of an infinitely heavy nucleus without recoil effects, which was dropped in the last 

section, the relativistic magnetic dipole interaction of the nuclear magnetic moment 

and an electron can be expressed by the interaction Hamiltonian 

H .... A.... ( .... ) e .... j1 x x e ... x x a 
hfs = -ea· hfs X = -a . -- = -{-£ . --

47r r3 47r r3 
(620) 

Following the notation in Ref. [120], lowercase letters are used to label relativistic 

operators, whereas nonrelativistic operators are labeled by uppercase letters. As 

explained earlier, similar to the fine-structure, the hyperfine structure requires to 

couple the spin of the nucleus I to the total angular momentum of the electron j to 

receive the total angular momentum of the one electron ion f. Then the hyperfine 
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interaction Hamiltonian acts on the coupled states of the electron and the nucleus 

Infmllj) = L C!;:;;m II M) Injm) , (621) 
M,m 

The magnetic quantum number of the nuclear spin is denoted as M while that of the 

total angular momentum of the ion f is labeled m I' The hyperfine structure splitting 

is then the energy shift because of this interaction and given as 

(622) 

In order to extract how the hyperfine interaction acts on the electronic states the 

matrix element can be rewritten 

(623) 

X '" CI'm, (' 'I ( ,,' 'I x x a I ') ~ J'M'j'm' 1M nJ m --3- nfmlIJ 
r 

n'j'J'M'm' 

The expression is multiplied by one in the right form, which yields 

I ' , .... x .... 
'" C m f (I'M'I ( ,,' 'I x ex I f I') x ~ J'M'j'm' nJ m --3- n ml J 

. r 
n'J'J'M'm' 

r~ (6~) 
'" .... CJ'M!.' , 

x ~ (1' M'I(n'j'm'12j Infmllj) I'm, '" ~,m,"7 . 
n'j'l'M'm' CJ'M'j'm' (I M I (n J m 12J InfmlIJ) 

= ... :...Ij11 / nfm 1" 12[, "71 nfm I') ",(n'j'm'l ~ Injm) 
411" I \ I J J I J ~ ( ,., '12 'I ' ) , 

n'j'm' n J m J nJm 

where in the last step the nuclear spin degrees of freedom have been traces out in 

the right matrix element, The left matrix element can be evaluated with the known 
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expression 

(625) 

Moreover, e2 = 47ra and 1m = gN1e/(2mn ), where gN is the nuclear g factor, are 

used. Thus, the expression can be further simplified by employing orthogonality 

relations and the Wigner-Eckhart theorem with q denoting the vector component in 

the spherical basis 

tlEhfs = a
g

2
N _1_ [J(f + 1) - 1(1 + 1) - j(j + 1)] 

mN 

xn~' ( n'j'm' I [x ;,0], I njm) (2 (n'j'm'l j, Injm») -1 

= a
gN 

_1_ [J(f + 1) - 1(1 + 1) - j(j + 1)] 
2 mN 

X ( njm I [x ;,&]0 I njm) (2 (njmlio Injm) r (626) 

= a gN _1_ [/(f + 1) - 1(1 + 1) - j(j + 1)] 
2 mN 

x 2~ ( njm I [i ;3 ci]o I njm) 

= a
gN me [J(f + 1) - 1(1 + 1) _ j(j + 1)] / nj~ I [i x ~]o I nj~) . 
2 mN \ meT 

In this way, it has been achieved to separate the nuclear from the electronic variables, 

very similar to tracing out the photon degrees of freedom in Sec.4. A very detailed 

analysis of the separation of the nuclear variables can be found in Ref. [121] . This 

procedure allows to reduce the evaluations of the hyperfine structure and corrections 

to it, to the evaluation of matrix elements of operators acting solely on electronic 

states. The electronic matrix element will be denoted as 8 e (nj.e). Moreover, as can 

be seen from the above calculation, these electronic matrix elements are independent 

of the magnetic quantum number m. Hence, m is chosen to be m = ~ to simplify 

the evaluation. This was used as well in the Lamb shift calculations. Consequently, 

8 e (nj£) is defined by 

(627) 
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and the energy shift due to the hyperfine interaction is thus 

(628) 

A fully relativistic evaluation of 8 e (nfj) has been carried out in Ref. [98] with the 

result 

with the notation used in Sec. 3, i.e. I = J 1'1,2 - (Za)2 and the apparent principal 

quantum number N = J(n - 11'1,1)2 + 2(n - 11'1,1), + 1'1,2. 

After describing the method to obtain the hyperfine splitting of the energy 

levels and separating the nuclear degrees of freedom from the expression, the QED 

corrections to this result can be derived. Again, the focus is on states with f ;::: 2 and 

the methods of NRQED detailed in Sec. 4 are employed. Results for S states with 

f = 0 have been obtained with NRQED in Refs. [98, 121] and with a fully relativistic 

treatment in Refs. [122-124]. For P states (f = 1) the calculation with NRQED was 

carried out in Ref. [120] and numerical results form a fully relativistic evaluation have 

been obtained in Ref. [124]. All of the results are in excellent agreement. 

8.2. LOW-ENERGY PART 

8.2.1. Orientation. Following the theoretical method described in Sec. 4, for 

the low-energy part a nonrelativistic Hamiltonian is required which can be systemat­

ically derived through the Foldy-Wouthuysen transformation. The total Hamiltonian 

H t to be transformed is given as the sum of the Dirac Hamiltonian without an external 

field in Eq. (231) and the relativistic hyperfine interaction Hamiltonian in Eq. (620) 

(630) 

The Foldy-Wouthuysen transformation of this Hamiltonian is carried out as described 

in Sec. 4.4. The only difference is that the operator 0 in Eq. (232) is now 

(631) 
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In general, the generator of the transformation has to consist of the physical momen­

tum p - eA if A =I O. The result of the transformation is thus 

(632) 

where HFW is the Foldy-Wouthuysen Hamiltonian in Eq. (262) and HHFS is the 

nonrelativistic hyperfine splitting Hamiltonian which is given as [120,121 J 

which consists of the terms 

h.... 47T' .... ~( .... ) s = -3 2(JU x , 
me 

3( .... ....).... .... .... (J·X X-(J 

hD = 2 2 3 ' 
meT 

(633) 

(634a) 

(634b) 

(634c) 

As is seen, in the reduction of the energy splitting only the 0 component in the 

spherical basis (z component in the Cartesian basis) of this Hamiltonian is important 

in the calculation. It is denoted as ho and given as 

(635) 

With this Hamiltonian also the nonrelativistic expression for the hyperfine splitting 

can be evaluated 

eNR ( f)) < 'f)! Ih 1 . 1) K (Za)3 me 
- e nt-j = nJ~2 0 nJf2 = -I 1 3( )( 2 !)' 

K n 2K + 1 K --4 

(636) 

which is the nonrelativistic limit of the fully relativistic expression for ee(j) in 

Eq. (629). Similar to Sec. 6 and in agreement with the notation in Ref. [120J the 
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QED corrections to the hyperfine structure will be expressed as a multiplicative cor­

rection of this nonrelativistic value for 8~R(j) 

(637) 

where the relativistic corrections of order (Za)2 are obtained by expanding the fully 

relativistic result in Eq. (629) in Za up to relative order (Za)2. 

The corresponding energy shift due to the QED corrections can then be obtained 

by multiplying o8e (j) with the nonrelativistic hyperfine energy splitting 

and thus 

(639) 

The nonrelativistic hyperfine splitting of the energy levels ~EHFS is sometimes re­

ferred to as Fermi energy. For the QED corrections terms up to relative order a(Za)2 

with respect to the nonrelativistic hyperfine splitting will be considered. 

The Foldy-Wouthuysen transformation of the relativistic current gives the same 

result as in Sec. 4.4.1. The right current correction for the hyperfine splitting is found 

by replacing the momentum operator in the nonrelativistic current by the physical 

momentum in presence of the vector potential of the hyperfine splitting 

p p e.... p e i1 x x pie I me .... "7 
- ---t - - -Ahfs = - + ----3- = - + --lploJHFS (640) 
me me me me 47rme r me 47r 

This has been found in Ref. [120] and gives the additional current correction after the 

extraction of the nuclear degrees of freedom 

(641) 
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Again, only the z component is required in the calculations, which is still a vector 

and given as 

s:""""! 1 (h ~ ) 
U JO,HFS = m 2

r
3 -yex + xey . 

e 

(642) 

Now, only the resulting terms, which are different from the terms encountered for 

the self-energy correction without the hyperfine splitting have to be considered. The 

effect from the other terms has already been included and only the additional terms 

due to the hyperfine interaction will give an additional QED correction on top of the 

already calculated one. The implication is that for the wave function, energy and 

Hamiltonian correction only the hyperfine splitting Hamiltonian has to be used in 

the low-energy part. 

Because the details on how to obtain the corrections in the low-energy part 

have been discussed extensively in Sec. 7 the terms here are given without derivation. 

Likewise, there are four contributions [120] from the correction of the interaction 

current, from the correction of the Hamiltonian, from the correction of the reference 

state energy, and finally from the correction of the reference-state wave function. It 

is important to note that these correction are now due to the hyperfine structure be­

cause the levels perturbed by the self-energy are corrected again due to the hyperfine 

interaction. 

8.2.2. Hyperfine Correction to the Interaction Current. This correc­

tion is given by using the hyperfine correction to the current in the matrix element, 

which leads to 

1 ( I·f /J1 I Is: ·i I' /J 1 > 
x E _ E I _ w- n J ~ m uJo,HFs nJ~2 ' 

n n k 

(643) 

where the angular integration in k has already been carried out. Due to the way the 

corrections are defined, they have to be multiplied by the normalization factor 

(644) 
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The integration with respect to Wk can then be carried out with the result 

(645) 

The term containing the logarithm of E is 0 because it vanishes after angular inte­

gration in the matrix element. The structure of the logarithmic term here is very 

similar to the Bethe logarithm encountered in Sec. 4. Terms of this form will arise 

for the other corrections in the low-energy part as well. In the following these terms 

will be denoted as .BHFS (nfj) and have to be evaluated numerically with the methods 

described earlier. Thus, the low-energy correction due to the nuclear-spin dependent 

current is 

(646) 

8.2.3. Correction to the Hamiltonian, Energy and Wave Function. 

The next correction is the Hamiltonian correction due to the addition of the hyperfine 

splitting Hamiltonian, which yields the term 

2aNl£ beL 8H(ne ·) = -- dw- w-
, J 37r 0 k k 

\ I 
Pi 1 1 pi I ) 'oJ h 'oJ x nJf-- - 0 - nJf.--

2 me En - H 5 - Wk En - H 5 - Wf me 2' 

(647) 

Here, and for the remaining terms the intermediate basis set is not written out in 

order to shorten the notation because the resulting correction is once more of the 

from of a Bethe logarithm type correction. This term, which is denoted as i3I1FS .6H , 

has basically the same structure as .BSE,6H, only with bHs replaced by ho. Carrying 

out the integration with respect to Wi; thus gives 

(648) 
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In the same way the energy correction can be written, which leads to 

b8L ,oE(nfj) = - 2;:: 1£ dwk Wk (njf~ Ihol njf~) 

x / njf~ L ( 1 ) 2 L njf~) 
\ me En - Hs - Wf me (649) 

= - 2~ In [ (~)2] (njf~ Ip21 njf~) (nj£~ Ihol njfD 
37rme me a 

+ a (Za)2,BHFs 8E(nfJo) , 
7r ' 

Finally, the correction to the wave function due to the hyperfine splitting Hamil­

tonian is 

The containing the logarithm of c can be simplified with the relations 

which basically was already used for the Hamiltonian correction and 

(651b) 

The double commutator [Pi, [(Hs - En),pi]] vanishes for states with f ~ 1 because of 

(652) 
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The contribution due to the hyperfine correction to the wave function is thus 

<58L,6<l>(n€j) = 2~ In [ (~)2] {<nj€~ Ip21 nje~) <nj€~ Ihol nj€~) 
37rme me a 

+ <nj€~ Ip2hol nj€~)} + ; (Za)2,8HFS,6<l>(nej ) . 

(653) 

8.2.4. Summary of Corrections in the Low-Energy Part. Summing 

up all four corrections in the low-energy part yields 

<58L(n€j) = <58L,6j(n€j) + <58L,6H(n€j) + <58L,6E(n€j) + <58L,6<l>(n€j) 

= aN2ln [ (~)2] <nje~ I [pi, [hO,pi]] I njeD + ~(Za?,8HFs(nej), 
37rme me a 7r 

(654) 

where ,8HFs(n€j) is the sum 

The double commutator 

(656) 

has been evaluated for S states in Ref. [98] and for P states in Ref. [120]. For higher 

excited states it vanishes which can be seen by writing V 2ho in the form 

Each of the terms is basically a second derivative of the absolute square of the wave 

function at the origin, which is 0 for states with € 2: 2. 

Hence, the complete low-energy part up to including order a(Za)2~EHFS for 

states with e 2: 2 takes the very simple form 

(658) 
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8.3. HIGH-ENERGY PART 

8.3.1. Orientation. For the high-energy part again a graphical expansion 

is used. Only the self-energy correction to order a( Z a )2 b.EHFs is considered. It is 

therefore enough to treat only the diagram with one interaction with the binding 

potential in Fig. 4.2. Following the derivation in Sec. 4.6, this can be calculated by 

employing the modified Dirac Hamiltonian from Eq. (321) 

Compared to the high-energy part of the self-energy calculation in Sec. 4.6, the mag­

netic field and the vector potential are not zero anymore but given by Eqs. (618) and 

(619). Only the additional correction terms compared to those already included in 

Sec. 4.6 are relevant [98]. The discussion goes through the terms from left to right in 

the modified Hamiltonian. 

8.3.2. Fl Form-Factor Correction to the Hyperfine Interaction. Con­

sequently, the first term is the correction to the interaction with hyperfine vector 

potential due to the form-factor FI 

F ' () 2 -.. -+ a [ (me) 11] 2 -e 1 0 V' a . Ahfs = 371' In 2c + 24 \7 Hhfs · (660) 

The lowest order term with FI (0) is the hyperfine splitting Hamiltonian due to 

PI (0) = 1. For the evaluation of this term it is very helpful to analyze the order 

of the correction. In this case F{(O) is of order a and \72 of order (Za)2 because it 

corresponds to p2 . Hence, the whole expression is already of order a(Za)2b.EHFS . To 

obtain the QED correction of order a(Za)2b.EHFs, it is thus enough to evaluate this 

on the nonrelativistic wave function, which is the term of order 1 in the Za expansion 

of the fully relativistic wave function. When the correction is scaled in the same way 

as in the low-energy part, this yields for the first term 

(661) 

The operator acting on the nonrelativistic wave function in this matrix element has 

already been evaluated in Eq. (657) in the last section and it is shown that it vanishes 



211 

for states with £ 2: 2. For be H,I this implies 

(662) 

for £ 2: 2. 

8.3.3. FI Form-Factor Correction to the Potential. The next correction 

is due to form factor FI correction to the potential. This term was already included in 

Sec. 4.6, so now the correction is given by having this operator act on the through the 

hyperfine splitting perturbed wave function. In general, new terms arising because 

of Ahfs are evaluated on the unperturbed wave function, whereas corrections already 

present in Sec. 7 have to be evaluated on the perturbed wave function. The actual 

calculation as carried out in Ref. [120] employs a Foldy-Wouthuysen transformation 

acting on the matrix element. The correction term to the result in Sec. 4.6 is then [120] 

Again, V 2V is proportional to the Dirac b and therefore only gives a contribution for 

S states (£ = 0). Accordingly, for the states with £ ~ 2 it is found 

8.3.4. F2 Form-Factor Correction to the Electric Interaction. Also, 

the correction due to the form factor F2 interaction with the electric field is already 

present in the self-energy calculation in Sec. 4.6. Therefore it has to be applied to 

the perturbed wave function. In Ref. [120] this term was found to be 

where F2 is the magnetic form factor. For F2(0), the Schwinger value F2(0) = ~ is 

used. Order counting reveals that this has to be evaluated on the relativistic wave 

function, which is denoted as'l/J. It has been shown in Ref. [120] that the calculation of 

this matrix element can be greatly simplified when it is transformed with the Foldy­

Wouthuysen transformation from Sec. 4 without the hyperfine splitting Hamiltonian. 



212 

Applying the transformation the correction term takes the form 

(666) 

The transformation applied on the relativistic wave function gives the nonrelativistic 

wave function including the spin i.e. 

IU7jJ) = 1<1» = Inj£m) . (667) 

For the Foldy-Wouthuysen transformed potential term and the hyperfine splitting 

Hamiltonian, Ref. [120] found 

( 
-i .... ) t -i.... 1 2 Za .... 

U -;Y·VV U =-;Y'VV+-2V'V+ 2/J·£+ ... 
4me 4me 8me 4me r 

(668) 

U HhfsUt = Hhfs + HHFS + .... (669) 

It is important to note that the relativistic hyperfine splitting Hamiltonian remains 

after the transformation because the Foldy-Wouthuysen transformation used here 

only diagonalizes the Dirac Hamiltonian. In Sec. 4.6, the remaining mixing terms 

are neglected, which is not possible here up to the required order. But, through 

the transformation, the operators have been separated into mixing and non mixing 

operators. The non-mixing part is considered first, which gives the first correction 

To the required order, it is enough to only take terms of HFW up to including or­

der me(Za)2, which is just the Schrodinger Hamiltonian, into account. The term 

V 2V/8m; is proportional to the Dirac 8 and does not contribute for states with 

£ 2:: 1. 

There are now basically two ways to determine the contribution 68 H,3n from the 

non-mixing part. The first approach employs the numerical lattice method [78], which 

is usually used to evaluate the contributions in the low-energy part (see Sec. 6.5). The 
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resulting numerical value is first fitted to a fraction, before being fitted to a function 

of the type a + bin + cln2
. 

The second way to determine the coefficient is, to find the first order perturba­

tion of the wave function explicitly and use it to determine the matrix element. Both 

methods just evaluate the radial part and the angular algebra is dealt with already us­

ing Wigner-Eckhart theorem [23]. The perturbed wave function is determined based 

on 

18<1» = (E ~ H)' 8V 1<1» 
(671) 

:::;. (E - H) 18<1» = 8V 1<1» - 1<1» (<I> 18VI 4» . 

For the perturbed wave function an ansatz of the structure 

(672) 

is made and the coefficients determined by the above equation. This allows to obtain 

all but one coefficient which is determined by the condition that the perturbed wave 

function has to be orthogonal to the unperturbed wave function i.e. 

(4) 18<1» = O. (673) 

Both methods are used, which allows to check both results for consistency. In this way 

the coefficient 88 H,3n is obtained. For states with f 2': 2 the result can be formulated 

as 

(674) 

. l 1 
where K = (-1)1+ +"2 (j + ~) is the Dirac quantum number. 

The mixing part now has to be treated very carefully. For its evaluation, it 

is instructive to consider how the relativistic hyperfine splitting Hamiltonian Hhfs , 

given in Eq. (620), acts on the nonrelativistic wave function. With the notation of 
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Eq. (230) this can be written as 

H
hfs 

1<1» rv [x x a]o 1<1» = ~ ( 0 
r3 r3 [- -] xXO"o 

[x x a]o) (<1» = 13 ( 0 ). (675) 
o 0 r [x x a]o<1> 

This shows that the upper component of the bispinor couples only to the lower com­

ponent in the intermediate state and therefore only its lower component has to be 

different from zero. As outlined in Ref. [120], this allows to approximate the energy 

of the state by its leading term the electron mass me' The lowest order term of H~w 

for the lower components in Eq. (264) is -me' With VV = Zax/r3 the correction 

term is 

88H 3m(nf ·) = -i oN / njfll Za e;. x) _l_Hhfs l njll ) . 
, J 27rme \ 2 r3 2me 2 

(676) 

In Ref. [120] the complete contribution 88 H,3 (n£j) was also calculated within a fully 

relativistic framework and the result was found to be in agreement with the approach 

used here. 

Following the explanation of the spinor structure of 88 H,3m, it is possible to 

simplify the matrix element and evaluate part of its structure for arbitrary angular 

momentum. The result can be expressed as 

(677) 

in from of a radial matrix element to be evaluated. This radial matrix element was 

already encountered in the high-energy part in Sec. 4.6 and can be evaluated using 

known identities mentioned therein. The general form of the correction 88 H ,3m is 

thus 

88 (nf.) = ~(Za)2 IK:I (2K: + 1)(K:
2 

- i) (~ _ 3 ) 678) 
H,3m J 7r 4j(j + 1) (2f - 1)(2£ + 3)(£ + ~) n2 £(£ + 1) . ( 
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8.3.5. F2 Form-Factor Correction to the Magnetic Interaction. The 

last corrections in the high-energy part now arise from the form factor correction to 

the magnetic interaction 

(679) 

hs and hd can be seen as the generalizations of hs and hD to 4 x 4 matrices. They 

are in fact the two terms from Bhfs in Eq. (619) when swapping j1 and ~ and taking 

out a factor of 27rm; as was done in the equation above. So they are 

(680) 

(681) 

Up to the considered order, a(Za)2~EHFs, the first two terms in the expansion of 

F2(\72) have to be included. The first term is thus 

Because the term F2 (0) = a/27r itself is just of order a, this matrix element has to 

be evaluated on the relativistic wave function expanded up to order (Za)2 so that 

the correction includes all corrections up to order a( Z a)2 ~EHFS. Through such an 

expansion also divergences are avoided, which would arise otherwise when working 

with the fully relativistic wave function. The 6 part in the matrix element is 0 for 

states with f :s; 2 for the relativistic wave function and therefore only hs,o has to 

be considered for these states. The term in order a~EHFS for arbitrary angular 

momentum and principal quantum number is given as 1/4K:. This has been published 

in Ref. [85] and can be found by generalizing the known expressions [120,121] to 

general K. By explicit integration for reference states with from f = 2 to f = 16 a 

generalized expression for the contribution in order a(Za)2~EHFs can be obtained, 
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which reads 

(683) 

in terms of the Dirac quantum number K, = (-1 )jH+~ (j + ~). 
The last term is given by the next term in the expansion of F2 (V'2) and is 

(684) 

with FHa) = a/127r. As F~(a)V'2 already is of order a(Za)2, this operator only has to 

be applied to the nonrelativistic wave function . Thus, (3 can be replaced by unity and 

t by a. This converts the relativistic operators hs and hd into their nonrelativistic 

counterparts hs and hD and leads to the correction term 

(685) 

Recalling the earlier discussion in Eq. (657), it can be seen that for states with I! 2: 2 

one finds 

(686) 

8.3.6. Summary of Corrections in the High-Energy Part. This 

completes the discussion of the various correction terms in the high-energy part. The 

complete high-energy part of the self-energy correction is then the sum of all discussed 

corrections 

o8H(nfj ) = o8H,1(nfj ) + o8H,2(nl!j) + o8H,3n(nfj ) 
(687) 

+ 08H,3m(nl!j) + o8H,4(nfj ) + o8H,s(nfj ). 
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As the discussed for states with £ ;::: 2 shows, fortunately, only three terms give a 

non-zero contribution. So the high-energy part reduces to 

(688) 

because all other correction terms vanish for the states with £ ;::: 2 considered in this 

work. With the results from the previous section, the complete high-energy part of 

the self-energy correction is then given as 

o8
H

(n£ .) = ~ {~+ (Za)2 [_1_ 24K
3 + 18K2 - K -1 

J 7f 4K 8K3 4K3 + 4K2 - K - 1 

1 60£4 + 120£3 + 55£2 - 5£ - 3 
+ 2£K (2£+1)2(4£3+8£2+£-3) 

3 j+~ (2K+1)(K2_~) 

£(£ + 1) 4j(j + 1) (2£ - 1)(2£ + 3)(£ + ~) (689) 

1 3 4 (j + ~) + (2£ + 1) 1 (4 4 
+ -; 8K (2£ + 1) (j + ~) + 8n 2 1 - 2K - ;, 

(2j + 1)(2K - 1)(2K + 1)2 3£(£ + 1) ) 1 } 
+ 2j(j + 1)(2£ + 3) (4£2 - 1) - K(£ + ~)(£ - ~) . 

This can be simplified into a formula depending on the Dirac quantum number K = 

( -1 )j-i+~ (j + ~) exclusively. Thus, the result for the high-energy part is 

(690) 

8.4. RESULTS 

It is important to note in this problem that even though both the low-energy 

as well as the high-energy part are finite separately for states with £ ;::: 2, it is still 

required to consider both parts in order to obtain all relevant correction terms. 

The only contribution form the low-energy part is given by f3HFs(n£j), which 

has a similar structure as the Bethe logarithm. It can only be evaluated numerically 

for each specific states, using the lattice method of Ref. [78], described in Sec. 6.5 
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and Ref. [42]. Results obtained for D states with principal quantum number between 

n = 3 and n = 12 are found in Table 8.1. For states with angular momentum f = 3 

and e = 4 calculations are carried out for principal quantum number up to n = 10, 

the resulting values are given in Tables 8.2 and 8.3. In order to prevent an uncertainty 

arising in the prediction of transition frequencies for nuclei with non zero nuclear spin, 

,!3HFS is also determined for Rydberg states. The results are given in Table 8.4. 

Table 8.1. Low-energy contribution ,!3HFS of the QED self-energy correction for the 
hyperfine splitting for D states (e = 2) for principal quantum numbers n between 3 
and 12. The numbers in parentheses are standard uncertainties in the last figure. 

n J3HFS (nD3/ 2 ) ,!3HFs (nDS/ 2 ) 

3 -2.068 39(5) x 10-2 -3.455 22(5) x 10-2 

4 -1.302 99(5) x 10-2 -3.793 94(5) x 10-2 

5 -1.025 92(5) x 10-2 -3.965 95(5) x 10-2 

6 -0.943 28(5) x 10-2 -4.084 82(5) x 10-2 

7 -0.938 17(5) x 10-2 -4.174 23(5) x 10-2 

8 -0.963 40(5) x 10-2 -4.243 45(5) x 10-2 

9 -0.999 20(5) x 10-2 -4.29792(5) x 10-2 

10 -1.037 11(5) x 10-2 -4.341 30(5) x 10-2 

11 -1.073 55(5) x 10-2 -4.376 27(5) x 10-2 

12 -1.110 71(5) x 10-2 -4.404 75(5) x 10-2 

The total QED self-energy correction to the hyperfine splitting is then given by 

adding the contribution ,!3HFs(nfj ) from the low-energy part to the high-energy part 

in Eq. (690), which yields 

(691) 
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The total frequency shift due to the hyperfine splitting can then be found by 

combining this result with Eq. (604). Here, the nonrelativistic expansion of the 

fully relativistic hyperfine splitting energy is used and, thus, a relativistic and QED 

expansion in Za and a simultaneously is obtained. In SI units, it is found to be 

(692) 

Table 8.2. Low-energy contribution .BHFS of the QED self-energy correction for the 
hyperfine splitting for F states (.e = 3) for principal quantum numbers n between 4 
and 10. The numbers in parentheses are standard uncertainties in the last figure . 

n .BHFs(nFs/2) .BHFS (nF7/2) 

4 -1.021 46(5) x 10-2 -0.953 04(5) x 10-2 

5 -0.683 94(5) x 10-2 -1.077 62(5) x 10-2 

6 -0.50464(5) x 10-2 -1.141 28(5) x 10-2 

7 -0.407 32(5) x 10-2 -1.182 43(5) x 10-2 

8 -0.353 63(5) x 10-2 -1.212 34(5) x 10-2 

9 -0.324 00(5) x 10-2 -1.235 41 (5) x 10-2 

10 -0.308 07(5) x 10-2 -1.253 79(5) x 10-2 

The hyperfine shift is considered for one particular example. The state n = 16, 

f. = 15, and j = 31/2 in atomic hydrogen, which has a nuclear spin of I = ~. If the 

total angular momentum j of state 12) couples with I to the total angular momentum 
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of the hydrogen atom / = 16, the energy of state 12) gets shifted by 

( Rooc 3 2 N 
lIhfs 161531/ 2) = [1 + r(N)]2 Z a r( )9N 

x 4.7730327 X 10-7 {I + (Za)2 [5.632635] 

+ a (-0.015625) + a (Za? [-6.323744 x 10-4] } (693) 
7r 7r 

= 254.09469140 Hz + 0.07621454 Hz 

- 0.00922213 Hz - 0.00000002 Hz = 254.16168380 Hz. 

Table 8.3. Low-energy contribution ,BHFs of the QED self-energy correction for the 
hyperfine splitting for G states (£ = 4) for principal quantum numbers n between 5 
and 10. The numbers in parentheses are standard uncertainties in the last figure. 

n (3HFs(nG7/ 2) (3HFS(nG9/ 2) 

5 -0.368 23(5) x 10-2 -0.341 76(5) x 10-2 

6 -0.147 39(5) x 10-2 -0.388 58(5) x 10-2 

7 -0.012 93(5) x 10-2 -0.414 24(5) x 10-2 

8 0.072 16(5) x 10-2 -0.430 98(5) x 10-2 

9 0.127 85(5) x 10-2 -0.443 13(5) x 10-2 

10 0.165 33(5) x 10-2 -0.452 55(5) x 10-2 

Including uncertainties for the transition from Sec. 7, 11) +-t 12), in hydrogen 

with the nuclear spin added, the additional hyperfine transition frequency is thus 

found as 

11) = In = 15,£ = 14,j = 29/2,/ = 15) , 

12} = In = 16, £ = 15,j = 31/2, / = 16) , 

~Llhfs,l-2 = 254.161684(2) Hz - 351.002805(3) Hz, 

~lIhfs,1-2 = -96.8411213(8) Hz , 

(694a) 

(694b) 

(694c) 

(694d) 
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where the CODATA 2006 value [22] 

gp = 5.585694 713(46) (695) 

is used for the 9 factor of the proton. 

Table 8.4. Low-energy contribution ,BHFS of the QED self-energy correction for the 
hyperfine splitting for highly excited states. The numbers in parentheses are standard 
uncertainties in the last figure. 

n £ 2j K, ,BHFS 2j K, ,BHFS 

16 15 29 15 0.006310(5) x 10-2 31 -16 -0.002130(5) x 10-2 

16 14 27 14 0.016397(5) x 10-2 29 -15 -0.003041.(5) x 10-2 

15 14 27 14 0.006888(5) x 10-2 29 -15 -0.002795(5) x 10-2 

15 13 25 13 0.019372(5) x 10-2 27 -14 -0.004086(5) x 10-2 

14 13 25 13 0.007420(5) x 10-2 27 -14 -0.003741(5) x 10-2 

14 12 23 12 0.023029(5) x 10-2 25 -13 -0.005617(5) x 10-2 

13 12 23 12 0.007794(5) x 10-2 25 -13 -0.005122(5) x 10-2 
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9. CONCLUSIONS 

The fundamental interactions of nature are basically described by the standard 

model. It contains the elementary particles and provides a set of rules of how these 

interact but it also contains a number of free parameters, the fundamental constants, 

which have to be fixed by a comparison of this model and actual experiments. These 

fundamental constants cannot be explained by the standard model and imply that 

the standard model is only an effective low energy limit of a more fundamental theory. 

Consequently, the standard model is intensively studied at high energies in order 

to find hints at this more fundamental theory. At high energies, even the more 

exotic and heavy particles can be observed and not only arise as loop effects as for 

low-energy processes. Hence, their characteristics can be measured and compared 

to the predictions of the standard model. These investigations have lead to build 

experiments, which allow to achieve higher and higher energies. Unfortunately, in 

order to reach the required energy scales as well as minimize energy loss due to 

synchrotron radiation, these experiments have reached a scale, at which they can 

only be realized by global efforts. 

Due to the unprecedented precision, which has been achieved in the study of 

the low energy regime of quantum electrodynamics, it has become possible to use 

these systems as an alternative for the investigation of the fundamental structure 

of interactions. While the effect from highly energetic particles may be very small 

in these systems, the accuracy of the measurements and theoretical predictions is 

so high that even these high energy effects have to be included. In fact, the most 

accurately known fundamental constants, are determined by a comparison of theory 

in experiment in this low-energy regime. 

In this work, one of the most prominent low-energy systems of quantum electro­

dynamics is investigated, the atom. Here, the focus is set on one-electron ions because 

these can approximately be treated as an effective one particle systems when recoil 

corrections are included. Moreover, no electron-electron interactions are present, mak­

ing one-electron ions ideal study objects for the study of quantum electrodynamics 

and a possible determination of fundamental constants. 
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Compared to the theoretical study of free particles though, for bound states a 

severe problem has to be overcome. For free particles QED perturbation theory has 

a natural expansion in the fine-structure constant a and therefore, every diagram 

contributes on a specific order in a. Due to the presence of the interaction with the 

core in addition to the interaction with the quantized radiation field, this is no longer 

the case in bound states. There, a diagram with a certain order a for the interaction 

with the quantized radiation field receives contributions from all orders in Za for the 

interaction with the binding potential, thus destroying the possibility to order the 

contributions in a. Therefore, a very careful study of QED theory for bound states 

is carried out in this work. For this the work is organized as follows. The theory 

is described in Secs. 3, 4 and 5. In Secs. 6, 7 and 8 the theory is then applied to a 

number of problems namely, the two-photon decay and the self-energy correction to 

the Lamb shift as well as self-energy corrections to the hyperfine structure for highly 

excited states. Especially the later two are of great interest for reducing theoretical 

uncertainties and enable a determination of fundamental constants in highly excited 

Rydberg states. 

In Sec. 3, the fully relativistic QED approach is investigated. Based on the 

methods developed by Mohr in Ref. [7,8], it is explained how this problem can be dealt 

with. An expression for the shift of the bound-state energies is derived based upon 

a integral with respect to the energy of the virtual photon. First of all, the integral 

has to be separated into a low- and a high-energy part. In the low-energy part only 

the interaction with a virtual photon from the radiation field with energy up to the 

bound state energy are considered. Because the photon energies are low, the electron 

can be described by the bound Dirac equation and the corresponding Coulomb-Dirac 

Green's function. The resulting integral can then evaluated numerically. For the 

high-energy part, the electron is basically scattered into free intermediate states as 

the virtual photon energy is much larger than the strength of the binding potential. 

Thus, it becomes possible to extract problematic terms by making use of are-summed 

perturbative expansion. The resulting integrals are then finite and can be evaluated 

again numerically. The final result is then given as the sum of the low- and the 

high-energy part. Both parts receive contributions, which are, in fact, of lower order 

than the resulting correction. While these lower order terms cancel in the final result, 
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they still necessitate high precision arithmetic for the numerical evaluation. With 

this approach the energy shift in order a due to the interaction with the radiation 

field, but in all orders in the interaction with the binding potential is calculated. 

The second theoretical approach discussed in Sec. 4, also makes use of the 

separation of the integral over the energy of the virtual photon into a low- and a 

high-energy part. Instead of a finite overlapping parameter, an infinitesimal one is 

used. Consequently, it becomes possible in the low-energy part to expand the fully 

relativistic theory around its nonrelativistic limit because now both the electron as 

well as the virtual photon are mainly described by nonrelativistic theory. This nonrel­

ativistic expansion can be achieved by the Foldy-Wouthuysen transformation of the 

Dirac equation which gives the nonrelativistic Schrodinger equation plus corrections 

in orders ofthe nonrelativistic expansion parameter vjc = Za . This expansion allows 

to uniquely identify the physical origin of the correction terms and provides them with 

a face. Even though, for example, the spin-orbit coupling is naturally contained in 

the Dirac theory, it is much more apparent in the Foldy-Wouthuysen Hamiltonian in 

Eq. (262), where it can directly be identified as the term [(Za)j4mer3] E·{ Likewise, 

corrections due to the relativistic energy momentum relation are spotted while these 

are intertwined with the spin corrections in the Dirac equation. 

In the high-energy part another expansion in Za is employed. As described high­

photon energies scatter the electron into basically free intermediate states. Hence, the 

natural expansion for the high-energy part is in powers of the binding potential, which 

also constitutes a Za expansion. The lowest order term without interaction with the 

binding potential cancels the mass renormalization and the term with one interaction 

with binding potential can be described by an effective Dirac Hamiltonian. Finally, 

the two-interaction term is given by a separate Hamiltonian. In turn, both in the low­

and the high-energy part an expansion in powers of Za is obtained, which is matched 

together order by order at the end of the calculation to cancel the dependence on the 

overlapping parameter. In this way additionally to the series in a from the interaction 

with the radiation field also a series in Za for interactions with the binding potential 

is obtained and a natural ordering of contributions in powers of a and Za is recovered. 
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In Sec. 5, the application of the overlapping parameter both finite as well as 

infinitesimal is elucidated in a model problem. It is also illustrated that an infinites­

imal overlapping parameter can be useful for the evaluation of integral with poles 

at the boundaries of the integration interval. For this purpose the vacuum polariza­

tion correction to the Coulomb potential, the so-called Uehling potential is calculated 

with the help of an infinitesimal overlapping parameter. After the theory has been 

explained and discussed in Secs. 3 to 5, it is evaluated for the two-photon decay in 

Sec. 6, for QED corrections to the Lamb shift in Sec. 7 and finally for the QED 

corrections to the hyperfine structure in Sec. 8. 

The nonrelativistic Za expansion of the fully relativistic theory is useful for 

many calculations. As in the two-photon decay the photon energy is bounded by the 

energy difference of the initial to the final state, the integral over the photon energy 

is constraint to nonrelativistic photon energy. This makes it very well suited for an 

investigation with the Za expansion. With this, the relativistic corrections in order 

(Za)2 as well as the leading logarithmic QED corrections of order a(Za)2ln[(Za)-2] 

are determined in Sec. 6. Furthermore, the nonrelativistic theory can also be formu­

lated in different gauge and the formulation in length gauge [29,45] for the two-photon 

decay is also studied. It is shown that gauge invariance holds holds within the frame­

work of a "hybrid" gauge transformation, in which the gauge transformation of the 

wave function is ignored. Again, the nonrelativistic theory is able to illustrate the 

physical origin of the corrections and able to reveal interesting correlations between 

the terms in the gauge transformation. The relativistic corrections to the two-photon 

decay rate are given in the form 

(696) 

For the 25-15 two photon decay the coefficient in order (Z a) 2 correcting the nonrel­

ativistic result of G6ppert-Mayer in Ref. [70] reads 

12 = -0.6636. (697) 

QED self-energy corrections with the Za expansion are then considered in Sec. 7. 

Here, a special focus is set on Rydberg states. These are highly excited states with 
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high angular momentum and offer the advantage that not only the general magnitude 

of the corrections are relatively small but also that they are free of nuclear size effects. 

This study is supplemented by an overview over all additional correction terms, which 

have to be considered in order to theoretically predict transition frequencies in one­

electron ions. These additional terms are due to the finite nuclear mass and included 

reduced mass effects of the electron as well as recoil terms. In this way, very accurate 

theoretical predictions for the transition frequencies between Rydberg states in one­

electron ions can be obtained. For one such transition 11) +-+ 12) between highly 

excited Rydberg states, where 11) is the state with quantum numbers n = 15, e = 14 

and j = 29/2, and 12) has quantum numbers n = 16, e = 15, and j = 31/2, the 

transition frequency including all know corrections for N = 4Ne+ is found to be 

1I1+-+2 = 7.081 331 009 805 59(4736) THz, (698) 

where the frequency shift due to QED self-energy corrections alone is 

lIQED = -0.000000 001 261 66 THz. (699) 

With the availability of high precision spectroscopy for optical transitions using 

frequency combs, these theoretical predictions can be very interesting for numerous 

projects. Of special importance here is the possibility of determining a more accurate 

value for the Rydberg constants in Rydberg states which is described in Sec. 7.5.3 

and currently being pursued at NIST. The reason is the following, for lower-lying 

states the theory contains basically two parameters which limit the accuracy of the 

theoretical prediction, namely, the Rydberg constant and the RMS charge radius 

of the nucleus. For a determination of either of these out of a comparison of high 

precision spectroscopy and the theoretical prediction, one of them has to be known 

from another source. However, both of these parameters are highly intertwined, 

which implies that if one changes the other changes as well. This makes Rydberg 

states so interesting because in them only the Rydberg constant is contained as a free 

parameter. Another possible use of Rydberg states for the determination of nuclear 

masses is explored in Sec. 7.5.4. 
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A possible additional uncertainty in such a determination of the Rydberg con­

stant for nuclei with a non zero nuclear spin could arise from the hyperfine structure. 

Therefore, in Sec. 8 QED self-energy corrections to the hyperfine structure up to 

order a(Za)2.6.EHFs are calculated for the highly excited Rydberg states considered 

in Refs. [83-85,88] within the Za expansion. The result is a beautiful example of 

the power of the nonrelativistic expansion as the resulting frequency shift can be 

expressed as the leading nonrelativistic term times a factor, which contains the rel­

ativistic and QED corrections in a structured expansion, where each correction can 

be uniquely identified. It reads 

Rooc Z3 a2 r(N) '" 
Vhfs = -- -

1 + r(N) n3 1 + r(N) 1",1 

x (2'" + ~(",2 _ ~) [J(J + 1) - 1(1 + 1) - j(j + 1)] 

x 1+ a +--+ { Z 2 [ 12",2 - 1 3 1 3 - 8", 1 
( ) 2",2(2", - 1)(2'" + 1) 2n 1"'1 2n2(2'" - 1) 

(700) 

+ a ~ + a (Za)2 [_1_ (4'" + 1)(6", + 1)(6",2 + 3", - 1) 
7r 4", 7r 8",3 (2'" + 1)2(2'" - 1)(", + 1) 

+- -- + - + .BHFS n£· 
1 3 '" 6", + 1 1 4", - 1 1 } 
n 81",1 ",2(2'" + 1) n 2 2",(1 - 2",) (J)' 

The first term is due to the relativistic corrections of the nonrelativistic result, ob­

tained by expanding the fully relativistic result in Za, the terms in order a.6.EHFs 

and a(Za)2.6.EHFs are due to QED corrections. With this result also the additional 

hyperfine splitting for the transition considered before for a nucleus with non zero nu­

clear spin can be determined. For hydrogen with nuclear spin I = ~ for the transition 

11) ~ 12), it is found with 

11) = In = 15,£ = 14,j = 29/2,1 = 15) , 

12) = In = 16,£ = 15,j = 31/2,1 = 16) , 

.6.Vbfs,l-+2 = 254.161684(2) Hz - 351.002805(3) Hz, 

.6.Vbfs,l-+2 = -96.8411213(8) Hz, 

(701a) 

(701b) 

(701c) 

(701d) 



228 

In the end, it is important to stress once again that Rydberg states offer unique 

opportunities because they constitute a nearly pure QED system. Through the de­

termination of the Rydberg constant free of nuclear size effects, they can help the 

investigation of the recent discrepancy of the RMS charge radius of the proton. In 

muonic hydrogen, where a muon instead of an electron is bound by the proton, the 

radius has been found as [100] 

rp = 0.84184(67) fm, (702) 

which deviates from the 2006 CODATA value of [22] 

rp = 0.8768(69) fm (703) 

as well as with other values from scattering experiments [101] by 5.00'. Because the 

nuclear size correction and the Rydberg constant are so intertwined, using the 2006 

CODATA proton RMS charge radius [22] in the muonic hydrogen measurement would 

lead to a determination of the Rydberg constant with a value, which reads [100,125] 

Rooc = 3289841960251(5) kHz. (704) 

Naturally, this is in disagreement with the 2006 CODATA value for the Rydberg 

constant [22] 

Rooc = 3289841960361(22) kHz. (705) 

The Rydberg constant determined in Rydberg states would now be independent of 

nuclear size effects and therefore ideally suited to clear up these disagreements because 

the effects not related to the nuclear size could be quantified exactly. 

Partial results from this work have been communicated to the scientific commu­

nity in Refs. [47,59,83-85]. 
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