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ABSTRACT

The unprecedented precision achieved both in the experimental measurements
as well as in the theoretical description of atomic bound states make therﬁ an ideal
study object for fundamental physics and the determination of fundamental constants.
This requires a careful study of the effects from quantum electrodynamics (QED) on
the interaction between the electron and the nucleus.

The two theoretical approaches for the evaluation of QED corrections are pre-
sented and discussed. Due to the presence of two energy scales from the binding
potential and the radiation field, an overlapping parameter has to be used in both
approaches in order to separate the energy scales. The different choices for the over-
lapping parameter in the two methods are further illustrated in a model example.

With the nonrelativistic theory, relativistic corrections in order (Za)? to the
two-photon decay rate of ionic states are calculated, as well as the leading radiative
corrections of a(Za)?In[(Za)™?). It is shown that the corrections is gauge-invariant
under a ”hybrid” gauge transformation between Coulomb and Yennie gauge.

Furthermore, QED corrections for Rydberg states in one-electron ions are inves-
tigated. The smallness of the corrections and the absence of nuclear size corrections
enable very accurate theoretical predictions. Measuring transition frequencies and
comparing them to the theoretical predictions, QED theory can be tested more pre-
cisely. In turn, this could yield a more accurate value for the Rydberg constant.
Using a transition in a nucleus with a well determined mass, acting as a reference, a
comparison to transition in other nuclei can even allow to determined nuclear masses.

Finally, in order to avoid an additional uncertainty in nuclei with non zero
nuclear spin, QED self-energy corrections to the hyperfine structure up to order

a(Za)? AEyps are determined for highly excited Rydberg states.
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1. INTRODUCTION

This work investigates the fundamentals of the electromagnetic interactions.
Already since the formulation of the mathematical foundations of classical electrody-
namics by Maxwell, its theoretical investigation lead to a lot of discoveries in many
different fields of physics. For example, the appearance of a velocity independent of
the reference system namely the speed of light, required a new theory of relativity,
Einstein’s theory of special and later general relativity.

An especially interesting subsection of electrodynamics is studied: bound-states.
This means that two oppositely charged objects form a stable system. The usual lay
man’s example would be the planets circling the sun in the case of the gravitational
interaction. Interestingly, in electrodynamics on the first glance oppositely charged
objects cannot form bound-state like that because a charge moving on a circle emits
radiation. In turn, it therefore loses energy and would ultimately crash into the other
object. Electromagnetic bound-states are only possible for quantum objects at small
distances where their wave-like behavior allows standing-wave like states which are
stable.

The focus is set on the most well-known electromagnetic bound-system, the
atom. More specifically atoms with only one electron are considered. As the aim is
to understand the fundamental interaction of the electron and the core, interactions
between electrons would only lead to unnecessary perturbations. Moreover, in one-
electron atoms not only numerical but also analytical methods can be employed,
whereas it is mathematically impossible to solve three-body problems analytically.
This can increase our understanding because analytical steps can offer a more detailed
view on the systematics of the interaction.

Early in the development of quantum mechanics a solution for the bound-states
of a one-electron atom was found by Schrodinger [1]. This solution was based upon
a non relativistic approach as relativistic effects are small in hydrogen. It not only
explained why the bound-states are stable but also allowed to predict the energy
difference which is emitted as light if an electron changes from one state to another.

This specific spectral emission of atoms still is one of the most important tools to



experimentally investigate atomic physics. While relativistic effects were included
shortly afterwards by Dirac [2], precise spectroscopical measurements by Lamb and
Retherford [3] observed slight differences from the theoretical prediction.

So what was missing? So far the same Coulomb potential as in classical elec-
trodynamics was used. In it light is describe as a wave and a wave alone. However,
from Einstein’s famous work on the photo-effect [4] and initial work by Planck on
the Black body radiation [5], it is known that light is also quantized and also be-
haves like a particle. This is not yet included in the theory, even though some effects
can be calculated with a fluctuating classical field. It seems, however, better to go
all the way and use a fully quantized theory for the electromagnetic interaction. So
fundamentally the photon nature of light also has to be included to gain a deeper
understanding of the electromagnetic interaction.

One of these quantum effects of electrodynamics is the interaction of an electron
with its own radiation field. This cannot be solved in classical electrodynamics. Even
in the quantum theory the mass of the electron has to be chosen to already include
this interaction because it is not possible to observe an electron without its radiation
field. However, for a bound state this effect is in fact observable and contributes a
major part to the Lamb shift [6], which is the shift of the lines from the Dirac values
as observed by Lamb and Retherford [3].

As this elucidates, may of the properties of the quantum world were discovered
in atoms and much of the modern quantum field theories was partially derived in order
to better understand the energy levels of the electrons in it. Even now because of the
very precise predictions and experimental measurements atoms are one of the prime
study objects for fundamental physics and specifically for quantum electrodynamics
(QED).

There is one big complication, however, for the theoretical study of bound states
compared to free particles in high-energy reaction and that is the presence of the
binding potential. For a free electron the effects of the quantized field are calculated
by a perturbative expansion in the number of interactions between the electron and

the quantized field. As only electromagnetic interactions are considered, the coupling



strength is given by the strength of the electromagnetic interaction

o= e? _ 1 (1)
" dmeohe | 137.036°

the so-called fine-structure constant. The results are consequently obtained as a series
expansion in a. Because the fine-structure constant is relatively small, this series is
naturally ordered in so far as the higher-order corrections diminish in magnitude due
to the higher order in a.

For a bound electron on the other hand, the expansion in interactions with
the radiation field is still carried out but it is complicated by the fact that each
order of interaction with the quantized field receives contributions from all orders of
interactions with the binding potential. Since the nucleus can consist of a number of
positive charges, the strength of the interaction with the binding potential is given
by Za, where Z is the nuclear charge number. As the result, the natural order in the
series expansion is lost.

Mohr in Refs. [7, 8] developed a method using the fully relativistic formalism
of QED to obtain results in the first order of interaction with the radiation field but
to all orders of interaction with the binding coulomb potential. It is based upon a
separation of energy scales in the expression into two parts. In the first part, the low-
energy part, the binding energy is the dominant scale while in the second part, the
high-energy part, the energy of the radiation field dominates. The resulting expression
in both parts can then be evaluated numerically. The exact procedure is explained
in detail in Sec. 3.

Alternatively, the ordered structure of the resulting series can be restored us-
ing the formalism explained in Sec. 4. For this purpose the expression is also split
into a low- and high-energy part, though this time with an infinitesimal overlapping
parameter. In the low-energy part a nonrelativistic expansion of the fully relativistic
expression is carried out using the Foldy-Wouthuysen transformation. In the high-
energy part a perturbative expansion in the binding potential is employed. While
it is fairly apparent that the expansion in the high-energy part is an expansion in
the binding strength Zca, interestingly, the expansion in the low-energy part is as

well. The reason lies in the scaling of the velocity of a bound electron such that the



nonrelativistic expansion parameter v/c =~ Za. Consequently, the result is given as
a double series in « for the interaction with the radiation field and in Za for the
binding potential.

For further illustration of the application of the overlapping parameter, in Sec. 5
the method is studied by considering a model example.

The question now arises which are the most interesting systems for a study of
fundamental physics using the known methods. Following the idea that new effects
are more likely to be discovered at high energies, it would appear that it is preferable
to study strong binding fields. Due to the dependence of the binding field i.e. the
electric field of the nucleus on the nuclear charge number Z which is depicted in

Fig. 1.1, it would appear that ions with a large Z are favorable.

10'8}
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Figure 1.1. Magnitude of the electric field of the nucleus at the Bohr radius as a
function of the nuclear charge number Z.



Nevertheless, such an investigation can only lead to a better understanding if ex-
perimental results can be obtained with a comparable accuracy thus allowing to check
whether the theoretical prediction is actually realized in nature. The experimental

precision achieved in measurements of transition frequencies is shown in Fig. 1.2.
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Figure 1.2. Relative accuracy v/Av of the experimental measurements of the tran-
sition frequency for a selected number of nuclear charge number Z with the corre-
sponding references.



Unfortunately, this provides that the experimental accuracy reached for heavy
atoms is significantly less than for ions with a low nuclear charge. The especially
astonishing ultra-high precision results in Fig. 1.2 from Refs. [9, 10, 19] have been
obtained using optical frequency combs which require transitions in the optical and
near optical range. Hence, systems should be studied where there are transitions
suited for an interrogation with optical frequency combs.

The experimental accuracy is, in fact, not the only argument for light atoms as
being favorable for the study of the basis of QED. There is a problem with heavy nuclei
and that is the nuclear size. At the high level of precision in the theoretical description,
it can no longer be assumed that the nucleus is point-like. While the shift of the
transition frequencies this introduces has been calculated, the large uncertainties of
the experimentally determined radii make it the by far largest theoretical uncertainty.
The ratio of the energy shift due to the QED self-energy correction to the energy shift
because of the nuclear size is shown in Fig. 1.3. The figure makes it clear that the
QED effects, which are studied here, are much larger compared to the spurious nuclear
size correction for low Z.

Even though the nuclear size correction in hydrogen is small, it is still the major
reason why the theoretical predictions in it are on the same level as the experimen-
tal accuracy. The problem can be avoided by considering so-called highly excited
Rydberg states. In these states the electron is highly excited and thus so far away
from the nucleus that the nuclear size correction becomes negligibly small. With
the right choice for a combination of small to medium nuclear charge number and
principal quantum number, transitions between such Rydberg states can be in the
optical and near-optical regime and consequently accessible to measurements using
optical frequency combs. Hence, Rydberg states are the ideal study object for the
fundamental electromagnetic interaction because they constitute a nearly pure QED
system as well as allow for very accurate experimental measurements.

Such experimental measurements of transition frequencies often employ two-
photon transitions like for example the 15-2S transition in Ref. [9]. The accuracy
thereby is limited by the decay width of the line. For this reason, as a first appli-

cation of the method of the nonrelativistic expansion of the fully relativistic theory



described in Sec. 4, relativistic corrections to the two-photon decay width for lower-
lying states are calculated in Sec. 6. The calculation also turns out to be conceptually
interesting because it illustrates how the nonrelativistic theory allows to identify the
physical origin of corrections. Moreover, the invariance of the corrections under gauge

transformations of the quantized field is shown explicitly.

AEgg = husp(Za)
AEyns = hwys(ry, Za)

100}

10} T

Figure 1.3. Ratio of the energy shift because of the QED self-energy correction to
the energy shift due to the nuclear size correction shown in dependence of the nuclear
charge number Z. ry is the radius of the nucleus.

In order to reduce theoretical uncertainties in the QED predictions for Rydberg
states, in Sec. 7 QED self-energy correction of order a(Z«a)® are determined for a
number of highly excited Rydberg states within the framework of the nonrelativistic
theory from Sec. 4. This does not only allow to test the theory up to very high
accuracy but also to use a comparison of theory and experiment under the assumption

that the theory is correct to obtain very accurate values for fundamental constants.



These are constants which cannot be determined by theory but rather have to be
experimentally measured. The most accurately known of the fundamental constants
is the Rydberg constant [22]. It is specifically interesting because it appears in every
spectroscopic prediction. A comparison of theory and experiment in Rydberg states
might allow to deduce a more accurate value for the Rydberg constant. All necessary
as well as some experimental considerations are also discussed in this section.

For nuclei with non zero nuclear spin, the hyperfine interaction between the
nuclear spin and the total angular momentum of the electron leads to a further
shift of energy levels. Because this could introduce additional uncertainties into the
determination of the Rydberg constant, QED self-energy corrections to the hyperfine
splitting up to order a(Za)?AEgrs are determined for highly excited Rydberg states
in Sec. 8.

This work is organized as follows. The theoretical methods are presented and
explained in Secs. 3, 4, and 5. Calculations which have been carried out using the
nonrelativistic expansion of the fully relativistic theory are then presented in the
Secs. 6, 7, and 8. In Sec. 6 relativistic corrections to the two-photon decay rate are
determined and the gauge invariance of the theory is shown explicitly. QED self-
energy corrections to the Lamb shift of Rydberg states are calculated in Sec. 7 where
also possible applications of these results for a determination of the Rydberg constant
and nuclear masses are presented. For these highly excited states QED self-energy
corrections to the hyperfine splitting are then calculated in Sec. 8. Finally, conclusions

are drawn in Sec. 9.



2. UNITS AND CONVENTIONS

In this section an overview over all conventions and units is given which will be

used in this work, in order to prevent any confusion.

e In the analytic part of the calculation the Heaviside-Lorentz unit system is used.
In it the speed of light ¢, the Planck quantum % and the electric constant e
are set equal to one (¢ = i = ¢ = 1). With this the one remaining physical

dimension is chosen to be the length which is labeled as A..
e For the numerical part of the calculation atomic units are used.

e The common index notation is employed in which Greek indices go through the

values of 0...3, while Arabic indices go from 1...3.

e Contravariant indices are placed as superscripts. Therefore k® = w denotes the

Oth component of the four-vector k.

e The metric tensor in this work is

where the blank spaces are zero.

e z is used for the four-vector (¢, Z). In spherical coordinates % stands for the two

angular coordinates 6, ¢ and r for the radial coordinate.

e Whenever Greek or Arabic indices are repeated, the Einstein summation con-

vention is employed.

e Tr denotes taking the trace of a matrix.
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The Heaviside-Lorentz Unit System. Here, a short look is taken at the
transition from the SI to the Heaviside-Lorentz unit system, which starts from Coulomb’s

law

7192 1 qig
F=k = .
02 dmeg T2
As mentioned above the units are chosen in such a way that ¢g = 1. Also the units
of length and time are set so that ¢ = 1. Finally, the unit of energy is set in order to

have A = 1 in these units. Consequently, Coulomb’s law takes the form

, € koe?

=4r—— =47, because g =h=c=1.

© T whe he

The advantage of these units is that the electric charge is now a dimensionless quan-
tity. For later reference the Coulomb potential of an electron attracted by a number

Z of positive charges in the origin is rewritten in the form

1 Ze? 1 4nZ VA
V() = — e _ nZo _Zo

dmeg T dmeg T T

Accordingly, the inhomogeneous Maxwell equation in covariant formulation in the

Heaviside-Lorentz unit system takes the simple form
O F* = jv.

Atomic Units. As the name suggest, atomic units are used almost exclusively
in atomic physics. In it the scale of units are chosen in such a way that they are
oriented on the hydrogen atom. Starting from the Gaussian unit system, the charge
of the electron e, the mass of the electron m, and the Planck quantum A are chosen

as the units. From these units the other units can be derived, which are
e The unit of length is obtained to be the Bohr radius a,.

e As unit of energy one has the atomic binding energy (Za)?me..
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3. THEORY: FULLY RELATIVISTIC QED

3.1. RELATIVISTIC DESCRIPTION OF THE ELECTRON

The fully relativistic equation which describes the behavior of the electron wave
function 9(z) in a Coulomb potential has been found by Dirac in Ref. [2]. In con-
trast to the well known Schrédinger equation it is based on the relativistic energy-
momentum relation. Moreover, it also contains an inherent description of the spin.
The solution can be obtained in basically the same way as shown in textbooks for the
nonrelativistic Schrodinger equation, by first separating off the time-dependent part

because the equation is time-independent to give
[1,) = e 50" [, 0) . (2)

The remaining part of the wave function can then be found by solving the equation

Holw) = (~ia- 9 = 22 4 g ) 19) = Bo ) )

where the matrices & and 3 are given in the representation here as
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A further separation into a radial and an angular part allows to obtain for the wave

function in position space

/\/K @) )
R %%%1’U@mm
=

with the radial functions

g(r)z_\/l“(27+(n—|n|)+1) 1+ ) (22)%6_%0 (221,)

L2y + 1)/ (n — |&|)! Nayg Nag
X [——(n— Ea (—(n— |&|)+1,27+1,]2V—Za7—;) (7)

+(N—f-c)F( (n— |K]), 27+ 1, -]2-\%)]

and

f(T)z_\/F(27+(n—|/c|)+1) Ty )(2Z)ge-~2—&> (2ZT)7_1

T(2y + 1)y/(n — [&])! Nao Nag
X [(n— |k])F (—(n— |f<c|)+1,27+1,12Via:;) (8)
+(N—n)F( (n—|8]), 2y + 1, ]2%)} ,

where ag = 1/mea is the Bohr radius and Y ,,,(Z) the spherical harmonics as defined

in Ref. [23]. These equations are given in terms of the Dirac quantum number s with
r= (=172 4 3), (9)

the sometimes called “apparent principal quantum number” N

N = /n? —2(n— |s))(|] = 7), (10)



13

the parameter €, which is the eigenenergy divided by the rest mass of the electron,

(Za)? :

e= |1+ —""
(n — [K] +7)?

; (11)
and y
vy=vVK2—(Za)?. (12)

A detailed derivation can be found in Ref. [24]. The resulting energies of the states

are then

[ L

(Za)* 17

E=me=m,|l+ ————m——
(n = K] +7)?

(13)
In contrast to the experimental measurements of Lamb and Retherford [3], the so-
lution of the Dirac equation predicts that states with the same absolute value of
K, which means equal total angular momentum f =0+ §, have the same energy.
This Lamb shift can only be explained by including the quantization of the electro-
magnetic field [6] into our considerations of the electron. This quantized theory of
electromagnetism is called quantum electrodynamics (QED). In the next section, the
quantization of the electromagnetic field is discussed. Afterwards, it will be shown
how to combine QED with the Dirac theory of the electron and show how the quan-
tized field alters the energy levels of Dirac theory.

3.2. QUANTIZED FIELD

So far, the electron has been treated in all its detail but kept the electromagnetic
field like in the classical Maxwell theory. The next step is to quantize the electro-
magnetic field in order to include the particle nature of the photon as well as its wave
nature which is contained in classical electrodynamics. Because the quantum theory
has to agree Maxwell’s theory in the classical limit (high energies, many photons),

Maxwell’s equations in covariant formulation are recalled, which in this unit system
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are given as

0 F* = j¥, (14)
euupaapF“U =0, (15)

where F'* is defined by
Fr = 9FAY — §¥A* . (16)

The four-vector potential A* is combined of the scalar potential 1 and the vector

potential A

AP = (¢, A‘) . (17)

Similarly, the four-vector current is

= (0.7) - (18)

Using the Hamiltonian principle and the Euler-Lagrange equation similar to classi-
cal mechanics the inhomogeneous Maxwell equation (14) can be obtained from the

Lagrange density
1 o m
Eem = —ZF Fuu_J A,u' (19)

The homogeneous Maxwell equation (15) is automatically fulfilled by the use of the

four-vector potential. Following the Noether theorem invariance of the action

S = / d*z Lo, (20)

under a transformation leads to a conserved quantity. In this way for example the

conservation of the electromagnetic current or the continuity equation

B =0 (21)
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can be shown. As one might recall from electrodynamics the four-vector potentials

can be gauge transformed according to
A, — A, =A,+0,A (22)

while the electric and magnetic field are invariant under this gauge transformation
[25]. Now, this gauge transformation is applied to the Lagrange density in Eq. (19),

which gives
! ]' v - . .
L =- [ZF“ F,, +j*A, +]“8MA] . (23)

Because the current is conserved and, therefore, 0,j* = 0, the term 8,5#A = 0 can
be added to the Lagrangian which yields

El _ 1 uv M A P A 4

em — ZF F/,w'*'] #+8u(.7 ) . (2)

The last term is a total derivative which does not change the action in Eq. (20).

This means that the action is invariant under the gauge transformation. Although

this gauge freedom can be very useful for the actual calculations, it complicates the

quantization of the theory as a specific gauge has to be chosen prior to quantization.

Here, Coulomb gauge is used
V.A=0 (25)

even though it is not Lorentz-invariant. However, this gauge will mainly be used
in this work and moreover its quantization developed by Gupta and Bleuler is very
instructive.

In quantum mechanics momentum and position are elevated to operators, which

have to fulfill the commutation relation
[(L',',pj] = iéij . (26)

For the quantization of the electromagnetic field, the procedure is similar and the

vector potential is elevated into an operator. In order to get an similar commutation
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relation the conjugate momentum is required. This conjugate momentum is denoted
as m and is obtained in a similar way as in classical mechanics with a derivative of

the Lagrangian with respect to the time-derivative of the field

. oc
™ = A (27)

The Lagrangian, of which the derivative is taken, in Coulomb gauge takes the form
1o 1 2, - 1 0 0, 1 0N2 - A0
L= 50" Ai0A —5(51141') +jiAi+ 504,04+ T ABA + S (8 A7) — joA”. (28)

So, the conjugate momenta are obtained as

oL
0_—=
s = 309 A0) 0, (29)
Tt = A OoA' — ;A" = E* . (30)

Here, the advantage of our choice of gauge also can be elucidated. The potential
has no dynamics of its own and is given entirely by the charge distribution. This
allows to continue to work with the classical Coulomb potential of the electron proton
interaction and only quantize the vector potential.

With the conjugate momenta a Legendre transformation can be used to receive

the Hamilton density for the free field with j; = 0
1 — —
—kA (2 2
Hireo = 1Ay — L 2(E +B). (31)

It has the form of a harmonic oscillator but as it is a density, it is in fact a contin-
uous chain of massless harmonic oscillators. Accordingly, the quantization is nearly
the same as for the normal harmonic oscillator. Therefore, it will not be reiterated
here. A detailed derivation can for example be found in Ref. [26]. Just discuss the

commutation relations are investigated which are

[Ai(t, 7), Al (t, :E")] =0, (32)

[#(¢, %), 7 (¢, &)] =0, (33)
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where the hat is used to make clear that one is dealing with operators now. It is
important to note here that these relations are always for equal times. Normally, the

commutation relation between A and 7 are expected to look like
[Ai(t, 7),#(t, 5;*)] — i616(z — ). (34)

Unfortunately, this is not correct because of the gauge condition, which can be seen

by taking the divergence of the commutator

) [Ai(t, 2),#(t, 5;*)] - [a,-Ai(t, 2), 79 (¢, f)] = [0,#(t,#)] =0, (35)
while

) [Ai(t, 7),#(t, 5;")] =i0,0(F—T) #0. (36)

The right idea can be envisioned by looking at a certain choice to fulfill the gauge
condition of the vector potential d;4; = 0 which can be imposed by a projection

operator

Ay, 7) — (5,-' - %) A;(6,8). (37)

Applying this projection operator on the ¢ distribution gives us
0i0;\ o o d’k kiki \ k(z-2) _ siiigm_
(51—-8_2)6(1:_3;):/@? 5ij_'? e =5’]((E—.'E). (38)
This transverse  distribution now gives the right commutation relation

[Ai(t, z),#(t,&)| = i6-9(z — 7). (39)

—_

All this leads us to the quantized vector potential for a free field [27]

At = [ 25 Z(a*(k‘)e*(zz)e-ik-z+a**(k‘)e‘*(1¥)eik~1) (40)
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where the polarization vectors €*(K) fulfill the relations

(k) - & (k) = 8, (41)
k-&k)=0 (42)
2
. kik;
> eNk)e} (k) = 65 — 1252]' (43)
A=1

which accounts for the fact that there are no longitudinal photons i.e. light is a
transversal wave. Plugging in the obtained quantized A(z) into the Hamiltonian in

Eq. (31) leads to a Hamiltonian of the same form as for the harmonic oscillator

Hipree = %; / d*k wi (aA’T(E)aA(E) + %53(0)) . (44)

The ¢ distribution is usually neglected even though it represents an infinite energy
shift. Still, it is not observable because the energy of a photon cannot be measured
without it.

For completeness, all the four-vector potentials for other gauges are given which
appear in this work. The corresponding derivations can be found in the literature [28].

A general expression for the four-vector potential is

where

r T* ny ktk”
Yo k) =g~ (1-&—5 ) - (46)
r=0 k

The two cases which are important in this work are Feynman gauge (¢ = 1) which is
commonly used in QED for free unbound particles and Yennie gauge [29] with £ = 3
as the length gauge which can allow some simplifications. This will be encountered

in the treatment of the two-photon decay which will be studied in Sec. 6.
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Unfortunately, it is not possible to just use this quantized vector potential in the
Dirac equation and obtain another analytical solution. Similar to quantum electrody-
namics for free electrons a perturbative approach to include the interactions with the
quantize field is required. In the next section the formal derivation for a perturbative

treatment of bound-state QED will be shown and explained.

3.3. FULLY RELATIVISTIC QED AND ENERGY SHIFTS

After the quantization of the electromagnetic field, it is time to show how its
effects can be included into the Dirac equation for the electron. The simple ansatz
would be to add the electromagnetic interaction term j#A,, which couples the elec-

tron’s current to the quantized radiation field, to the Dirac Hamiltonian from Eq. (3).
This yields

H=-ia -V - % + pm. + /dsxj"(ac)A#(a:) . (47)

It would be nice if this equation could be solved like the Dirac equation without the
interaction. However, this is not possible because the current j#(z) depends on the
electron’s wave function. It is assumed that this interaction term constitutes only
a small perturbation, since it only slightly shifts the energy levels. So, perturbation
theory is used and it is treated as a perturbation to the bound eigenstates of the

Dirac equation. The unperturbed Hamiltonian is then
a2 Jo
Holy) = (—i@-V - - + Bme) [¥) = Eo |9) (48)

and its eigenfunctions are the unperturbed states. The aim is to solve the full Hamil-

tonian
H|¥)=E|¥), (49)

so the interaction Hamiltonian is added to the unperturbed problem which is done

by adiabatic damping

H.(t) = Ho+ ge M H,(t). (50)
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The interaction is slowly turned on in the infinite past and damps out again in the in-
finite future. That means that at infinite times the eigenfunctions of the unperturbed

Dirac Hamiltonian are also eigenfunctions of the full problem and one has
H.(t=0)= H = Hy+ gH,, tlirin H.(t)= Hy. (51)
—*00

As can be seen here, the perturbation is time-dependent and makes a time-dependent
treatment necessary. The tool used is time-ordered perturbation theory based on the
formalism outlined by Dyson (see for example Ref. [30]). The interaction between
the electron’s current and the QED radiative field is then included perturbatively by

the interaction Hamiltonian

Hi(x) = (@) Aul(a). (52)
The dependence on the spatial variables can be integrated out to give

Hy(t) = / B2H, (). | (53)

The interaction picture [31] is employed for the calculations which when using the
bound-state Dirac Hamiltonian as Hy is commonly called the Furry picture [32],

accordingly one has the equations

2 |.(0)) = g1 H (1) 0. (0) (54)
with
Hy(t) = et H, (t = 0)e~Hot (55)

With this Hamiltonian, the equation for the time evolution operator can be written

as

i%Ue(t, to) = ge M H (t)UL(t, to) . (56)
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As evident, the exponential becomes equal to unity in the limit € — 0 and also the
perturbed eigenfunctions are equal to the unperturbed solutions of the Coulomb-Dirac

equation in the infinite past and future. This allows to write
[We) = [Te(t = 0)) = Ue(0,00) [¢) . (57)

However, it is not possible to just take the limit ¢ — 0 in order to obtain the in-
teracting bound states as this limit does not exist [33]. The way to obtain the right
limit has been shown by Gell-Mann and Low in Ref. [34]. Following the derivation in
Ref. [33], the equation

(Ho — Eo) [¥e) = (Ho — Eo)Ue(0, 00) [) = [Ho, Ue(0, 00)] [¥) (58)

is considered. Using the known Dyson series for the time evolution operator yields

[Ho, Ue(0, 00)] = [HO,Z (_ni')ng" / dt;... / dt, e+t T(H\(t,) ... Hi(t,))
n=0 ’ — —o° (59)

S [ [ et T ) e

n=0 ’ -

The commutator can now be evaluated with the help of the Heisenberg equation

.0
—laHl (t, to) = [H(), H1 (t)] , (60)

to give

[Ho, T(Hy(t1) ... Hy(tn))] = [Ho, Hy(t:,) ... Hi(t:,))]
= [Ho, Hy(t:))|Hi(t) ... Hi(t:) + ...+ Hi(ts,) ... Hy(ti_,)[Ho, Hi(t:,)]

= (_i)BI{alt(‘til)Hl(tiz) CH )+ Ha(ty) Hl(ti"_l)(—i)___afgt(_t"") o
P in (61
= (_I)Z a%Hl(til) - Hl(tin)

= (<)Y o T 0) . Fi(e).
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This means for Eq. (58)

oo

_N\n 0
(Ho- B ) = > g [t [t

n=0 -0 -

o

x (- I)Zat (Hi(t1) ... Hi(tn)) 1)
=0 (62)

o0 — 0 0
— n n 1 dt dt est1+...+tn
q E n _ 1 1. n
=1

—00 —00

x atilwm(tl) Hy () [

because all derivatives are equivalent as the integrand is symmetric under permutation
of the time arguments. The remaining time derivative can be integrated out using

partial integration

/_(:o dt1€ ailT(Hl(tl) Hl(tn)) =

= T () )|~ [ e TURw). Fiw) ()

—00 —o0

— H(O)T(Hi(ts). .. Hy(t,)) — € /_ it T(Hy(81) . Hi(t).

Plugging this result into Eq. (62) yields

° (_i)n—l 0 0
(Ho — Eo) |¥¢) = —gH, ) (=1 |g"_1/ dts .. / dt, ettt
=1 - —~00 —00
x T(Hy(ta) - - ) 1$) + Z

0 0
x / dty. .. / dt et H (41) . H (8)) [9)

—o0 —00

= —ng (O)UE( )

0 0
X / diy ... / dt e T (H (ty) ... Hi(ts)) |)
= —gH;(0)U.(0, —00) |¢) + isgaigUs(O, —00) 1)

0
- ) +igg 2 |T,) |
9H1(0)|‘I’)+lsgag| )
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With the full Hamiltonian this equation can be shortened to give
. 0
(H — Ey) |¥.) = 1€ga—g |Pe) . (65)

As mentioned earlier, it is not possible to just take the limit of the wave function. This
point can be elucidated here because in the limit ¢ — 0 the full and the unperturbed
state in Eq. (65) would have the same energy which in turn would imply that there is
no energy shift. Since this is not the case, something is done wrong here. The correct
solution can be obtained by dividing Eq. (65) by the overlap of the unperturbed and
the perturbed state (¢|¥.). With some manipulations

B = 0
=0 | 3y vty * (%;Zﬂlflqi)))l \PE)] (66)
=g | gty * oy 3 ™ 199
is obtained, which can also be written as
(11 B teagin i) gl = o0 s (€)

As requirement for the application of the Gell-Mann Low theorem the limit

)
i )

has to be well defined in all orders of the perturbative expansion. If this is the case,
then the situation is not altered by the derivative with respect to g. In turn, this
means that because of the linear factor of ¢ the right hand side of Eq. (67) vanishes

in the limit € — 0. So, one finds

(H - By~ limieg - <¢|‘Pe>) ey = (68)
(H-E) 22—
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Thus, the constructed state is an eigenvector of H with eigenvalue E as intended.
Consequently, this also gives the energy shift between the energy of the unperturbed
state and the real eigenstate of the perturbed system, which can be read off Eq. (68)
to be

0
AE=F—-Ey=Ey+ li_rgisg(% In (¢|T,) — Ep = l%isga—g In (|T,) . (69)
This result can also be expressed in different ways using the time-evolution operator

AE=ygg)ieg—1n<wU(0 —00)|9) = —ggr%iag—ln<¢|v(0c>o>|¢> (70)

= lhm 1eg§— In (¢ |Uc(00, —00)| 9) . (71)

The time-evolution operator from —oo to oo is generally called the S matrix [35]

Se,g = Ue g(00, —00). (72)
Furthermore, all disconnected diagrams can also be dropped from the S matrix, this
means diagrams which have no connection to the in and out states do not have to be
considered. Thus, when also the logarithmic derivate is expanded, the energy shift

can be written as

9
AE, = lim 1aga—g<¢|5e,g|¢>

D2 (150l ) (73)

In this case, the energy shift still depends on the value introduced for the coupling
parameter, as it is not good to change or vary the electric charge, the parameter g is
used and the limit g — 1 is taken at the end of the calculation.

In order to be able to evaluate the expression for the energy shift now, the

perturbative expansion of the S matrix has to be used

oo
Seg=1+3 5% (74)
k=1



25
with
(k) _ (—ig)k 4 4., _—elt] —¢ty]
S’g _—k| diL‘l dacke ... € T(Hl(acl)Hl(a:k)), (75)

as it has been defined in Ref. [36]. With this now a perturbative expansion for the
energy shift of the bound system is found [36]

(v w)+2(w|s®|v) +3(v
g=1_1+<w Olw) + (v[s?|w) + (v
= (0[SO v) +2(¥|SP|v) — (w [SP|¥)"
+3 (v |SO]) = 3w [SO] ) (¥ [SP] v) (76)
+(®]SD|w)’ +4(w |SD| )
—4(p|SO|8) (w [SP|p) —2(w 5P| p)’
+4(w SO )" (v ]SP|v) - (B[SO w) + ...

(1) (2) (3)
€ € &€

B+
G+

75 (15,6l )
(W |Se,q] )

52) S£3)

For the energy shift this leads to

A, = lim 2 (]52]1) +2 (0[SO w) - (0 [50]9)" + 3 0[S v)
=3¢ 150 0) (@ [52]) + (0 [0]9)° + 4¢p |59 ]9)
— 4 (]SO ) (¥ [S9]9) - 2(w |52 9)’
+ 40 [SD ) (0 |S@|w) — (w |SP|9)" +..| .

(77)

In this way, a perturbative expansion has been found which allows to compute

the level shift in every order of perturbation theory.

3.4. APPLICATION OF THE GELL-MANN LOW THEOREM

After the general expression for the energy shift of a bound-state due to an
interaction has been derived. It will be applied to the problem under study. The
method outlined in Refs. [7,8,36,37] is explained which will lead to fully relativistic
equations for the energy shift for a bound electron due to its interaction with its own

radiation field. This is called the self-energy. In addition, the methods employed there
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to transform the resulting equations into a form suited for a numerical calculation
are shown.

In the beginning the quantities from the last section have to be chosen according
to the problem at hand. Following the derivation in Ref. [36] the electron mass can
be extracted from the Dirac equation. This simplifies the calculation. Consequently,

Eq. (3) takes the form

—i&.ﬁ—%‘iw—En n(F) =0, (78)

where the time dependence of the solutions is given by
Yn(2) = Yn(E)e™ . (79)

The electron mass will be reintroduced in the end of the calculation. For the further
calculation, however, the fully quantized electron-positron field operator is required
to account for all the effects the radiation field has on the electron. It can be ex-
pressed in terms of electron and positron annihilation and creation operators and the

eigenfunctions of the Dirac equation as

V()= Y atu(@) + Y thm(a). (80)

E,>0 E,. <0

Here, a, is the annihilation operator for an electron in state n with E, > 0. b]_is the
creation operator for a positron in the state m with E,, < 0. These operators fulfill

the usual anti-commutation relations for fermion operators
{an,afn} =0pm; {@nam}=0 (81)

and analog relations for the positron operators. When these operators act on the

vacuum, the unperturbed states can be obtained

[n) = al |0) . (82)
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For such states the unperturbed energy operator is given by the normal ordered

expression

Hy = / &’z V' (2)HpU(z):= Y Enalan— Y Enblbm. (83)
En>0 Em<0

Normal ordering means that all creation operators are to the left of all annihilation
operators. In this way, the vacuum expectation value of a normal ordered expression
is 0.

After defining the Hamiltonian and field operators, now also the interaction
Hamiltonian, which introduces the level shift, needs to be defined. As discussed
earlier, the electron-positron field in the external potential is now coupled to the

radiative QED photon field which can be achieved by the interaction Hamiltonian

Hy(z) = j*(z)Au(z) — 6 M (2) (84)

with the current operator

#(z) = —ze [T(x)y", ¥(a)] (85)

which couples to the quantized photon field operator A,(z). The commutator is

defined to only commute the operators and not the Dirac matrices, such that

[T@) ¥(@)] = Y Pul@)rva(z) [ah,an) + ... . (86)

En>0,E,>0

The last term 6 M (z) is the mass renormalization term. It has to be included here to
account for the fact that the electron mass cannot be measured without the effects

of the quantized field and it is given by
M (z) = 36m [ (z)v", ¥(z)] . (87)

The magnitude of the mass counter term coefficient dm basically has to be fixed by

the condition that without the Coulomb field the electron should have its known rest
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mass or
Zlimo AE,(Za) — 0. (88)

One may ask why the commutator is used here instead of the usual product. The rea-
son is that also time-ordering at equal times has to be included because the Coulomb
field is instantaneous and does not contain retardation. The equal time products
cause the vacuum polarization which otherwise cannot be obtained [36).

3.4.1. Energy Shift. The energy shift of a level n in first order in « (second
in e) can be read off Eq. (77) and gives

AE® = hm [(n|SP|m) +2(n|SP|m)] , (89)

where the superscript on S denotes the order in perturbation theory the terms are
mixed here because there is a contribution (i.e. the mass renormalization) which
appears in first order and is of order e?. This phenomenon is encountered later on as

well. The first term is given as
(n|SM|m) = i/d‘ixe_s”l (n|6M(z)|m)

=itm S [ ate" BB [ @ @i 2) (4ol ]
— i | oL@ (@ (n [l

m) (o)

n).

lim —— — 1(5($) : (91)

e-0z24+e2 ¢

can be used to simplify the expression to

(n|SM|m) = 5 > / A3zl (21 %m (£)0(Enr, By )<

n'm/

Iﬂam’\ m> v (92)
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where

1 if By = B
§(Ep, Em) = : . (93)
0 ifEy# Enw

Before the second term can be considered, a closer look has to be taken at the states
on which the operators act. While the fermion field operator ¢(x) acts on the initial
and final state of the electron, the electromagnetic field operator A,(z) acts on the
photon vacuum. This means that the state |n) is actually the Fock-state |n,0). So,

this yields

<n|5’§2)|m> _ (%6)2/d4w1/d4m2e—e|tlle—€|t2| (n,()|T([\il(a:2)7",\If($2)]

< A(as) [E(e )", U(zy)] Aml)) m, 0)

) (94)
- —Z/d“xl/d‘ixge_slt’le_e'tz'Dp(a:g — 1)
< 0l [¥(aa) W) [, 0] ) ).
with the photon propagator D defined by
(O[T (Ay(z2)Au(21))| 0) = guuDr(z2 — 21) - (95)
It is given as
5 T N )
F(T2 — 21) = (27r)4/ sy (96)

In this way, the photon degrees of freedom have been separated away. The Wick
theorem [26] is applied for the fermion field operators, which means all possible con-
tractions have to be constructed. In the case of bound state problems one has to
be extra careful as equal time contraction have to be considered which are usually
neglected in free field theory. In the bound theory these equal time contractions lead

to vacuum polarization. In Ref. [36] this is explained in more detail. Here, it is just
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mentioned that if equal times are not considered, the following identity holds
T[AB(CD — DC)EF] = T[ABCDEF] . (97)

This allows to simplify the current for unequal times while the commutator in its
definition has to be used for equal times. This way the following contractions are

obtained
(2) e? 4 4, _—elta] —elta|
(n]sS¢ |m>=——2 /dml/dx2e e 2 Dp(zy — 1)

I I_ I 1 I
x { (k2 E ) E ey )

+ (] U (22)y, U (22) U (@)y* ¥ (21) m)

—L i 1 |
+ (0] U(2)7, ¥ (22) (21 )V (z1) [m)

| — 1 \b 1
— (] U (2) U (2) 7 T (217" U (1) [m)

I

T ()Y () V) B lv'n>} .

(98)

To evaluate this expression it is necessary to know what the contraction of two fermion

field operators is equal to. This can be derived in the following [26]

Sr(z2, 1) = (0|T (¥(z2)¥(z1))]0)
= (0 |:¥(z2)T(21):| 0) + (0] W(z2)¥(z1) [0)

(99)
=0+ + {\fr’_(I?)’ \i]—(xl)} ifto >t
- {\II+(‘T1)’ \Il_(a:Q)} lftg <l
with
UHe)= > autu(z), T (z)= > blpm(z), (100)
En>0 B0

ql"'(q;) = Z bm"zm(a")’ \i/_(iL‘) = Z a:rlz/_)n(x)> (101)

Enmn<0 E.>0
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and {, } is the anti-commutator. Thus, the anti-commutators yield

(U (@2), 0 (21)} = Y Pn(@)Pu(e1){an,al} = > vn(@2)dn(zr), (102)

E,,E:>0 E.>0
- {‘il+(:z1),\ll_(x2)} = —Z @m(xlwt(ﬁ?z){bm’bz}: —Ziﬁm(mz)lﬁm(m)-
Em,E1<0 Em<0

(103)

In order to use the propagator without explicitly looking at the time, use can be made

of the time-evolution of the states. So, the propagator can be written as

Sp(@2,71) = Y Yn(@2)Pn(1)0(ts — 1) = Y Ym(z2)Pm(21)8(ts ~ 1)

En>0 Em<0
=) Ual@)V PL(F)e 0t — 1) (104)
E.>0
- Z Y (Z2) YO, (Z1) e Em 276t — t,)
En<0

This can also be expressed in terms of an integral over a dummy variable 2 in the

complex plane using the Cauchy theorem. The function

e—iz(tz—tl)

1@ = g —Za =

(105)

has a pole at the energy of the states. If this energy is negative the pole is shifted into
the (positive imaginary) upper half of the complex plane, while for positive energy
the pole is shifted to the lower half of the plane. In a contour integration for ¢, > ¢; or
to —t1 > 0 the circle has to be closed in the lower half to pick up a negative imaginary
part for z so the exponent is always negative (negative argument in front of the At)
so that the integral of the circle part vanishes. Using the Cauchy theorem, therefore
only the enclosed poles are picked up which are ones with positive energy. For the
case of to < t; or to — t; < 0, the circle has to closed in the upper half of the complex
plane, in order to get a decaying exponential (positive argument in front of the At).

So for this case all the negative energy poles are picked up. With these arguments,
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thus, the fermion propagator is written as

i
Sr(za, 11) = /d an(szlw_ ;1)) —iz(ta—t1)

(106)

[s,e]

1 ,),0 .
- dy—1 —1z(t2—t1)_
27ri/ H-21-1)°

After the contraction of the inner products, the expressions of Eq. (98) can be eval-

uated further
2 e’ 4 4, _—elt1] —elta]|
<n|,5'E |m> :—E/d ml/d xoe *Me 12 Dp(x — 1)
SRDIEMERTRINES
X 3 Bu(z)rgn(z) (n.k

k'l

al,al,apa ‘ L, m> (107)

al ‘ m>

+2 Z Ve (22) Y SF (@2, 1)V by (21) <”

n'm’

- 2TuESe(o 2] 3 e (211 (21) (el | ) |

n'm/!

The trace has to be used when a propagator with two equal coordinates appears, since

this is at least here a fermion loop [26]. The two times are transformed according to

a=t2—t1, b=t2+t1 v (108)

b—a t2=a+b

1
S - (109)

—)tlz
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which gives an additional factor of —% from the Jacobian. With these variables

Eq. (107) becomes

2
<n|.5'§.2)|m> = %‘/d3$1/d3$2/da/db€_€|a|6_€|b|DF($2 — 1)
3 e Gy )y 82) 3 (50703

kU

% < n, k > 5B+ By —Epi—Ey) i (B +Ep)

I,m
o+ 2 (B2) 1S (@2, 7)Y b (31) (.
— 2 Tr[v,Sp(z9, T2)] Ynr (T2) V" Ve (£1)

m> ei%(E""E"‘)} .

Only the integration with respect to the new variable b is carried out. In this case, it

GIL, a:1,;/ al/ am’

(110)

aj;/ am/

m> ei!z)'(E'n’ -E_ 1)

X <n ‘a:fl,am/

is not necessary to look into the time dependence of the propagators which depend

on the time difference a alone and one finds

2
<n|5’§2)|m> = 34—/d3x1/d3x2/da6_€|a|Dp(a:2 — 1)
XY ei%(E"’+E'"'){iﬁnl(fz)’)’u%bm'(fz) > e (E ) e (F1)

n'm’ k'l

X <n, k ‘al,az,allam,’ l, m> eli(Ek""El/)

8e

111
* (B + By — By — By)? + 482 )
8e - .
N (En — Ep)? + 4€? l2¢n/($2)7#5p($2, P (22)
< {n]ad | m) — 2 Tefy, Se(es, )] G (B ¥ ()
X <n ajl,am/‘ m>] } .
In the limit of € — 0 the integrals over the exponentials give
8¢ 2
li = —0(En + Ey, Epy + Ey 112
el—IbI(l) (En’ + Ekl — Loy — .Ejy)2 + 4e2 £ ( + L + 5 ) ( )
2
lim 8 = 25(Ew, Emy) . (113)

e=0 (Ep — Ep)2 + 462 €
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Now, all the partial expressions have been obtained and Eq. (89) can be rewrit-

ten to give the energy shift

E(Q) = /d3$1/d3$2/d 2—t1)DF(l‘2-—.’I71)

{an’ (T2)Yutoms (T2 Zwk'(xl yipu(x1)

K
>5(Enl + Ekl, Eml + El/)

X <n, k ‘an,ak,al/am/

(114)
)

m

+ > 6(Ew, E) [Mnf (22) 7, SP (T2, T1)7* b (21) <n \a:ruam’

n'm/

")}
CLJr a /» ’I’TL>
n/m .

The first of the terms in Eq. (114) describes bound electron-electron scattering which

— 2 Trl S, )] T ()i )
_6mz / PP (D)ot (2)5 (B, B <n

a:l/ arml

vanishes here because only one-electron atoms are investigated here. This leaves the
second term which describes the self-energy depicted in Fig. 3.1 and the third which
describes vacuum polarization. The fourth term describes the mass renormalization
which is included in the self-energy as it arises from the self-energy of a free electron.
The focus is on the self-energy and vacuum polarization is discussed in short in a

separate section later.

Figure 3.1. Feynman diagram of the self-energy of a bound electron. The double
line represents the electron in the binding Coulomb potential and the wiggly line the
virtual photon.
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3.4.2. Self-energy. Starting from the just derived expression and Kronecker
deltas are applied to the sums. In addition, it is used that ¢, = ¥}4°, as well as

e? = 4w in order to write the energy shift because of the self-energy as

AE®SE — 4ria / d*z; / d*z; / d(t2 — t1) Dr(z2 — 71)

+ Z P!, (%9) W SE(, 21) 7 P (21) <n

—omY> [ daut, @66, (@) (n

GL, an/
2.

an is the number operator, there only is a contribution for the state in which

n) (115)

a;tl/ an/

1,

nl

Since a

the electron is sitting. This state is denoted as the reference state n, then

3 <n n> - ;aml —1 (116)

nl

(LL, a/n'

and with this

AE®SE 47ria/d3x1 /d3x2/d(t2 —t1)Dr(z2 — 71)

(117)
X Y1 (22)uSp(Ta, T1)V*1hn(T1) — 5m/d3$¢:1(f)5¢n(5)~

In order to plug in the photon propagator from Eq. (96), this expression has to be
regularized and with it the integral to avoid the divergences at large photon mo-
mentum. Pauli-Villars regularization [26] is employed so that the regularized photon

propagator is given by

Dp(ze — 1) =

i - 1 1
diq e ia(@2—=1) - . 118
(2m)4 / ¢ g2 +ie q2— A% +ie (118)
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This is the photon propagator which is plugged into Eq. (117) together with the
bound fermion propagator from Eq. (106) to give

E(Q)SE = 47r1a/d3x1/d3x2/ /d4qe ig-{wa 1)

di(e )

x[q +ie ——A2+1]

1 ,),0 .
d —iz(ta—t1) 1 -
8 O"‘m/ Hoz(1-10)° (@)

—om / &l (2)0a ()

(119)

Using the time-evolution of the bound states leads to

2
AET(:Z/)\SE = @ /d3$1/d .’Eg/ tg—tl / dz/d4qe*1q (z2—z1)
Cr

—12(t2—t1)

X{q +ie —A2+16:|¢( )a”H— z(1 —i6)
X ot (Fr)e Bt _ g / Bt ()50 ()

= 210 /daxl/d:’xg/d tg—tl)/d q/qu/ dz (120)
Cr

w =i (Fa=71) {

@ — q% +ie qg— —A2+1€]

1 -
“Fa-w°

x oxp [i (En — g0 — 2) (2 — £2)] — 6m / &} () B ().

X Y} (Z2)

The time integration is carried out with the known identity

% / dk exp [ik(z — a)] = d(z — a) (121)
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to obtain

2i N
AEST® = / &z, / d*z, / dz / d’q / dgo €77 (F2=%1)
(27) Cr

* lq%—cT?+ie"q8—d‘2—A2+ie]
1
(7 © 7 — ) —
an(m)a“H—z(l—id)a ¥n(21)0((En — 2) — q0)

~om [ davl(@)pu.(@)
(122)
_ 2ia 3 3 / 3 —ig (£2—71)
27r)3/d a:l/d xo | d°q CFdze
» 1 1
(Epn—2)?2%—q%+ie (BE,—2)2—q%2—AN2+ie
1

X ¢l(f2)auma“¢n(fl)

5m / G2 (2) Pop(E)

The angle between ¢ and (Z2 — Z1) is chosen to be 6, (choosing ¢ to be in the 2

direction) in order to compute the angular integral of g

N 210‘ / B / &3z, / dz / dqq? / di, / df, sin(0
Cr

% e—lQIrz 1| cos(fg) [

(E, ——z) —@+ie (B, —2)?— ¢ —A2+ie]
X ¢l(f2)aum1'1——sa Un(Z1) (Sm/d:‘ﬂcmr )Bn(Z)

= (;;:;2 /d3x1/d3z2/dqq2/ dz/due"iqm“ (123)
Cp )
1

X

l(En—z)2——q2+ie— (En—z)2—q2—A2+ie]

X "»[’;rz (52)au'H—(11__—i6—)a#¢n(fl)

_m / oy ()60 (@),
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with rg; = | — Z1|. For further transformations of this equation the following rela-

tion is required

1
(Bn—2)2 —q?— A% +ie

1 1 1 (124)
T2 <\/(En—-z)2—./\2+ie——q— \/(En—z)2—A2+ie+q)

and the analogous relation for A = 0. Thus, Eq. (123) yields

Ies)
i 1 1 ;. :
AE(2)SE _ ———'—/d3 /dS / d /d 2 e igray _ ,—igra1
A (2m)? o 2 Cr zo 4 igra1 2¢9 [ ¢ )

1 1
L/(En—z)2+ie—q_ V(E, = 2)? +ie+q

1 1
~ +
V(B — 22— A2 +ie—¢q \/(En—z)2—A2+ie+q}

1 .
X Pl (Eo) oo Pa(T1) — dm [ dPzpl (£)BYn(Z)
*H — z(1 —i6) -~ / (125)

a . 1
= — A3z / d’z / dz / dge'?? —
(27r)2_/ ! 2 Cr 7 21

1 1

o0

[q—\/(En—z)2+i€+q+\/(En—z)z-i—ie

1
- q— (B, —2)2 — A2 +ie - q+\/(73n—z)2—A2+ie]
U@ gt oY@ = . [ Pl (D190 (@)
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This follows from

)
! iq'r 1

_o/dqe :\/—_q_\/a+q-+0/dqe l\/ﬁlJrq’_\/E—Q’]

Z/dqe :\/—1—q - \/51+ q: __Z e () [\/_1— q \/51+ q’] (126)

]
7 1 1 / 1 1

= / dqe'? + / dqeiqr[ ]
0

Va—q +a+q] Va—q +Va+g

—0o0

=/dqeiqr[ ! — ! }
va—q +a+g

—00
The integration with respect to ¢ in Eq. (125) can now be carried out with the help
of the Cauchy theorem. The contour is closed through the upper half of the complex
plane to get a damping in the exponential. Therefore only poles above the real axis

(those with ¢ — 1/a) are picked up. This gives

AE7(121)\SE = __la/d31;1/d3x2/ dz (exp [i|j‘2 — 1| \/(En — 2)2 +i6]
’ 2m Cp
— exp [i 1Zo — 1| V(B — 2)2 — A2+ ieD

< @)@ () — om. [ Pl @0,

— — (127)
|2y — 1|

As is well known, the complex square root has a certain ambiguity and normally
a branch cut along the negative real axis to get rid of this ambiguity. Here, one has
to deal with the root of a complex square displaced by a small imaginary part. For
a real number, the square root of a square is defined by V22 = |z|. Accordingly,
the sign information present in z is lost, as both x and —z get assigned the same
value. Following this idea, it is adopted here for complex numbers by defining that
the square root of the square of an imaginary number has positive imaginary part.

Thus, the square root is chosen to always have a positive imaginary part, which leads
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to the branch cut because the function has a non analytic point at £ = 0. This choice
is very useful for numerical calculation as it provides an exponential damping for the
high-energy part and therefore allows to separate off the divergent parts as they need
to have ro; = 0 [36]. As the x here is in fact more complicated a branch cut as shown
in Fig. 3.2 is obtained. For simplicity, in accordance with Refs. [7,36,37] b and b’ are
defined by

b= —iv(E, — 2)? + e, (128)
V = —iy/(E, — 2)? — A2 + e, (129)

which consequently always have a positive real part.

-1 /'/E:,;f — ™ Re(z)
» Ad—ie

Figure 3.2. Integration contour Cr for the integration of the self-energy. The branch-
cut closely below the real axis is due to the electron propagator, the other branch-cut
is due to the square-roots b and b’. Bound state poles are denoted as x.

The next step is to alter the path of the z integration. This is possible as the
function which has to be integrated over is analytic. Following Ref. [36] the path
is transformed as shown in Fig. 3.3 and split into two sections into a high-energy
contour Cy and a low-energy contour C, which will be discussed separately. The
separation is required because a low-energy photon leads to a change in the excitation
of a bound electron, whereas a highly energetic photon can scatter the electron into

a highly relativistic free state. This necessitates a different treatment for different
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photon energies and constitutes a major complication of bound-state field theory

over free field theory.

Im(z) '

Figure 3.3. New path of the integration contour. The low-energy part of the contour
from 2; to z; is denoted as Cp and the high-energy part, which is the rest of the
contour, is denoted as Cy.

3.5. LOW-ENERGY PART

In the beginning the low-energy part is considered which is the integration
along the contour Cp. The low-energy part is finite without considering the mass
renormalization which will be treated together with the high energy part. As it turns
out, though, a finite part of the renormalization appears in the result. Form the first
calculation of the self-energy contribution to the Lamb shift by Bethe in Ref. [6] it is
known that the effect is of order (Za)*In(Za)~2. However, terms of lower order than

this will appear in the result and can be extracted by an expansion in Za.
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The next step is another alteration of the integration contour but this time just
for the low-energy contour Cj. For this C}, is considered in the limits ¢ — 0 and
21,29 — 0. The endpoints of the contour thus meet at 0 and the two branches of
b meet at F,, which is illustrated in Fig. 3.4. The branch cut and the poles of the
electron propagator are moved away from the real axis by the addition of a small
imaginary part 76. Thereby, possible ambiguities of the resulting expressions can be
avoided. In order to obtain the energy shift the limit A — oo has to be considered,
which means A > FE,. Consequently, the part containing A has no singularities and

is analytic. As now C, is a closed contour, the part containing A vanishes.

a) Im(z)4
Ent/=ic
C—
— T CL
T ™1z
BERSY Butv/-ie 7 5
b) Im(z)4
Ca
24,23 -
"IVAZ
K—r o
—_— CB ° ———
—~1—i6 E.~i6 1-i

Figure 3.4. Alteration of the low-energy contour Cy, in the limits ¢ — 0 and 23, 20 — 0.

Afterwards, the contour Cy, for the low-energy part consists of two parts, one

part above the real axis denoted as C4 and one below the real axis labeled as Cp.
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Recalling the definition of the exponent b, it is found that above and below the real

axis b takes the values

b= -i(E, —2) for zon Cg, (130)
b=+i(E, —2) forzonC,. (131)

Thus, the integral becomes

AR 2)SE /d3x1/d3$2/dz_ <exp [i|Z2 — &1 (En — 2)]

— exp[—i|f, — 1| (Ea z)]) P
1
X YL (Fa) o e @) (132)
E,
/d3.'131/d3 2/dzsm |$2|; $_1|5,(3£T —z)]
) 2 1
1

X 'wl(f?)a#H Z(l )a 7vbn(xl)

Remembering and in a sense undoing an integration carried out earlier, it can be seen

that

sin [|Z2 — Z1| (Bn — 2 1 oo
I = al ;' ) _ = / 49, explig- (2 — 71)] , (133)
with ¢ = |¢| = E, — 2. Furthermore, this is used to transform the variable of

integration from z = E, — q to ¢ with dz = —dq. When changing the boundaries of

the integral accordingly, the result is

AE Q)SE d3x1/d3az2 d3q -
<En
X U (Ea)ae T En +q-— PR A G (134)
. 1 -
. P__ d3 n 1qz b,—lqx n ) .
42 Jo<pn, Q<¢ e H_E,+q—i0 ° ¢>




44

(Yn| |¥n) denotes the expectation value on the bound state. P is written here to
make it clear that this integration procedure leads to a principal value prescription for
the integral. Since a® = Id the time-like component can be taken care of right away.

For this, a very important relation has to be used which will encountered frequently

i7F ! (135)

. 1 _1
H-FE,+q-10 -8 qtV+P—FE,tq—id

elq-a’:’

The denominator is expanded for small & - ¢ using a common relation for expanding

the propagator and get

1 1
& p—a-§+V+B—E,+q—i6 & -p+V+B-E,+q
1 1
+ = - =
- p+V+P—E,+q @ p+V+B—E.tg
| . (136)
+ - Q- (o—5———= .
a-p+V+B—-E,+q a-p—a-g+V+p—-E,+q—id
1
X a&-q= + O(9) .

p+V+B—-E,+q

For 4 = 0, the outer propagators can directly act on the wave functions for which

(@-P+V + 8~ E,)¢Yn(z) = 0 holds. This means

1
H—En+q—i66

o 1 -
= = = IGE = = —ig-
+ (¢n |@ q]¢n)+<1,bnaqe T F g woie ¢n>+(’)(5).
Thus Eq. 134 yields
AE2)SE=(_1_E_iP/d3 1 5ij~qiqj
mb T el q?
n 1 (138)
i G T j _—ig-&
X<¢"ae H-E+q-1"° ¢">

because the angular integral over @ - ¢’ vanishes. Already from the term E, it be-
comes evident that a finite part of the renormalization is carried along, which can be

extracted out of the expression by an expansion in Za.
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Z« gives the strength of the Coulomb potential and scales the momentum,
energy and radial position of the electron. Such a scaling is also typical for bound

states of gravity. Thereby, the magnitudes of the relevant parameters can be identified

1
T~ %, |p| ~ Za, (139)
Vo~ ? ~ (Za)?, (140)
E,~1-(Za)*. (141)

Because these quantities are operators, the expansion is carried out by expanding
the denominator in Eq. (138) in powers of @ - 7, V and, finally, in powers of (1* —
E?). In order to extract the physical part of the low-energy part, which is of order
(Za)*In(Za)™2, only terms of lower order than this are kept. It will become clear
that these lower order terms cancel when added with the high-energy part justifying
the procedure. The expansion and the following evaluation of the resulting expression

are given in Ref. [37) with the result

Z 4
A = & 25+ S wniptun) + L Vi) + B gy (20
(142)
3 7 Za)
=225+ L ivn + E gz

where fr(Za) is the physical part of the low-energy part in the commonly used
scaling. For the evaluation, as described in Refs. [36,37], Eq. (138) is rewritten in

position space as

En
AE®SE = %En P / dz / a3z, / Pz} (£2) G (Zs, T1, 2)P Y (F1)
0

sin [(E, — 2)r91]
(En — 2)%rg

(143)

X (5,,62 ¥, — vgv{)

with 791 = |Z3 — Z1|. The possibility to separate the angular and radial part, allows

to carry out the angular integration and a integral over the radial part remains which
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can be written as [37]

E, 0 0
AE1(12)LSE _ EEH _ P/ dz/ drgrg/ drir?
. T
0 0 0

2
X Z Z fr3=i(r2) Gy (ra, 71, 2) fa3—j(r1) A (ro, 1)

K i,j=1

(144)

where f,1(r) is the radial Dirac eigenfunction g(r) for the reference state n and
accordingly f,2(r) = f(r). The components G¥ of the radial Coulomb-Dirac Green’s
function, as well as those from the angular integration of the photon propagator A%
are given in Refs. [7,8,36]. The remaining integrations are carried out numerically, the
details are given in Ref. [8]. It is important to mention that because of the principal
value prescription in Eq. (144), contributions from poles along the integration contour
have to be calculated separately. The analytically calculated contributions from the
poles have to be subtracted from the expression prior to numerical integration to
avoid divergences. The lower-order terms can be subtracted afterwards to determine

a value for fr(Za).

3.6. HIGH-ENERGY PART

In the high-energy part the integration proceeds along the contour C depicted
in Fig. 3.4. In it, the regularization of the photon propagator has to be considered as
well as the mass renormalization. Therefore, the expression for the high-energy part

1s

AEOSE — tim — [ dz / d*x / P19} (£2)0,G(Fy, 71, 2) 0P (T1)
Cu

A—oo 27 (145)
e—bra1 B e~ bra N 3ty .
X ( - o ) 6m(A)/d 2} (Z) Brhn(T) .

As its name implies, the high-energy part treats the photons, which have a energy
larger than E,. Compared to the high energy of the photon here, the potential is just
a perturbation. Therefore, the bound electron Green’s function G can be expanded
in terms of free electron Green’s function F' without a potential and interactions with

the binding potential V in a perturbative expansion. This expansion is graphically
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illustrated in Fig. 4.2 using Feynman diagrams [26] and gives

G(arg,xl,z) (CCg,JIl,Z) /d .'I)3F($2,Ig,Z)V(Tg)F(fg,fl,Z)
(146)

/d3I3/d $4F .’E2,$4, )V(T4)F(f4,fa,Z)V(T;;)F(f;;,fl,Z) + ...

For large |z| the expression in Eq. (145) is exponentially damped up to the region
where r9; ~ 0. In turn, this means that for large |z| the major contribution will come
from these terms. It has been suggested in Ref. [37] to use an expansion of the wave
function at &; around Z2. This not only allows to extract divergent terms at r9; = 0
but to find the terms of lower order than the physical part of the high-energy part as

well. The expansion of the wave function gives

Un(F1) = Pn(T2) + (Z1 — To) - Vorbu(T2)

: a0 (147)
+ 1(Z — )T — To) ——— U (T) + ... .
3(T1 — T2)' (T, 2)3,2(%%@&(2)
Finally, an expansion for the potential
V(’I”3) = V(’I‘z) + ... (148)

is used as well. The divergent and the lower order terms in Eq. (145) can be extracted

as the analytic part AE4 which is the sum of four terms
AE, = lim [AER + AEG + ABg" + AEg — 6m(A) (¢n |6]%a)] ,  (149)

where the index i in AE}f counts the order in V, while j gives the order in the
power series in Eq. (147). The expansions simplifies the integration with respect to
xo which can be carried out analytically. After that, the integration with respect to z
is tackled. As explained in Ref. [7] the structure of the function causes the integrals
over the circle parts to vanish and thus z is only integrated from —ioco to ico, which
is depicted in Fig. 3.5. This enables to transform it to y = —iz above and to y = iz
below the real axis. With the help of the definition of b and &', the resulting integrals

over y extend from 0 to co and can be carried out analytically. The calculation is



48

explained in detail in Ref. [37] and just the results are restated here, they are

)

AB = 2wl ) () - 14 15 ma + 5) (1506)

E2
3B, —2  1- By, 1+ E?) ) +0O(A™
SE? o n

a . 1 6 —3E2+ 7E:
AEY = — (1 |0 - Pl 1) (Zln(A2) ~ BN T B (150b)

L1 E, In(1+ E3)+0(A™1)
4E1 g ’

—E, G In(A?) +

0,2 (8 3 + 6E.,2,, - E.:lL 1
AE; = p l<¢n |5P2| ¢n> (_W + i In(1+ Eg) (150c)

3+6FE2+ E* 1
L. In(1 + E2 A1
2B By 2Es U ")) +0( )]

) 4
6= 5, 3+5, 1n(1+E3)) (150d)

+ (Yn | Enp?| thn) (

ABY - & [wn VIv) (510 +

8E2  4F%
2
Im(z)
*
UCH
———————— 1 *Rﬁ VA
—1 E,l @)
RWCy

Figure 3.5. Because the integral over the parts of the circle vanish, the high-energy
contour Cy takes this form in the limits € — 0 and 21, 20 — 0. The lines below the
real axis denote the branch cut of the electron propagator and the line above is the
branch cut of b.
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As can be seen there, all terms except AEEI’2 contain a term proportional to
In(A?) which is logarithmically divergent in the limit A — oco. These terms cancel

with the mass renormalization which in these units is [7,26,36,37)

a |3 3
dm(A) = = |=In(A?) + =] . 151
m() =2 [3m(a?) + 5] (151)
An expansion in powers of 1 — E2 again allows to extract the terms of order lower

than (Za)*In(Za)~? and gives

AE:A = 79;' (_gEn - g (¢n 'ﬁ‘ ¢n> - z <'¢)n |V| wn) (Z ) fa(Z ))
) (152)
=2 (-3E g mlVIvn + (—Zﬂfawa))

with the help of the identity (¥, | 8| ¥») = E, for the Coulomb potential. The physical
part of AE, is given by the remaining terms in Eq. (150) and is stated in Eq. (48)
in Ref. [37].

This analytical calculation is necessary again to extract divergences from the
numerical integration. After they have been taken care off, it is possible to define
functions which allow a point wise subtraction of these divergences from the numerical

integral which has to be calculated. These subtraction functions K*I(ry, 1, 2) have
been defined in Ref. [37] by

«

AE}f = — dz/0 drgrg/o drleri’j(rg,rl,z). (153)

271 Jeoy

In this way, the analytically calculated part can be subtracted from the initial

integral and the expression which is integrated numerically is then [37]

AFEg = i dz/ dTQ'f'Q/ d’r‘17‘1 (Z Z fnz T2 G J 1"2,7‘1, )
Cu

K 1,j5=1

X fnj(T1)Ax(r2, 71) = fas_i(re)GH (1o, 11, 2) faz—s(r1) A9 (rg,11)] (154)

- KA(Tz,ThZ)) ,
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where K4(rs, 71, 2) is the sum
KA(TQ, 1, Z) = KO,O(TQ, 1, Z) + KO,I(T27 T1, Z) + K0’2(T2, T, Z) + KI,O(T2, T1, Z) .

Note, that the functions A% (rq,r;) are different from those in Eq. (144) and are given
in Refs. [7,8). AFEp does not contain terms of lower order than (Za)*In(Za)™2.

Consequently, it is possible to write

(Za)*

AEp =~

f8(Za), (155)

and, therefore, the total high energy part as

3 7 (Za)?
EDSE -2 (_2E, — 2 (4, |V]tn z 1
AEGY® = 2 (2B, — L VIt) + g fu(Za) (156)
with fu(Za) = fa(Za) + fp(Za).

Finally, the low-energy and the high-energy part are added in order to obtain
a result for the energy shift. As can be seen from a comparison of Egs. (152) and
(142), this will lead to a cancellation of all the lower order terms. The final result,

where the electron mass can be reintroduced again, is thus obtained as

a(Za)'m,

AE@SE — - F(Za), (157)

n3

where

F(Za) = fu(Za) + fu(Za). (158)
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4. THEORY: EXPANSION ABOUT NONRELATIVISTIC THEORY

4.1. NONRELATIVISTIC DESCRIPTION OF THE ELECTRON

The fully relativistic formalism provides means to evaluate the QED corrections
to the energy levels. These calculations, unfortunately, require a large amount of
computer time. In addition, the relativistic formalism often does not allow to iden-
tify the physical origin of the investigated corrections. In many cases, though, the
nonrelativistic description of the electron provides an accurate enough approximation
and greatly simplifies the computations. With the nonrelativistic framework, due to
the special character of time, the interaction with the quantized field can be included
using time-independent perturbation theory. In this section, it is explained how a
nonrelativistic description of the electron QED interaction can be obtained and how
the relativistic corrections can be included. These corrections improve the approxi-
mation tremendously, while the simplicity of the nonrelativistic calculations can be
retained. As will become apparent, the relativistic corrections can be expressed as
effective operators, which, interestingly, very clearly show their physical origin.

In the usual description of the quantum mechanics, the bound state of an elec-
tron in the potential of a nucleus is given by the Schrodinger equation [1]. For a
nucleus with a nuclear charge number Z which is infinitely heavy, the bound states

for the electron can be obtained as solutions of the equation

P Za

Hs®(Z) = ( ) &(%) = Es®(Z). (159)

2m. r

The time dependence of the state is thereby given by
®(t, &) = e Es1D (7). (160)

The solution of this problem can be found in many books on quantum mechanics.
Therefore, it is given here without derivation. It can be obtained by separating the
problem into a radial and an angular part. This feature is very important and will be

used throughout this work since it allows for many simplifications in our calculations.
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The solution is described by three quantum numbers: the principal quantum number
n, the orbital angular momentum quantum number £ and the magnetic quantum

number m. The eigenfunctions are then obtained [24,38] as

(I)n,e,m(f) = )/Z,m(:i)Rnl(r) ’ (161)

where Yy ,,(Z) is the spherical harmonic as defined in Ref. [23]. While a solution of the
differential equation for the radial part can, in fact, always be found using a power
series in 7, a normalizable solution can only be obtained for a bound state £ < 0

with n > £ 4 1. Under these conditions the power series breaks off and the radial

L2l+1

wave function Rp,(r) is given in terms of the generalized Laguerre polynomials L

which are finite

3
(n—£-1) (%) 2Z\¢ _z0 o, (227
— 0 ~nag +1 [ 227
.R,,,e(’l‘) - 2n((n +£)|)3 (nao> e Ln+£ (Tbao) ) (162)

where ag = 1/mc« is the Bohr radius. Alternatively, the power series can be written
as a hypergeometric function which reduces to the finite Laguerre polynomials for the
above conditions [39]. The respective energies are then

_m.(Za)? zZ?

Bn=—— 3~ =~Ru, (163)

where R, = %meoz2 is the Rydberg constant. While the predicted energy levels ex-
plain the Balmer series, they do not explain the fine-structure of the spectral lines.
There are two reasons for this. The first is that the Schrodinger equation does not
contain the spin of the electron. The second reason lies in the energy momentum
relation used in the Schrodinger equation which is basically E ~ p2. This is the non-
relativistic energy momentum relation and therefore relativistic effects are neglected.

It is, however, possible to include both of these effects as perturbations into the

Schrédinger equation by using the perturbation Hamiltonian

=4

P o, Za =
§Hg=-L 1 T22 22 .7, 164
s 8m2+ 2m? (x)+4m§r3a (164)
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where ¢ are the Pauli matrices. The first term arises from the relativistic kinetic
energy and the second from the zitterbewegung of the electron. The last term comes
from the interaction of the spin with the magnetic field generated by the core in the
rest frame of the electron. This magnetic field is generated because in the rest frame
of the electron the core circles it with angular momentum #.

In order to allow a perturbative treatment, it is necessary to include the spin
in the wave function of the unperturbed Schrédinger Hamiltonian in Eq. (161). This

changes the spherical harmonic Yy, into a Pauli spinor xj,

D(Z) = x5 (2) Rne(r) - (165)

1(2)

1, 1
ls+3]-5m—5

(#)

2k +1
K+ 4+ 3
2+ 1 Iet3l-gu+s

(166)

with the Dirac quantum number x = (—1) +e+%(j + %) and the total angular mo-
mentum j = 7+ %6’. The Dirac quantum number is another way of writing the total
angular momentum though in terms of integer numbers. For example, the so-called
P /o state with orbital angular momentum ¢ = 1 and total angular momentum j = %,
has k = 1. While the state S;/5, which has the same total angular momentum of
j= % as the P/, state, has a Dirac quantum number of K = —1 because the orbital
angular momentum is £ = 0. Hence, the sign allows to differentiate states with the
same total angular momentum due to the difference in orbital angular momentum.
Even though the complete Hamiltonian Hg + d Hs cannot be solved, the eigen-
function of the unperturbed Hamiltonian Hg with inclusion of the spin can be used
to calculate the energy shift due to d Hg in first order of perturbation theory. The

result is

me(Za)? me(Za)* [ 3 1
Ep + (®|6Hs| ) = Ep; = — éng) + én:’) (E“Hl)' (167)
3
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In contrast to E,, in which the energy only depends on the principal quantum number
n, the energy E, ; depends on both the principal quantum number as well as the total
angular momentum j. Interestingly, this result agrees with the energy prediction
by the Dirac equation expanded in Za up to and including O((Za)*) [24]. When
atoms with a low nuclear charge number Z are considered, these higher order terms
are negligible. This means that the electron for such atoms, when some corrections
and the spin are included, is very well described by the nonrelativistic Schrodinger
equation.

The next step is now to include the effects, which arise because of the quantum
nature of the electromagnetic field, as well. But before this can be done, it has to be
explained how the electromagnetic field can be quantized, which will be done in the

next section.

4.2. QUANTIZED FIELD

After the treatment of the electron, this section will discuss how the electro-
magnetic field can be transformed from the classical Maxwell theory to a quantum
theory. The aim is to quantize the electromagnetic field in order to include the par-
ticle nature of the photon as well as its wave nature which is contained in classical
electrodynamics. Because the quantum theory has to agree with Maxwell’s theory
in the classical limit (high energies, many photons), the starting point is to recall
Maxwell’s equations in covariant formulation which in the unit system in this work

are given as [25]

8, F™ = 5¥ (168)
€upo O’ FM =0, (169)

where F* is defined by

FW = gHAY — 3 AF. (170)
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The four-vector potential A* is combined of the scalar potential ¢ and the vector

potential A
A¥ = (¢, A‘) . (171)

Similarly, the four-vector current is

g = (p, 5’) : (172)

Using the Hamiltonian principle and the Euler-Lagrange equation similar to classi-
cal mechanics the inhomogeneous Maxwell equation (168) can be obtained from the

Lagrange density

Lom = —%F’“’Fuu — jhA,. (173)

The homogeneous Maxwell equation (169) is automatically fulfilled by the use of the

four-vector potential. Following the Noether theorem, invariance of the action

S = / d*z Lom (174)

under a transformation leads to a conserved quantity. In this way for example the

conservation of the electromagnetic current or the continuity equation
gt = (175)

can be shown. As one might recall from electrodynamics the four-vector potentials

can be gauge transformed according to
A, — A;‘ =A,+0.A, (176)

while the electric and magnetic field are invariant under this gauge transformation

[25]. Now, this gauge transformation is applied to the Lagrange density in Eq. (173)
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to obtain
/ 1 . . .
L =— L—IF“ Fo., +3*A, + g”a“A] . (177)

Because the current is conserved and therefore 9,j* = 0, the term d,j*A = 0 can be

added to the Lagrangian which yields
1
L, =— [ZFWF”" +JH A, + 8”(3'“1\)} : (178)

The last term is a total derivative which does not change the action in Eq. (174).
This means that the action is invariant under the gauge transformation. Although
this gauge freedom can be very useful for the actual calculations, it complicates the
quantization of the theory as a specific gauge has to be chosen prior to quantization.

Here, in fact, Coulomb gauge will be used
T.A=0 (179)

even though it is not Lorentz-invariant.
For the quantization of the field, it is important to recall that in quantum
mechanics momentum and position are elevated to operators. They have to fulfill the

commutation relation
[z, p;] = 10y . (180)

For the quantization of the electromagnetic field, the vector potential is elevated
into an operator. In order to get analogue commutation relations, the conjugate
momentum is required. The conjugate momentum is called 7 and it is obtained in a
similar way as in classical mechanics with a derivative of the Lagrangian with respect

to the time-derivative of the field

oL
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The Lagrangian in Coulomb gauge takes the form
1o i1 2., . 1 0 0,1 0\2 _ ;A0
L= 58 A;0pA —5(8jA,-) +]iA,~+§8iAj8in+8 A;0;A +§(81A ) —joA . (182)

So for the conjugate momenta this yields

oL
0_——=
T = 507 Ay) 0, (183)
i_ oL i 0 _ i
7t = A OoA' — ;A = F*. (184)

Here, the advantage of our choice of gauge can be elucidated. The potential has no
dynamics of its own and is given entirely by the charge distribution. This allows
to continue to work with the classical Coulomb potential of the electron nucleus
interaction and only quantize the vector potential. Thereby, the effects from the
bound state potential and the quantized field are separated. Moreover, in this way
the unphysical time-like photons are excluded and only the longitudinal photons
have to be eliminated in the following. In the Gupta-Bleuler quantization for other
gauges [35], at this point both time-like and longitudinal photons have to be extracted
as degrees of freedom because the time-like conjugate momentum is non zero. In
general, the quantization of a gauge theory is a very intricate subject [26] because all
degrees of freedom are required in the calculation but some are unphysical and can
therefore not appear in the final results.

With the conjugate momenta a Legendre transformation can be employed to

receive the Hamilton density for the free field with j, =0
1/~ -
Hireo = T A~ L = 5 (E2 + B2> . (185)

It has the form of a harmonic oscillator but as a density. It is, in fact, a continuous
chain of massless harmonic oscillators. Accordingly, the quantization is nearly the
same as for the normal harmonic oscillator. Therefore, it is not reiterated here.

A detailed derivation can for example be found in Refs. [27,35]. Here, just the
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commutation relations are discussed. They are

[A"(t,f),fif(t,f)] —0, (186)

[#(¢, %), #(¢,&)] =0, (187)

where the hat is used to make clear that these are operators now. It is important to
note here that these relations are always for equal times. Normally, one would expect

the commutation relation between A and 7 to look like
[Ai(t, z),#(t, gsv)] = i095(% — 7). (188)

Unfortunately, this is not correct because of the gauge condition, which can be seen

by taking the divergence of the commutator

) [Af(t,f),ﬁj(t, f')] - [a,.fii(t,f),frf(t,f)] = [0,#(t,7)] =0, (189)
while

) [Ai(t, 2),#(t, f’)] —i9;0(F - &) £ 0. (190)

The right idea can be envisioned by looking at a certain choice to fulfill the gauge
condition of the vector potential §;4; = 0 which can be imposed by a projection

operator
Applying this projection operator to the § distribution gives

8{6' - — dSk k;k i’_ -z i1/ = —
(Jij—a—,;) 6(1:_:1:):/.W (61:]._]{)_2]) ek( )=6’L’J(IE—JI). (192)

This transverse ¢ distribution now leads to the right commutation relation

[Ai(t, z),#(t, f)] — igbii(F — 7). (193)
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The quantized vector potential for a free field in the Schrédinger picture is then [27]

A@) = / (‘22’;3 S (AR E)E + M (B (R)e ) (194)

where the polarization vectors € (k) fulfill the relations

eMNE) - X (k) = &M, (195)
k-&k)=0 (196)
2
L kik,
>l B)ej (k) = o — =2 (197)
A=1

which accounts for the fact that there are no longitudinal photons i.e. light is a
transversal wave. Plugging in the obtained quantized fT(:E) into the Hamiltonian in

Eq. (185) leads to a Hamiltonian of the same form as for the harmonic oscillator

2
1 Y
Hrw=1 3 / B wg M (R, (198)
A=1
where the § distributions have been neglected [38].

4.3. COUPLED ELECTRON AND FIELD

After the quantization of the field, it is considered how this field can be coupled
to the electron. When atoms with a low nuclear charge number Z like hydrogen are
considered, it has become clear that the discussed nonrelativistic description was in
fact sufficiently accurate. Therefore, it is now tempting to try and keep the nonrela-
tivistic description of the electron while coupling it to the quantized electromagnetic
field because it is much easier to handle. In principle one can just get the effect of the
quantized field by using the known Schrédinger Hamiltonian in an electromagnetic
field [39]. Because Coulomb gauge was used in the quantization of the field, the elec-
tric potential is unaltered by the quantization procedure and only the vector potential
A has to be treated differently. Moreover, in nonrelativistic quantum mechanics time
can be treated differently than space variables, which allows to use the quantized field

in the Schrodinger picture where it is time-independent. The coupling term between
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the electron and the field can then just be read off from the coupled Hamiltonian Hc¢

et ’ 5, e (199)
D p 1= 1/ 2
- —eA
G e 2 A(Z) — eA(%) e Zme A*(T) -
It is possible to simplify the coupling term —657% CA(Z) — eA(Z Z) - 5&=. In Coulomb

gauge the vector potential and the momentum commute because of V . A( ) = 0 and

thus

72 > 2
= —e— -—. 200
He 2m, em @)+ ZmeA () T (200)

This also gives a perturbation to the Schrédinger Hamiltonian whose effects can be
included using perturbation theory. In contrast to using perturbation theory with a
classical field, this interaction does not just couple the electron states but also the
photon states. Therefore, for a complete treatment the states have to be constructed
as Fock states out of the electron state and the Fock state for the photons. This also
means that the energy is given as the sum of the energy of the electron and the photon
field. Consequently, the Hamiltonian which gives the energy of the intermediate
states also has to give the energy of the electron and of the photon field. Thus, the
unperturbed Hamiltonian is the sum of the Schrodinger Hamiltonian for the electron

and the free field Hamiltonian for the photon

2

2 1 - -
Ho = Hs + Hiee = 2p - 70‘ +3 Z/dg’kw,;a’\’*(k)a’\(k) (201)
A=1

and the interaction Hamiltonian is

-

H; = —emie A@) + o

62

AND). (202)

Here it is restated again that all quantities are given in the Schrédinger picture, which
will be employed in this calculation. A time-independent perturbation series [27,38]

in orders of the electron charge e is used.
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The effect of the one-photon self-energy is to be analyzed which is represented
graphically in Fig. 4.1 by the corresponding Feynman diagram. That this is the lowest
order term can be seen from the fact that the first order term in e vanishes due to
symmetry arguments [38]. The second order term fnj—eg %(Z) vanishes for the same
reasons. The initial state is a Fock state combined out of the state of the electron
and the vacuum for the electromagnetic field, as only the effect from the field of the
electron and no outer field is to be investigated. The general second order expression

is

AEY = <<I>,0

®, 0> . (203)

Plugging in the appropriate expressions for the self-energy yields

7 Bk 2

Me 1/ (27r)32w,;, /\Zs:l

’
+ MR (e ) I S
Eq)10 - HS — % ZA’”:I dek/// wk,ﬂ’a,\,f”’(k///)a,\”’(k///)

2,0).

AEY = e2<<I>,0

(a’\/(l—v")E')‘l(E')eiEl'f (204)

7 PR

XE' V (2m)32wg, /\,,Zﬂ

(a)\u (E//)g,\u(E//)eiElz.f+aA//T(E//)E_.)‘N (E,,)e_i;u.f>

Figure 4.1. One photon self-energy of a bound electron. The double line denotes a
bounded electron and the wiggly line the virtual photon.

The energy of the initial state Egp is just that of the electron in state @, Fg,
because the energy of the photon vacuum is zero. Furthermore, it can be inferred

that only the creation operator in the last line will give a contribution because the
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annihilation operator acting on the vacuum gives zero. Thus, one photon is created
out of the vacuum in the intermediate state. This photon is then annihilated again by
the annihilation operator in the first line of Eq. (204). There, the creation operator
gives no contribution as the photon field has to go back to its vacuum state without

photons. Accordingly, the equation simplifies to
a3k’ 2 . .

)\’ Py =)\ El ik!-Z 205
T B Ee (205)

AEY = <¢0

!
y 1
Boo— Hs — § 500, | K" agua " (R ()

— 3! 2
2. d ¢ﬂ>.

v (27)3 2w, /\2::1

Since there is only one photon in the intermediate state, a complete basis set of the

(5rmm)
Ego— Hp

a)\”T (EII)E»\” (E//)e——iﬁ”-f

form

. 1 .
¢, 1a(k) >m<€, 1/\(k)‘

(206)

1 photon states

is introduced. The sum over £ represents a sum over the complete bound spectrum
as well as an integral over the complete unbound spectrum. Here, use has been made
out of the earlier discussion because there can only be one photon in the intermediate
state. The energy of this photon is then returned by the free field Hamiltonian and
added to the energy of the intermediate electron state. The expression, thus, takes

the form

2
1
ez;z/ A E

A=1

A3k /
Z aA k' kl)elk Z

\/(27r Rwp 5

P,0|-—

(el
(e

f®ﬁ>.

d3 ! MNtr7? ", sgatt
a T k" €,\ k" e—xk .
Me /,/(27r)32wk,, Z (R ()

=1
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With the relation
d3 " 2 "y , 2
E a,>‘ T(k”)

L A3k I
QY=Y 0)=(¢| [y 25 0 B

this can be simplified with the result

c1>> (208)

2
2 _ 2 d*k _1_
Abg” =e /(27r)32w Z; ®

(209)

Recalling the expression in Eq. (197) for the polarization vectors €’ A(k) in Coulomb
gauge, this can be written as

3 il i
@ _ 2 d°k 1 i k'K Z B P iksx
AEg =e / (27)3 2wy <6 L2 mee ¢

. ¢ (210)
1 Y iz
- £ 1K @ .
xEq>—E5—wE<€ 77’Lee >

Now the question arises how to deal with the exponential in the matrix element. It

would be nice if an expansion of the exponential would be possible. But what would
be the parameter to expand it in since it is not known whether k or £ are really small.
In order to figure that out, it is instructive to analyze the magnitude of momenta and
energies in the process as well as the relevant length scale. The length scale is about
the size of the atom which is given by the average distance of the electron from the
core. This is can be found to be the Bohr radius over the nuclear charge number [38].
In SI units it is

ag h

= ~ Z7. 107%m.
Z = Zam.c 0.53 x m

The momentum scale is given by the momentum of the electron which is just the
mass of the electron times the average velocity of the bound electron. The later can

be found the easiest by a calculation using the simple Bohr model with the result
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(v) = Za. The momentum scale is then
p~me (V) =me(Za).

In SI units this gives p ~ Zam.c = Z - 3.7keV/c. Following the virial theorem [39]

the energy scale for the electron can be expressed in terms of its kinetic energy

2 2
E— r_ (meza)) _ me(Za)2_
2m, Me

This gives the well known Z2.27.2eV. It is found later that it is necessary to constrain
this approach to photon energies where the photon just changes the state of the
electron and not its nonrelativistic behavior. Then the photon energy is about the

size of the electron energy
k| ~ E ~ m.(Za)?.

In the efforts of finding a sensible expansion parameter, the following magnitudes for

the important quantities have been derived

k| =w ~ E ~ me(Za)?, (211a)
HES % = (meZa)™?, (211b)
D] = mev = me(Za). (211c)

For the magnitude of the exponential one finds accordingly k-Z =~ Za. This parameter
now is small, Za < 1, for systems where Z is not large. Thus, a parameter in which

the exponential can be expanded is found. This expansion in powers of Z«a gives

o ~ 1z \?
1 (F-3) +... (212)
e

This is often called a multipole expansion because in correspondence to the multipole
expansion of 1/|Z — Z'| in classical electrodynamics [25], a scalar function is expanded

into terms with increasing tensor dimension [23,25]. This means that a scalar function
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is expanded into a series, where the first term transforms like a scalar i.e. 1, the second
term like a vector and the third like a tensor of rank 2. In the beginning, only the
lowest order term is considered. Furthermore, since the states |®) and |£) are both
eigenstates of the Schrodinger Hamiltonian, they can be expressed in terms of the

quantum numbers n, £, m. With the substitutions |®) = [nfm) and |£) = |n'¢'m') the
expression takes the form

3 - i1, i
AE®D — 2 k1 o9 — k_,k Z nfm P\ pem
ném (2m)3 2wi; k2 ) <=, Me
n'l'm (213)

! <n'€'m’ ’ﬂ n€m> ,
Me

X
En - Enr — Wi
where FE, is written because the energy in the Schrédinger equation only depends

on the principal quantum number n. In the next step the angular integration with

respect to k can be carried out. For this the relations

sl .. y
/ 47rk 0 =0Y, (214)
Ay kR 1,
Cl (215)

are required. Thus, the integration yields

2a 00 pi
AE® =22 | du-we ¢
nem = 30 | Wi Wi Z nem oy

n'f’m'>
n€m> ,

where |E| = wg and e = 4ma are used. Unfortunately, the derived expression diverges

n'l'm! (216)

i

1 / p
X fm/
&—%—W«’mm

€

when the integration with respect to w; is carried out with the given boundaries.
A further investigation reveals that at the vertex where the photon is emitted (see
Fig. 4.1) four-momentum is not conserved. The initial state with p* = (E,p") changes
into an intermediate state with p* = (E —wg, ). While |k| can be neglected against
|7| in the region where w; is small because of the discussion in Eq. (211), it is not
possible for the region where wy, is large in the integration in Eq. (216). This implies

that the procedure used to couple the nonrelativistic electron to the field is valid only
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if the quantum field in the nonrelativistic limit is considered i.e. wy <« m.. It will be
invalid as soon as wy becomes large. In this region, the considerations which allowed
to expand the exponential are also incorrect. The way to deal with this is to introduce
a cutoff to the integration over wy [27,38]. This cutoff is denoted as €, which leads to
@ B 200 € pi

AEL om = 3_7r/0 dwg wi Z <n€m n't'm/

1y ! E
n'¢'m (217)

X o Eln/ —ve <n’€'m' n€m> )

In turn, this implies that Eq. (217) only describes the low-energy part of the energy

Me

shift and that the part, where large photon energies are considered, has to be treated
differently. Therefore, the subscript L is used to denote that this only describes the
low-energy part. With the cutoff the integration with respect to wj can be carried

out with the result

20 E,—FE, 6 +¢
AEW®D =2 _ E,—E)n|=_"nT"
AT { a R E (218)
X <n€m L n'ﬁ'm'> <n'1,"m' P2 €m> :
Me Me

In the integration a principal value prescription has been used to deal with the poles.

The poles arise when w; = E, — E,/. Using the relation

= P— —iné(z), (219)

where P denotes the principal value, Eq. (218) can be identified as the real part of

the self-energy and the imaginary part is found to be

n’f’m'> <nI€ImI pi
m

In this way, it becomes visible that the self-energy shift is in fact a complex number.

mAER, = 22

(E,—E.) <n€m P

Me

nem> . (220)

e
n'l'm’

The real part gives the energy shift while the imaginary part gives the decay rate I.
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This is usually expressed as
AE = Re(AE) — %F. (221)

Therefore, the one-photon decay rate is given as

) )

p

Me

nlg/ml> <nlelml p

Me

4o
= 3 Z (B, — En) <n€m

n't'm/ n'<n

nem> L (222)

The sum has to be constraint to states with a lower energy than the initial state.
Otherwise, a spontaneous decay is not possible. Using a periodic external classical
field, this result can also be obtained with time-dependent perturbation theory. It is,
in fact, a classical example for the application of Fermi’s Golden Rule [38]. Although
talking about the decay rate here may look like a detour, it is important to mention
that the subtraction of the poles is a major complication if a numerical integration is
used for the photon energy, especially, when highly excited states are treated which
have many possible decay channels. Moreover, the two-photon decay rate will be
investigated as well.

Coming back to the real part of the self-energy (Eq. (218)), a way has to be
found to deal with the terms containing €. There are two main ways to deal with
the term linear in e. The; first is to subtract the self-energy of a free electron from
the expression in Eq. (218). The argument is that the electron cannot be observed
without the interaction with its own radiation field and therefore only differences to
an electron with the interaction can be observed. This is the method employed in the
original calculation by Bethe in Ref. [6]. Here, a method presented in Ref. [40] will
be employed. In it € acts as an overlapping parameter between the low- and high-
energy part and will cancel when both parts are matched together at the end of the
calculation. The real part of low-energy part is expanded in € and terms which have

an order higher than €® are neglected [41]. Carrying out this expansion in Eq. (218)
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yields
2« 2¢ 2|E I—E |
ReAEY 22 v —E)In| ———— | —(Ey—E,)In[ 2201
° Loném 37r 1p1 /[(E ) n<me(Za)2) ( ) n( me(Za)Z )}
n'é'm ) . (223)
X <n€m‘ P n’E’m’> <n'€'m' r n€m> )
me me

where a scaling parameter %me(Za)2 = Z?R, is introduced to split the logarithm

with € from the finite logarithm. Dropping the complete basis set for the first expres-
2¢
n€m> In (—me(Za)z)
2|En — E,|
— Z (En/ - En) In (W) (224)

n't'm’
X <n€m P n’f’m'> <n'€'m' £m> .
m

The first matrix element can be expressed using a commutator [27]

sion this can be written as

i

P (Hs-E)E
My m

2
ReAEI(jzwm = 3—: Knﬁm

e

pi

Me

e

<n€m‘ L (Hs — E,) p n£m> = <n€m ~ [—Z—)—, [(HS - E,), p_” n€m>
e Me me Me
4 (225)
217« o |8() b — 2(Za)*m,
- m2 <nm| (x)|nm>'— TL3

e

For states with angular momentum ¢ > 1, which are considered in this work, this term

vanishes. The second matrix element is defined as the Bethe logarithm In ko(n, £) by

’I’L3 2|Enl - En|
In ko(n, €) = m Z (En’ - En) ID(W>
n'l'm’ (226)

X <n€m P n'é'm’> <n'€'m’ €m> )

P P
Me

The angular integration in this expression can be carried out by employing the

Wigner-Eckhart theorem [23,38]. A detailed calculation can be found in Refs. [27,42]

Me
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with the result
In ko(n, £) = 5(—2%@;(&/— (2|EZ";)—2m )
x {%( 7 drr* Ry (r) (di T) ))2 (227)
}
2e+1 /drr2Rn/e (r )(%+Ejl> Ru(r)) }.

The low-energy part of the self-energy is then given for £ > 1 as

ReAE), = —i—i@— In ko(n, £) (228)

with the Bethe logarithm In ko(n, £) which is given in Eq. (227). This expression is
already known since 1947 [6] and is of order a(Za)?In[(Za)~2]. From the multipole
expansion of the exponential in Eq. (212) it is known that there are higher order
terms in Zo, which have not been considered, yet. Unfortunately, these multipole
corrections are not the only higher order terms. Similar to the relativistic and spin
corrections for the Schrodinger Hamiltonian in Eq. (164) there also are relativistic
corrections to the Schrodinger Hamiltonian coupled to the quantized field. Hence,
finding all corrections of order a(Za)® In[(Za)~?], requires a systematic derivation to
make sure all relevant terms are discovered. A theory which provides all these term
is nonrelativistic quantum electrodynamics (NRQED) [43].

NRQED is a so-called effective field theory because it is a transformation of a
high-energy field theory for lower energy scales which gives the same effects but can
allow for some simplifications at these lower energy scales. In the case of QED it
basically decreases the resolution of the theory. For illustration let us look at the
effect of vacuum polarization. Simply speaking, it means that the vacuum behaves
like a dielectric medium and the real charge of the electron is screened by the dielectric
vacuum. If one goes down to a very small length scale, the screening effect can be
resolved and the real charge observed. At a larger length scale instead only a screened
charge can be observed. However, this charge can be used as an effective charge at the

length scale one works at and what happens at a smaller length scale can be ignored.
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In field theory, this can be achieved by methods of the renormalization group
[26]. When these are applied to QED, the renormalization scale, which is basically
the resolution of the theory, is reduced down to the electron mass. Fortunately, there
is an alternate way of deriving the NRQED Hamiltonian, the Foldy-Wouthuysen
transformation [44] of the the full Dirac equation coupled to a fully relativistic field,

which will be investigated in the next section.

4.4. FOLDY-WOUTHUYSEN TRANSFORMATION

In the last section the already known result form Bethe [6] has been re-derived
for the low-energy part of the self-energy shift for a bound electron. In order to find a
better approximation to the fully relativistic description of the electron, necessary for
for today’s accuracy in spectroscopy, corrections from the fully relativistic description
have to be included. Therefore, all the relativistic correction terms to this result of rel-
ative order (Za)? have to be identified. In the calculation so far multipole corrections
to Bethe’s result have been found but it is not possible to guess whether these are all
terms. As there are relativistic and spin corrections of the Schrédinger Hamiltonian,
similar corrections for the coupling are expected as well but there should be a way to
deduce these terms systematically. The Foldy-Wouthuysen transformation provides
such a systematic derivation and will be able to establish the relativistic corrections
to the Schrodinger equation which so far have just been explained by general argu-
ments. Moreover, with the Foldy-Wouthuysen transformation all relevant multipole,
relativistic and spin corrections to the interaction current can be deduced and even
higher order corrections can be derived. Through this expansion of the relativistic
theory about its nonrelativistic limit, which is physical relevant in atomic systems,
effects of higher order in Za can be included. These can be used for calculations
in both relativistic atomic physics and nonrelativistic field theory. Although, the
Foldy-Wouthuysen transformation is contained in many older textbooks, for exam-
ple Refs. [35,38], its usefulness for the derivation of relativistic corrections is rarely

explored.
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For a systematic derivation it is necessary to start from the fully relativistic
treatment for the electron coupled to the quantized field provided by the Dirac Hamil-

tonian
Hp=a- (p‘— eA(@)) +V + Bm, (229)

with V = —Za/r. Ounly in this way can it be ensured that all effects are included.
The Hamiltonian is given in terms of 4 x 4 matrices for which the Dirac representation
is used and acts on a four-component Dirac spinor. All this are major complications
compared to the Schrodinger equation even when the spin is included. Consequently,
the eigenstates are more complicated as well [38]. The question is whether all these
complications are really necessary because the Schrodinger Hamiltonian with rela-
tivistic and spin corrections already leads to the same energy predictions as the Dirac
Hamiltonian, at least for the regime Za < 1 which is considered here. An analysis
of the solution of the Dirac equation also shows that in the nonrelativistic regime the
upper two components are much larger than the lower two components [38]. This
means that the state is mainly described by the upper two components. Unfortu-
nately, the o matrix in front of the momentum operator leads to a mixing of the large
and small components. When the larger upper components are denoted by ¢ and the

smaller, lower components by 7, the Dirac equation can be written as

-,

V+m, &-(F—eA
Hy ¢\ _ +mq o-(p—eA) (¢ . (230)
n G-(F—ed) V-m, n

The idea would now be to diagonalize this matrix in order to decouple the larger
and smaller components of the wave function using a unitary transformation. This
is the Foldy-Wouthuysen transformation. Unfortunately, a complete decoupling is
not possible [35,38]. Rather, the decoupling is only possible in orders of the bound-
state potential. From the analysis of the corresponding magnitude in Eq. (211) one
finds |V| = (Za)/r ~ O(Za)?. Interestingly, this is also the magnitude of the
usual nonrelativistic expansion parameter v?/c? for which v?/c? ~ O(Za)? is found.

Therefore, the Foldy-Wouthuysen transformation also is an expansion of the Dirac

Hamiltonian for nonrelativistic velocities.
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For the transformation the part which mixes the components and which should
be transformed way has to be found. It can be identified as the part with the «
matrix and it is called the odd part (0. While terms diagonal in this sense are called
the even part and labeled £ accordingly. The § matrix is in that sense not totally
classified and therefore kept as a entity. The Dirac equation can then be written in

terms of these parts as

Hbzép(ﬁ_eﬁa+wf+ﬁme (231)

O+ &+ pme,

In the beginning the external vector potential is set to zero, A = 0. This is not really
necessary but is done here for the sake of simplicity and clarity.

The odd part with the o matrix is then given as

O=a-p v (232)
while the even part is

E=V. | (233)

Since H is hermitian, so are both the odd part O and the even part &£.
Here, time is taken to recall the Dirac representation and some important re-
lations for the Dirac matrices & and @ because they make the calculations more

apparent. For (3 these are

B=7"= , (234)

BE=EB, (235)
BO=-08 (236)
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and for
&= = (0 5) , (287)
g 0
ofod = §7 + i kY (238)
o'od +olat =269, (239)
ga=—-ag. (240)

The generator of the Poincare group is defined by

i
= = (241)

T =~ D (242)

In the Schrodinger picture the operators are time-independent and therefore

OH _

- =0 | (243)

A unitary transformation U is considered which acts on the relativistic wave function
W) =Uly). (244)

Using this transformation to transform the Dirac equation, yields

0 a

Sl 4NN — — Tl = 77822 1))

iU W) = HIy) = HUY ) = Ulic [0 (245)
From which follows

. a / t ’ ! !

i V) = UHU' [9)) = B |y) (246)
if U is also time-independent

U _ 0. (247)

ot
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The next step is to find the transformation which decouples the upper and lower

components of the four spinor. The ansatz is the following [35)

B

Me

U =¢® with § = —i

0 (248)
For a unitary transformation the operator S has to be hermitian and fulfill

UtU = e85 = 1 (249)
which follows from
ot 08 __. 8

t _ __
Sl =g =g =g -

O=8, (250)

using that the constituting operators are hermitian and employing the commutation
relations. The transformation can be applied by employing the Baker-Campbell-

Hausdorff identity which can be written as

00 .n
i —i 1,

H' = SHe uszzgm [S, H], (251)
where S, H| is the n commutator of S and H (°[S, H] = H). The aim is to transform
the odd terms away up to excluding order (Za)®. Therefore, only terms up to that
order are considered while higher order terms are neglected. The relevant terms
(commutators) are all given in Ref. [35]. The first commutator is explicitly discussed

for illustrative purposes here
ﬂsm=—o+lLWﬂ+l$W. (252)
’ 2me - Me

Evidently from Eq. (252) the odd term in Eq. (231) is canceled. However, new odd
terms of higher order arise. The new Hamiltonian after the first transformation up

to order (Za)! is now given as

0? 04 1 Jé] 03
r_ _ _ -
H =2 (me + S 8m3) + €& gm3 [0,]0,€&]] + S (O, &] 32 (253)

e

=PFfm.+E+0O.
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The new odd part

03
€= 3m2

, B
0“2

(254)

is of order (Za)*. In order to get rid of this part as well, another transformation is
required. The procedure is exactly the same as before and therefore the generator of

the transformation is chosen to be

§ =il o - P ( b 10,6] - 03). (255)

2m. 2m, \ 2m, 3m?

Again, the first commutator is considered explicitly

i[s', H'] =

v [

(256)
p
+ gl 0 9,

03
3m

where terms of higher order than (Za)* are neglected again. For the second transfor-
mation only this commutator is required and the transformed Hamiltonian is obtained

as

2m, 8m?

e

(257)

2 4
pr=ﬁ(m+0 O)

With the definitions in Egs. (232) and (233) of O and £ the double commutator can

be evaluated and gives

&-7la-pV]=(a g 5v-va i
=& 7P V] = [6- 5, —iod 2]
7 ) (258)

a‘p‘aJ— — a’——a D

_ zJ
= —iZa (a’ajp - - aJa — ) ,

= —iZua
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where p — —iV has been used. While the o matrices can be combined applying the

relations in Eq. (238)

o) Lzl Loxd
[@-p @ -p,V]] = —iZa (5“})’% + ie*p i Ek 571:—3])’ - ie”k%p’zk)
=Za ( 4n8(Z) + €7%p i2 Zk e”k —P Zk)
) (259)
=Za (—47r6(§:’) - —aekjiEkxjpi>
T
2Z
= —Zo4né(T) a (2 ﬁ))
obtained with the known identities
PV =pV]+Vp, (260)
V‘i% = 476(Z) (261)

and the properties of the € tensor. Finally, the Foldy-Wouthuysen transformation
yields the Hamiltonian
52 Za

p p nZo =
Hpw =7° (me + S (Sm)3 ) +V+— Sm? 5(x)+W2 A+0((Za)®). (262)

For the upper components this gives

Hgw = m. +

2l (") | nZa Za "'Z-i—O((Za))

V- —0
2m, + ) 8 + 2m?2 z)+ 4m2r3

(Za)?me (Zo:‘)"‘me (263)

=me + Hg + 6Hs + O((Za)®).

When the wave function is constraint to the upper components, the relativistic cor-
rections to the Schrodinger Hamiltonian have been derived because the correction
terms of order (Za)*m, are found to be identical to § Hg. For the lower components

the Foldy-Wouthuysen Hamiltonian has the form

=2 =212
T %) rZog . Za . 6
Hpw = —me S +V+ §m3 + o2 oZ) + 4m3r3a 0+ 0(Za)®). (264)
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It is visible that the potential here is repulsive because it has the opposite sign of m.
and p*/2m.. The Hamiltonian therefore describes positrons, which cannot arise at
low energy. Accordingly, the lower components can be neglected.

The Foldy-Wouthuysen transformation thus is a general approach to deduce
relativistic and other corrections. It not only provides a systematic derivation for the
relativistic and spin correction terms for a bound electron, it also allows to derive
higher order terms if necessary. Even the relativistic, spin and multipole corrections
to the nonrelativistic current can be obtained when the same transformation acts on
the relativistic current. The transformation of the current will be considered next.

4.4.1. Transformation of the Current. There are in fact two ways to cal-
culate the relativistic corrections to the interaction Hamiltonian. Here, it is discussed
how these terms can be obtained by applying the Foldy-Wouthuysen to the relativis-
tic current which couples to the vector potential. In this way relativistic corrections
55" to the nonrelativistic current operator f = p/m,. are obtained. The relativistic

current is [42]
= & exp [il'c' : 5:‘] (265)

The application of the transformation follows the same steps as for the Hamiltonian.

Again, there is no time-dependence. The transformation is then
Yow = Uy U™ = &9y7e. (266)

The Foldy-Wouthuysen transformation of the currents has to use the same trans-
formations as for the Hamiltonian and only terms up to order (Za)* are kept. To
facilitate this, the current is expanded in Za first. For the expansion it is important

to note the order in Zo of k is O((Z)?) and the order of 7 is O((Za)™'). Therefore,

the expansion of the exponential is also an expansion in Za. The terms in each order
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are
Y = o (267)
Y = oI (ik - T) (268)
v = o %(il_f'- z)*. (269)

In principle, the term 3 is of order (Za)*. Because it is odd, it is neglected as later
all odd current terms are neglected. The reason is that because the small component
of the wave function, which it couples to, is suppressed by (Z«)* and, therefore, these

term are of a higher order. Let us recall the first Foldy-Wouthuysen transformation

S iB o i 2. (270)
Here, all commutators are considered as they are rather simple. They are
i = 271
i[S,o/) = p/ 211)
1 : 1 .
_Z i = — 3 -
2[5, [S, &/]] 2mg(p’a p) (272)
s s 15l = -2 077) (273)
6 ) ’ y & - 6m2 p .
Accordingly, for the lowest order current operator it is found
: o . ) o
/ — 7 ’7 - i _ ’Y —2
o=+ o) = 5 (@)~ s (), (274)
The second transformation is
0 0 = 3
O A e i o (¢-p)
S = 12me (Zme [@-p, V] = 32 ) (275)

and again only the first commutator is relevant up to the considered order

y' =y + i[S’ Y | + higher order . (276)
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Actually of the first commutator only the of term is relevant for ¥} since all other

terms would be of higher order. The commutator is then

i[S',y31=i[S',af1=[( ! [&-ﬁ,V]—M),oﬂ']

2 3
14me 6m; 1 (277)
= 2m2 (W,V] - aJ[& ﬁiV]) - 3m2(p7ﬁ2)
Plugging in Egs. (277) and (274) into Eq. (276) yields
rw = +° (B = o) - (@D
me 2m} 2m? (278)

1 1
mga][a g, V] + 2mg[p’,V].

For the terms y] and g} only the commutator with S has to be considered. All other
contributions are of a higher order. Consequently, in the second transformation in
Eq. (276) only the ¢ term is relevant and no commutator has to be calculated. At

first 4] is calculated which is given as

Vipw = Ui +ilS,4]] = o (ik - &) +i[i zfn & -5, (ik - 7)]
B 54
2me Zme

= ol (ik - T) + z’ﬁ (&-p'aj(ﬁ-f)+ai(/}'-f)&-ﬁ).

= (k- Z) + =—a - ol (ik- %) — of ik - F)

&-p (279)

e

From Eq. (239) one can derive a'a? = 26% — ofa?, which simplifies Eq. (279) to

Yow = GE- )+ 5o (2095(E - 8) - o PR - 2) + (R - £)(a'))
. C (280)
=ik & i ~dla- k-7 (k-7
o’ (ik m)+2me( oAla-po k-] +2p (k :1:))
Again, substituting the momentum operator p — —iV, yields the expression
. LB L N
Wpw = (k- 3)+ 5 — (~la- 5k 5] +2(F- B - 2k | (281)

e
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An analogue calculation for ¢} leads to

Vhew = — 5 (F- 27+ 115, 4]

od -

o 1 Yo i Lo, Lo
= -2 F-? - o (06 pIE 27 - o (R 208 7)
i L . .
— _%(k . 5)2 _ 4,51‘ (azpza](k_ 5)2 +aJ(k. ‘,E)Qalpz) (282)
j o —_ -
= ZF -2 - L (29 (R0 - a2+ (R )
aj TS - = = r
=-—7(k) )2— 4[51 <2p](k x)2_aj[a y (k :L')Q])

This is rewritten to

e = S (F-27 ~ 1= (a(F- 9 + 2l (F- 2% - ol i R 7). (250)

In the following, the odd terms in these expressions will be neglected. For the fi-
nal expression of the ypw, the remaining products and commutators containing o

matrices will be evaluated with the result
@ p, V] = ol aip'V - o Va'p
— pi5jiv + iejikpivzk _ Vpiéji _ iejikvpizk (284)
= [, V] + i/*p'[V]|TF,

where in the second step Eq. (238) and in the following step Eq. (260) have been

used. The known relation

p[V] = —iV* [—?] ML (285)

is recalled, which is applied together with the definition of the cross product using

the € tensor, to yield

oIla-p,V] = W,V]+% (zx5). (286)



81

The other commutators give analogous

—

@ p k- 5] = daipi(k- &) — o (k- ©)ip’
= §ipi[k - 7] + ie*pi [k - F]TF (287)
= ik’ + FREITE = kT 4 (l‘c’ X i)’
and
od(a-p, (k- 87 = oda'p' (k- 2)° - o (k- D)°a’p’
= §7pi(k - ) + i p[( - 2)|5F — (K - £)%67p'
= [p, (k- 2)%] + 267 (k - Z)k'TF
=0, (k-2)%] + 2(k - %) (Ex f:)

(288)

J

After the transformation the lower components are suppressed by (Za)? and therefore
the odd terms which couple to the lower components can be neglected. Thus, the
Hamiltonian can be constrained to the upper components and, therefore, only the
upper components of all matrices i. e. ¥ — 1 and % — & are considered. The final

result for the currents yf Fw is then

; o 1 ., 1 Za,, _;

%,FW=E—2m2P7P —2m27(xxa)’, (289a)
vew =g (Fx8) + o= (F-2)p + 5, (289b)
- 1 /o N2, b1 (o N(x N1 oo,
Girw = 5 (F-2) 0 4 = (F-2) (Fx0) + 50 (B 297 (2890)

Through the Foldy-Wouthuysen transformation the corrections to the nonrelativistic
current p’ /m, have been derived. The second term in Eq. (289a) gives the correction
due to the relativistic momentum and the third is the correction due to the physical
momentum 7 — eA coupling to the spin. The first term in Eq. (289b) gives the
coupling of the spin to the magnetic field of the quantized field and the second one
is the dipole correction to the coupling. The first term of Eq. (289c) is an octupole
correction, while the second is a quadrupole correction to the magnetic coupling. The

last terms of both Eq. (289b) and Eq. (289c) are terms arising from commutators of
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p and multipole corrections and vanish when contracted with 6 — k'k?/k2. These
current corrections are relevant for the correction of the interaction current for both
the coupling to virtual photons, which give rise to the QED corrections, as well as for
the coupling to real photons, which lead to relativistic corrections in atomic physics.

4.4.2. Alternative Derivation. For simplicities sake, only the separate
transformations of the Hamiltonian without a quantized radiation field and the rela-
tivistic current coupling to this quantized field have been considered. It is nevertheless
possible to transform the complete Hamiltonian of a bound electron coupled to the
quantized field. It is however better to start from a modified Hamiltonian which in-
cludes not only the coupling of the electron to the quantized radiation field but also
contains the major QED radiative corrections [26]. In fact for some applications it is
even necessary to use the transformation of the complete Hamiltonian because only
in this way certain terms can be obtained, namely the seagull terms. The details
of the calculation can be found in Ref. [45] or in Eq. (2.9b) of Ref. [46]. Following
the analogue procedure, one obtains the Foldy-Wouthuysen Hamiltonian up to order

including order of (Za)* which is

m (P - eﬂ)2 e . a5 (P- ejf)‘i l =
Hew = 2m, +V_2meU'B— 8m? 8m§v 4
PR Ny SR [c‘r‘-lWpr')—&\(ﬁxﬁV)] (290)
8m?2 ot 8m2

+

e J - e . (o= - 6
4m§a' (&A xp) - 4m§0. (VV X A) +0((Za)®).

For A = 0, this again yields Eq. (262). It is important to note that in the nonrelativis-
tic Schrodinger equation in an electromagnetic field the interaction parts are the ones
related to the vector potential A. Alternatively, this can be seen from the normal cou-
pling interaction Hamiltonian to the radiation field which is given as Hi,, = —ej"- A
In fact, it is basically derived form the above. In the same way the relativistic cor-

rections to this interaction Hamiltonian can be obtained by taking the terms linear
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in A which yields

eAF e (= N eApp? e [0 - )\ e . (e =
Hmt——?e——ﬂa-(vm)— st~ a2 \5eA%P) ~ ® (VVxA)
__efi‘-pe_‘--»/f-ﬁﬁae_, - e [, =\ =
=T (axV)-A—e 23 4m2( D) aA_4m£(UXVV) A

——ej A
(291)

Note that because Coulomb gauge is used, one has V- A = 0. For the action of the
V operator the expression for the quantized radiation field in Eq. (194) is considered.

For the annihilation part, this means ﬁexp(il; - Z) = ik exp(ik - Z). Further-
more the exponentials are again expanded in their argument as mentioned before this
corresponds to a Za-expansion. So up to and including order (Za)* the following

current is obtained

jjzﬂ(1+i12.f—%(/}'.f)2)+21 (6XE)J(1+iE-f>
me._‘2 . Me (292)
Pt w1 Za L
T omd " am O gy X9
While the result in the last section was
g ]}7 7T - 1/77 2 1 - =\ J G-
Jﬂz;n—(1+1k-x—§(k-m))+2m (axk) (1+1k-l‘)
PP’ 1 Za (293)

3 2 .3
2mg  2mir

On the first glance these are different, but it can be shown that they are equivalent

using the relation

(0~ s (G xP)w = (] — —

4m 4m2 (0 x ) [(Hs — Es +w) — (Hs — Eg)]. (294)
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Now the term with (Hs— Eg+w) does not give a finite contribution to the low-energy

part of the self-energy. So one has

i .

(¢l

(G x p) (Hs — Es) = (4|

1 — —

s (7 [F, (Hs ~ E))
1
4m?2

Za
4m?2r3

2
4m:

= (¢l

(c’f X Y7V)

= (¢l (@ x 1) . (295)

The term can then be combined with the last term in Eq. (292). With a few more
transformations described in Ref. [42], finally the two results coincide and can be

further simplified with the result

P 2o 1.7 o) PP? 1 Zoo ., .

§= (i 2= 3 27) - B — gt @ x oY (296)
with the current correction

-9 p7 s = 1/70 =2 piﬁ2 1 Za — -\ 7

5]‘7=E(lkx—i(k$)>—2mg—4—7ng73—($x0')] (297)

The terms proportional to A? in Eq. (290) give the seagull terms which describe
the simultaneous emission of two-photons. They are proportional to e? = 47a and

two-loop effects, thus they appear in a different order in perturbation theory.

4.5. LOW-ENERGY PART

So far the low-energy part of the self-energy is found to be

Za)'m,
ReAE, = —3—:(“% In ko(n, £), (298)

which was derived from the expression

3 COER -
ReAEY), = / —d—kg%—a (6” _ Kk ) P (299)
' w;(e (27r) CUE k2




85

P has been used therein to denote the matrix element

i P 1 P
PY = {(® — |P) . 300
O = a1 (300)
The expression is of order a(Za)*In[(Za)™%). In this section the aim is to obtain
the self-energy shift up to order a(Za)®In[(Za)~? by including correction terms to
Bethe’s result. In the last section the Foldy-Wouthuysen transformation yielded a
complete expression for the multipole, spin and relativistic corrections up to relative
order (Za)? to the current. This correction has to be added in the matrix element
by changing the current operator from p‘/m, to p'/m. + 65* with
pp: 1 Zo,, |

%2-—4—’"127‘—3 (IL'XO')j . (301)

aop—

5]'J'= pJ (E:Z-‘_

F27)
£ (k- )
The Foldy-Wouthuysen transformation not only allowed to find the correction to the
current but also the correction to the Schrodinger Hamiltonian. This correction is also
of relative order (Za)? with respect to the Schrédinger Hamiltonian and therefore also

has to be included in all corrections of relative order (Za)? to Eq. (300) and changes

the Hamiltonian from Hs to Hg + 0 Hs with

(p?)? w2

0Hs = - 8m3 = 2m?

Sk N8 (302)

This correction to the Hamiltonian also leads to a correction of the energy of the
initial state of the same order which has to be altered from Es to Fy + 6F with
0FE = (®|0H|®) in first order of perturbation theory. Another effect of relative
order (Za)? of 6Hs to Eq. (300) is a correction to the wave function. The first order
perturbation to the wave function can be obtained by [38]

160) = (ﬁ) SHg|D) . (303)
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Including all the corrections Eq. (300) takes the form

Bij _ P & !
p <®+5®|{me+63}E¢+5E_HS_6HS—WE (304)

X {ﬂ +5jf}|<1>+5c1>) .
me

In order to find the right expression for the corrections to Bethe’s result [6] in order
a(Za)®In[(Za)~?], the matrix element above has to be expanded such that only one
correction term of relative order (Z«)? appears in the resulting matrix elements. A
term containing two such correction terms would be of relative order (Za)* which is

a too high order for our analysis here. This can be achieved by writing

Py = (0| 2 - el
2 (0 Dt 0)
(9| :;—:Eq) _ ;S P ;S _ wz% 1®) (305)
+ (2| :;_:E(p — };5 - w,—c-dHSEq, — I-lls - w,;%e ©)

P’ 1 P
2.(P| — L
+2+( me By — Hg — wyme

168) + O((Za)Y).

The first term is the leading term and leads to the discussed result by Bethe

3 B 11.J 7 j
dk27ra(5u_ﬁ_)<@|p 1 L

ReAEY) = / ! P
¢ L,&nd Me E<1> - Hs — W Me

e BT wp ) (306)

k2
All the other terms are now all corrections to this result of relative order (Za)?.
Due to the Foldy-Wouthuysen transformation one can be sure that no term has been

forgotten. In the following all these correction term will be listed. The first term
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comes from the formerly neglected higher multipoles which gives

Bl - [ LT (s E)
M Jp<e (21)° wyp k2

X {(<I>| TI:L—Z (1E . a‘;’) ! ﬂ <_E f) |®) (307)

Eq,—Hg—w,-c-me
Py N2 1 i
Mme (k:l)) Eq,—Hs—w,-c-me |(I)>}

Then there are the relativistic momentum correction, the spin coupling to the physical

— (2|

momentum and the quadrupole correction to the magnetic coupling to the interaction

current which give rise to the terms

3 B iLg
ReAE® . = &k 2re 54 _ k_‘k
bag = e O
Fee 1 o (308)
D —p'p
x (P — 1) ,

meEq>—Hs—w,-c~ mg

Bk 2ra [ .. kKK
e = [ ()
Lora = | P wp 2

1. L (309)
il (L,

me By — Hs — wi; m2r3

3k 2no (. k'K’
2 1

w;(e k2

; io2) (Fxe) (310)
* (@ ::L_eElb —Iflls—wg (k x)ngf xa) %)

The shift of the energy because of the relativistic corrections § Hg gives the term

Bk 2ra (. Kk
ReAEW - _ / 2= (5” _ X )
Laok wp<e (2M)3 wi k2

; ) ) ” (311)
p
b — OF — |®) .
X< |meEq>—-Hs—w,; Eq,—Hg—w,;meI )
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0Hs leads to the contribution

=

d3k 27T_a 6ij_kikj (@ p 1
k2 me By — Hs — wy

ReAEY), s = — /
bdotts we<e (2M)% wi

x(p —Z“ea) SR A

&m3  4dm2r3 Es — Hs — wyme

(312)

In §Hg, the Darwin term is neglected because in this work only states with angular
momentum ¢ > 2 are considered for which this term vanishes. Finally, the relativistic

corrections to the wave function yield the term
d*k 2 o Kk
o wg<e (27r) wl; k2

« (o] 2 = p’( = )6HS|<I>).

—m—eE<1>—Hs—w,;E Ey — Hg

(313)

The details of the calculation are not shown here because they follow the basic prin-
ciples outlined for the leading term. It is just mentioned that a logarithmic term with
€ arises, which is commonly called Ag;, as well as a logarithmic part without €, which
leads to a term similar to the Bethe logarithm. In it, only the relativistic corrections
are contained. Therefore, it is called the relativistic Bethe logarithm Ssg.

The total low-energy part for states with £ > 2 is then given by

ReAE), = %%FL(@, (314)
with
Fi(e) = —=lnko + (Za)? d dgy | (=5 ) + 2| 4 3 (315)
L 3 Inko 61 (Za)om . SE (-

This expression does still contain the parameter ¢ which was introduced to regular-
ize divergences. The final self-energy shift cannot depend on it. This is why the
effect from highly energetic photons have to be considered, which will be done in the

following section.
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4.6. HIGH-ENERGY PART

In the calculation of the low-energy part using NRQED it became clear that
the theory is only valid at low photon energy. This made it necessary to cut off the
integrals over the photon momentum at a photon energy (Za)?m, < € < m.. The
results obtained for the low-energy part are then dependent on this cutoff. If there is
a real physical, observable energy shift due to the self-energy, the final result cannot
contain this parameter e. Moreover, there has to be a different treatment which allows
to evaluate the effect on a bound electron from high photon energies. Adding both
results for the different parts should then cancel the cutoff and allow to obtain a result
independent of e.

This is indeed the case. At high photon energies the photon energy becomes
much larger than the binding energy. This enables to treat the Coulomb potential as
a perturbation in the high-energy part. The second approximation is to assume that
the electron is on the mass shell E,, = m.. In the arising expressions some terms will
depend on € and cancel the terms containing € coming form the low-energy part when
both are added.

The high-energy part is discussed in a graphical way by considering the expan-
sion depicted in Fig. 4.2. In the zeroth order diagram the electron has no interaction
with the core while the photon is ”underway”. This means the electron is basically
free. The term therefore cancels with the self-energy of free electron which has to be
subtracted because the electron cannot be observed without this radiative effect and
to keep the expression finite.

The first order diagram in Fig. 4.2 has the form of the so-called vertex correc-
tion [26]. Its effect is that it alters the way the electron interacts with the electromag-
netic field. For example, the vertex correction causes the electron magnetic moment
anomaly i.e. the difference between the observed magnetic moment of the electron
from the value 2 predicted by Dirac theory. Formally, it changes the coupling of the

four-vector potential in the Dirac equation [3§]

7 Au(z) = T*(p,p) Au(z), (316)
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where T*(p, p’) is given as [26]

ixHg,

o Fy(—q%). (317)

T“(p,p') = v Fi(—¢*) +

with ¢ = p— p’ and ¥ = %[7",7"] as well as the form factors F; and F3. Conse-

quently, the vertex correction alters the Dirac Hamiltonian to

HE =1 |7 (5= eFi (-2 &) +me + exFi(-*)¢

Sy ) (318)
+6F2(—<T2)12“ & (7%—7"4)] '

2me

+

!
X X

(all orders) (Oth order) (1st order) (2nd order)

Ye————

Figure 4.2. Expansion of the full bound propagator in terms of the binding Coulomb
potential. The double line denotes a bounded electron, a single line a free electron,
the dashed line represents the instantaneous Coulomb interactions and the wiggly
line the virtual photon.

The momentum operator g can also be written as a derivative. With the use of

the equation for the electric field [25]
E, = _aa¢ — OoAa

this allows to simplify the term with F3 to

anaa 0 2“080 a i 0.a 0
ot ¢+ o, ! A, = et (—0ap — BoAs) =7

i

JE . 1
2mevE (319)
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Moreover, with the definition of the magnetic field
Ba = €a-ija,;Aj

and XM = —e€,,, 5"

ab
_Z a"v“A — TOAs = — L 5.5 (320)

2me ¢ 2me 2me

can be obtained. This modified Dirac Hamiltonian which includes the vertex correc-

tion thus takes the form

HY = &[5 - eFy (V2)A| +me+eFi(V2) g+ Fo V%) (55-£- 8% B) . (320)

Without an external magnetic field, B and A can in fact be set to 0, ¢ is given by
ep = V(r) = —Za/r. The energy shift from the additional terms compared to the
unmodified Dirac equation [38] can then be obtained by first order of perturbation
theory with the relativistic wave function. The first term which is different from the

unmodified Dirac Hamiltonian is
9 9 Zo

For an electron on mass shell ¢ = 0, the expressions can be expanded in V?

vi= RO (-2)

r

(323)
= FI(0)4nZab(3) .

The corresponding matrix element can be calculated with the non relativistic wave

function and F}(0) = 3-25(In 2= + 23] [27] gives

37rm

da (Za)'m m

1 ) = =77 € _e
AB}(nt;) = (ntm |Vi| ném) = 2= lln ( 26) > 4} 5e0. (324)
This is correction therefore is only non zero for states with £ = 0 and vanishes for

the states with ¢ > 2 which are considered here. The second relevant matrix element
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is given by the term, where the magnetic form factor F; couples to the electric field
eE =V Za/r in Eq. (321). It is

° 5 Ep). (325)

AE}(nd;) = (yt| F2(V?) T
Here, the matrix element has to be evaluated with the fully relativistic wave function
expanded in powers of Za. In this way divergences when using the unexpanded wave
function can be avoided and it is easier to match the respective orders in Za with
the low-energy part. An expansion around g = 0 is carried out once more. For
the magnetic form factor F, the known Schwinger value F; = 2 [26] is used. The
resulting integral has been evaluated in Ref. [47] with the help of generalized virial

theorems and integrals in Ref. [48] with the result

n? 5-E B 1
(Za): <¢+ V2 ¢> IO
) 12¢2 — 1 1 3
+(Za) (_2 2+ 2 -1) (26 +1)2 nd?(2c+1)  (36)
+i 8k — 3 )
n?2(25+1)(2k—-1)(2xk+1)
— 1 2 =
= "se@irn TEYE

where the contribution of relative order (Za)? is denoted here as =. Here, again the
Dirac quantum number is k = (—1)7~#Y2(j + 1) and j = 7+ § is the total angular
momenturn.

The last contribution to the high-energy part comes from the last diagram in
Fig. 4.2, where two interactions between the core and the electron take place between
the emission and absorption of the photon. The effect from the two vertex interaction
can be expressed as a further Hamiltonian. Similar to the term AFEY} .. it also
exhibits an infrared divergence. Regularizing this divergence with the overlapping
parameter €, allows to match it with the low-energy part and cancel the divergence

for large photon energy there. It has been derived in a different regularization scheme
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in Ref. [46]. In the regularization used in this work it can be written as [47]

a2 mey 2 34] (VV)?
HQv(E) = —7'; |:§ In (2_6) - ge' + Z‘S‘jl mg . (327)

The energy shift from this correction can be calculated with the non relativistic wave

and given by

function. The corresponding matrix element is commonly called the Ag coefficient
2 nd 1
Agr = = ndm |——
3 < ’<mer>4

Zay n€m>
3n? —4({+1)

T3+ D)+ )+ D=1y

(328)

For states with ¢ > 2 considered in this work, the result can be obtained by the
identity

(k+ 1)t <rk>ne (2k+1)Za(r* 1), + —[ (20 +1)° - B (r*2) , =0
and the known results for (r=2)_, and (r~%)_,.
The total high-energy part is then given by
a(Za)*m

RQAEHq) = ;T—eFH(f) y (329)

with

(330)

Fule) = E+ (Za)%As [111(26) L 17]

PRET

Adding the high- and low-energy part, the terms containing € cancel exactly and (Za)?
arises as the natural scale for the logarithms. The final result for the self-energy of a

bound electron is then given as

ReAEY =

4
%——(Za) Me (331)

n3
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with

F = Fi(e) + Fule) = —% Inkq + (Za)? {A61 [m ( ( Za)2me) } + BSE}

(

2f~”~(—22+7)+( ){Aﬁl[ln( =) - +%]+=}
1

% 332)
= o@D —glnko+(Za) {Asl [ln (2 ) —] +E+ /BSE} :
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5. THEORY: OVERLAPPING PARAMETER

5.1. MODEL EXAMPLE

In the previous section, two approaches to calculate the one-photon self-energy
effect on a bound electron have been presented. Since both basically evaluate the
same quantity just in different ways, they should give the same result. Otherwise,
one or both of them contain errors.

Before comparing actual results of calculations with both methods, it seems
worthwhile to take the time and consider, why mathematically both ways of evaluation
are possible and why the apparent differences arise. To elucidate the point, a model

problem is studied, which is given by the integral

I—/dw VW + (Zo) (Za) ( 8w +2356 2 _ 90w ) (333)

As explained in Refs. [42,49], the factor \/w? + (Za)? corresponds to the full Cou-
lomb-Dirac propagator, while the factor (1 —w2)_% basically arises from transforming
the boundaries of the integrals from 0 to co to 0 to 1. Another important point this
example shall illustrate is that while with a concrete cutoff spurious lower order terms
can arise, they can be avoided if an infinitesimal overlapping parameter is used.
Before this integral is investigated using both presented methods, a look is taken
at the final result for this integral. In contrast to the bound electron self-energy, this
model problem can be treated without a separation, which provides a check of the
calculation. For all numerical integrations in this section, the parameter Z is set to 1
1

and for o the value o~
of Eq. (333) yields

= 137.036 is used. With these values a numerical integration

I=9213 x107° (334)
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Additionally, I can also be expressed in terms of elliptical integrals, which can be

expanded in a semi-analytic series in Za with the result

I= (Z;‘)4 [m (%) - %l + (Za)si—;;

3(Za)® (335)

1 {1 —1In (@%)] +0((Za)T).

In the above series (Za) can be replaced by its numerical value which gives the result
in Eq. (334) as well.
In the following, this integral will be treated by both methods discussed so far.

_|_

Finally, both results will be compared in the end. Even though it might seem weird
to start from the solution, and then look into both discussed methods in solving the
integral, knowing the order of the physical part of the integral helps to extract terms
up to the right order in the numerical method. In fact, in case of the self-energy shift
the magnitude of the physical part was also known before the numerical method was
developed.

5.1.1. Numerical Method. In the beginning the methods of Sec. 3 are
investigated. As in both methods, the integral is split into a high- and a low-energy
part. For the numerical integration, a numerical overlapping parameter is required,

for which the value 115 is chosen. Therefore, in the low-energy part the integral

1/10 /12 2 256
= dw w——f_ﬁu) (—-8w + in - 20w3> : (336)
0 V1—w? 37

I lep,n

where lep denotes the low-energy part and n denotes that the numerical method is

used, has to be evaluated. This is done numerically with the result
Diepn = —1.50335567 x 107*. (337)

the obtained result is much larger in magnitude than the final numerical result. This
means that in the numerical integral terms of order lower than the physical part of
the low-energy part are contained as well. In accordance with the method explained
in Sec. 3, therefore, an expansion in Za is carried out in order to extract these terms

of lower order. From the complete expansion it is known that the physical part is
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of order (Za)*In(Za)~2. The expansion is carried out by expressing the integral in
Eq. (336) in terms of elliptical integrals and logarithms which can be expanded in
Za. This yields

_120603v11 60411 +\/ﬁ
lep ™ TT95000 62571 25

(Za)? (% _ ;—6) +O((Za)* In(Za)"?) . (338)

The physical part can then be extracted by subtracting the lower order terms form

the numerical result. Therefore, the definition
-[lep,n = Nlep,n + Plep,n (339)

is used with the nonphysical lower order part of the integral of the low-energy part

120603v/11  604+/11 11 321 16
Niepn = VIl - VI + \/—(Za)2 —_ - — (340)
25000 6257 25 4 s
and the physical part
Piepn = Depn — Niepn = 7.833 x 1077 (341)
Consequently, in the high-energy part the integral
1 /0,2 2 256
Ihepn = | dw —w—+'8—w (—Sw + iuﬁ - 20w3> , (342)
1o V1—w? 3
is evaluated numerically with the result
Tnepn = 1.50336947 x 1074, (343)

Here, hep is used to denote the high-energy part. Again, the lower order contributions

are extracted by expanding the integral in Za, which gives

120603v/11 N 60411 V11 (Za)? 321 16
25000 625 25 4

+ O((Za)* In(Za)72).

Ihep,n = -

(344)
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Analogue to the low-energy part the physical and nonphysical lower order part is

defined again by
Ihep,n = Nhep,n + Phep,n (34'5)

with the nonphysical part

120603v/11 = 60411 /11 321 16
Nhepn = — + Vil — (Za)? | == — — (346)
25000 6257 25 4 7
and the physical part
Paepn = Tnepn — Nhepn = 1.380 x 1077 (347)

When the nonphysical part of the low- and the high-energy part are added, the terms

cancel exactly i.e.
Nlep,n + Nhep,n =0. (348)

The total value for the integral can thus be obtained by adding both physical parts
with the result

I, = Pepn + Paepn = 9.213 x 107° (349)

in agreement with Eq. (334).

5.1.2. Analytical Method. In this section, the analytic method will be
applied to the integral in Eq. (333). Initially, the low-energy part of the integral, in
which w is integrated from 0 to ¢, is considered. In this region w is small and it is
possible to use the expansion

1 w? 3wt

S B A 50
Jicr T2 " (350)

for the denominator in Eq. (333). Similar to the application of the analytic method
to the bound electron self-energy, the analogue to the propagator y/w? + (Za)? is left
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intact. Therefore, the integral, which has to be evaluated for the low-energy part, is

y 256
Liepa = / dww/w?+ (Za)? ( 8w+ —w’ — 20w3)
0

37r
1+w—2+3w +.
2 8

(351)

where a denotes that the analytic method and lep once more that this is the low-
energy part. The integration is carried out analytically. The result is then expanded

in Za followed by an expansion in €. As the final result for the low-energy part

2 1 512(Za)®
lige = (20)* | (75) - 3] +

JBZaf (5 13 (2],
2 12 6e2  97e Zo

The integral for the high-energy part extends from € to 1. In Sec. 4 the Coulomb-

(352)

is obtained.

Dirac propagator was expanded in terms of the external potential which represents
an expansion in Za. The corresponding procedure here is to expand /w? + (Za)?

in powers of Za which gives

1(Za)? 1(Za)* 1 (Za)®
2 2 z = —
w? + (Za) w(1+2 2 3 +16 6 +...]. (353)
Consequently, the integral for the high-energy part is
Thepa = / dww,/ ( 8w+ 2~ 256 2 20w )
(354)

x( t3 Za)2 1(Za) +i(za)6+...).

w? 8 wh 16 w8

This integral also illustrates an interesting point. Because in order (Za)* the inte-
gral is divergent at w = 0, the overlapping parameter € acts as a so-called infrared

regulator. As a consequence terms ~ Ine¢ arise in the integration.
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The result of integration is expanded in € to obtain

2\ 17] 3(Za)f[1 1 | 32 2
ezt (AU ST R M | I Gt
fhepa = (Z0) [h‘ (e) 6 ] T [12 62 T ome (5)] teoe- (359)

When the low- and the high-energy parts are added, the terms containing e cancel.

Up to order (Za)® the integral is found to be

Za)4 16 37 512

4 32 [1_1n (%)] .

which agrees with the expansion of the elliptical integrals for the whole integral in

(356)

Eq. (335). For the numerical values considered here, this gives
I, =9.213 x 107° (357)

which agrees with the result from the numerical method as well as the result from
the numerical integration of the whole integral.

The analysis of this model very nicely illustrates, for which region of nuclear
charge number Z the two presented methods to treat self-energy corrections for a
bound electron are suited best.

For low nuclear charge number Z the parameter Z« is small. This means that
the numerical calculation is dominated by the terms of lower order than the physical
part. As the result is obtained by subtracting two about equally large numbers,
one usually loses a few significant figures (in this model example here about 5) of
numerical precision. In the analytic approach no such lower order terms arise and
therefore no such problem is present. Moreover, because the parameter Za is small,
the error introduced due to missing higher order terms is small.

For large nuclear charge number Z, Za becomes close to unity. In turn, the
magnitude of the physical part due to the scaling with Z becomes large, whereas the
magnitude of the nonphysical does not change as much. Therefore, less significant
figures are lost by the subtraction of the lower order terms. In the analytic method,

on the other hand, the higher-order terms are no longer negligible if Za is close to 1.
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It is not possible to reach an arbitrary high precision in the numerical calculation
as well as to go up to arbitrary high orders in the expansion in the analytic method
for practical reasons. As a consequence, the analytic method is generally more suited

for lower Z, while the numerical method is more suited for higher Z.

5.2. APPLICATION TO VACUUM POLARIZATION

It is the aim of this section to show that the separation of an integral using an
overlapping parameter is not only interesting to illustrate this procedure in bound
self-energy calculation but can, in fact, be very useful for many integrals. For this a
physical example is considered which is also very important for the study of quantum
electrodynamics in bound systems, the vacuum polarization. Vacuum polarization is
the second very important effect of the quantum nature of the photon field and, as
seen in Sec. 3, it contributes to the energy shift. The effect of vacuum polarization
in first loop order is to give a correction potential to the Coulomb potential. This
additional potential is the Uehling potential [50]. Here, the method is applied to find
the leading asymptotic behavior of this potential for r — 0.

The question may arise, why the energy shift due to this potential has not
appeared in the presented calculation of the energy shift due to the quantum nature
of the photon field. The reason is that in one-electron ions the Uehling potential can

be approximated by [26]
Vipl®) = ~ 220225z (358)

Therefore, only the energy levels of states with £ = 0 are shifted and the effect can be
neglected for the highly excited states which are considered in this work. Interestingly,
the energy shift due to vacuum polarization has the opposite sign of the self-energy
level shift.

When the electron is exchanged with a muon, this approximation is no longer
valid and it becomes necessary to calculate the effect in more depth. In general,
the potential is calculated by a Fourier transform of the photon propagator, which
was already encountered in Secs. 3 and 4. There, the photon propagator without

vacuum polarization was used. Its Fourier transform gives the Coulomb potential.
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The inclusion of vacuum polarization alters the photon propagator and leads to the

following expression for the Uehling Potential [26]

al Zal2 [®, 7 4m? 2m?2
el =2 [__] §/2mqu T (1+ 7 > 1359)

When 7 is larger than the Compton wavelength of the electron 1/m., this leads to
the known screening effects of vacuum polarization due to virtual pairs of electrons
and positrons. Here, the asymptotic behavior for r — 0 is investigated which will
be calculated using the analytical method with an overlapping parameter. In order
to obtain a similar structure as in our model example, the substitution q = 2meu 1s

used. In turn, the integral takes the form

Vip(r) = % [—?} /loodu exp[—2meur] \/17_—;531‘2 +1) : (360)

This is the integral, which was evaluated in Ref. [51]. Here, another substitution,

which is u = (1 — v?)"/2, is employed in order to arrive at the integral in Ref. [52]

Vip(r) = = [—?] /0 o exp [— \/2%} i Sl__vj; ) . (361)

Consequently, the integral has the same boundaries as the model problem discussed
so far in this section. However, the problematic region now is where v ~ 1. Hence,
the integral is split into a low-energy part from 0 to 1 — € and into a high-energy part
from 1 — € to 1. In fact the naming is correct here because the region where v ~ 1
corresponds to large photon momentum ¢ in the original integral in Eq. (359). In the
model problem the first expansion parameter was Za. As the asymptotic behavior
of the Uehling potential for 7 — 0 is to be investigated, the corresponding expansion
parameter here is r instead. The second expansion is still carried out in e.

Again, the analysis starts with the low-energy part of the integral which is

al Za)] [ omer 1V (1 - u_;)
va,lep(r, 6) = —7}- |:—le A dv exp |:'— m] 1 — 02 . (362)




103

In contrast to the model problem, the low-energy part does not contain the problem-
atic region for an expansion in the first expansion parameter r. Thus, the exponential

is expanded in r before the integration. The integral for the low-energy part is then

2 v2
ol Zal e v 1-% 2mer
‘/vp,lep('f', E) = ; |:——T :| | dv ——S 2 ) [1 — \/1——71)2 + 0(7‘)] . (363)

Carrying out the integration and expanding the obtained result in € yields

@ 2\/§Z01m,3 T 5Za Za €
‘/vp,]ep('r, 6) = 7_'('_ —3'\/E— — EZame + 57 + 3_’)" In ('2-) + 0(7‘) (364)
For the high-energy part the integral
2 v?
al Zao] 1 2mer ] Y (1 - ?)
Viphep(T, €) = - [—T] /l_edv exp [— m] o (365)

has to be considered. Because in the region considered for the high-energy part, the
integral is divergent if an expansion in r is carried out, a similar expansion to the
low-energy part in the model problem has to be found. There, (1 — w?)~/? was
expanded for w =~ 0. In fact, this leads to the right idea for the integral here but in
contrast to the model the expansion is carried out around v =~ 1. This procedure is
greatly facilitated by transforming the integral first, using v?> = 1 — h, which yields
the integral

al|l Za 2e-e? 2m.r| 2 — h — h?
=3[ 2] [ B e

Expanding this integral around A = 0 gives

al| Za 2e—e? 2m.r
22 [ o] 2]

1 h h* 3h )
x(3_h‘§_ﬂ_ﬁ§"0(h))'

(367)
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The resulting expression is expanded in r before the expansion in € is carried out.

The high-energy part of the integral is then obtained as

2vV2Zam, Z 2me
va,hep('f', 6) = —:— {__\/;—\/?Tn + 3_;1 |:2'YE +1In ( c T):| + O(T)} y (368)

where vg is the Euler gamma. Once more, matching both the high- and the low-
energy part together the overlapping parameter cancels and the result is independent
of €. In agreement with Ref. [53] it is found

aZa [2

Vp(r) = —— |3 (7}3 + ln(mer)) - g—mer + g] +O(r). (369)

It is important to mention that the argument of the logarithm is, in fact, unitless as
in Heavyside-Lorentz units the mass is given in inverse length units. Moreover, the
leading term ~ In(m.r)/r constitutes an attractive potential for distances r < 1/m,

since the logarithm is negative if the argument is smaller than 1.
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6. CALCULATION: RELATIVISTIC CORRECTIONS IN ATOMS

6.1. ORIENTATION

The first problem that is investigated here with the nonrelativistic expansion of
the fully relativistic theory, is a problem of atomic physics, namely the two-photon
decay. In it an initial state decays via the emission of two real photons into a final
state. With the formalism developed in Sec. 4, relativistic corrections to the Hamil-
tonian but also to the interaction current, which is relevant for the emission of real
as well as virtual photons, are deduced. Applying it to the two-photon decay allows
to obtain the relativistic corrections in order (Za)? to the two-photon decay rate
which is a problem of relativistic atomic physics. Before coming to that, two different
formulation of the problem are discussed. The coupling of the electron to the photon
can be expressed in Coulomb or velocity gauge which was used in Sec. 4 but also in

Yennie or length gauge. This is done in the next section.

6.2. VELOCITY VS LENGTH GAUGE

While some time was spent in the derivation of the quantized field on the gauge
freedom, so far only Coulomb gauge was used in the calculations. However, all the
calculations can also be carried in a different gauge and the same results should be
obtained. Actually, in some cases the calculation can be simplified when a different
gauge is used. Fried and Yennie in Ref. [29] discovered that a specific choice for
the gauge allowed to avoid problems in QED calculation, which were encountered
in a different gauge. Because the results obtained so far in Coulomb gauge should
be independent of the choice of gauge, gauge invariance provides a highly nontrivial
check of the calculation.

The choice of gauge from Fried and Yennie in Ref. [29] is indeed very useful for
many problems in QED. It corresponds to setting £ = 3 in the photon propagator
in Eq. (46). As described in Ref. [45] the corresponding Hamiltonian for NRQED
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can be obtained by two consecutive Power-Zienau transformations [54] of the Foldy-

Wouthuysen Hamiltonian for the upper components coupled to a quantized field

w2 Zo o € . =z 7
.HFW—2 6—7+6A _2mea.B—8m2
nhosa) v 225 L s
ZmZ_ 4m3 r3 (370)
_8;2 [6 E+0(Exw—wxﬁ)]
+ o {7 B+ #5- B w|f- B7-5+7-57 B]},

where 7 = p— eA denotes the physical momentum in presence of the quantized field.
This Hamiltonian is now transformed with the first of the Power-Zienau transforma-

tions. The transformed Hamiltonian is obtained from the equation
H =eYHe"? + 0,0 (371)
with ¢ given by
1 -
6= e/ du 7 Auz). (372)
0

Here, the so-called long wavelength approximation is made, i.e. the field A varies
only slowly over a short distance. This allows to perform an expansion of A around

I=0

. 1 . . 1 . .
AR (E, 1) = AF(0,8)+ T AL(0,8) + =2 0T A% (0, 1) + =2 e zF A% (0,8) +... . (373)

2! 3!
With this, also ¢ can be expanded to give
i Lo L i ik g L i ik 14
p=c¢e|z'A +-2—!xa:JAJ+§x$xA1jk+Zx:Ux:rA‘jkl—{—... , (374)

Here, the subscript separated by commas denotes the spatial derivatives with respect
to the indicated Cartesian coordinates, evaluated at the origin [45], which is defined
to be the location of the ionic nucleus. The (0,t) which goes with every field will

be suppressed in the following. Applying this first transformation, the transformed
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Hamiltonian is, thus found, to be [45]

P2 Za p* 1wl Zad-L

H = o3 T 5 —50@)+ 71—
2me  r 8md  2m? (%) 4m2 73

L _']-B—— v B (_' B) — L'z +21')B
o, [ +37 52T B + e T - (L'x’ + )

i g € e
6 1Jk 16;,77‘e i) 4me v

It is important to note that the electric field E in this Hamiltonian is the electric field

of the quantized field

E(0,t) = —VA%0,t) — 8,4(0,1)

. - (376)
iwg &(F) (a(Rye™#* - af (F)er') |

:Z/\/TT

because of the different gauge used. Equally, the magnetic field B is the magnetic
field of the quantized field

=) —

B(0,t) = V x A(0,1)
. (377)
_ - N p—lwgt TN iwgt
_ / — 2W)3[lk < &(R)] (ax(B)e ™ — af (R)e) .
and not an external field.
For the second Power-Zienau transformation ¢ is chosen to be [45]
1 :
6= — /daﬁ( yxg=-g(Bxzi+Zhxi+ (378)
=i | uI) X E= 0 I+ E+...].
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The resulting Hamiltonian thus has the form [45]

D o p wZo ., Zoad- ¥4
Hiw = _2% Taxs Lot
W= om. 1 8m3 + 2m?2 (@) + 4m2 r3
—ef-E— = (Z—i—&') B-SoidE + ¢ (Z x B)?
2me 2 77 8m, (379)

2

€ i j i i D € i ipi € LA - B

— 6me (K‘LJJJ + :EJK’)B,J- — %:0' .’EJB,J- + 8m2 (0' X E) . (117 X B)

— %xixja:kE,ij-k-i— 46 g- (E X j‘) .

e
This is the NRQED Hamiltonian of Yennie gauge. Due to the long wavelength approx-
imation used to obtain it, this Hamiltonian is often referred to as the long-wavelength
Hamiltonian. A comparison to the Foldy-Wouthuysen Hamiltonian reveals that, while
the noninteracting terms of the Hamiltonian did not change, the part coupled to the
quantized field has changed. Because in lowest order now & couples to the quantized
electric field, this choice of gauge is called length gauge. In Coulomb gauge, p/me., i.e
the velocity couples to the quantized vector potential in lowest order. For this reason
it is called velocity gauge. Extracting the terms coupled to the electric and mag-
netic field of the quantized field up to including order (Za)!, yields the interaction

Hamiltonian in length gauge

= R F— 7o =\.n_C idm o B2
Hi. er - F 2me(€+a) B 2xIE’J+8me(zXB)
2
€ i i i i € i ipi - - B
- me(fx’-’f-avjfl)B,j—Z—mEUxJB,j-i—&ng (@ x E)- (£ x B) (380)
€ i i kv € L (A =
6:1:1:’:0 E'jk+4meo (Exx)

It has a very different form from the interaction Hamiltonian in Coulomb gauge, still
the result obtained with either should be the same. In Yennie or length gauge, the
Hamiltonian is expressed exclusively in terms of observable field strength, whereas in
Coulomb or velocity gauge the effects from the quantized field are contained in the
vector potential alone.

However, the highly non trivial dependence on the coordinates of the nonrela-
tivistic gauge transformation given by the Power-Zienau transformation and problems

related to the physical interpretation of non-gauge invariant quantities [55-57], lead
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to a few subtleties in the study of gauge invariance. In general, gauge transformation
in bound-state problems always have to be considered very carefully.

In the case of the one-photon self-energy the method of the overlapping pa-
rameter provides the advantage that the remainder terms which arise in the gauge
transformation are of order O(e) and therefore do not contribute to the finite part
of the low-energy part [45]. Here, the problem of gauge invariance is discussed in a
purely nonrelativistic problem with a definite cutoff, the two-photon decay rate. For
the radiative corrections to the two-photon decay rate for example it has been shown
in Ref. [58] that the results are invariant under a “hybrid” gauge transformation [56].
In it only the interaction Hamiltonian is gauge transformed, while the gauge trans-
formation of the wave function is neglected. In general, properties of atomic states,
which can be expressed using the formalism of adiabatic S-matrix theory discussed
in Sec. 3, are invariant under this kind of hybrid gauge transformation. In genuinely
time-dependent problems, even more care has to be taken in the choice of gauge and
gauge transformations [55-57].

In the next section, the gauge invariance of the relativistic corrections to the
two-photon decay rate under this kind of hybrid gauge transformation will be shown.
This result has been published in Ref. [59] and adds to the leading logarithmic QED

corrections, which have been calculated and proven to be gauge invariant in Ref. [58].

6.3. TWO-PHOTON DECAY

The decay processes in one-eléctron ions proceeding through the emission of
two real photons are of special interest for many reason. The transition frequency,
which has been measured with the highest accuracy in Ref. [9], is the two-photon
transition between the 25 and the 1S level in hydrogen. One of the reasons lies in
the very small line width of this transition, which is based on the metastability of the
28 level. This level decays predominantly through a two-photon transition, which
has a much smaller transition rate compared to single photon dipole transitions. A
further point, which has sparked much interest lately, is the discussion of two-photon
transition through a cascade [60-69] i.e. a transition which can take place through
a two-photon transition or by a cascade through two one-photon transition over an

intermediate state.
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The first study of the two-photon decay was carried out by Goppert-Mayer
already in 1931 [70], where the decay rate I" for the two-photon decay of the 25 was

calculated nonrelativistically. The obtained result
77! =Ty = 8.229352 Z%s7! = 1.309742 Z° Hz (381)

could also be verified experimentally [71-73].

Again, for the determination of the corrections to this result in this work the
non-recoil limit will be used. In it the nucleus is assumed to be infinitely heavy. Then,
the leading correction is given by the relativistic corrections of relative order (Za)?.
The leading QED radiative corrections of relative order a(Za)? In[(Za)~?] can also be
obtained. In NRQED the corrections are usually included by writing the two-photon

decay rate in form of an expansion for small Za which is
[ =T, [1 F v (Za)? + ;r‘- (Za)? In[(Za)™?) + .. ] . (382)

Here, the coefficient 7, for the relativistic corrections will be determined which has
not be computed so far. The coefficient 3 for the leading QED correction is only
known for the 25-1S transition [58,74] and results for more transitions will be given
in this section. In contrast to Sec. 4, a multiplicative expansion is used where the
corrections are normalized by the nonrelativistic result. The next higher-order term
is expected to be a nonlogarithmic radiative correction of relative order a(Za)? so
the treatment is complete up to order o In(a).

6.3.1. Deriving the Formal Expression. As the one-photon decay rate
is the imaginary part of the one-photon self-energy, the two-photon decay rate is the
imaginary part of the two-photon self-energy. Similar to the discussion in Sec. 4,
initially only the leading term of the interaction current in Coulomb gauge, p/m., is
considered and the corrections are included later. The energy of the first photon will
be denoted as w; and the energy of the second as wy respectively. In contrast to Sec. 4,
the denominators will written in the from Hg — Eg + w which is the notation used

in Ref. [58]. The relevant terms of the leading NRQED expression for the two-loop
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self-energy for our considerations here are [58, 75]

2 2 pq €2

AE((;) = — (;) / dwq w1/ dws wo (383)
"/ Jo 0 . .

. 1 P 1 . q)>
HS—E¢+w1meHs—Eq>+w1+w2meHs—Ed>+w2me

A o1 p 1w,
2 HS—E¢+w1meHS—E¢+w1+w2meHS—Eq>+w1me

/s P 1 P 1 ) q)>
2 meHS—E¢+w2meHS—E¢,+w1+w2meH5—E¢+w2me

This correction arises in fourth order of perturbation theory, hence the superscript
(4). The other terms given in Refs. [58,75] do not contribute to the two-photon decay
width, which is obtained from the above expression by introducing a complete set of

bases for the propagator

1 1€) (€
= . 384
Hs — Fg + wi + wq ;Eg—Eq;—i—wl-f-wQ ( )

The sum over £ again represents the sum over all discrete as well as the integral
over all continuum states. In order to extract the imaginary part this propagator
introduces when integrated with respect to ws, the identity from Eq.(219) is used to

write

ZE €€ —Z Fem &) & —im Y [6)(€] 8(Bg— Eg+wr+w,). (385)

e — — Fe+wi+wo Eg+w +ws .

Since the decay rate is the imaginary part of this expression, the Dirac é can be
used to carry out the integration with respect to ws, which gives the condition for
= Eg — E¢ — w;. In turn, this constrains the range of integration of w; because it
also implies By — E¢ = w; +wy. Therefore, w; can only go up to the maximum energy
ax = E¢ — E¢ for wy = 0. This corresponds to a natural cutoff of the photon-energy
integral, where the upper boundary is of the order (Za)? at least if only transition

between bound states are considered. For these, the decay rate in leading order can
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thus be written as

2 2 Wmax
Iog=2n (3—z> /0 dwy wy we ;

P’ 1 P < ' 1 P’ >
X | — — — —| P
{< me Hg — Eg + w1 m, é.> f meHS—E¢+w2me (386)
1 P’ 1 P P 1 P’
— — — — —\®
+2<q) me Hg — Eg + w1 me §><f me Hg — Eg + wy me >

1 P’ 1 P’
e | 2
+2< ‘meHs—Eq,-ngme

P 1 P’
é> <§ e Hs — Eg + wy me (I)>}

Instead of calculating the complete decay rate of the reference state ®, the rate of

decay from the reference state to one definite final state, which is denoted as ®y, is
determined. Accordingly, the reference state is the initial state of the decay and is

denoted as ®; in the following. For the decay rate of the state ®; to the final state

)

® using the binomial theorem then the expression

P 1 P

—TT;HS—E@-I-wg-i—iGE

is found. Following the discussion in Refs. [65-67], a ie prescription is used and

I'= Eﬂ' (2)2 Re o dwy Wy way [<(I)f

™ 0
7 1 j
+ (I’f Lz : £1—
me Hg — Eg, + wy + iem,

(387)

the real part of the resulting expression is considered. This allows to deal with the
problematic poles if cascade transitions are possible. This expression was derived from
the interaction Hamiltonian with the quantized field in velocity (Coulomb) gauge,
which is

—

(388)

It already contains the leading term proportional to A 2 called seagull term, whose
effects will be discussed later. Here, the superscript £ for the decay rate in velocity

gauge is introduced and the denominators are expressed in Eq. (387) in terms of w;
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exclusively, which yields for the nonrelativistic two-photon decay rate

4a2 Wmax
I‘f=_—R d d
O e/o W1 l< d me Hs — Eg, — w1 + lem,

+ (e, <1>>]

where wy = Eg, — Ep, — w1 and wpax = Fg, — Eg,.

P 1 jid

)

. _ 389
. ) o (389)

EHS—E(piﬁ-wl'}-iGE

In the beginning of this section, the interaction Hamiltonian in length (Yennie)

gauge is derived, whose leading term is

—

H = —¢E . (390)

8y

This Hamiltonian can also be used to derive an expression for the two-photon decay

rate from an initial state ®; to a final state ®;. An analogue derivation to the one

)

presented leads to the expression in length gauge

4a2 Wmax
r¢="2R dwy wd W | (@
or  Jo LA I\ T Hg = Ea, —w1 1€

+ (2, q>>]

where the superscript ¢ was introduced to differentiate this expression from the one in

1

z* xz?

1 (391)

7
Hg — E3, + wy +ie

$‘L

velocity gauge. The gauge invariance of the nonrelativistic result for the two-photon
decay rate under the gauge transformation carried out in Sec. 6.2 can now be proven

if it can be shown that the above expressions are equivalent. That this is indeed the

case follows form the relation [55, 76|
—

; d
(1)>+< prS—Eq,l.+w1

[ (2, o]

If a set of bases is used for the representation of the intermediate propagator, special

(392)

x!

R —
Hg—FEg,+uw

care has to be taken to make sure the set is complete because otherwise this relation

is not valid.
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Relativistic corrections to this result of relative order (Za)? are now included
in the same way as in Sec. 4.5. In both gauges the relativistic corrections to non-
interacting part of the Hamiltonian i.e. the Schrédinger Hamiltonian Hg are the same.

Likewise, they can be included by

Hg¢ — Hs+6Hg,

2
D YA
Hs=5 - ~==, (393)
—2\2
SHg = — P TEC 2o o

—0’ .
3 2 2,3
8m. = 2m: 4mir

Because the analysis now also includes S states, the Darwin term, which describes
the zitterbewegung of the electron, has to be included additionally to the correction
due to relativistic kinetic energy and the spin-orbit coupling term. Consequently, the
relativistic corrections of the Hamiltonian also cause relativistic corrections of the

energy and the wave function, which read as follows

Ey - Es +0Fs = FEg + ((I) |5H5| ‘1’) , (394)

1

|CI)> — |‘I>> + |5(P> = |(I)) + (m

>,5H5 D) . (395)

This correction is the same for both gauges, whereas the differences arise in the inclu-
sion of the relativistic corrections to the interaction current. In velocity (Coulomb)

gauge, the interaction part of the Foldy-Wouthuysen Hamiltonian is given by

Him:‘emep‘z;e (ixv)-A+§n£1§(A-p)p2 (396)
_4;g<a><p.%_‘j_4;2 (¢x9V)-A= e 4.

The photon degrees of freedom contained in the vector potential can be traced out
as in Sec. 4.3 and in Eq. (296). The interaction current J is thus
P i

Ji= L2 L5y
Me Me

i =2
(1—1k-z—§(k-x))— o

1 Z i N(
-5 @x8) — o (xF) (1-ik-2).

(397)
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As mentioned earlier, in contrast to the one-photon self-energy the contribution from
the terms proportional to A 2 also have to be taken into account because they represent
the emission of two photons from the same vertex. They are contained in the so-called
seagull Hamiltonian which is given by combining all terms proportional to A?in the

Foldy-Wouthuysen Hamiltonian. It is given by

Hsea =

242 2 2
% . 2‘;2 (A‘ : 25')2 - ;ngfi’ 252 (398)
All its terms are of a different order in a compared to the normal interaction Hamil-
tonian and therefore appear in a different order of perturbation theory. The photon
degrees of freedom are traced out once again. This is achieved here by only considering
the creation part of the photon operators and expanding the associated exponential
exp(—i k- 7) up to lowest order for the last two terms, which already carry a power
(Za)? from the momentum operators but up to order (Za)? for the first term. Be-

cause the expansion has to be carried out for each of the two photons emitted through

the seagull term separately, the corresponding correction after this process is

1 o o L o2 o PP PP
(226~ (kQ-x)25J—%—5%51. (399)

559 = —

Interestingly, the matrix element of the leading seagull term —5—¢* vanishes and
it does therefore not contribute to the two-photon decay rate. There is, however, a
correction term with this leading seagull acting on the perturbed wave function but
the total correction introduced by this term can be shown to vanish as well.

The interaction Hamiltonian in length gauge was already extracted out of the
long-wavelength Hamiltonian in Eq. (380). For our purposes here, the relevant terms

are

e

= e F— 7 z). B S ip & (pigd o g B
Hin ex- B S (Z—}—a) B 21931:?,] ey (Ex +x€)B’]
. (400)

Y e . . e b 5
- o'r’ B} — a:’a:’:vkE’jk + - (E X :1:) .
2m, k 6 : 4m,
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The corresponding interaction current, which for length gauge will be denoted as 1:',

can be extracted in the same way as before to give

(£ x k)

P i i i ig 72 w L
I'=x"+46I =a:( —5k —é(k-w)>+4me(axx) +2mew

(axk) (1-1%-5)—6T;w{(é'x E)",E-:E},

where {A4,B} = AB + B A is the anticommutator. After the discussion of the

(401)

relativistic corrections arising in both gauges, it is now possible to turn to how these
terms correct the nonrelativistic result and how the resulting matrix elements can be
derived in the different gauges, starting with the velocity gauge.

6.3.2. Velocity Gauge. In accordance with the notation used in Refs. [58,59)
the nonrelativistic two-photon decay rate in velocity gauge given in Eq. (389) is

written in the shortened form

Wmax

It = /dwl wywy £2, (402)

where £ denotes the sum of the matrix elements in velocity gauge

E=&+& (403a)
with
P’ 1 P’
~ (s Ple,) 403b
& < f me Hg — Eg, + w1 me > ( )
P’ 1 P
=(® —| ;). 403
& < d me Hs — Eg, — wy me > (403c)

In order to keep the notation compact, the tensor indices ij of the tensor & are
suppressed but it is implied that £? = £¥ £, where the indices ¢ and j are summed
over, and that £66 = £ 6£9. §¢ therein is defined as the sum of all the correction
terms due to the relativistic corrections. In the way described in Ref. [58], the first

order relativistic correction 6T to the decay rate in velocity gauge can thus be written
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as

Wmax Wmax

2 4 2
5TE =2 49% / duw wy wo € 6€ + giw&uz / duwy w; €2 (404)
0 0

Compared to the self-energy corrections in Sec. 4.5, an additional correction of the

photon energy arises. It is necessary to ensure that after the inclusion of the rela-

tivistic energy corrections, energy conservation is still fulfilled. Therefore, one has

wy + Wy = Eq)i — Eq;.f + dwy , (405&)
5w2 = 5Eq>i - (5Eq>f = <q>i|5H5|‘Pi) - (‘I)fl(SHs|(I>f) (405b)

The correction §£ is now obtained in a similar manner as in Sec. 4.5, where the
relativistic corrections to the self-energy are deduced. However, because here one has
a final and initial state as well as two different matrix elements, the number of terms
is much greater. For the correction to the wave function for example corrections for
both the initial and the final wave function have to be considered for each of the
two matrix elements & and &. This gives rise to four correction terms from the
wave function alone, compared to just one in the case of the self-energy. In total the

correction d¢ is given as the sum of 15 such correction matrix elements
15
06 =Y 6&. (406)
k=1

The first two corrections arise due to the relativistic correction to the energy of the

initial and final state

. 2 .

P 1 P’

56 = (@, | 2= r
& < f Me (HS—Ecpi—i-wl) M,

P 1 ' p
552=<q’f"5HS"I’f><‘I’f ) &
€ f €

q)1> <q)1 |5H5| @1> y (4078.)

c1>,-> . (407b)
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Then the mentioned four correction matrix elements for the initial and final wave

function are

56 = <<I> ; :T o ;q),.+w1 % (Ed)il_ H)IéHS q>,-> , (407¢)

<<1>f :: e b}é} — T’: e (Eq) . HS) 5Hs q>1> (4074)
565 = <<1> |6 Hs (Eéfl_ Hs) TIZ— e ;@Wl % <1>,-> , (407e)
665 = <<1> ;|6Hs (Ed)fl_ Hs)li—l o z«;q,f—wl % q»,.> . (4071)

The correction of the Hamiltonian in &; and & leads to the two terms

P 1 1 2
0&r= 0H — 1P, ), 407
&= < f‘ me Hg— Eq;i +wq SHs—Eq;,- +wi me > ( g)
P 1 1 P’
=—(P 0H —1®;) . 407h
668 < 'm, me HS Eq>f w1 SHS—E¢f—w1 Me (I>> ( 0 )

The corrections to the interaction current now leads to four terms because acting the

correction on the initial or the final state gives rise to different corrections, so one has

P’ 1 : .
= (P, — J1|®.
56 < N T BT q>,>, (4071)
P 1 : .
0610 = (Ds|— 0J7|®;) | 407
&10 < b eHS _ E@f — W J > ( J)
- 1 p’
561 = (®,]6° P\,
611 < f 5] Hs—E(pi +w1 ] (I),,> s (4071{)
1 P’

6&19 = <<I> £l6J* — <I>,-> : (4071)

Hs — Eg, —wym,

The relativistic corrections to the seagull term lead to the term
6613 = — (®;]657|®y) (407m)

The seagull term represents the emission of two photons from the same vertex and is
therefore of a different order in perturbation theory than the one-photon emission. To

obtain its second-order perturbation, it has to be applied in first order perturbation
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theory. The minus sign arises because in this section the perturbation series is written
in the “1/(H — E)” form. The matrix element of the leading order seagull term
e2A2/(2m.) vanishes when applied to the unperturbed wave function. In relative
order (Za)? it can be applied to the perturbed wave function. The resulting matrix

elements found in Ref. [58] are then

56 = —— (@ Y Yy
11 = — f Fa — Hs s

5605 =~ (|58 (1)
1= Fl0Hs Ee, — Hs

These terms can be simplified by introducing a complete basis set of hydrogen eigen-

(I)i> &7, (407n)

<I>,-> 5. (4070)

functions and writing the initial and final state in terms of the usual quantum number

I(I),,> = |ni€ijimi) which gives

. 1 ’ .
— Me(6614 + 6615) = <nf‘ff3fmf ‘ (m) 0Hs ni&-ﬁmi>

1 I
£s7 _—
+ <nf FIgmy >5Hs (En, — Hs)

e . 1 pl +1 /
_ Z (ng f]fmi|n€j m') (n'€'5'm’ |6 Hs| nibijims)

i n’

nieijimi>
(408)

e ! g jims
n'l'5'm! |nil;jim;)
e . m (SH /g/ - ¥ ( 1viJl 1
+ > (nglyjigms|6Hs| '€ 5'm’) B L

n'ljm'#Englyjrmy r

Because there is no operator in between one of the matrix elements, it can only take a
nonvanishing value if both states are identical due to the orthonormality of hydrogen

eigenfunctions. This leads to

(npljgmyslnglsgpmy)

— me(0&14 + 0&;5) = (nelsjpmys |6 Hg| niligim;)
E‘n.,; - E'n,f
. . nilijimi|ni;jim;
+ {nglsigmy [0 Hg| nilijims) < 1{3 | EJ ) (409)
ny — n;
_ (nslygymy [0Hs|nibijima) _ nglygymy 0Hs| nibijims) _
E'n.i - Enf En.' - Enf

and, thus, the sum &4 + 0&;5 vanishes.
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6.3.3. Length Gauge. With the same shortened notation used for the

velocity gauge the corresponding length gauge expression in Eq. (391) is written as

where the superscript ( denotes the length-gauge expression. Here, wy is defined as

in Eq. (402), and the length-gauge matrix elements are

¢ =¢C+ ¢, (411a)
={ &, |zt I| &, 411b
Cl < f z HS _ E<I>,- + w1 T > ) ( )
. 1 .
={®;|z* 2| ®;) . 411
C2 < f z HS _ E@f —wy > ( C)

The corrections to this result are obtained in the same manner as for the velocity
gauge and the first-order correction to the two-photon decay rate in length gauge

thus is

Wma Wmax

6T¢ = 2 /dwlw Wi 6C + 3—(5w2 /dw1 wiwi (. (412)

The sum of all the different correction matrix elements due to the different relativistic
corrections in length gauge is denoted as §¢. In contrast to the velocity gauge, it only

consists of twelve terms due to the absence of seagull terms

12
8= 8. (413)
k=1

In the following, all the different corrections will be given, starting with the relativistic

corrections of the initial and final state energy

. 1 2
(&, | j
o < i (HS—E@JFWI) !

. 1 ‘s
= ' ?
8y = (@ |§Hs| @5) <‘1’f z (HS—Eq,j—wl) ’

(I),> <(I), |5HS| @1) , (4148.)

c1>,-> . (414b)
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The next terms are due to the perturbations of the initial and final state wave func-

tions
63 = <<1>f z ! z’ ( 1 ) §Hg c1>1> (414c)
Hs — Ep, + w1 Es, — Hg
<q>f o Elq), — ( P L HS) 5Hs <1>,> (414d)
5Cs = <q>f 5Hs (Eq,, L Hs)' le—Eq, —d|® > (414¢)
8¢ = <<1>f §Hs (Eq)f 1_ HS)I iHS — Eléf _wlmﬂ > (414f)

The correction to the Hamiltonian is accounted for by the two terms

. 1 1 .
5 = — @ t 5H J (I>i ) 414
& < I Hs— Eg,+w; °Hg - Ea, w1 > (414)
1 1 )
0g=—(D: |z 0H, | ®; ) . 414h
CS < f Eq>f—-w1 SHS—EQJ—wl > ( )

Finally, the relativistic corrections to the interaction current gives rise to the last four

terms
0 =(d i 4i
CQ < f HS’ - EQ) + w1 @Z> (41 1)
) =(® i 5]3 j
ClO < f H E f ) (I)1> (414.])
) & d, 414k
Cll < b H E ) . ‘ > ( )
) =(® 5Ii :EJ <I’z 1141
C12 < f T E . ) > (41 )

6.4. PROOF OF GAUGE INVARIANCE

In this section, the equivalence of the length and velocity gauge expression is
proven. Thereby, the gauge invariance of the two-photon decay rate under a hybrid
gauge transformation, where the gauge transformation of the wave function is ignored,
is shown. In order to ease the understanding and illustrate the interlinking of the

different corrections, the calculation is divided into three parts. In the first part, the
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generalized corrections because of the relativistic Hamiltonian are considered. In this
correction, current and seagull terms will arise, which would not be linked to the
relativistic Hamiltonian a priori, hence the term generalized. The second part deals
with the quadrupole corrections to the electron’s interaction current. In the third
part it will be shown that the remaining terms, which mainly are due to the magnetic
interactions, vanish separately.

6.4.1. Correction to the Hamiltonian. For the proof of gauge invariance
for the corrections to the Hamiltonian, the expression in velocity gauge will be trans-
formed into the corresponding length-gauge expression. In the shortened notation,
where the velocity-gauge form is denoted as £ and the length-gauge form as (, the
gauge invariance of the leading nonrelativistic result can be traced to the formula in

Eq. (392), which is written as
§=-—wiwa(, (415)

where the tensor indices ij are suppressed as explained previously. The first terms,
which are due to the relativistic correction of the Hamiltonian, are the correction
terms 6&; and d&; of the initial and final state energy in velocity gauge. They can be
brought into length with the relations

p'=im.[Hs — E 4+ w, T, (416)
Wy = Eq>i — Ecpf —wi. (417)

The transformation of §£; leads to

P’ 1 P’
66 =(® £z
51 < f mMe (HS_E(I)i +w1) Me

. 1 2
= —wjwy { @, |T* z’
! 2< f (Hg—Eq>i+w1>
- 1
z* z’

+ (W2 - wl) <q>f HS - E(p. + (7% ]

+ (P |o'?| ;) (B:|0Hs|D:) -

<I>1-> (®;|0 Hs|D;)

<1>,-> (®;|6Hs| ;) (418)

' <I>,-> (®;|0Hs|D;)
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An analogous relation also holds for 6&,,

. 2 .
_ P 1 7
% = <q)f me (Hs — Eg, —w1> me

. 1 2
= — D, | J
WIW2< " (HS - E‘I“’f _wl) ’

— b, |1 J
+(w1 w2)< f st—Equ—wlx

+ <(I)f |.’Ei.'17j| q)z> <q)f|(5Hs|(I>f> .

<I>,-> (Dr|0HSs|Py)

@i> (Ps|0Hs|Py) (419)

‘I’i> (Ps|0Hs|®y)

The relations from Ref. [58] for a radiative corrections potential are generalized to
the relativistic corrections of the Hamiltonian. While this does not alter the relation
for the energy, the transformation of the correction to the wave function takes a new
form. For the following corrections it is useful to recall the relation

(ts - By +) )'5H5|¢>

1
E,— Hg

= |(Hs — E,) (Til{—s),_i_w (ﬁ)l] 6Hs |¢)

|20 {(527) - mlim ) e (5 o

= |-1+|¢) (¢| +w (ﬁ) I] 0Hs|¢) .

(420)

Thus, §&; gives

)

. 1 . 1 !
! J 0Hg|D,
* Hs—E<I>.-+w1x (Eda,»—Hs) S >

1 . o

. . . tnd .

Hy "B +w1:z:3‘ q),> (®; |6Hs| ;) + (P |z’ 0 Hs| ®;)
<1>,.>

1
Hg — Eq>i + wy

P 1 P 1 !
=({®, | —
083 < f‘meHS—Eq,,.+w1me (Eq,i——H> OHs
=—w1w2<<1>f

— Wy <(I)f

. . 1 !
t — . I - H
+ <(I)f T (Hg Eq;' +(.U2).’L' (E(b'» — Hs) 0Hg

iEi

(421)

ET]

- <‘I>f |.’13‘:17'7| (I),-> (CI),' |5H3| (I)i) + Wy <‘I’f .’I?J(SHS

IIJi

).
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For 0&,4 this yields

pi 1 p] 1 /

— | =—— | ¢H

me Hs — Eg, —wi m, (Eq,i - HS) g
. 1 . 1 !

t x’ O0H
“Hs —FEg,—w; (Edn—HS) *
1
HS — Eq;.f — W1

664 = <‘I’f

)
y

aﬂ‘ q»i> (@ |9Hs| &) + (&, |26 Hs| @,)

o)

_ 1 .
¢ TOH
st—Eéf—Mx s

= —WjiWo <(I)f

— W <(I)f

. : 1 !
i - - i —— ) §H
+ <<I)f t'(Hs — Ep;, — w2)x (E<1>.~ — HS) s

xi

(422)

=T,

— <(I)f |1131:L“7| (I)1> <(I)1 |5H5| (I)z> + wq <(I)f

).

For the correction 8¢5 to the final-state wave function

1 " p 1 P
06 =( ®¢|0Hg | ——m8m88m89 — | — —
65 < f‘d S(Eq;f—Hs) meHg—Eq>,.+w1me
1 " 1 .
= — d;|0Hg| ——— g J
w1w2< f’ S(Ecbf—Hs) st—-Eq>i+w1x

1

+w; (P

1< d Hs — Eg, +w;

1 " ,
— = )\ 2He—Es — J
+<q)f‘5Hs (Eq,f —Hs) z'(Hs — Ep, — w1)T

=T3

)
)

<1>,-> (@ [6Hs| ®,) + (0, |§Hsa's’| ©:)

)

>

z il

(423)

_ oy . — ) J
(@5 |0Hs| @) (s [a'a’] B:) — w1 <‘I’f }6st Hs - Eq, w1

(I)i> )
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and for 0&g

1 \'F 1 i
= - £ LaF'y
% <q)f ‘5}[5 (E<1>, —Hs> me Hs — Eg, — wy me >

1 " 1 )
—— o, |6H i j
w1w2< f’ S(Eéf—Hs) st—E<1>,—w1$

+(.¢J2 <(I)f |5H5| (I)f> <(I)f

)

i il®. el | .
xHS—Eéf—C(hx <I>z>+<®f|6Hsa:a: | ;) (

424)

1 " .
——— | 7(Hs — Es, 3
+ <q)f ‘(51‘.’5 <Eq>f — H_g) T (HS Ecpl +w1)x7 >J
=T,
. . 1 .
—(Ds|0Hg| D) (g |27 | D;) — & [0Hsx' 7| ®;
(@7 |6Hs| s) Py |2'2?| B:) W2< f‘ ST Hs — Fa, — w1 >

are obtained. In the transformation of the corrections to the wave function remainder
terms, which have been denoted as Ty to T4 arise. They can be further simplified by

combining them and carrying out another transformation, which leads to
TW+T, = 1 ® ! 16H

1 2= o\ % Fo, — Hs s

+(®y |2z | ®;) (®: |6 Hs| B;) — (®f |z'276 H| @;) ,

1 /
5Hs (—E¢f =7

+ (®f |6Hs| ®f) (B |2'2?| @;) — (@f |6Hsz's?| ;) .

<1>i> X (425)

1
T3+T4=—<‘I)f
m

e

c1>1-> §4 (426)

The first term of Eq. (425) is the negative of the seagull corrections §£;4 and the
first term of Eq. (426) is the negative of §&;5. So, these terms cancel the seagull
terms in the transition from velocity to length gauge as it is expected because the
length-gauge expression does not contain seagull terms. This makes it apparent that
in the transition from velocity to length gauge of the Hamiltonian corrections terms
are generated, which cancel correction present in velocity gauge but not in length

gauge. The other terms on the right-hand side will be treated separately, later.
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The final Hamiltonian corrections are those of the Hamiltonian itself, which can

be brought into length gauge form in the following way:

P 1 1 i
06, =—(® 0H — |,
& < f meHs—Eq, + wiq SHS—E¢i+w1me >
_ 1 1 .
= ;|2 0H | ;) .
w1w2< e HS—EQI.-FOA SHS—Eq,i-i-wl >
1 (427)
— ;|2 Hsa? | ®;
w2< f T HS—E4>,.+W16 5'£L"7 >
. 1
1 3 J
+w1<<I>f x(SHSHS-—Eq>,.+w1x > <(I>f IIII 0Hgsx |<I)>

For the second correction to the Hamiltonian 6£s the analogue transformation gives

P 1 1 P’
) d 0H — | P,
58 < f meHS—Eq>f—w1 SHS—Eq>f—w1me >
1 1 .
= WiWs <¢’f z' 0Hg z’ q)i>
Hs — FEg, — Hg — Eg, —
S 1<I>f w1 S b wi (428)
— |zt §Hgz’ | ®;
w1<mes—E¢f—w1 s >
; 1
W9 <q)_f mlstHS—EQ —w1$J > <<I>f |$15H5$]|@>
f

Combining all the discussed corrections the result reads as follows,

[CL‘j, 6Hs]

)

8 8
Z(ng = —Ww1Ws2 Z 6Cz — bwa w1C + wo <(I)f T
i=1

— Hg — Eg, +w,

. 1 .
— 5Es — i j .
€14 — 0815 + wy <‘I’f x Hs ~ B, — o [2?, 6H] q)z>
. 1 .
d |z — 77 |®,
+w2< f [x’éHS]Hs—E@—i—wlx <I>,> (429)
; 1
+LU1 <®f [x,(SHS]—Hs—Eq,f—w :BJ > <(I>f|[[:L‘ (SHs] :E]”@>

where Swmay is defined in Eq. (405b). Evaluating the commutator [z7, 6 Hg| gives

. . 54 A g2 i Z )
[z*,6Hs] = [m —%] + [a:’, Zn%‘? ej = PP L 2% 5) ) (430)

€ €
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with which the terms containing this commutator can be further simplified yielding

. 1 ) , 1 .
: ——— ¥ : — P,
Wi <<1>f [z*, 6 Hg] HS—E¢i+w1x <I>,>+w2 <<I>f [z*, 6 Hg| Hs~Eo, _w1xJ Z>
. 1 .
* Hgl|| ®;
+LU2<(I)f:L‘ S_E(bi+w1[$],5 S] >
+ o |zt 2!, §Hg|| ®;
w1 < f Hg — Ecpf — wl[ s] > (431)

. 1 P
=— (D0 —
< f‘ JHHS—E¢i+w1me
P’ 1
<(I)f‘me Hs — Eg, +w;

+2(®;|([«*, Hs], 27]| ®:) .

<1>,-> - <<1>f ‘w}, ! P

HS —E¢f — W1 Me

P’ 1 :
D, ) — (D |— §J7
> < f‘meHs—E¢f—w1 T

)
y

In it the current correction of the Hamiltonian §J}; is given by the current corrections

83

due to the relativistic correction of the momentum and due to the coupling of the
physical momentum to the spin. So, it is defined as

i =2
y2 1 Za o i
TmE i ga 2} 9) (432)

6Ty = —
It can be seen that these corrections are very closely related to the Hamiltonian and
are canceled in the transition from velocity to length gauge by terms arising form the
Hamiltonian corrections. The interesting implication of this is that these corrections
in velocity gauge are included in the Hamiltonian corrections in length gauge.

Incorporating this result into Eq. (429) yields

8 12
Z 0&; + Z 0&;
i=1

i=9

6J=6Jy (433)

8
= —Wiwy me — Swawy { — 6&14 — 6615 + (D5 |[[117i, 5HS],-'17jH ®;) .
i=1
The remaining double commutator can be evaluated to give

—4

P2 2 0 .
it )= ([, ] = [ ] - o0 -2 - s
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which is defined as the seagull correction due to the Hamiltonian. The transformation

of the Hamiltonian corrections in velocity gauge can thus be written as

8
= —Wi1W3 Zég—écdg wn C—(Sflg —(5614—5515 . (435)
i=1

Z 5€; +Z 5;

=9

6J=6Jy 0S=0Sy

When the Hamiltonian corrections in velocity gauge are defined as

+ 6613
§J=6J

+ 8814 + 0615 (436)
5S=6Sy

0y = Zé& + 25&

=9

and the Hamiltonian corrections in length gauge as

8
5CH = Z 5Ci ) (437)
i=1
then the gauge invariance relation takes the simple form
0y = —wi w6y — dwaw (. (438)

This relation used in Eq. (404) allows to prove the gauge invariance of the corrections
to the two-photon decay rate 6§y due to the relativistic Hamiltonian with the addition

of current and seagull terms, which are seen to be generated in the transition,

wm ax Wmax

4o
5F —2— /dw1w1w2§5§1{+9——5w2 /dw1w1§

0

Wmax

= 2— /dw1 wi wy (—w1w() [—wiwedCr — dwa wi(]

Wmax

4
+ —gg"' 60}2 /dWl wl LL)2 <2 (439)
0

Wmax Wmax

Here, again, the superscript £ denotes the velocity gauge, whereas { denotes the

length gauge.
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6.4.2. Quadrupole Corrections. The quadrupole correction is a pure cor-
rection of the interaction current. In the discussion of the one-photon self-energy it
was explained, how the quadrupole correction in velocity gauge arises due to the ex-
pansion of the exponential associated with the vector potential. For the quadrupole
correction of the two-photon decay rate only the multipole corrections to the non-
relativistic interaction current are considered. Multipole corrections to the magnetic

interactions are treated separately in the next section.
i

5.]& =P (-i];. j‘) — lp_l(]}' %

M, 2me
1p ~ 2
— — =—(k-2)“. 440
S (k- (440)
In the case of the two-photon decay, the first term does actually not contribute be-
cause it vanishes after angular integration. Similar to the Hamiltonian correction, the
quadrupole correction in velocity gauge also includes the multipole correction to the

seagull term in relative order (Za)?, which is

1
2m,

L (%727 (441)

2m,

888 = ——— (ki - £)%6" —

Now, the sum of 653 and 0S5} is the full higher-order seagull term 6S¥ given in
Eq. (399).

In length gauge, the quadrupole correction to the interaction is given by the mul-
tipole correction to the nonrelativistic interaction current but here, also the magnetic
coupling to the angular momentum of the electron has to be included. Actually, the
quadrupole corrections in both gauges are the multipole corrections to those terms of
the interaction currents, which do not contain the electron’s spin. The spin-dependent

terms will be treated in the next section and can be shown to vanish entirely [59)].
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The quadrupole correction to the interaction current in length gauge is then

i_i_i"—o_l"—o2 7 < L)
6IQ—:B( 2k z 6(k x))+2mew(€><k)

_ 1 [(Fx ki(k-Z) + (k- 2)(€ x E)i] , (442)

where in the last step again the terms that vanish after angular integration have been
taken out. For the following calculations, it is practical to rewrite the last part of this

interaction current into the form

(443)

—

(k - D)p'(—ik - )~ ' (k - p)(—ik - Z)+(=ik - D) (k - D)p' — (—ik - T)2'(k - F) -

For the proof of gauge invariance of the quadrupole correction, it is more convenient
to start from the length gauge expression. As the quadrupole term is a correction
to the interaction current, only the terms §(g 12 are relevant. Applying the same

relations as in the last section, the first correction term (o is transformed with the

- LU1LU2(5C9 = CUQ% <(I)f T
T
o (@ R (R 2) + (R - 9 x )|
r 1 L= NP
<(I)f meHS—Eq> +w1[ §<k1x>:|E

1 i N2, j i P \2
6w1< ik - )z 1>+6<¢f‘—7ﬁ;(1{}1-$)

_ (ék{k;ﬂ) <<1> riz ’p7 zm

result

<I>i> (444)

Ij (I).L>
q>,.> |

" PP
— il ™+ g™t — — i —
me me me




131

The analogue transformation of §{io leads to

1 : 1 - )

— wrwsbCio = wi= { ®; |2* By - 7)%

w1w20610 w16< f|T Hg — Eq>f o (wz( 2 l‘) z

+mL [(EX ks) (kg - &) + (s - T) (£ % Ez)J]) ‘ (I)i>
P’ 1 1/~ N] 9

(o, |- = (k7)) e, 44

< fmeHg—Eq>f—-w1|: 2(2 x)]me > ( 5)

1 N i pt .
- 6w2< 7 (R :U)Q:vj‘ <1>1-> 4= <<1>f o (fy )’ q>,.>
— (ikékg‘) <<I>f xixlﬂxm T'rd — v —z™ +z’zmmlp7 gigmgi L <I>i> :
6 M, Me M, M,

For the correction d(3; with the current acting on the left side this yields

— wiwod(y = w16 <<I>f ‘ <w2(k2 )t 4+ — - [(E X E2)(E2 - T)
4+ (kg - TY(€ x ko) 27|,
( 2 )( 2)]) HS—Eq,i-I-wl >

(s,

G ey e

<I>i> (446)

1 "o i i
+gen (2 o' (R 270 @) ~ <“’f 2y >
: i I
+ (ikék§"> <<I>f ot Eogmad g 4 ~—g™g! + ™ot p —gmgi L g <I>i> :
6 me me me me

and finally for (9,

(s,

Pl 1 1 P

= ==k - s

me|: 2(1 CL‘)J Hs—Eq>f—wlme
1

Lo (o

<I>i> (447)

Me
. i ! i !
1 . . . . . .
+ [ =KL k™ 0] :vl—p ! -—x’—p ke g +xm$l—p z? —xm:c’—p |, ) .
11 f
6 Me M, Me e
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The sum of these four corrections then gives

12 12 :
i . .
—wleZM = 255 - <—kik1"> <@f gigt L gm _ gigi B gm
i=9 61=6Ig ;=9 §J=6Jg 6 Mme Me
! i : j
+x’xmxlp7 —gigmgi B P plygmyd D, ) — lkék;” ® x’xl—pia:m
Me Me Me 6 Me
j ! i ;
. i
x'r’ r "+ ' xlﬁ wigmgt L L glymys @,-> + (—ké ’2")
Me mel e Me l 6 (448)
<<I>f 1P gmyi i P gmyi gt B i gmgi P g
me me Me me
1 mP Y 1 P j P
" — | ®; ) + | =k kT &z —a™2) - ' —x"I
171 s
M, 6 Me Me
i 0..m p7

P ; P
T R L s
me

+Z
Me Me

The rather long remainder terms can be greatly simplified by commuting the momen-

tum operators to the right side, which leads to the much shorter expression

12

—WwiWa Z (SC
i=9
12

6I1=61¢
=;5§ 6J=62<<I>f '(E1.5)2<I>,~>+<<I>f . ~-(1}’2.5)2q>1.> :

The last two terms on the right-hand side of the equation can be identified as the

quadrupole correction to the seagull term in velocity gauge and thus this can be

(449)

written as
12 12
—WiWs Z 6¢ = Z 0§ +0&13 (450)
=9 8I=6lg i—g |86J=bJg §5=6S¢
Defining the quadrupole correction in velocity gauge as
12
6o = 8& + 6613 , (451)
§J=6Jg §5=6Sq

=9
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and the corresponding correction in length gauge as

12
5o = 8 , (452)
=9 §1=5Ig
the above gauge relation takes the simple form
5§Q = —CU1L(J2(SCQ . (453)

Having now obtained the gauge relation for the quadrupole correction, it can be shown

that

Wmax

5FQ = —7-r—- /dw1 (%] WQf(SéQ
0

Wmax

=2— /dw1 w1 Wy (—wlwgg) [—W1w25CQ] (454)
0

=2 /dwl wiwi (8¢ = Tg,
0

which proves the gauge invariance of the quadrupole correction to the two-photon
decay rate.

6.4.3. Spin-Dependent Corrections. So far all corrections due to the
Hamiltonian, the quadrupole and the seagull term have been treated. The remaining
corrections are all spin-dependent corrections to the interaction current. In velocity

gauge these remaining terms are

8Ty = 8" — 8Ty — 8T}

i/l Nl L N 1 Za,. . (455)
- _Zme (JXk) _Qme (UXk) (k-ay)—4m2ﬁ(x><0




134

From the considerations at the end of Sec. 4.4, the following replacements can be

recalled

]. o S\ [ - iUJ o i
" om (ka) (ka:) ——»——4mz(a><;5') ,

w . i
X
4mg (U ﬁ) b

(456)

which occur when the terms on the left-hand side are contracted with the photon
propagator [42,77]. Therefore, the last two terms of Eq. (455) cancel. For the re-

maining term, the sum of the two corrections 6€g and 6&;; with it is considered

6 = (I) - k z :
0&g + 0&11 < f ’me Hs — Ep, +w; (G k)| ® > (457)
L 1 P’
+<q)f (UX 1) HS—ECDf—wl me >

The Schrodinger Hamiltonian does not contain any spin dependence and does there-

fore commute with the spin operator. This allows to let the denominator act on one

)

]

of the outer wave functions and leads to

P 1

68 + 061 = <<I>f . B = Ea +wl(6xﬁl)i

- 1 p
®; (7 x k1) —| @,
+< 7 1(@ % ky) Fa, — B, —y > (458)

=wll(<q>f q>,.>—<q>f‘pi (& x Fy)’ c1>,~>) —0

because the momentum operator also commutes with ¢ and k;. The same can be

—(d X k1’
. (6 x ky)

shown for the sum of 6§19 and d£;5 where the El has to be replaced with Eg. Therefore,
the entire contribution from the remaining corrections to the current vanishes in the
velocity gauge.

The remaining spin-dependent corrections to interaction current in length gauge

are

51, = 2n16w (7 %) - 2n’itew (3% F) (k-2) + ;‘;’Le (7 x Z) . (459)
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Because the position operator also commutes with both & and E, the considerations in
Eq. (458) are also valid for the corresponding length gauge expression. Consequently,
the contribution from the first term in Eq. (459) vanishes. Contracting the second

term with the photon propagator leads to

“g (OXF) (F2) = g =2 (460

which exactly cancels the third term of Eq. (459).

Hence, the corresponding corrections

12
0ér = Z 6&;

=9

=0 (461)
6J=48Jp

and

12
0Cr = Z e

=9

=0 (462)
6I=61g

are both equal to 0 and thus trivially gauge independent. This completes the proof

of the gauge invariance of the two-photon decay rate.

6.5. NUMERICAL RESULTS

Numerical results for the relativistic corrections to the two-photon decay rate
are obtained by carrying out the integration with respect to w; for both the velocity
gauge expression in Eq. (404) as well as the length gauge expression in Eq. (412).
The propagator is represented by a sum over the complete bound spectrum and an
integral over all continuum states as in the case of the self-energy in Sec. 4. For a
numerical evaluation of the expression the angular integration is carried out using
algebraic methods detailed in Ref. [23]. The remaining radial integration is carried
out by lattice techniques developed in Ref. [78]. In this method the intermediate
basis set in the equation is represented by eigenstates of the Hamiltonian which
is a matrix in a finite lattice. Thus, its eigenstates are then just the eigenvectors
of this matrix. They represent the discrete bound states but also yield a pseudo

spectrum of the continuum unbound states. Then letting both the operators act
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on the reference state and discretizing the resulting wave function on the lattice,
the matrix element of these with all the intermediate states can be evaluated. For
this purpose, the lattice code employed for the calculation of self-energy corrections,
described in detail in Ref. [42], is generalized to the calculation of the two-photon
decay rate. The evaluation is carried out in both length and velocity gauge and the
results are seen to agree.

6.5.1. 2S—1S Decay. For the results it is interesting to see them and have
them discussed on one particular example. Due to the absence of cascade contribu-
tions and its importance for high-precision spectroscopy, here, the 25-1S decay is
chosen. The results from the different contributions are all given separately.

For the gauge-invariant result of the correction to the decay rate due to the

relativistic Hamiltonian, from Sec. 6.4.1,

6Ty =To [-0.5082 (Ze)?] (463)
is obtained. For the quadrupole correction, the gauge-invariant result is (see Sec. 6.4.2)

6Lg =T, [—0.1555 (Za)?] . (464)
As shown in Sec. 6.4.3, the remaining current corrections vanish, i.e.

Cr=0. (465)

The total result for the relativistic correction to the two-photon decay rate is the sum

of the above terms and thus reads

0T = 6Py + 6Tg + 6T'r =Ty [~0.6636 (Za)?] . (466)
The coefficient 7y, is then

v2 = —0.6636 . (467)

It can be interesting to consider the different contributions which make up the the

total Hamiltonian correction. This is particularly helpful because the zitterbewegung
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term is up to a different scaling identical to the leading radiative correction. Following

Eq. (393), the different Hamiltonian corrections are the zitterbewegung (zb) term,

A

0Hp = §(%), (468)

2m,

the kinetic energy (ke) term,

4

p
0Hye = ——, 469
K 8m3 (469)
and the spin-orbit (LS) coupling
Zal-

= ——. 470
OHLs dm? 73 (470)

The corresponding results read, for the 25-15 decay,
6T, =To [-0.7577 (Za)*] , (471a)
6Twe = ['o [0.2495 (Za)?] , (471b)
l'ps =0. (471c)

6.5.2. Higher Excited States. When this approach is generalized for higher-
excited states, there is one particular problem which requires special attention, the
cascade decay. In this process a higher-excited states decays via two one-photon
decays over a real intermediate state. For example the 35 state can decay via such
cascade through the 2P state. In the two-photon decay this means that, when the
2P state is the virtual intermediate state in both denominators, a double pole in the
photon energy integration arises. This causes the problem, how this pole is treated in
the integration because in principle a quadratic singularity is a priori not integrable.
In fact, such a case, where the decay can take place through a cascade of intermediate
states, even the exact definition of the two-photon decay rate is troublesome [60-65,
67-69).

Here, a principal value prescription for the problematic double poles is used. It
is based on the principles of the deformation of the integration contour from Ref. [7],

which are discussed in Sec. 3, and an rigorous handling of the ie prescriptions in
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the denominators. The details of this procedure for the two-photon decay rate are
explained in Refs. [67,68]. While the gauge invariance of the corrections is preserved,
discriminating between the cascade decay, which consists of two one-photon decays,
and the ”real” two-photon decay is troublesome. This problem is still being discussed
in the community [67-69].

With the lattice methods using the described procedure to deal with the poles,
the relativistic corrections are calculated for many higher excited. The results are
given in Table 6.1 which is published Ref. [59].

Table 6.1. Results for the v, coefficient as defined in Eq. (382). This coefficient gives
the relativistic corrections to the two-photon decay rate.

|®f) = [1S1/2) |®f) = [251/2)

|®;) = |251/2) —0.6636 -

|®;) = [351/2) —2.6637 — 1.7038
|®;) = [4S1/2) —4.5192 — 7.8530
|®;) = [3D32) —2.2978 7.8533
|®;) = [3Ds2) —1.0981 —22.2671

6.5.3. Leading Logarithmic QED Corrections. In the calculation of the
low and the high-energy part in Sec. 4, it becomes apparent that the leading QED
radiative correction is basically given by the effective Lamb-shift radiation Hamilto-
nian [79, 80]

4o o(Z)

6Hag = < (Za) In[(Za)™? —5 (472)
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Because the difference between this Hamiltonian and the zitterbewegung term in the
relativistic Hamiltonian
§(Z)

OH,, =nlo — (473)
2me.

is only a prefactor, the 73 coefficient can be obtained as 8y ,,/3 from 2,5, which
is the contribution to 7, caused exclusively by the zitterbewegung term. The result
found in this way for the 25-1S transition, which according to Eq. (471a) is given
by v3 = %(—0.7577) = —2.0205, agrees with the results previously obtained for this
correction in Refs. [58, 74]. The result for other transition, which are presented in

Ref. [59], are given in Table 6.2.

Table 6.2. Results for 73 as defined in Eq. (382).

|®f) = [1S1/2) |®f) = |2S1/2)

|®;) = [251/2) — 2.0203 -

|®;) = [351)2) 9.6521 16.0424
|®;) = |451)2) 20.7364 61.7499
|®;) = |3D32)  — 5.4681 144.3639
|®;) = [3Ds/2)  — 5.4681 144.3639

6.5.4. Comparison of Analytic and Numerical Results. = The results
presented in this section are obtained using the methods of NRQED described in
Sec. 4. Also calculations exist which were carried using the approach discussed in
Sec. 3 and employ fully relativistic, numerical QED calculations. In this work both of
these approaches have been discussed. Here, the opportunity is taken to compare the

results obtained with both methods and to show that they agree. Such a comparison
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provides a highly nontrivial and rigorous check of the results and allows to excludes
conceivable errors.

A fully relativistic numerical calculation of the 25-1S two-photon decay rate
has been carried out in Ref. [81]. From these results a fit to a convenient functional
form in Za leading to an approximate formula valid across the whole range of nuclear

charge numbers Z was obtained. It is given in Refs. [81,82] and reads

1 + 3.9448 (Za)? — 2.040 (Zo)*
1+ 4.6019(Za)?

I' =Ty (474)
In order for this to yield an estimate for the correction term in relative order (Za)?,
this expression has to be re-expanded in Za. Indeed, the coefficient of relative order
(Za)?, which this expansion yields, 2 = —0.6571, is in fair agreement with the result
with the NRQED result in Eq. (467), v, = —0.6636.

In Ref. [66] fully relativistic, numerical results for the 35-15 two-photon de-
cay rate were presented. In it the decay rate, including all corrections, has been
determined for different values of the nuclear charge number Z. To allow for a com-
parison in this case, the relativistic correction 7, of relative order (Za)?, presented
in this work, has to be used to correct the nonrelativistic decay rate for different
values of Z. The corrected decay rate for the 35-1S two-photon decay is then
I' ~ 1.61(Z = 40)®rad/s. In Ref. [66] the result for the E1E1 two-photon decay
rate is given as I' = 1.60 (Z = 40)®rad/s. Both of these results are again in good

agreement.
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7. CALCULATION: SELF-ENERGY AND THE LAMB SHIFT

7.1. ORIENTATION

In this section, the nonrelativistic theory is applied in order to obtain corrections
of relative order (Za)? to the self-energy correction of the Lamb shift. In contrast
to the previous section there is only one photon but this photon is virtual. The
obtained correction are therefore additional QED corrections to the Lamb shift. The
focus is on highly-excited Rydberg states because these calculations are required for
an ongoing project at NIST. The QED results obtained for this project in Ref. [83,84]
are necessary to reduce theoretical uncertainties and could allow to deduce a more
accurate value for the Rydberg constant. Starting from the theory explained in Sec. 4,
it is shown how the corrections are evaluated for Rydberg states.

Following Sec. 4 the calculation is split into two parts. In the low-energy part
only contributions from virtual photon at low photon energies are considered, whereas
in the high-energy part the effect from highly energetic virtual photons are deter-
mined. This separation is necessary because of the two energy scales in the problem
from the virtual photon and the binding Coulomb potential. The investigation start

with the low-energy part.

7.2. LOW-ENERGY PART

7.2.1. Orientation. Here, the relativistic corrections of order (Za)? to
Bethe’s result for the self-energy correction for highly excited Rydberg states are
calculated. Following the theoretical derivation in Sec. 4, the low-energy part of the

self-energy correction is given by

d*k 2 g I\ ...
ReAEgzp = / LO[ (6” _ k'k ) pis (475)
wE<6
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According to Sec. 4.5, the matrix element P¥ reads

P = (3| 2 B flfs —wk_ |®)
vz @ L —071®)
(@ :;_:Eé_;s_wzaEEé flfs—wk o) (476)
(| n;eE¢_;S_wk5HsE¢_;S_wk§e @)
co@ L ¥ |5<I>> +0((Za)"),

meEq>-—H5—wk

where the first term is Bethe’s classic result [6] and the other terms are the relativistic
corrections of order (Za)? to it, which are investigated here. The effective correction
operators have been derived in Sec. 4.4 by a Foldy-Wouthuysen transformation of the
fully relativistic Hamiltonian and current operator. While the resulting correction
are given in Sec. 4.5, they are restated here for easier referencing. It is convenient
to break up the interaction current correction into its constituents in Eq. (297)
because the angular integration is different for each of the terms. This results in the
following terms:

the nonrelativistic multipole correction

3 i L.
ReAPLone = /w-<e (2m)3 wi (6 k2

{(<I>| (i/}'- ;z;‘) e 1_115 _wk% (—iE :z) 1) (477)
— (3] E <Ef)2 e }115 — |<1>>}
the relativistic momentum correction
ot | 25520
o ) i (478)

X (@] —

meEq>—H5—wk m3

®)
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the correction due to the spin coupling to the physical momentum

3 B 1 1.
ReaBf), - [ EE I (K0

wp<e (2m)% wi k2

) Zo (@ y (479)
' —Za(xT xo
P| -
X< |meEd>_HS_wE( mg,r:; >|q)>7
the quadrupole correction to the magnetic coupling
&k 2na (. k'K
ReAEY) = / == (527 - )
L, krkxo wg<e (2,”-)3 5 k2
, > N (. 2 480
X ((I)|p_1 1 (k.’l,‘) (kXU) |‘I’> ( )
mMe Eq; - HS - w,; Me )

This concludes the corrections due to the relativistic corrections of the interaction
current.
The next correction arise because of the relativistic correction to the reference-

state energy

3 1.7
(2) _ d’k 2ma i k'K
ReALlasr = /M @ wp (‘“ T

p
X {P| — oFE — |®) .
( meE‘;p—Hg—wE E@-Hs—w,;me| )
The relativistic correction of the Hamiltonian leads to the contribution
Bk 2ra (.. k'kK? Pt 1
ReAE ) sy, = — / = (6” - = ) (@] —
3Ky wee 27-‘- 3 w4 2 me E — H — w-.
i< ( ) k k ¢ S k (482)

x(p___Z_O‘g 5) 1 ﬂl@-

8m2  Am2rd Fy — Hg —wgm,

In § Hg the Darwin term is neglected because Rydberg states are considered here and

this term vanishes for states with angular momentum ¢ > 1.
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The last correction is due to the relativistic correction of the wave function

and is
3 i 1.7
©)) _ d’k 2na i k'K’
s = [ e T
REE . y . , (483)
p’L
b — — | ——— Hg |DP) .
X< |meEq>—Hg—wEme (E¢—H3> 6 Sl )

These terms are now derived and evaluated separately.
7.2.2. Nonrelativistic Multipole Correction. The nonrelativistic multi-
ik-z

pole corrections are due to the expansion e'** in the nonrelativistic interaction current

and are given in Eq. (477) as

3k 2ma (o kK
Reatlhn= [ e (7 )

k?
x {(‘PI :L—i (IE:E') ! i (-iF-7) @) (484)

Eq,—HS—w,;me

—<<1>|1’i(1€-a-:')2 L7 |<1>>}.

Eq,—Hg—-wEme

In order to extract the k dependence from the matrix element, the index notation is

used, in which the expression takes the form

dk 2na [ k'K , 1 :
iy ir.a, .a k‘b b d
(6 E2){<¢|pkxE¢—HS—w,;pJ z’ | D)

1
Ecp—Hg-—wE

ReAEDy .0 = /

|k|<e (2m)3 mawy

— (®| p'kkbroxb P’ ;@)} : (485)

Writing d*k = dQ;; w% dwg and multiplying out the transverse 4, yields

3

dw; o koK . w? -
Pl piz? k i P
e el

Fln)?2m? ke
3

T M S T
Eq> - HS — wg
3

kikd ol o Wi

Kk E

+ 58 @|peest—E i)
k2 Ey — Hs — wg '

ReAEgZp,nq = /

wp<e

Hs

(486)

p'z"|®)
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The dependence on k is extracted and the integration with respect to dl; can be

carried out again using Egs. (214) and (215) as well as

kik? k°ke  4n S
dQ Jz] ac 1a £J¢ icL£1a .
/ L. 15( 8% 4 887 + §°67°) (487)

When the momentum operator is also replaced according to p* — iV, the result is

€ w3 L
ReAEgzp,nq = —/ dw,c < {15 (| Viz? k V' |P)
0

Ecp — HS — Wi
L | vie— B iviie
15 E<p - HS - wE
w? .
- (<1>| Viz! o f';s — ng’w |®) (488)
A e vide— i
5 Eq> - HS - Wi

3

+ 2 (0| Vigis! “k VI | @)
15 Eq; — Hs - w,; '

The angular integration is carried out for each of the five terms separately in the
following. Thereby, the Wigner-Eckhart theorem as well as the Racah algebra [23]
are employed and the calculation is carried out algebraically. This algebraic methods
requires the use of spherical coordinates. The Cartesian scalar product in spherical

coordinates is given by

A'B' = (-1)74,B_,, (489)
q
which makes an easy change of coordinates in these calculations possible.
The first term of Eq. (488) is denoted as M, in the following and is

3

L. W= ..
M, = (®| Vi’ k IV D) . 490
(@ Ve g V' [9) (490)

Similar to the evaluation of the leading low-energy part in Sec. 4, a complete set of
Schrédinger eigenfunctions of the hydrogen atom is introduced. Both the reference

state as well as the basis set are expressed in terms of the relevant quantum numbers.
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M, is thus written as
3

k
En — Hnl —LUE

M, = Z (nfm| V'z? |n'f'm')

n'l/'m/’

(n''m/| 27 V* |nfm) . (491)

The Wigner-Eckhart theorem now allows to reduce the manifold of magnetic projec-
tions m of the orbital angular momentum £ to one particular choice, which is m = 0

in this section. Moreover, switching to spherical coordinates yields

3
w? .
M, = E E )7 (n0| VI |n''m ')mm’e’ m/|z™? V79 nl0) . (492)
i

n’'m’ q, q

Because it allows some simplifications later, a complete set of angular basis states is

introduced between the z and the V-operator which leads to

=) > (D)UY (nk0| VO |'m") (¢'m"| 27 [n''m/)
n’,ﬂ’,m’ q,q’ [//,mll,zlll’m///

w3

X
En - En/ — Wi

(493)
(nlelml| z—q’ |€IIImIII) <€IIImIII| v—q in€0> .

Using formulas from Ref. [23] and grouping terms with ¢ and ¢’ together, one obtains

=2 > Z ™ (Z1)™" (ng0] T° |£0) (0] V° [nl0)

I el 7 eII 1" el// "

¢ 1 e 1

0 q mII _mIII __q 0 ) , w§
X > (=n7 (= S
e 1 l” glll 1 E 7 En — En’ —_ (,L)E
000 0 00 (494)

el 1 elll eli 1 g/
-m = q/ m'" —m/ q/ m’

x {£'0| 2° |n’€'0) (n'€'0| £° |£"0)

e/ 1 EIII gll 1 el
0 0 O 0 0 0
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Combining the sum over ¢’ can be achieved by making use of Eq. (8.4.5/6) and
Eq. (12.1.3) from Ref. [23] and gives

PGt ( £ g) ( “o el)
—m! —d m ) /
qm q m m q m
, A L y 1 v ¢
= Z(_l)q (-1)™ (—1)LHe+e (495)
; -m" ¢ m ~¢ -m' m"

q,m
_ (-—1)mll
200 + 1

6gm N2 6771,’” m'

The resulting Kronecker delta allows to contract the sum over ¢ in a similar manner,

which leads to

Z(—l)q(~1)m" 4 1 £ £ 1 ¢
am -m” —q 0 0 g m"

= Z ™~ 1t (f 1 f") (496)
n "

qm” —q —-m" 0 0 ¢g m
1

204+1°

Through these simplifications the matrix element can be expressed as

-2 -2
v 1 (e 1 e o1 e W3
: 2€+1 w2 +1 10 0 0 0 0 0/ En—Ew—wp (497)

x (nf0| VO |€"0) (£"0| z° |n'€'0) (n'€'0| z°|€"0) (€"0| V° |nf0) .

The action of the V-operator on the wave function is given by Egs. (13.2.23/24) of
Ref. [23] and reads

(nL + 10|V | N LO)

_ \/(szsz+3 / 7 Rapa(r (—_ _) Ry (r) (498)
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and

(nL — 10|V1o [N LO)

L d L+1 (499)

BV e R (G + ) matr)

The squares of the 3j-symbols can be obtained by

2

[ —

(gl 1 ‘Z) R AR, (500)
0 00 Mm for€'=€+1.

Consequently, the final result for M, is found to be

v — w? +1 £42
B, —Ey—wp 20412043
X (/ drr? Ryeo(r) (7‘5 - 2) Rng(r)>
0
e+1 6+1 ([, , d 2
+—2€+1—2€+3(/d7‘7‘ Rn/(f('l') (TEI'-_E) R,ng(’f‘)) (501)

+ Wﬁ (/ drr? Ry(r) ( + (€ + 1)) Rne(r))2

v ( / rr*Rear) (14 + (€4D)) Ruclr) ) } ,

where R,,(r) are the radial eigenfunctions of the Schrdodinger equation defined in
Eq. (162).

The second term in Eq. (488), which is denoted here as M, can be calculated
following an analogue procedure. There is, however, a shorter way to solve the angular

integration. It is based upon the observation that in
3

M. = (P 1,1 k
b ( |V$E¢—Hs—w,;

V7 |®) (502)
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both operators are scalar products. The scalar product

FV=r (503)

does not carry any dependence on the angular coordinates. Thus M, is simply given
by

3 s 2
M, = Z “k /drran/g(r)rdirRﬂj(r) : (504)

; En—-En/—wic‘
n 0

where again a complete basis set was used to represent the propagator.
The third term in Eq. (488)

3

M. = (| Vi -
( |vxEq>—Hg—w,;

7'V | D) (505)

is again determined following the same steps as for the first term. After the intro-
duction of a complete set of basis states and the transition to spherical coordinates,

it is found to be

M= > 3 3 (=1)9=1)7 (nl0] VO |¢"m") ("m"| 27 |n'€'m)
nl,elyml qu, [”,m",l’”,m’”
w? ,
X o Ek — <n/£/m/|$—q wmm///) <g///m///| \vant' |n€0> )
n n' T Wi

(506)
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Reducing the matrix elements to the z component and the projection m = 0 leads to

Mo= > > D (=D)U=)™ (=)™ (-1)7 (=1)™ (n0] V° [£"0)

1 pt 1 gt 1 prt 1 7
n/ ' m! £ m" ' m! q,q

¢ 1 ¢ 1Y
0 g m" —m" q/ m w%

X e//o 0 Ielo
( ICIJ |n ) (f 1 e//) (E" 1 e/) En—En'—wE

00 0/lo 00 (507)

e/ 1 él" e//’ 1 e
—m' —q m" —m" —¢ 0
el 1 E”/ el// 1 4€ .
00 O 0 00
With Eq. (12.1.8) from Ref. [23] this can be simplified to give

-1 -1
1 ¢ ¢ [em 1 ¢ ¢ 1
M=y >
20 +1 10 0 00 00 0

n/ ’eIII ,ell ’ZI

~1 -1
w% e 1 eli eII 1 el (508)
X
En—Ey~wg\0 0 0 000

x (nl0| V° €70 (£"0] z° |n'£'0) (n'£'0| z° |£'0) (¢”0| V° |nL0) .

X (nIEIO| :L‘O |£///0> <€m0| VO |n£0> (




Evaluation of all expression allows to write the final result as

Vo w? +1 £+42
¢ S E - Ey—wp|204+120+3

X (/oodrr2Rn/e+2(r) (Tdir — f) Rne(T))2

vl 1 (T, d 2
AR CTES b T (/ drr” Reue(r) (TE - e) R”"(T))
0

£ £+1 5 d
+2—2€+ 19T 1 (/drr Ry(7) (r%+ £+ 1)) Rne(r))
0

o (f orrate) (- =) )

oo

" f‘ 122 = (/ drr Fse{r) (T% +(e+ 1)> Rne(r))2

o0

N 2%“5‘;_‘__1{ ( / drr Rove(r) (rdii L+ 1)) Rﬂe(r))Q} |

0

The fourth term of Eq. (488):

3

W=
M, = 1.2 k i(I)
4 <(I)|VTE¢—H5—WEV| )
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(509)

(510)
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is relatively easy to determine. The reason is that r? is scalar and, thus, only the

radial equation compared to Eq. (227) has to be changed with the result

3

Md—Z,En—En/—w,;{2€+1 A Raver(r) | g + == ) Ruelr)
" 0

X 7dTT2Rnfe_1(r) (r2d% + (€ + l)r) Roe(r)

0

;;_;11 /dTT Ry (r) (- — —) Rpe(r)

x ]"W%(r) (7 - ) )}

Finally, the last contribution from the nonrelativistic multipole is given by

(511)

3

we
= (®| Viz's! : 71®) . 12
M, = (®|Viz'z Efp——HS—w,;v |®) (512)

Recalling that p‘z® is a scalar, the determination of this term is completely analogue

to the one before with the result

w?

L+1
M= p g o / v B (1)1 5 Boal7)

X /oodrrz{%n/gﬂ(r) (% - é) Re(7)
0 , (513)

d
+ T /drr Ryp_q(r)r dTRng(r)
0

X /oodrr2Rﬂ/g_1(r) ( s 1) Rpo(r )}

The dependence on the energy can be extracted from each of the terms. If

the remaining integrals without the energy dependence is denoted as M,, then the
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photon energy integration can be carried out as follows

€ 3

@ _ @ Yz
RGAEL@,,MJ - _7rm2 /dWE Z E _ E T wk. Mnl

0 ! n n

e

3 2
- o Y Me{ G~ S (B - B + el - B (514

— (By— E)’In (W) +(Ey — E,)°In (%) } .

Following the explanation of the analytical method in Sec. 4, only the finite term
contributes to the low-energy part. It leads to a Bethe logarithm type of correction.
Consequently, the order in « and Z« is extracted from this finite part to define what

is called the relativistic Bethe logarithm Gsg

o (Za)m,
RGAE(L%MJ = ;%BSE,nq(ngj) . (515)
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The nonrelativistic multipole correction to this relativistic Bethe logarithm is thus

|En — B\ 1 €+2(f+1)
Bsk nq(ne 6m3 Z n ( (Za)2me 15 2f + 320+
7 d 2 441
(/ drr’R /e+2(7”) (T_’r - Z) Rnl(r)) + 4%
0

x ]odrr2Rn'£+1(7‘) (% - —) Res(r )/oodrr2R,ue+1(r) (TQC% - er) Ro(r)

0

-2

(41 T d 3
26-:— 7 /drran/e+1(T)r2aRne(r)/drﬂRn,gH('r) (d_r ~ —) Roe(r)
0 0

._@@Q;ggQ;;g+v)(Zwﬁ&AﬂQgTJ)Rﬂﬂf

¢ i1 (] d
226 n 1%—H (/ dTTan/g(T) (TZZ'; + (E + 1)) Rng('l”))
0

x <7drr2Rnfg(r) (rd% — e) R,Lg(r)) + (7drr2}?ﬂ,e(r)r%me(r)) 2 (516)
B (zzeimeE— 1 (2ef-1)22111—1) |

([t (r e 001 Bute))

4L drr®Rpe_1(r) (7‘21
0

T I + (£ + 1)7") Rye(r)

d (41 14
2 _9_-
drr°Rpe—1(T) (dr + " ) R(r) 2%_}_1

X

X

0\8 0\8

dTT2}?,,LIg_1(T)T2iRng(’I‘)/dTT‘QRn/g_.l('I“) <i + et 1) R.e(r)

dr dr T
0

- 3%% (7dTT2Rn/g_2(T) (r% + (£ + 1)) Rﬂe(fr)) 2] :



155

7.2.3. Relativistic Momentum Correction. The relativistic momentum
correction in Eq. (478) has a structure very similar to the leading term evaluated in
Eq. (227). Therefore, the angular integration as well as the integration with respect
to the photon energy are completely analog. For this purpose the reference state is
written in terms of the hydrogen quantum numbers and a complete set of basis is

used. This yields
n’f’m'>

3 1.5 1
ReAEL’dwip2 = /w~<€ @ wg (5 7 E nfm o
k n''m/' (517)

1 p?
X o — <n'€'m' n€m> ,

where the sum extends over all bound and unbound states. Because the operators do

3
me

not depend on E, the angular integration with respect to k can be carried out with

the relations in Eqs. (214) and (215) with the result
n't'm’ >

(2) 20 ¢
ReAEY) . . = 37/0 dwgwg <nem
n'l'm! (518)

1 ot
X o <n'£’m’ PP n€m> ,

m;
In the integration with respect to the photon energy, only the finite term contributes

pi
Me

to the low-energy part, as shown in Sec. 4. From Eq. (223) the analogue finite
contribution here can be identified. With (Za)?m, as the scaling parameter in the

logarithm, the finite contribution for the relativistic momentum correction yields

20
ReAEL, 2 s = 5~(Bn— Ev)ln l

v
X Z <n€m ‘E

n'l/m’

|En - En’|
(Za)?me

wem') (wem

12

n€m> | (519)

Recalling the relation

10 (,0\ ¢&°
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as well as that |nfm) is an eigenstate of £2 and the result for the Bethe logarithm in

Eq. (227), one obtains for the relativistic Bethe logarithm contribution fsg yi,2

n3 |En — Ep| {41
Bsmpi(nfs) = 37r (Za)¥m3 Z (Bn = Ex) [ (Za)?me ] {2“‘1

/‘\

drr® Rppga(r) (i - _) Bne(r)

drr? Ry (r) (i - ﬁ) S ( di) Bne(r)

X

9\8 9\8

% dr r2 dr
e T d ¢+1
Tt /d”" Brvea () (7 r )R""(T)
T d (+1\1d/[,d
X /dTT2R1,e_1(T) (E" + , ) ;:55 (7‘25) Rne(’r) (521)
0
e+1 [ d
- 25;_*_1 dTTan'Hl(T) (5 - —> Roe(r)
0
T d o +1
X /d”2Rn’e+1(7") (5 - ‘f) ( :2_ )Rne(r)
0
T d, t+1
2€+1 d’f"f‘ Rn/g 1(7‘) ( r ) Rng(T)
T d 0+1 1
X /drran;[_l(T) (E + _: ) E(ér-: )Rng(’f')} .

0

7.2.4. Spin Coupling to Physical Momentum Correction.  The spin
dependence of the next correction given in Eq. (479) necessitates the use of the Pauli
wave function from Eq. (165), which includes the spin into the Schrodinger wave
function and is denoted by |n€jm). The integration with respect to the photon

energy is again completely analogue because there is no k dependence in the integral
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and the finite part is

(2) _ 2a |En - En’l
R’eAEL,q?',rxo’,f = —Za3—ﬂ_ Z(En — En’) In [W IKZ:I q(—]_)q ( )
" T 522
. P g gt s ,(j;'x&)_q .
X (néjmi—m— [n'€'5'm'y (n'€'j'm/| s |nljm) .

Compared to the angular integration in Sec. 7.2.2 the addition of the spin leads to
a few complications. For example, the matrix elements are no longer reduced to
the orbital angular momentum projection m = 0 but rather to the total angular

momentum projection m = -;— The reduction process here now has the form

Jj 17
-m q m 1 1
(nejmip [nm) = (~1) ™+ (i) jwerz) G2
1 1
-3 0 3
and
= v 774
e 'm T ntjmy
A
—-m' —q m = 0 1 (524)
=( 1)—m+% nleljl ( X3U) ngj_ )
’ . 2 r 2
VA S
404
One of these 3j-symbols can be rewritten as
1 o . .
J T = ey [ . (525)

-m q m -m m q

Analogue, one of the 3j-symbols in the denominator can be transformed into the other.

The 3j-symbols in the numerator can be combined using relations from Ref. [23] to
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Sy gy 70T LN

e -m m' q -m' —q m
, P j J 1 7' 1 (526)
—(__ —m+1 _ 1)1+ m
SR D DI CE il U N U
q m g m
: 1
=(—1 254+1_ -
(=1) 2j+1°

where (—1)? = (—1)7¢ is employed because ¢ is a whole number. A formula for the
matrix element with p is given in Eq. (7.1.24) in Ref. [23]. The Z x & matrix element

can be determined with the following relation for the cross product
(Z x &)° = —i(z10-1 — z_101) (527)

and a combination of Egs. (7.1.26) and (7.1.28) from Ref. [23]. The finite contribution
from the spin coupling to the physical momentum to the low-energy part is thus given
by

2 nd |E, — En| k+1
rxo(nly) = == > (Ey — Ew
BsErxo(1n4;) 37 (amd 2 (E,-E )m[ H

(Za)*m, 2 +1
T d ¢
X /dTTQRn/g+1(T) (a—; — ;) R(7)
X /d’f"f' R /g_H R,ng(’l") (528)
0
k+1 [, d f+1
+ 2€+ 1 /d’f'T Rn/g_l(r) (E + T) Rng(T)

V]

dT’I‘2R,nIg_1 (’7‘) ;1‘2'-Rn2(7') } )

X
0\8

o
where £ = (—1)’*%"3(j + 1) is the Dirac quantum number.
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7.2.5. Quadrupole Correction to the Magnetic Coupling. This cor-
rection given in Eq. (480) is

Bk 2ra (.. k'K
AE® =/' 5 —
Re L,®.krkxo we<e (2,”)3 W

% k?

@) L [ L (72) (Bxa) | o).

meE¢—HS—wE Me

(529)

As this depends on E, a similar procedure to Sec. 7.2.2 has to be applied and the k

dependence has to be extracted. For this the index notation is employed in which

Bk 2ra (... k'k?
ReAE?) =/ — (W— ﬂ)
L,® krkxo |E|<6 (271')3 mgwﬁ k2

) (530)
d 7 a,..a jcdkc d d
(B e Ko 0)
is obtained. Taking w = |k| out of the first &, yields
&k 2ma [ KK
ReAEY) =/ el ou — 22
e L,® krkxc |E|<€ (27T)3 mzwl_c_ k2
. 1 ke .
x (®|p' —re? |
<W%—%—WW |®)
(531)

_/ &3k 2ra (5ij_kikj)
Fl<e (2m)% m2w; k2

(wp— Fo+Hg) — (Hs — Es) k* , :arc a
X (D] p’ — 1%k o | D) .
< |p E¢—Hs—w,; k| | )

The first of the terms in the numerator cancels the denominator. Consequently, it
would be proportional to € after the integration and does not contribute in the finite
order €°. Therefore, the terms is neglected. The second term can be taken care off

with the relation in Eq. (416), which leads to

&3k 2na (.. KK
ReAEY) ,o=/‘ @U— q)
Lokrke = o P mieg \© R
. 1 ko .
X (@] p TiGGJCdkCO'd(I).
<w%—%—%MW) @)

(532)
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Analogue for the second k it is found

2 . kK
ReAEl(:/Z,ZI-",krkxa'z/ ﬂ:; o (61‘7'— = )

3=
w<eE (27() me"‘;k Zak2 (533)
by O chkc d P .
x<(I)|qu>—H5—UJ;"'3 Te | >
where the relation
N
[(Hg — Es),pa] = 1Zaﬁ (534)

is used. The identities in Eqgs. (214),(215) and (487) allow to carry out the angular

integration with respect to k which gives

¢ 1 : 1 Za
R, AE(z) = i/ du)_. Y @ Q “ dada d @
CALL $ krkxo w3 J, kWi 3( |p Eo — Hy —u 13 e*“rto® | D)
1 : 1 Zo
— (P md a d o
+w<wm—m—wﬂ [®)
— (P jid, .1 i)
+w<wm—m—wﬂerﬁu
1 . 1 YA
— (P p* azd a d %)
+15( |10E(1)_HS_%T3 | >)

Because of the total antisymmetry of the e-tensor the third term vanishes while the

second and fourth term cancel exactly, thus

2 (6 ¢ 1 i 1 Zo m .
ReAE}/,‘)i’,krkxa - w/0 dWE wE_?; <q)| P Ey — Hg — Wi 7~3 o d ’(I)>
@ i ; 1 Zo
T dwi wi (2] p' i o) (536
:hm?A w“%<|pE¢—Hg—wEﬂ(T &) |®) (536)
1
= —§ReAE(L2,Zb,TXG

and accordingly

1
BSE krixo (N€5) = —§ﬁSE,rxa(nfj)- (537)
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7.2.6. Correction to Energy, Hamiltonian and Wave Function. The

relativistic correction of the reference-state energy is given in Eq. (481) as

&k 2ra (. Kk
2 %
ReAED, 5 = — / i (5: L )
w,—c-<e k k
P 1 1 P
— 0F — |®) .
meEq,—Hs—w,; Eq,—HS—w,;me| )

(538)
x (@]

Once more, a complete set of basis states is introduced to yield

i 2
ReAEgZI,(;E:—/ &’k 2ma (5ij_kk1)5EZ ( 1 )
o we<e ( 2 En— Ew —wi/) (539

3, ,.m2 X
27T) wkme k n,j,6,m'

x (nljm|p* [n'€'5'm'y (W€ §'m/| P’ [nljm) .

The relativistic correction of the reference-state energy is found in the literature [38]

to be

(Za)4me 3 1 . 1
— _ = —. 4

The evaluation of the matrix element is now the same as for the previous corrections
and therefore not discussed. Carrying out the remaining integration with respect to
the photon energy the contribution to the relativistic Bethe logarithm is obtained as

Bsesp(nt;) = 3m—2(12&_)2 (% B ﬁ) 2 [ln (%) " 1}

e n’

X {2££+—+11 (/oodrr2Rne+1("“) (d% - é) Rﬂf(r))z (541)

0

syt (2252 matn)}

0

As it turns out, the evaluation of the contribution from the relativistic correc-
tions to the Hamiltonian is the most complicated in the low-energy part. Discussing
the spin-orbit coupling and the relativistic kinetic energy correction separately, has

proven to be the most convenient approach. Here, the starting point is the spin-orbit
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coupling correction from Eq. (482), which is found to be

3k 2na (. KK P’ 1
2 (]
ReAE},,zb,sH(LS) = / @ ((5 T — = ) (@

wee 2 me By — Hg — wi;
g 1’“ » PUUSTER (542)
a -
.-G — |®) .
X4m§r3( U) Eq)—HS—w,;me' )

For this correction a new Hamiltonian is defined, in which the spin-orbit coupling is
infinitesimally included
%% VA Za

H(n) = o~ 7 n Tmirs £-G. (543)

The above correction can then be obtained by taking the derivative with respect to

n, which gives

81’] Eq> — H(’I’]) — Wi n=0 E<1> - H(’l’]) —wg 4m§r3 Eq; — H(n) — Wi

. (544)

The idea is now to calculate the contribution just like for the Bethe logarithm only
with this perturbed Hamiltonian, and obtain the contribution from the energy cor-

rection as the derivative of it with respect to . For this the matrix element

Msys)y = (‘I)|PiH(n) — 2Es — w)Pi |) (545)

has to be evaluated. Due to the dependence of the Hamiltonian on both spin and or-
bital angular momentum, the angular algebra has to be considered very carefully and
all possible configurations in the intermediate states have to be taken into account. In
the usual way a complete basis set is used to represent the propagator, here, however,
it is the complete basis of H(n) and not that of the Schrédinger Hamiltonian. These

basis states of H(n) are denoted as | )’ and allow to write

Msgsy = Z (—=1)7 (nbjm| Vg [0’ 5'm’)’
n’,jlYe’7ml7q (546)
% ,<n,€,j/ml|

1 1ol -1 ! Y TINN .
Fa— H () —r |n'€'5'm’y (n'l'§'m'| Vi |nljm)
k
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in spherical coordinates. It is possible to extract the angular dependence of the
perturbed Hamiltonian, which is just given by 7 d, in order to obtain a perturbed
energy E!,(n) independent of it. Together with the equations from Sec. 7.2.4 the

matrix element can be written as

-2

M =¥+ i1 1
SH(LS) = —5 71— _ f —
2-7 +1 n’ ! —% 0 % En En’ (77) Wi
. 3
X {(—1)21“(2]' +1)(£+1) [j'(j’ +1) = (+1)(£+2) - 1
roo d ¢ 2
X {/ dr’r2Rn,e+1(7', n) (5 - ;) Rne(r)}
0
S 2 (547)
joJ1 R ERIC TP
“Vewr v 2 (C75,) + (1% @)+ 1)e
2
[, 3 i J 1 71\ 2
x |5 +1) -t —1) - Z] 1 (C5)
A -1 ¢}

- o 2
X /d?”r2R;,e_1(7',77) (% + HT1> R,w(?‘)] } .
0

It is possible to simplify this further and obtain an expression in which the sum over
the intermediate total angular momenta is already carried out. For this, the two
possible total angular momenta j for the reference state, j = £ — % and j = £+ %, are
considered. Moreover, the results for / — ¢ —1 and ¢ — £ + 1 in the intermediate
state without the factor £ - & are denoted as Qr—1 and Q.1 respectively. If the
reference state has j = £ — %, then for ¢ — ¢+ 1 the total angular momentum j' in
the intermediate state can only be j° — j+ 1. This means the sum over j' in the case

¢ — £ + 1 contains only one term and one finds

(7-5) Qess = ((é+1)2—§—e2—36—2—§) Ques

= ~(0+2)Qe+1 -

(548)

If the the intermediate orbital angular momentum is now ¢ — ¢ — 1, there are two

terms with different total angular momentum j’, which have to be added weighted
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by the factor 7.G Unfortunately, this also contains pre-factors which are contained
in Qr—1, thus making it necessary to divide by these pre-factors. Denoting the total

angular factor as V@) yields

(F-5) 4+ (0-5)B (549)

where A and B are the pre-factors, which would arise from the angular algebra without

7-&. The result is

(€—1)(1— ¢ — 202)

€+1)(¢~1)
¢20—1) @

7 -1 (550)

V@ = Qe-1 = —

The calculation for total angular momentum j of the reference state being j = £ + %
is analogue, but now there are two terms for the case ¢ — ¢+ 1 and only one for

¢ — ¢ —1. As the result

(E’E)QL—1=(L —%-LQ'*“L——)QL 1

= (L —1)Qr-1 (551)
_(L+2)1-(L+1)(2L+1)) L(L + 2)
V@ = (L+1)(2L + 3) Qr+1= L+1 ———— QL1 (552)

is obtained. Using R;,,(r,7) to denote the radial eigenfunction of the perturbed Hamil-

tonian, the finite contribution to the low-energy part is found to be

2n® 9 , |En = Evi ()]
Bsesu(Ls)(nt;) = 3(Za)om3 oy ;(En’(n) ~ En)In (W)

* { [(e +29, -3 o 2)51,8%1

5 41
e (formaen (F-Hre)
[(e +DE-1) PRSI 1)51.,”%}

o0

¢ ) d ¢+1 2
Xm (/ dT‘T2Rn/£_1(7', T]) (;1';: + , ) Rng(r)) }
0

T’:
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For the relativistic kinetic energy correction the same approach is used. Based

upon its contribution

Ak 2ma (. kK P 1
ReAE®) = / —— (5’3 - = ) o —
L.®5H(p") wp<e (27)3 wg k2 (@ me Eg — Hs — wi; (554)
p 1 P )
8m3 Ey — Hs — wpme
again a perturbed Hamiltonian is defined by
2 =4
p Za p
H(p) = _ _ 555
Due to
o} 1 _ 1 pt 1 (556)

—8_7)Eq,—H(n)—w,;n=0 _Eq,—HS—w,;8ng¢,—Hg—w,;'

the finite contribution to the low-energy part can be found in an analogous manner
by taking a derivative of the term calculated with the perturbed energy and wave
function. While the numerical lattice method, which is used to calculate the radial
integrals, is able to obtain basis states for the Hamiltonian perturbed by 1/73, the
even more singular behavior of p* requires a different method to find the perturbed
radial functions. In this case one resorts to first order perturbation theory in order

to find the perturbed eigenstates which are given by [38]

4

RV : : 1 —l .
|nljm)" = |nljm) — nz |kéjm) ——— (kljm| P |n€jm) . (557)

— 3
v En Ek 8me

The matrix element is diagonal in the angular quantum numbers and can be fur-
ther simplified by expressing p? in terms of the Schrédinger Hamiltonian minus the

Coulomb potential, i.e.

—4 =2 2 2
D 1 D 1 Za
8md  2m, (Zme) 2me ( s+ r ) (558)
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Thus the perturbed radial eigenfunctions can be determined by

ne(T:1) = Rne(r) —

i 1
E Rig(r)—— nOkn
2me £ “N e E, (BxEndi,

+ /ood'rr2ng(r) ((Ek + En)%ﬁ + (Z:;f) Rng(r)) . o

Additionally, the perturbed eigenenergy has to be found which is again determined

using first order perturbation theory. From the literature [38] one finds the equation

~4

EL(n) = En = {ntjm| =
(1) n (nfyjm/| -

Injlm) , (560)

which in this case can be evaluated to be

7"2

E.(n) = E, — %(Eﬁ + 7drr2 ( 05,22 2 a)z) Rﬁ,(r)) . (561)

With the such determined perturbed wave function and energy the contribution to

the low-energy part of this term is
2n3 0 |E, — E’,(n)|
/)= —— ' (n) — E, Rt L A S
,BsE,JH(,ﬂ)(TL J) 3(Za)6 mg 37’] ;( n (n) E )ln ( (Za)gme )
AR d 2
X {—22 1 (/ drr* Ry (r,m) ((—1; - —> Reg(r )) (562)
0

2€+1 /dm"zR TRIGY) (: €+1> Rog(r ))2}

The final low-energy contribution arise from the first order, relativistic correction
of the wave function given in Eq. (483). The evaluation of the angular algebra is in
principle analogue to the Bethe logarithm in Eq. (227) with the only difference being
the multiplication of the wave function correction matrix element. Fortunately, this

matrix element is diagonal in the angular quantum numbers. The finite contribution



to the low-energy part is then just

Im3( ZaGZZE Ek

Bses0(nd;) = (|?Za)2i;:|)

n' k#n

1 (1d ,d £e+1)\°
2p 2 |
. /drr ke(r) [4m2 (1"2 dr dr r2 )

X (/ drr? Ryse_y(T) (dir
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k+1
2m2r3

| Bner)

(563)

o
where x = (-1)7t*2 (5 + %) again is the Dirac quantum number.

7.2.7. Summary of Corrections in the Low-Energy Part.

In order

to obtain the total low-energy part of the self-energy correction all these separate

contributions have to be added. However, there is also a contribution of order a(Za)8,

which contains a logarithm of € and thus the non finite contribution to the low-energy

part. So far this term has been neglected. While its derivation is not given here (it

can be found for example in Ref. [46]), it has to be included to receive the complete

result. By also taking into account Bethe’s results, which is shown in Eq. (227), the

low-energy part of the self-energy correction for highly excited Rydberg states with

¢ > 2 is found to be

o (Za 4
ReAEY, (nl;, Za, €) = - (——733—{—5 In ko + (Ze)? {ﬁSE(nej)
3n? —4(L+1)

(564)

D

e (= [ ~2)]
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or in terms of the scaled self-energy function F' defined in Secs. 3 and 4 by

Za)*m,
ReAE), = %%mn@, Zae), (565)

as

4
Fr(nt;, Zo,e) = -3 In ko + (Za)2{ﬁSE(n€j)

3n? — (0 + 1) (566)

In both cases In ky denotes the Bethe logarithm given in Eq. (227) and sk denotes the
relativistic Bethe logarithm which is given by the sum of all the finite contributions

from the terms discussed in this section

Bse(nd;) = Bsgng(n€;) + Bskpip2 (14;) + BsErxo™l;) + BSE krkxo (5) (567)
+ Bsese(nd;) + Bsesuws)(n;) + Bseshpyy(nl;) + Bsese(nd;) .

7.2.8. Numerical Evaluation and Results. So far the functional form of
the relativistic Bethe logarithms has been given as integrals involving the sum over
all bound and unbound radial eigenfunctions of the Schrodinger equation, these are
evaluated numerically using lattice methods. The values for the relativistic Bethe
logarithm obtained by us with this method for numerous highly excited states are
given in Table 7.1. These results have been published in Refs. [83-85].

A detailed description of the lattice method can be found in Ref. [78] and here
only a short overview over the most important points is given. A finite lattice is
used to represent the remaining radial variable in the expressions obtained for Gsg.
Due to the structure of the wave function the lattice spacing is not equidistant but
exponentially scaled such that the lattice spacing closer to the origin is denser than
far away from the origin. This allows for a better representation of the wave function
with fewer lattice points. Consequently, the integrals reduce to sum over all lattice
points.

Moreover, the Schrodinger equation in this exponential lattice spacing also be-
comes discrete. It is given in Ref. [78]. The derivative in it is consequently replaced by

a discretized derivative, for which a 11-point discrete derivative formula is employed
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in our calculations in this work. For the first points closest to the origin this formula
is altered as described in Ref. [78] to account for the missing points outside of the

lattice.

Table 7.1. Values obtained by the numerical lattice method for the relativistic Bethe
logarithm fsg. The numbers in parentheses are standard uncertainties in the last
figure.

n £ 2 kK BsE 2j K BsE

16 15 29 15 0.629871(5) x 105 31 -16 0.625 545(5) x 1075

16 14 27 14 0.902533(5) x 103 29 -15 0.895491(5) x 10-°
)

)

)

15 14 27 14  0.859850(5) x 107> 29 -15  0.853375(5) x 107
15 13 25 13  1.262399(5) x 10~% 27 -14  1.251506(5) x 10~°
14 13 25 13  1.199921(5) x 10-° 27 -14  1.189658(5) x 107
14 12 23 12 1.811052(5) x 107® 25 -13  1.793624(5) x 10~°
13 12 23 12 1716173(5) x 10~ 25 -13  1.700273(5) x 10~°

13 11 21 11  2675867(5) x 1075 23 -12  2.646861(5) x 1075
12 11 21 11  2527776(5) x 107 23 -12  2.501428(5) x 1075
12 10 19 10  3.962364(5) x 10~° 21 -11  3.898005(5) x 105
11 10 19 10  3.853354(5) x 10~® 21 -11  3.807626(5) x 1075
11 9 17 9  652732(5)x10° 19 -10  6.433497(5) x 1075
10 9 17 9  6.120418(5)x 10 19 -10  6.036525(5) x 1075
10 8 15 8 10.945050(5) x 10~ 17 -9  10.761067(5) x 1075
9 8 15 8 10.219540(5)x 105 17 -9  10.054823(5) x 10~°
9 7 13 7 19.539646(5)x 1075 15 -8  19.144495(5) x 1075
8 7 13 7 18.157546(5)x 105 15 -8  17.805538(5) x 105
8 6 11 6 37.774523(5)x 1075 13 -7  36.828860(5) x 107
7 6 11 6 34.920620(5) x 10° 13 -7  34.081999(5) x 10~°
7 5 9 5 81.068312(5)x107° 11 -6  78.458727(5) x 10~°
6 5 9 5 74539820(5)x 105 11 -6  72.232654(5) x 107
6 4 7 4 200519845(5)x10°° 9 -5 191.776916(5) x 1075
5 4 7 4 183482753(5)x 1075 9 -5 175.747109(5) x 10~°
5 3 5 3 604.539039(5)x 105 7 -4 566.224291(5) x 1075
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In this way, a matrix for the Schrodinger equation at every lattice point is
obtained. Using the LAPACK package for FORTRAN, this matrix is diagonalized
and its eigenvectors and eigenvalues are determined. The eigenvalues give the energy
of the intermediate state and the eigenvectors are used as the intermediate states at
every lattice point. A certain amount of these eigenvectors have a negative eigenvalue
and thus represent the complete bound spectrum, but eigenvectors with a positive
eigenvalue are also obtained. This is the big advantage of the lattice method because
it yields a pseudo spectrum representing the continuum of unbound states as well.
The operator acting on the reference state wave function is calculated in continuum

space and then discretized to the lattice.

7.3. HIGH-ENERGY PART

7.3.1. One-Vertex Contribution. As explained in Sec. 4.6, for high photon
energy it is possible to expand in the binding Coulomb potential and consider the
contributions separately for each number of interactions with the Coulomb potential.
Because here only the self-energy correction of order a(Za)® is determined, the zero-
vertex part, which cancels the mass renormalization, as well as the the one-vertex
contribution of order a(Za)* given in Eq. (324), which also vanishes for the highly
excited states investigated here, are not discussed. The contribution from the one-
vertex part of order a(Za)® is due to the Fy form factor correction to the electric

interaction. From Eq. (325) it is found to be

). (568)
Expanding F5(V?) in powers of Za in lowest order leads to the term

AEo(nt;) = (vF| (0

) (569)

with F5(0) = a/2n. Counting the orders of Za, it becomes clear that in order to
obtain the correction of order a(Z«)® this has to be evaluated on the relativistic wave
function expanded in Za up to relative order (Za)?. The reason is that this correction
evaluated on the nonrelativistic wave function would lead to a contribution in order

a(Za)*, so in order to get to a(Za)® corrections of the wave function of relative
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order (Za)? have to be included as well. This matrix element has been evaluated in

Ref. [47] for general states with £ > 2 based upon results in Ref. [48] to be

(Za)* m, 1
n®  2xk(20+1)
a(Za)®m, 1252 — 1
®  nd (_2(2]' +1)r2(26 — 1) (26 + 1)
1 3 1 8k — 3
TRt D) 2011 (2R —1) 2Rt 1)) ‘

(67
AB}g(nty) = 2

(570)

The first part is actually of order a(Za)* and part of the magnetic moment anomaly
of the electron, which contributes to the self-energy in basically all orders of a but
every time in order (Za)? in the nonrelativistic expansion.

The contribution from the first order term of the expansion of F5(V?) is

€

AEy,(nt;) = ($*| F(0)V > —i7 - E|y) . (571)

2m,

Because this is already of order a(Za)?, it can be evaluated on the nonrelativistic wave
function. For higher excited states though this correction vanishes. The reason lies
in the fact that V2E is proportional to \2) (Z) which evaluated on the nonrelativistic
wave function is zero for states with ¢ > 2.

Thus, there is only one contribution from the one-vertex part.

7.3.2. Two-Vertex Contribution.  For this contribution in Ref. [46], a
Hamiltonian has been found. There, it is given in dimensional regularization, for the
infinitesimal overlapping parameter € used here, the so-called photon-energy regular-
ization, it is given in Ref. [47] as

a |2

Houle) = [g i (

me) 2 34] (ﬁV)Q_ (572)

%) 3¢ T 45 m3
This Hamiltonian is directly of order a(Za)® and can, therefore, be evaluated on the

nonrelativistic wave function. Using VV = Za/r? and the result in Eq. (328), the



172

corresponding energy shift is found to be

2 (ne,, ) = Zme [ mey 117
AEH(TM],G)—7r n3 ln(ze) ¢ 15 573
3n? — (¢ +1) o

B+ e+ D+ e =1

7.3.3. Summary of Corrections in the High-Energy Part. For highly
excited Rydberg states the total contribution from the high-energy part is given by

the sum of the two non-vanishing terms as

AEg(nlj, €) = AE}I,O(TLE]-) + AE%(nj,€)
a(Za)*m, 1
rond 2(20+1)
a(Za)®m 12k2 — 1
T n (‘2 (27 + 1) K2 (26 — 1) (26 + 1)?
1 3 1 8k — 3 (574)
TRAE 2Rt D) 24D (2r-1) (2r+ 1))
a(Za)® m. Me 1 17
;—( 73 [ln (30) -2+ IS]
3n? —£(¢+1)
" 3n2 C+E+D(E+Dee -1
2 2 2

As the first term of the last equation, which is already contained in Bethe’s result, is
of order a(Zc)*, the high-energy part of the self-energy correction of order a(Za)®

is found to be

a(Za)® m, 1262~ 1
AEy gaye(nl;,¢) = 2 _
H(ze)s (1l €) n? ( (27 + 1) R?(2k — 1) (2k + 1)2
18 1 8k — 3
ndk?2(26+1) n?22(2j+1)(2xk—-1)(2k+1)

(575)

3n? — L +1

# 2 () - 2+ 5
)
B2 U+ )+ -1

Due to common scaling of the corrections, the corrections are generally expressed in

terms of the scaled self-energy function F, as was already done in Secs. 3 and 4. The
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high-energy part of this function is given by

4
ABu(nt;, ) = %%FH@@, Za,e). (576)

Consequently, for highly excited Rydberg states Fy is

1 1262 — 1
Fu(nt;, Za,e) = w1 (Za)* (_2 (27 + 1) K2 (26 — 1) (26 + 1)2
1 3 1 8k —3
" n4k? (26 + 1) T (27+1)(2c-1) (25 +1) BT7)
Me 1 17 3n? —4(L+1)
+[1n (3e) -2+ 1‘5] 3n2 (£+ 3)(€+ 1)(€+ )t - %)) '

7.4. RESULTS

The complete self-energy correction can be obtained by adding the low- and
the high-energy part. As explained in Sec. 4, the terms, which are dependent on the
overlapping parameter €, exactly cancel each other in this matching procedure (see
Eq. (332)). The results for both parts from Eqs. (566) and (574) for highly excited
Rydberg states lead to

AE(nt;) = AEL(nl;,€) + AEg(n;,€)

4
_alZa)me by 70

T nd

(578)

with the scaled self-energy function F', defined in Secs. 3 and 4, which for these states

is given as the sum of its low- and high-energy part as
F(nlj, Za) = Fr(nl;, Za,€) + Fy(nl;, Za,€)

st )

« 3n? —L({+1)
3n2 (€ + )€+ 1)(¢+ e — 1) (579)
1262 — 1 1 3
22+ D)R2(2k—1) (26 + 1) n 4k? (26 + 1)
1 8k —3

T D @r—D @t T ﬁSE("e")} '
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In the common QED notation, F' is usually written as

F(nt, Za) = Ag(n€;) In [(Za) %] + Ag(nt)) + (Zo) Aso(né;) + (Zer)?

(580)
X {Asg(ngj) 1112 [(ZOZ)_2] -+ A61(n€j) ln [(Za)‘Z] + Aso(ngj)‘f'} + ...,

The letter denotes the order in a and A thus is order a. Within the Za expansion
the first subscript denotes the order in Za, and the second the power of the loga-
rithm In[(Za)~2] which goes with this coefficient. In this way the coefficients can be

identified for highly excited Rydberg states with £ > 2 as

1 4
—m - § In ko(n, 13) y (581)

3n? — L€+ 1)
3n2(E+ ¢+ 1)+ Dee—13)

Ago(nd;) =

Agi(nty) = (582)

and

~ 3n2 — 0(4 +1) 17 |
Aoolny) = ST DT D+ Dae=1) {IE - 1“(2)} + Bse(n;)

2
2 _
B | 12k -1 (583)
2127+ 1) k2 (2 —1) (26 + 1)?
1 3 1 8k —3

_E4n2(2m+1)+F2(2j+1)(2n—1)(2n+1)’

while all other explicitly written coefficients vanish. Higher-order terms denoted as
ellipsis are so far unknown.

Numerical Results for the Agg coefficient for highly excited Rydberg states based
upon the results for the relativistic Bethe logarithm Gsg obtained with the numerical
lattice method and presented here in Table 7.1, are given in Table 7.2. These results
have been published in Refs. [83-85]. Their application for predictions of transition

frequencies in one-electron ions is explained in the next section.



175

Table 7.2. Values obtained for the Agg coefficient in Eq. (583) with the values for fsg
from Table 7.1. The numbers in parentheses are standard uncertainties in the last
figure.

n € 2 K Ago 2] K Aso

16 15 29 15 0.121749(5) x 10™°> 31 -16 1.059674(5) x 10~°

16 14 27 14 0.155786(5) x 10~° 29 -15 0.540181(5) x 107°

15 14 27 14 0.189309(5) x 10~° 29 -15 1.420631(5) x 107°

15 13 25 13 0.252108(5) x 10~5 27 -14 2.116 050(5) x 10~°

14 13 25 13 0.296 641(5) x 1075 27 -14 1.945279(5) x 10~°

14 12 23 12 0.410825(5) x 107° 25 -13 2.979937(5) x 1075

13 12 23 12 0.469973(5) x 1075 25 -13 2.729475(5) x 1075

13 11 21 11 0.679575(5) x 1075 23 -12 4.318998(5) x 1073

12 11 21 11 0.759620(5) x 1073 23 -12 3.940256(5) x 107>

) (5)
) (5) x
) ()
) (5)
) (5)
) (5)
) ()
) (5)
) (5)
12 10 19 10 1.019187(5) x 1073 21 -11 6.331080(5) x 1075
11 10 19 10 1.259580(5) x 10~ 21 -11 5.882197(5) x 10~
1 9 17 9 2.008438(5) x 107° 19 -10 10.111871(5) x 1073
10 9 17 9 2.158923(5) x 107° 19 -10 9.141150(5) x 10~°
10 8 15 8 3.655111(5) x 107° 17 -9 16.589245(5) x 107°
9 8 15 8 3.860349(5) x 107° 17 -9  14.918400(5) x 1075
9 7 13 7 7.018373(5) x 1075 15 -8  28.939225(5) x 107°
8§ 7 13 7 7.286 141(5) x 10~° 15 -8 25876638(5) x 107°
8 6 11 6 14.449671(5) x 1075 13 -7 54.593341(5) x 1075
7 6 11 6  14.743922(5) x 1075 13 -7 48.518597(5) x 1073
7 5 9 5 32.590282(5) x 1075 11 -6 114.160310(5) x 1075
6 5 9 5 32.667627(5) x 1075 11 -6 100.820108(5) x 1073
6 4 7 4 82746781(5) x 107° 9 -5 274.825060(5) x 107°
5 4 7 4  81.441471(5) x 1075 9 -5 241.292908(5) x 107°
5 3 5 3 240.315141(5) x 1075 7 -4 808.701545(5) x 107°
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7.5. IMPACT OF THE QED RESULTS

7.5.1. Overview of Corrections. In the previous sections the energy shift
due to the self-energy was given in terms of the scaled function F' (see Eqgs. (157) and
(331)). When switching to SI units this relation is given by

a Z*a?

F(nt;, Za), (584)
where ¢ is the speed of light, h Planck’s constant and Ry = a?m.c/2h the Rydberg
constant. Here, the states are denoted in the spectroscopic notation nf;. The scaled
self-energy function is commonly expanded into a semi-analytic series in Za whose
general from is [22,84, 86]

F(nt;, Za) = A (né;)In [(Za) 7] + Aw(nd;) + (Za) Aso(n;)
+ (Za)2 {Asg(ngj) ln2 [(Zoz)"2] + AGl (TLEJ) In [(Za)_z] + GSE(TLKJ', Za)} (585)

+ 2Bt 1+ (2) G+ 1+

The A coefficients arise from the one-photon QED corrections, while the B and C
coefficients are due to two- and three-photon corrections respectively. The first of
subscript numbers gives the power in Za and the second denotes the power of the
logarithm In[(Za)™2]. Gsg is the one-photon QED self-energy remainder function.
Comparing this general expression to the result of Sec. 4, it becomes clear that a lot
of these term vanish for the highly excited states considered in this work. Indeed, the
overview over the general expressions which can be found in Refs. [22,86] confirms

this and for £ > 2 the expression takes the simpler form

F(nd;, Za) = Aw(nt;) + (Za)? {Aei(nl;) In [(Za)™?| + Gsg(n;, Zo)}
« a\ 2 (586)
+;[B40+...]+(;> [C40+]+
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At the end of Sec. 4, the Ag; coefficient is already stated for the states considered in
Eq. (328) to be

3 3n? — (¢ +1)
Aa(nb) = 5577 He+nE+Hee-19) (587)
587
3230 — £(0+1) (2¢ - 2)!

The leading term of Eq. (332), is identified as the Ayo coefficient in Eq. (581), which
is

L k0, (588)

Awlnd) = o 7 3

with the Dirac quantum number k = (=1)=#+/2(j + 1). The source of first term in
the above equation is in fact the one-photon contribution from the magnetic moment
anomaly of the electron a. = (g — 2)/2. The contributions from the two- and three-

photon level to this electric moment anomaly are known [87] and thus all known terms

of F lead to

a. w 4 323n? — (£ +1)
F(nfj, ZO{) = —ma — gln ko(n,f) + 3‘ n2 (589)
(2¢ — 2)!

X W(Za)zln [(Za)™?] + (Za)? Gs(nd;, Za) .

The self-energy remainder function Gsg can be calculated by either the fully relativis-
tic numerical method described in Sec. 3 or by the analytic expansion in Za described
in Sec. 4.

For the fully relativistic numerical evaluation the complete one-photon, self-
energy function Ggsg is considered. Its calculation follows the methods outlined in
Sec. 3. For higher excited states only the extraction procedure of lower order terms
also includes term of order (Za)?, i.e the nonrelativistic result is extracted with the
spurious lower order terms. This slightly different procedure to the one described
here, which allows for results even for low Z, is explained in Ref. [86]. The problems
which have to be faced in order to obtain results for highly excited states and how

they have been overcome are detailed in Ref. [88].
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For the method of Sec. 4, a nonrelativistic expansion of Ggg is carried out.
Again, the nonrelativistic expansion is given by the semi-analytic expansion in Z«

and it is here
Gsg(nl;, Za) = Aeo(n;)+ (Za)? { As1(n€;) In[(Za) 2] + Aso(né;)+ ...} . (590)
From a comparison to Eq. (332) the Ag coefficient can be found to be

Aeo(ngj) = E(n@,) + A61 (nﬁj) {g‘ — 111(2)} + ﬁSE(TLeJ) s (591)

with Z(n¢;) defined in Eq. (326) and the relativistic Bethe logarithm Gsg(n¢;). While
for the most terms of Agy general expression for arbitrary states are known, the
relativistic Bethe logarithm fsg has to be determined numerically with the numerical
lattice method, based on Ref. [78] and detailed in Ref. [42], for every state under
study.

Of the higher order terms, only for Bgy calculations exist for states with £ < 5
[89] and the vacuum polarization contribution to Agy is known which is given in
Ref. [90] and is extremely small. All other te.rms are unknown. Based on the trend
exhibited for highly excited states compared to lower lying states, the magnitude of
the QED correction decreases with higher principal quantum number n and orbital
angular momentum ¢, which for example can be seen from the values of Agg in Ta-
ble 7.2. Therefore it becomes possible to neglect the unknown higher order terms in

Gsg and approximate it by its value for (Za) — 0 which is
Zlim0 Gse(nl;, Za) = Ago(nk;). (592)

In general, this definition is used to compare the results obtained with the methods
of Secs. 3 and 4. For this, Gsg is evaluated with the fully relativistic, numerical
method for different values of Z and the results are extrapolated to Z = 0. The value
extrapolated from the numerical method should then agree with the Agy coefficient

obtained through the Za expansion. Such an analysis is for example carried out and
described in Ref. [86].
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Due to the described trend for highly excited Rydberg states the results of both
methods can basically be compared directly because it is assumed that the higher
order corrections are very small. Indeed, a comparison of the Agy coefficients, which
are obtained for Rydberg states and presented in Ref. [83], and a nonperturbative (in
Za) calculation of Gsg, with the results given in Ref. [88], shows a excellent agreement
of both values even for rather high nuclear charge numbers Z up to Z = 16. In this
way errors, which cannot be excluded in such complicated computations otherwise,
seem rather unlikely because the results are checked in a highly nontrivial way. It
is important to note that numerical calculations for highly excited Rydberg states
constitute a highly complicated task. Moreover, an additional comparison for the
lower Rydberg states in Ref. [85] shows a very good agreement of both values. In
fact, the deviation |Gsg(Za) — Ago| numerically is less than 10~ for all states and all
nuclear charge numbers considered therein.

Therefore, for the states considered in this work the scaled self-energy function

F can be written as

F(nt;, Za) = _K(%H)g _ glnko(n, 0+ %37@ _fgu— 1)
2e-2) L , (593)
(2¢ + 3)! (Zo)"In [(Za) ] + (Za)* Aso(n;) + ...,

where the dots denote the contributions from higher loop orders.
Hence, the energy shift due to QED radiative effects of a state with £ > 2 can
be formulated by plugging this into Eq. (584) which leads to

_ Z4a? e al4d 323n% —4(£+1)
AE(n¢;) = 2hRooc — {_n(% gy B [§ In ko(n, ) + T — 590
X %(Za)zln [(Za)™?] + (Za)? Aﬁo(nfj)} } +....

One may now ask why in Sec. 3 the effort is undertaken to describe the fully
relativistic QED theory, which allows to evaluate Gsg, while it is not used here. The
reason is that it not only helps to understand the efforts and techniques involved in
the determination of Gsg to allow for such a comparison, but also illustrates many

of the challenges in QED for bound states. It also provides the reasons and incentive
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for the development of the nonrelativistic formalism. Indeed, as explained in Sec. 4,
the nonrelativistic theory is directly based upon the nonrelativistic expansion of the
fully relativistic expression.

In addition, Sec. 3 illustratively and thoroughly describes the formal separation
of the integral into the two parts using a deformation of the integration contour.
For the nonrelativistic theory in Sec. 4 just the separation point is the infinitesimal
¢ instead of E,. This then enables the nonrelativistic expansion in the low-energy
part. As shown in the model example in Sec. 5, with the infinitesimal overlapping
parameter, no spurious lower order terms, which are present in the fully relativistic
method, arise. These lower-order remainder terms are the reason, why the fully
relativistic method requires demanding high precision calculations because, as seen
in the model in Sec. 5, they induce a severe loss of numerical precision. This loss is
especially prevalent for low Z.

The region of low nuclear charge number Z is where the nonrelativistic formalism
particularly excels because it is an expansion in Za, which is small in this region.
With results also available for low Z from the fully relativistic formalism, the theory
can be cross checked in a highly nontrivial way and shows outstanding agreement of
both approaches. In addition, the overview over both methods allows to appreciate
the clarity of the nonrelativistic formalism as well as its illustrative power to provide
a more accessible physical origin of the correction terms.

So far, the expressions are given in the non recoil limit, where the nuclear mass
is assumed to be infinite, in order to simplify the calculations. The effects from a
finite nuclear mass can be included into the QED radiative level shift by use of the

reduced mass

me

T 1)

My (595)

with the electron to nucleus mass ratio r(N) = m./my(N) and the mass of the
nucleus my(N), instead of the electron mass m.. In writing my(N), the subscript N
is used in order to denote the nuclear mass, and the argument A is reserved in order
to differentiate a specific nucleus under investigation. Thereby the notation used in
Ref. [85] is adopted.
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Experimentally, transition frequencies for a transition between different levels

are measured. This transition frequency is related to the energy of the levels by
1
Vie2 = (B2 — En) (596)

for a transition between quantum states |1) and |2), where h is Planck’s constant.

This is used here to define the bound-state energy as a bound-state frequency

v; =FE;/h (597)
which means

Vieo = Vg — U] . (598)

In this way, the energy shift due to QED radiative correction can be reformulated
into a frequency. Out of Eq. (594) it is obtained with the inclusion of the reduced

mass effects for the highly excited states under investigation to be

(nt,) Rooc 224a2{_ 1 B 1
YR S T (N) e | TR eV @+ D) L (V)P
ol 4 323n? — L0+ 1) (20 —2)!
X ;l—glnko(",e)‘*"g n2 (2¢+ 3)!
1+r(WN)

% (Za)?In (W) + (Za)? Aﬁo(nej)} } o

(599)

However, with the inclusion of effects from finite nuclear mass also the non recoil
limit was dropped. In turn, this implies that recoil effects have to be considered
and for a accurate prediction of transition frequencies of one-electron atoms more
corrections arise. Now, these other necessary contribution of the transition frequency
between atomic states will be discussed. A more detailed overview over these terms
and their derivation and concerning references can be found in Refs. [22,83,84,91,92].

The by far largest term is evidently the contribution from the Dirac energy,

which here is expressed as a Dirac frequency vp. With the rest mass subtracted and
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corrections from the nuclear motion included it is commonly given as

_ _fixc : r(NV) o? . )
Vp = 1+T(N)2{f(n,J)—l_m[f(n’J)—l] }, (600)
with the function f(n,j) given as
(Z)?

f(n,j) = 1+ (601)

(n—j—%+\/(j+%)2——(Za)2)2

The next term arises for finite nuclear mass from the two-body Breit-Hamil-

tonian, it is called the Barker-Glover term [93] and is

Roc  r(N)2Z4? ( 1 1

BT T B L+ r PR T+ e+%) (1= eo). (602)

The final contribution is then from relativistic recoil corrections which lead to a change

of the frequency for states with £ > 2 by [94-97]

8 10 ko(n, 0

Roc 271(N) Z5a3{ 1

RRET50N) T 1+ r\V)]2 {'3
7 1

e 1)} +rZall+ (V)] (603)

% [3 - E(gnt 2 @z - 1?(2£+ 3)] T } :

where In kg again is the (nonrelativistic) Bethe logarithm that depends on n and £.
The ellipses at the end, stand for the unknown terms of higher order.

If the nucleus has a non zero spin, this spin can couple to the total angular
momentum of the electron. This cause the hyperfine structure of the electron levels.

The corresponding frequency for the hyperfine splitting can be found from Ref. [9§]
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to be

Rwc Z3a® r(N) &

Vhts = 1+7N) nd 1+7(N)|x]

o I%I(VKQ —y U+ ) = 1T+ 1)~ G + 1)) (604)

2k(y+n—|k])— N 1+2i
Niy(4y2 - 1) w4k |’

x n3|k|(2k + 1)

where gy is the nuclear g factor, f =TI+ J the total angular momentum of the one-
electron ion, v = 1/k2 — (Za)? and N = \/(n — |s[)? + 2(n — |k|)y + 2. The self-

energy corrections to this result, of which the lowest order term is already included,

are derived in Sec. 8. The additional self-energy corrections of relative order (Za)?
can be found in Eq. (692).

This concludes the discussion of all contributions to the transition frequencies
between states with £ > 2 in one-electron atoms known so far. A comparison with
similar investigations for states with lower orbital angular momentum like in Refs. [22,
86] reveals that the expression simplify considerably.

Especially, the troublesome nuclear-size correction is absent. Moreover, as al-
ready mentioned in the discussion of the QED radiative corrections, the magnitude
of the contribution reduces. In turn, this increases the accuracy of the theoretical
prediction which can be achieved with the known terms. The total frequency of a

specific level is then the sum

V; = Vp + VBG + VRR + VQED - (605)

where ¢ = 1,2 is defined in the spirit of Eq. (598) and vy is assumed to have been
subtracted; if necessary, the hyperfine-fine structure mixing terms can be calculated
according to the approach outline in Sec. III of Ref. [99].

The most important advantage of Rydberg states is however the absence of the
nuclear size correction for these states, which is negligible small. The reason lies in
the fact that these states are so far away from the nucleus and the overlap with the
nucleus is extremely small. In fact, the probability for a Rydberg state of an one-

electron ion with principal quantum number n and orbital momentum £ =n —1 to
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be within a radius 7 within the nucleus is [84]

pe) = [ @ (ZZ’")M, (606)

#<r (2n + 1)! \ nao

where ag is the Bohr radius. If r is assumed to be the nuclear charge radius, then
the high-power (r/ag)?"*! together with the factorial lead to an almost complete
suppression of effects from the nuclear radius for the states under investigation. Es-
pecially, in view of the recent measurement in Ref. [100] of the proton charge radius
in muonic hydrogen which disagrees with the charge radius obtained in electronic
hydrogen through spectroscopy [22] as well as with the proton charge radius from
scattering experiments [101], this fact becomes even more important.

7.5.2. Estimate of Theoretical Uncertainties. After the overview over
all relevant theoretical expressions to calculate transition frequencies between Ry-
dberg states, it is important to investigate how accurate the predictions are which
can be made with them. Otherwise, a sensible comparison between the theoretical
predictions and experimental measurements is not possible.

There are, in fact, two different sources of uncertainty in the theoretical predic-
tions. The first is due to the fundamental constants and nuclear masses required for
the evaluation of the theoretical frequencies. These cannot be determined by theory
from first principle but rather have to be measured in experiments and their value
determined by a comparison of theory and experiment. Therefore, their values carry
an uncertainty. All fundamental constants and nuclear masses, as well as their asso-
ciated uncertainties, which have been employed in the calculations of the transition
frequencies, are given in Table 7.3. The values of the fundamental constants have
been taken from CODATA2006 [22], the values for the required nuclear masses are
from the 2003 Atomic Mass Evaluation [102] (AME2003). It is important to note that
the masses given therein are the atomic masses of the nucleus and the electrons. The
nuclear mass is obtained by subtracting the mass of the electrons and their binding
energies from the atomic mass. This procedure is explained in Ref. [103]. The values
for the ionization energies are taken from Refs. [103,104]. All of the masses are given
in the atomic mass unit u, in which they are more accurately known than in kg. In

fact, currently there are efforts to use the atomic mass unit to define the SI unit
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kilogram. Unfortunately, they have not been met with success so far and therefore
the conversion factor, which is the Avogadro number Ny, still has a rather large rel-
ative uncertainty of 5.0 x 1078, However, because the theoretical expression for the
transition frequency only depend on the mass ratio and also masses determined in
Penning traps are given in the atomic mass unit, it will be used throughout this work.
In order to reduce uncertainties from the theoretical determination of the electron’s

magnetic moment anomaly a,, the experimentally determined value [105] is used.

Table 7.3. Fundamental constants and masses used as input parameters for the
evaluation of the theoretical expression and error estimates. In parentheses, the
standard uncertainty is indicated. The masses ma(N) correspond to the atomic
mass of an atom (including the bound electrons) with nucleus M. By contrast, the
nuclear mass is denoted as mpy(N) in this work (it excludes the mass of the bound
electrons and their binding energies).

Constant Value

Reoc 3.289 841960 361(22) x 105 Hz
o 7.297 3525376(50) x 1073

e 1.159652 180 73(28) x 1073

Me 5.4857990943(23) x 10~*u

ma(*H) 1.007 825032 07(10) u
m(2H) 2.014 101 778 040(80) u
ma(*He)  4.002603254131(62)u
ma(*Ne)  19.9924401754(19) u

The other source of uncertainty for the theoretical prediction arises because
higher order terms in the theoretical formulas are not known and so a prediction made
from them is only accurate up to effects from these higher order terms. In order to
obtain the uncertainty of the theoretical prediction, the effects from the uncalculated
higher-order terms, denoted as dots in the expressions in the last section, have to
be estimated. The uncertainty of the QED radiative corrections is assumed to be

dominated by the Bgg coefficient, which is not known for Rydberg states. Form a
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comparison of Bgy and Agy for lower lying states, Bgo seems to be about four times
larger in magnitude. Thus, 4Agocx/ 7 is used as the uncertainty of the QED corrections
involving more photons. Because not for all transitions so far results for Gsg exist,
also an uncertainty estimate for the higher order terms in Z« is included for safety.
For this the magnitude of Ag; is estimated as that of Agp, which means the associated
uncertainty is estimated as (Za)? In[(Za)~2)Ago. For the relativistic recoil corrections
the uncertainty is estimated as Za/ln [(Za)~?| times the last known term. These are
the estimates which are already used in Refs. [83-85]. Possible asymmetries of the
line-shape have been investigated by Low in Ref. [106] and found to be of the order
a(Za)?Eqep. They can be calculated with the formalism therein if required.

As an example, the theoretical prediction for transition frequency between Ryd-
berg states is evaluated. The results for different nuclei are given in Table 7.4. In the
following two subsections applications of such very accurate theoretical predictions

for Rydberg states are investigated.

Table 7.4. Theoretical predictions for transition frequencies in the one-electron ion
of helium and neon. The transition from the initial level |1) with quantum numbers
n =15, £ = 14, and j = 29/2 to the level |2) with quantum numbers n = 16, £ = 15,
and j = 31/2 is considered. The individual contributions are listed in Eq. (605).

Term ‘Het v(THz) 2He* v(THz)
vp 7.081 331 011 067 13(4736) 177.054 575 479 0197(11840)
VBG 0.000 000 000 000 01 0.000 000 000 0002
VRR 0.000 000 000 000 11 0.000 000 000 0625
voep —0.000 000 001 261 66 — 0.000 000 788 808 8

Total 7.081 331 009 805 59(4736) 177.054 574 690 2737(11840)

7.5.3. Rydberg States and the Rydberg Constant. While the 15-
2§ transition in hydrogen has been measured with the astonishing relative accuracy
of 1.4 x 10~ [9], the Rydberg constant is only known with a relative accuracy

of 6.6 x 10712 [22]. This is due to theoretical uncertainties from the nuclear size
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correction. Though the measurement of the transition frequency can be used to
deduce a value for the root mean squared (RMS) charge radius of the proton, the
uncertainty of other measurements of this charge radius do not allow a deduction of
a more accurate value for the Rydberg constant.

As stated before, highly excited Rydberg states are now basically independent
of the nuclear size. Thereby, a problematic theoretical uncertainty can be avoided.
The second discussed advantage of Rydberg states, is the reduction of the magnitude
of QED and other corrections. For example the Agg coefficient for the Rydberg states,
which are considered in Ref. [83], is about a factor 107 times smaller than the Asgp
coefficient for the 2S state. Moreover as evident from the comparison carried out
in Ref. [88] the Ago coefficient accounts for bulk of the one-photon QED corrections
in Rydberg states. This is not the case for S states which can be seen from the
values for Ggg and Ag given in Ref. [22]. Also, in the two-photon self-energy some
of the known terms have been shown to vanish for Rydberg states. All of this makes
Rydberg states very attractive for a determination of the Rydberg constant, from a
theoretical point of view. Apart from the Rydberg constant which limits the accuracy
of the theoretical prediction, all other uncertainties appear to be on or even below the
level of accuracy as in the seminal measurements of the 15-2S transition in hydrogen
in Ref. [9].

In Table 7.4 transition frequencies between the highest-j states with n = 15 and
n = 16 in the one-electron ion of helium and neon have been calculated using the
formulas in Egs. (599),(600),(602),(603) and the fundamental constants in Table 7.3.
Because the nuclei considered have zero nuclear spin, no hyperfine structure correc-
tions are necessary. The sources of uncertainties and an estimate of their size based
upon the discussion in Sec. 7.5.2 are given in Table 7.5 for the transition frequencies
from Table 7.4. As evident form Table 7.5 the highest uncertainty arise from the
Rydberg constant. Assuming the theory is correct, a comparison of an experimental
measurement for the transition frequency with an accuracy higher than the accuracy
of the Rydberg constant, can thus be used in order to deduce a more accurate value
for the Rydberg constant. Because the uncertainty of the electron to nucleus mass ra-
tion can be a limiting factor, it is important to carry out the measurement in systems

with a well known nuclear mass.
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Experimentally, transition frequencies between Rydberg states of hydrogen have
been measured in an 80 K atomic beam in the millimeter region [107]. Though the
achieved accuracy of 2.1 x 107! [107,108] is not enough to reduce the uncertainty
of the Rydberg constant, it shows the feasibility of high-precision spectroscopy in
Rydberg states. In lower-lying states the unprecedented precision in the measure-
ments become possible with the advent of optical frequency combs [109], which can,
in principle, provide relative frequency measurements with uncertainties approaching
10! over 100 THz of bandwidth [110]. Considering recent advances in the accu-
racy of frequency standards [111], a further increase of spectroscopical precision over
even today’s impressive level [9], could be possible. Efforts are currently underway at
NIST [83,84,88] to measure transitions between Rydberg states with optical frequency

combs.

Table 7.5. Sources and estimated relative standard uncertainties in the theoretical
value of the transition frequency between the highest-j states with n = 15 and n = 16
in hydrogen-like helium and hydrogen-like neon.

Source Het Ne+

Rydberg constant 6.6 x 10712 6.6 x 10712
Fine-structure constant 6.1 x107% 15 x 10714
Electron-nucleus mass ratio 5.8 x 10714 1.2 x 1074
Qe 4.2x10720 1.0x 10718
Theory 1.6 x 10717 27 x 107

For an interrogation with optical frequency combs circular Rydberg states in
one-electron ions with a low nuclear charge number Z seem to most favorable. Per-
turbations from the laser field and other sources are smaller for heavier ions with a
larger Z, though. In general, a large variety of measurements in ions with different
Z and for many different transitions could be useful for experimental optimization
and internal consistency checks. Achieving a relative uncertainty smaller than the

relative uncertainty of the Rydberg constant in the experimental measurements of
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the transition frequency, a comparison of theory and experiment could thus allow to
determine a more accurate value for the Rydberg constant.

A more accurate value for the Rydberg constant is not only interesting for a
deeper understanding of fundamental constants in general but can also help to clear
up the current problem of disagreeing values for the RMS charge radius of the proton.
If the measurements can be reproduced and conceivable errors ruled out, using the
RMS charge radius determined in muonic hydrogen would require to alter the Rydberg
constant to keep the frequency predictions in hydrogen in agreement. A measurement
of the Rydberg constant in a system, which is independent of nuclear size effects,
is therefore very desirable to uncover the source of the disagreement. A Rydberg
constant determined in such a way would thus be free of any possible mixing of QED
and nuclear effects, which might be contained in the Rydberg constant determined in
lower-lying states. Moreover, the exact magnitude of the non QED effects i.e. nuclear
size or possible other effects can be quantified.

The investigation provided that nuclear masses can be a limiting factor in highly
precise theoretical predictions for Rydberg states. This opens up the possibility to
envision the determination of electron to nucleus mass ratios and nuclear masses,
which will be studied in the next section.

7.5.4. Rydberg States and the Nuclear Masses. Due to the unprece-
dented precision of measurements of transition frequencies, which can reached with
optical frequency combs, and the very accurate theoretical predictions, which can be
made for Rydberg states, they are interesting for more than the determination of
the Rydberg constant. For such a possible determination of the Rydberg constant
in highly excited states, atoms with a well known nuclear mass are most interest-
ing because the electron to nucleus mass ratio can constitute a large portion of the
theoretical uncertainty. In one-electron ions, where the nuclear mass has a large un-
certainty, this uncertainty could prohibit to deduce a more accurate value for the
Rydberg constant. In such an ion, though, a comparison of highly precise experimen-
tal frequency measurements and the theoretical prediction can be used to deduce a
more accurate value for the nuclear mass. While the possibility of a determination of
nuclear mass with high-precision spectroscopy has been investigated for molecules in

Ref. [112,113], the described simplifications for Rydberg states, make them appear
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more attractive for such efforts. Therefore, the possible determination of nuclear mass
with high-precision spectroscopy in highly excited Rydberg states of one-electron ions
is investigated here, based on our analysis in Ref. [85].

Now the question is how can the masses be determined with high-precision spec-
troscopy. For this purpose it is instructive to recall the expression for the frequencies
of Rydberg states in Egs. (599), (600), (602), and (603). It can be observed that
all frequencies are directly proportional to the Rydberg constant but even to rather
high accuracy (~ 107!) they are also nearly proportional to (1 + 7(N))~!'. This
dependence on the electron to nucleus mass ratio and therefore on the nuclear mass,
allows the determination of the nuclear mass from the transition frequency.

In principle, there are now two methods to do that. For the first method (method
I) isotopes of a given charge number Z are considered. The transition frequencies of
one specific transition is only different between the isotopes because of the different
nuclear masses. If one isotope has a very well determined mass, its mass can be used
as a reference. This nucleus is denoted as Mg and its mass as my(Ng). The other
isotope, whose mass my(Ny) is to be determined, is denoted as Ny. A specific
transition frequency is then measured in the reference isotope, which is denoted as
vt ,. The same transition is also measured in the isotope, whose mass is to be
determined, which gives the frequency v}, ,. The measured frequencies can then be
written as equations by using the experimental value as the left-hand side in Eq. (605)
and the theoretical expression as the right-hand side. The resulting system of two
equations can be solved for two variables, namely the Rydberg constant and the
unknown nuclear mass my(Ny;). The general idea behind it is that the Rydberg
constant currently is the biggest source of uncertainty and the current uncertainty is
not enough to enable accurate mass determinations. This point was elucidated in the
discussion of Tables 7.4 and 7.5. With the isotope shift, this problem can be avoided
because the Rydberg constant can be eliminated in the system of two equations.

For the next method in principle again two frequencies have to be measured, one
in a system with a well-known reference mass and one in a the system, whose mass
is to be determined. The first resulting equation in the system with the well-known
mass is solved for the Rydberg constant. This is plugged into the second equation,

which is then solved for the unknown mass. Hence, the first measurement is in
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fact a determination of the Rydberg constant. As discussed in Sec. 7.5.3 efforts are
undertaken at NIST to deduce a improved value for the Rydberg constant in Rydberg
states. There is also an experiment at the National Physics Laboratory (NPL) in the
United Kingdom, where the 25-8D transition in hydrogen is investigated with the
aim of determining the Rydberg constant [114]. Should these efforts be crowned with
success and the uncertainty of the Rydberg constant be reduced significantly to a
relative accuracy between 10713 ... 1071, using the frequency in the reference system
to solve for the Rydberg constant is no longer necessary. Thus, a transition frequency
vM , measured in an one-electron ion with an inaccurately known nuclear mass can
directly be compared to the theoretical value and the mass my(Nas) determined by
solving for it. This is known as method I in this work. Alternatively, the equation
can be solved for the electron to nucleus mass ratio 7(Nys) instead, this is method II1.

After these considerations the explicit formulas for each method will be derived.
As explained earlier the theoretical expressions are all directly proportional to the Ry-
dberg constant but carry very different dependencies on the electron to nucleus mass
ratio. In the Dirac value Eq. (600) for example, the first term is directly proportional
to the ratio of the reduced mass to the electron mass y,/m. = 1/(1 + r(N))), while
the second is proportional to r(N)(u,/m.)®. Despite this complicated dependence, it
is possible to assume an approximate proportionality to the ratio of the reduced mass
to the electron mass. Extracting these two proportionalities out of the transition

frequency 1.9 a scaled frequency fi1.9 can be defined by

Vs = Reoc ﬁi(T) floz- (607)
Because the proportionality to (1+7(AN'))~! is only approximate, the scaled frequency
f1e, which is given by theory, still carries a residual mass dependence. Fortunately,
at least for stable/long living nuclei equal in mass or heavier than lithium, if known
electron to nucleus mass ratios are used for the residual dependence of fi..o, the
uncertainty introduced by this does not contribute to the uncertainty on a level
required for the nuclear mass determination. With this the required formulas can

now be derived.
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Formulas for method I. one isotope with a well determined mass is required.
It acts as the reference mass and accordingly, its transition frequency, mass ratio
and theoretical value are labeled vt ,, r(NR), and fR,,, respectively. The transition
frequency, mass ratio and theoretical value, which will be labeled v} ,, r(N}y), and
M, of another isotope with a inaccurately known mass, are then determined. The
mass of this isotope my(MNy) can then by expressed in terms of the reference mass

my(Ng) by solving the equations

1
ity = ReoC T5r(ND) s, (608)
1
I/{\:_I__Q = ROOC m flA;/_I‘Q . (609)
By taking the ratio of the two frequencies the Rydberg constant cancels and
V{?H2 — f1R<—>2 1 + T(NM)
vily Ly 1+7(Ng)
_ my(NR) e mnNu) + me (610)
myNu) fiLy mn(Nr) +me
is obtained. Solving for the nuclear mass my(Nys) yields
v f?{-a f 11‘44-»2 B
my(Nu) = my(NR) me | 77— (My(Ng) + me) —mna(Ne)| . (611)

M (R
Vies fioe

This allows us to determine the nuclear mass of one isotope my(ANj) from a mea-
surement of a transition frequency v, in this isotope, and a reference transition
frequency V{L2 in an isotope with nuclear mass my(Ng).

Formulas for method II: For the second method it is assumed that a more pre-
cise value for the Rydberg constant is available with a relative uncertainty between
10713 ...10". This could be provided by the on-going experiments with this aim
like the joint theoretical and experimental project with the National Institute of Stan-
dards and Technology (NIST), presented in Refs. [83,84,88]. Its details have been

discussed in the previous section Sec. 7.5.3. Furthermore, there is a project at the
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National Physics Laboratory (NPL) in the United Kingdom where the 25-8D tran-
sition in hydrogen is intended to be used in order to improve the accuracy of the
Rydberg constant [114).

This would provide the first frequency solved for the Rydberg constant. Thus,
only the transition frequency {7 , in the one-electron ion, whose mass is to be deter-
mined, has to be measured. The nuclear mass my(N}) can directly be obtained by

solving Eq. (607) yielding

-1
my(Ny) = me (&fﬁ’f - 1) . (612)

V2

The crux of the mass determination lies in the numerical loss in the conversion of
frequency measurements into a determination of the mass. This numerical loss arises

because

M Reoc
L L] (613)
12
where 7(N)y) is rather small (= 107%...107® in typical cases), whereas the two terms
on the left hand side are of order unity.
Alternatively, this equation can be solved for the electron to nucleus mass ratio,

which gives

M
r(Nu) = Jicn flosc IHLRC”C —1. (614)

Vieso

The resulting determination of r(Ny) is denoted as method III in the following.
Again, there is a loss in numerical significance of about four decimals.

For illustrative purposes the determination of the electron to nucleus mass ratio
using method IIT for 'H, 2H from Ref. [85] is reiterated here. The electron to nucleus
mass ratios in hydrogen and deuterium are important for precision spectroscopy in
these systems and can be very helpful for the on-going efforts of a comparison of
transition frequencies in hydrogen and anti-hydrogen [115]. Examples for method I
and method II are treated in Ref. [85].

One specific transition is considered, which is the two-photon transition from the

state |1) with quantum numbers n = 9, £ = 8, j = 15/2 to a state |2) with quantum



194

numbers n = 16, £ = 10, 7 = 19/2. This specific transition is studied because
for states with j = £ — % the QED correction are generally smaller and therefore
also their associated uncertainties. Moreover, two-photon transitions are interesting
due to the smaller line width. Based upon the theoretical formulas in Sec. 7.5 with
the fundamental constants and masses from Table 7.3 the transition frequencies for
hydrogen and deuterium have been calculated, which are given in Table 7.6. The
transition frequencies do not include the hyperfine structure. For hydrogen, which
has a nuclear spin of I = %, and deuterium with I = 1, the hyperfine splitting can be
evaluated using Eq. (604). Moreover, hyperfine-mixing corrections can be determined
with the formalism described in Ref. [99]. It is assumed that these corrections have

been subtracted from the experimentally measured frequencies.

Table 7.6. Theoretical predictions for two-photon transition frequencies in atomic
hydrogen and deuterium. The transition from the initial level |1) with quantum
numbers n =9, £ = 8, and j = 15/2 to the level |2) with quantum numbers n = 16,
¢ =10, and j = 19/2 is considered. For the upper state, the higher-order self-energy
coefficient reads Ago(n = 16,4 = 10,5 = ) = 1.026705(5) x 105, The individual
contributions are listed in Eq. (605).

Term 'H v(THz) ’H v(THz)

vp 27.749 282 698 7469(1857) 27.756 833 254 1589(1856)
VBG — 0.000 000 000 0005 — 0.000 000 000 0001

VRR 0.000 000 000 0009 0.000 000 000 0004

VQED 0.000 000 003 4893 0.000 000 003 4911

Total 27.749 282 702 2366(1857) 27.756 833 257 6503(1856)

With a similar analysis of the sources of uncertainty as in the last section,
one finds that the dominant source of uncertainty is again the Rydberg constant.
However, the second largest contribution to the uncertainty in these systems comes
from the electron to nucleus mass ratios which have the following relative accuracies:

or(1H)

o) _ -10
o = A8x 107,

=4.2x1071, (615)
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The relative uncertainty of the theoretical predicted transition frequency in both
these systems caused by the uncertainty of the electron to nucleus mass ratio is of the
order 10713, making them unattractive for improving the accuracy of the Rydberg
constant. With a more accurate value for the Rydberg constant of the order of 10714,
the accuracy of the electron to nucleus mass ratio would in fact be the limiting factor
of the theoretical prediction. Thus, such an accurate value for the Rydberg constant
and a frequency measurement of the same relative accuracy of about 107!, would
allow to determine a more precise value for the electron to nucleus mass ratio in these
systems.

The theoretically determined transition frequencies in Table 7.6 can be used for
a more quantitative analysis of the sources of uncertainty and the reachable accuracy
based on Eq. (614). Similar, to the last section the fundamental constants, the
masses and the theoretical predictions lead to uncertainties. Based on the formal
dependence given by Eq. (614) of the electron to nucleus mass ratio on them and
the uncertainty introduced by them can be estimated. The attained experimental
accuracy is kept as a variable. In this way, it can be illustrated how accurate a
determination of the Rydberg constant and the transition frequency has to be for
a certain accuracy of the electron to nucleus mass ratio. For the case of deuterium
N = 2H these are given in Table 7.7 and for the case of hydrogen Nys = 'H they can
be found in Table 7.8. The first contribution in both cases to the relative uncertainty
0r(Npr)/7(Nar) of the electron to nucleus mass ratio, r(Ny), to be measured, comes
from the residual dependence of the scaled frequency f on r(Ny). It can be seen
that it does not contribute on a relevant level to the total uncertainty, which also
justifies the approximate proportionality used in the described methods. The second
uncertainty is introduced by the fine-structure constant. Then the experimentally
determined value for the electron magnetic moment anomaly a. causes the uncertainty
in the third line of both tables. The last contribution above the horizontal line is
then due to the neglected higher-order terms in the theoretical prediction, which
interestingly become very small due to the functional dependence for the mass ratio.
This is not the case for both method I and method II, where the theoretical uncertainty
plays a more important role (see Ref. [85]). Below the horizontal line, the uncertainty

introduced by the experimental measurement of the transition frequency and the
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experimentally determined Rydberg constant are given in terms of the respective

relative accuracies.

Table 7.7. Application of method III (see text) for the determination of the electron
to nucleus mass ratio for Njy = 2H. The transition is |1) « |2) where |1) is the
state with quantum numbers n = 9, £ = 8, and 7 = 15/2, and |2) has quantum
numbers n = 16, £ = 10 and j = 19/2. The contributions to the relative uncertainty
Or(Nar)/r(Nu) of the electron to deuteron mass ratio due to the 2006 CODATA
values for the fundamental constants and masses required for the evaluation of the
theoretical expressions are given above the horizontal line. Contributions due to the
assumed spectroscopic measurements are given below the horizontal line.

Source JTT(%/M))
M
1 9r(Nu) _17
V) B (Vo) or(Nu) 9.1 x 10
1 8T(NM) —12
T No) Oa da 1.4 x 10
1 or(Nu) _16
N Oa da. 1.2 x 10
SfM, 6.8 x 10733

suM 37 % 10° (Ve
T(NM) an\fl-»z e . V{‘:I—ﬂ

L 0rNw) sp o 37x10° (5R°°C)
(o 0] . R

o0 C

For a conservative estimate of the experimentally possible accuracy of a mea-
surement of the transition frequency in such a system a study of the ratio of the
energy of the transition E to the decay width of the line I is required. From a gen-
eral calculation of one-photon decay widths of Rydberg states in Ref. [116), Ref. [83]

used the estimate for the Q factor for transitions from n to n — 1 of near circular
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Rydberg states

_ En - En—l . 3n2

@= I, +Th1  4a(Za)?’

(616)

Table 7.8. Application of method III (see text) for the determination of the electron
to nucleus mass ratio for Ny = 'H. The transition is |1) « |2) where |1) is the state
with quantum numbers n = 9, ¢ = 8, and j = 15/2, and |2) has quantum numbers
n = 16, £ = 10 and j = 19/2. Again, contributions to the relative uncertainty
0r(Num)/r(Nur) of the mass ratio are separated into those caused by theoretical input
data which are given above the horizontal line, and contributions due to the assumed
spectroscopic measurements are given below the horizontal line.

Source 5:(%7 ))
T(/\lfM) g:ExZ; o7 (Nm) 9.3 x 10~17
7”(/\1/M) 8TE9JXM) da 7.0 x 10713
T(Al/M) argz/;M) 0ac 5.8 x 10717
Sher 1.3 x 10732
T(/\lfM) 8&5?4:1:) s,  18x 10° (%)
T(/\lfM) agg:z) §Rec 1.8 x10° (%:‘f)

As different transitions are considered in this work a complete calculation of

the decay width is carried out based on the formulas in Ref. [24] which are discussed

shortly in Sec. 4. The result for the @ factor for the studied transition in hydrogen,
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published in Ref. [85], is found to be
QMn=16,{=10—-n=9,0=8]= 7.2x10°. (617)

In experimental measurements of the 2P Lamb shift, the energy of the line has been
measured within 10™* of the width of the line [117,118]. This corresponds to a
conservative estimate of the relative uncertainty of the experimental determination
of the transition frequency of 1.4 x 10712 which is used as the relative uncertainty of
the Rydberg constant as well. By adding all uncertainties quadratically, the electron
to deuteron mass ratio could then by determined with a relative uncertainty of 7.3 x
1071%, The value for the mass ratio in the 2006 CODATA has a relative uncertainty
of 4.2 x 1071 [22], so the level of accuracy is comparable.

In the same way and with the same relative uncertainty in the frequency and
Rydberg measurement, in hydrogen the electron to proton mass ratio could be deter-
10

mine with a relative uncertainty of 3.6 x 10~

uncertainty of the 2006 CODATA value with a relative uncertainty of 4.3 x 1071 [22],

. Here, a comparison to the relative

reveals that this is even slightly better. Should the experimental techniques, which
might have to be developed for the mentioned project at NIST [83, 84, 88], enable
more accurate measurement of transition frequencies in Rydberg states, more accu-

rate value for both mass ratios could be obtained as well.
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8. CALCULATION: QED AND HYPERFINE SPLITTING

8.1. ORIENTATION

So far only the effect of QED on the plain states of the Dirac equation has
been considered. This already includes the effect of the magnetic moment of the
electron due to its spin in its rest frame interacting with the magnetic field of the
nucleus circling the electron. Because the nucleus has a spin as well, the spin of the
nucleus can also interact with the magnetic field generated by the electron circling
the nucleus. Another level shift, the so called hyperfine structure is the consequence.

All these discussed level shifts are illustrated in Fig. 8.1.

Schrédinger  Dirac QED Hyperfine
n=2,0=10

n=20=1,j=3/2
n=2/4=1;7=3/2 »r—————————

v — 10950 MHz n=2,0=0,j=1/2 n=2£=0,j=1/2,f=1

/4——4—<: §u= 177 MHz
v = 1057 MHz n=2,2=0,1=1/2,f=0

n=2,£=10;7=1/2
n=20=1,;=1/2

Figure 8.1. Level structure of the n = 2 states in atomic hydrogen.

From this figure, it can be seen that the effect from the hyperfine structure has to
be considered in all predictions to the transition frequencies for nuclei with non-zero
nuclear spin. Otherwise, the necessary accuracy cannot be reached. Interestingly,
the hyperfine structure Hamiltonian does not commute with the Hamiltonian of the
fine structure and therefore levels with different j coupling to the same total angular
momentum of the ion f are mixed in the hyperfine structure. This is explained
in detail for the muonic hydrogen in Refs. [51,119]. This effect will however be

neglected here. In this section the self-energy corrections to the hyperfine structure
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for states with £ < 2 are investigated. Basically, the effect of the magnetic moment
of the nucleus is to generate an external magnetic field in which the electron moves.
While so far in the Foldy-Wouthuysen transformation the external magnetic field
was set to 0, the external magnetic field is now the magnetic field of the nucleus.
Since the transformation starts from the fully relativistic Dirac Hamiltonian it is
necessary to include the hyperfine interaction into this Hamiltonian first. The self-
energy correction to the hyperfine structure can then identified to be the additional
terms that will be obtained compared to the self-energy correction in the last section.
Following the derivation in Ref. [120] the magnetic field of the nucleus is given
by the vector potential
1 jixx

Anis(F) = C4m 3

(618)

where [i denotes the the operator of the nuclear magnetic moment. As usual the curl

of this vector potential yields the magnetic field

o 3@ ER)E- [
AHS(JJ)—(—)M-

Bhfs =V x f—l‘hfs(f) == Anr3

(619)

win

The coupling to the Dirac Hamiltonian is obtained by adding the vector potential

of the hyperfine interaction to the quantized field. Returning to the approximation

of an infinitely heavy nucleus without recoil effects, which was dropped in the last

section, the relativistic magnetic dipole interaction of the nuclear magnetic moment

and an electron can be expressed by the interaction Hamiltonian
. AXT e . Ixa

— nd — (& -— -—
ths = —€ed - Ahfs(x) = Ea 73 = 'E/Jt

> (620)

Following the notation in Ref. [120], lowercase letters are used to label relativistic
operators, whereas nonrelativistic operators are labeled by uppercase letters. As
explained earlier, similar to the fine-structure, the hyperfine structure requires to
couple the spin of the nucleus I to the total angular momentum of the electron j to

receive the total angular momentum of the one electron ion f. Then the hyperfine
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interaction Hamiltonian acts on the coupled states of the electron and the nucleus
InfmI5) = Z Cirtm \IM) Ingm) . (621)

The magnetic quantum number of the nuclear spin is denoted as M while that of the
total angular momentum of the ion f is labeled m;. The hyperfine structure splitting

is then the energy shift because of this interaction and given as
AEhfs = (nfmij |ths| nfmflj) . (622)

In order to extract how the hyperfine interaction acts on the electronic states the

matrix element can be rewritten

— -

X Q ,
3 nfmflj>

AFEyn = (nfmslj |Hpg| nfmglj) =
|H| <nfm Ij‘ i >;a
;

i :
||(nfm Ij| T Z C,M,Jm,|IM')|njm’)

n/3/ I'M'm/

X Z CI/M/ ]/Ml|<n]m|

/31 M'm!

< <nfmffj ﬁ

nfmflj>
(623)

|nfmfI])

The expression is multiplied by one in the right form, which yields
e || . fm :
ABy = 0 nfmy il TS Ot [TM') Ingm)
nljl II Mlml

X3l (I'M'] ('

n/j' I’ M'm/

ITXa

Infml3)

f'm! (624)
. = . CIIMI itm!
X Z (I'M'|(n§'m’| 25 Infm;1j) T

w3 I M'm! Clint st (I M| {0/ §'m| 27 [nfmsIj)

e |i < (n'g'm/| Z%F |njm)
nfmelj ‘2] ‘n mgl > T ,
Tl slgj2h-g|nfmyls n;n (n'5'm!| 2] |njm)

where in the last step the nuclear spin degrees of freedom have been traces out in

the right matrix element. The left matrix element can be evaluated with the known
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expression
2(f-j)=f’2—f2—52. (625)

Moreover, ¢? = 4wa and || = gnIe/(2m,), where gy is the nuclear g factor, are
used. Thus, the expression can be further simplified by employing orthogonality
relations and the Wigner-Eckhart theorem with ¢ denoting the vector component in

the spherical basis
1
A = = [f(f 1) = I +1) = 5§ + 1)

XZ<”

n'j'm’

—

x d

-1
! —3q njm> (2 (n’j’m’|jq|njm))

o 1 ——[f+ D) =TT+ 1) =5+ 1)
X <njm njm> (2 (ngm| jo |njm))_ (626)

o ! A1) = I +1) = 5+ 1)

1 .
X —_—

o <njm n]m>
N Me

=@ (77 4 1) = 11+ 1) = 5+ 1) <nj%

[ x a],
3

[Z % ],
3

[Z x @],
,,-3

nj%> .

In this way, it has been achieved to separate the nuclear from the electronic variables,

e

very similar to tracing out the photon degrees of freedom in Sec.4. A very detailed
analysis of the separation of the nuclear variables can be found in Ref. [121]. This
procedure allows to reduce the evaluations of the hyperfine structure and corrections
to it, to the evaluation of matrix elements of operators acting solely on electronic
states. The electronic matrix element will be denoted as ©,(njf). Moreover, as can
be seen from the above calculation, these electronic matrix elements are independent
of the magnetic quantum number m. Hence, m is chosen to be m = % to simplify
the evaluation. This was used as well in the Lamb shift calculations. Consequently,
O.(njf) is defined by

[ % al,

mer3

©.(n¢;) = <n]%

nj%> (627)
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and the energy shift due to the hyperfine interaction is thus

Me
AEy = a2

2mN

[f(f+1) =TT +1) = j(7 + 1)] Oc(nk;). (628)

A fully relativistic evaluation of ©.(n¢;) has been carried out in Ref. [98] with the

result
K (Za)*me 5 26(y+n—1k|) - N
O.(nt;) = — n’|kl(2k + 1 , 629
") = w02 =D VTN - (629)
with the notation used in Sec. 3, i.e. v = /k? — (Za)? and the apparent principal

quantum number N = /(n — |&])2 + 2(n — |s|)y + 2.

After describing the method to obtain the hyperfine splitting of the energy
levels and separating the nuclear degrees of freedom from the expression, the QED
corrections to this result can be derived. Again, the focus is on states with £ > 2 and
the methods of NRQED detailed in Sec. 4 are employed. Results for S states with
¢ = 0 have been obtained with NRQED in Refs. [98,121] and with a fully relativistic
treatment in Refs. [122-124]. For P states (¢ = 1) the calculation with NRQED was
carried out in Ref. [120] and numerical results form a fully relativistic evaluation have

been obtained in Ref. [124]. All of the results are in excellent agreement.

8.2. LOW-ENERGY PART

8.2.1. Orientation. Following the theoretical method described in Sec. 4, for
the low-energy part a nonrelativistic Hamiltonian is required which can be systemat-
ically derived through the Foldy-Wouthuysen transformation. The total Hamiltonian
H; to be transformed is given as the sum of the Dirac Hamiltonian without an external

field in Eq. (231) and the relativistic hyperfine interaction Hamiltonian in Eq. (620)

VA =
H,=Hp+ Hys = &+ p+ fme — Ta — ed - Ays(T) . (630)

The Foldy-Wouthuysen transformation of this Hamiltonian is carried out as described

in Sec. 4.4. The only difference is that the operator O in Eq. (232) is now

-

0= &ﬁ—e&Ahfs(f) (631)
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In general, the generator of the transformation has to consist of the physical momen-
tum p'— eAif A # 0. The result of the transformation is thus
H;+UHU™" = Hpw + Hurs, (632)
where Hpw is the Foldy-Wouthuysen Hamiltonian in Eq. (262) and Hpups is the

nonrelativistic hyperfine splitting Hamiltonian which is given as [120, 121]

eme - 7 eme = - - -
Hyrs = g-h= e (h5+hD+hL) , (633)
47 A7
which consists of the terms
hs = 3—77120'5(.’15) s (634&)
- 3G -3)T-¢
hp = 4b
b 2m2r3 ’ (634b)

. 7
he = —53 (634c)

As is seen, in the reduction of the energy splitting only the 0 component in the

spherical basis (z component in the Cartesian basis) of this Hamiltonian is important

in the calculation. It is denoted as hg and given as

_ 47 . 3(5 . .’%)JAJO — Op Eo
ho = 32 o0d(Z) + Pmird ol (635)

With this Hamiltonian also the nonrelativistic expression for the hyperfine splitting

can be evaluated
Za)3me
K (Za)’m (636)

|k| n3(2k + 1)(k2 — %) ’

ONR(nt;) = (njtl |ho|njel) =

which is the nonrelativistic limit of the fully relativistic expression for ©.(j) in

Eq. (629). Similar to Sec. 6 and in agreement with the notation in Ref. [120] the
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QED corrections to the hyperfine structure will be expressed as a multiplicative cor-

rection of this nonrelativistic value for YR (5)
3

5 1262 —1 1
OF (n;) — O (nt)) [1 +(Za) (2;&(2& - 1)(2k+1) + 2n K| (637)
3-8k
LT To 1)) * 5@(%)] ’

where the relativistic corrections of order (Za)? are obtained by expanding the fully

relativistic result in Eq. (629) in Za up to relative order (Za)?.
The corresponding energy shift due to the QED corrections can then be obtained

by multiplying §©.(j) with the nonrelativistic hyperfine energy splitting
Zao)3m,
£ ___(Za)'m (638)

k| n?(26 + 1) (k2 — 1)

B e P+ 1) = I+ 1) =3 + 1)

AFEgrs = «
2 my

and thus
(639)

5AEHFS = AEHFS 5@(n€j) .
The nonrelativistic hyperfine splitting of the energy levels AEyrg is sometimes re-
ferred to as Fermi energy. For the QED corrections terms up to relative order a(Za)?

with respect to the nonrelativistic hyperfine splitting will be considered.
The Foldy-Wouthuysen transformation of the relativistic current gives the same
result as in Sec. 4.4.1. The right current correction for the hyperfine splitting is found

by replacing the momentum operator in the nonrelativistic current by the physical

momentum in presence of the vector potential of the hyperfine splitting

e OAXT P elme, , =
aBaR N A | £|17T6|,U|(5]HFS

4tm, 713 Me

(640)

e -
PP _ez _ P
Me Me Me Me
This has been found in Ref. [120] and gives the additional current correction after the

extraction of the nuclear degrees of freedom
(641)

87uFs = :
J m2r3
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Again, only the z component is required in the calculations, which is still a vector

and given as

- 1 . .
5]0,HFS = W (_yez + :I:ey) . (642)

e

Now, only the resulting terms, which are different from the terms encountered for
the self-energy correction without the hyperfine splitting have to be considered. The
effect from the other terms has already been included and only the additional terms
due to the hyperfine interaction will give an additional QED correction on top of the
already calculated one. The implication is that for the wave function, energy and
Hamiltonian correction only the hyperfine splitting Hamiltonian has to be used in
the low-energy part.

Because the details on how to obtain the corrections in the low-energy part
have been discussed extensively in Sec. 7 the terms here are given without derivation.
Likewise, there are four contributions [120] from the correction of the interaction
current, from the correction of the Hamiltonian, from the correction of the reference
state energy, and finally from the correction of the reference-state wave function. It
is important to note that these correction are now due to the hyperfine structure be-
cause the levels perturbed by the self-energy are corrected again due to the hyperfine
interaction.

8.2.2. Hyperfine Correction to the Interaction Current. This correc-
tion is given by using the hyperfine correction to the current in the matrix element,

which leads to

4aN € . i ralpr, 1
§O1,55(nt;) = 3—7r/0 dwgwg D <m€% TI:L— n'j £m>
i ) (643)
1 11 pl / -1 .
X o a— (n'j'f'm |630,HFS| njés)

where the angular integration in k has already been carried out. Due to the way the

corrections are defined, they have to be multiplied by the normalization factor

1 1
 (njed |ho|njd) — ONR(ng;)’

(644)
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The integration with respect to wy can then be carried out with the result

b N 2 2 4_/\/ _ |En’ - Enl
00155(nt;) = —(Za) 7o) Z I(En Ew)In (—me(Za)2 )
i (645)

X <nj€% :;— n’j’@'m’> (n'j't'm’ |6j(i),HFS| njli)

€

The term containing the logarithm of € is 0 because it vanishes after angular inte-
gration in the matrix element. The structure of the logarithmic term here is very
similar to the Bethe logarithm encountered in Sec. 4. Terms of this form will arise
for the other corrections in the low-energy part as well. In the following these terms
will be denoted as Burs(nf;) and have to be evaluated numerically with the methods
described earlier. Thus, the low-energy correction due to the nuclear-spin dependent

current is
60 s;(nt;) = %(Za)2ﬁHFS,6j(n€j) : (646)

8.2.3. Correction to the Hamiltonian, Energy and Wave Function.
The next correction is the Hamiltonian correction due to the addition of the hyperfine

splitting Hamiltonian, which yields the term
2
5@L 6H né’ aN/ du) wk
p 1 1 P

1
<”J€2 m. By — Hy — o °F, — Hs —wp me nils >

Here, and for the remaining terms the intermediate basis set is not written out in

(647)

i

order to shorten the notation because the resulting correction is once more of the
from of a Bethe logarithm type correction. This term, which is denoted as Burs.sp,
has basically the same structure as Jsg sy, only with § Hg replaced by hg. Carrying

out the integration with respect to wj thus gives

2
0O sn(nl;) = oN In [m (CZG)J <"ﬂ%

3mm?

+ ;(Za)%HFs,aH(nfj) :

(30" o) + 71

"
" 2> (648)
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In the same way the energy correction can be written, which leads to

2aN € . :
00, sp(nl;) = —3—7T/0 dwr; wi (ngly [ho| njt3)

| P 1 Pl .
x ( njl: ( ) njl:
2aN

€ ' . . |
- _37rmg In [me(Za)2.| <TLJE% |p2| n]f%> <ny€% |hol nyﬁ%)

+ %(Za)25HFs,aE(n€j) ,

Finally, the correction to the wave function due to the hyperfine splitting Hamil-

tonian is

5@[,5(1) nﬂ 4aN/ dUJ wg

<n3€1

nj€%>

1 pz 1 !
ho

?i%l [mefZa)?] (0%0)
><<an p(Hs—E,)p (E IHS),hO nj€%>

+ %(Za)2,8HFS,6<I> (nfj) .

The containing the logarithm of € can be simplified with the relations
[pi) [(HS - En)ypi]] +p2(HS - En) + (HS - En)p2 = 2pi(H5 - En)pi ) (6513’)

which basically was already used for the Hamiltonian correction and

1 /
(Hs — E,) (E —Hs) ho |njtd) = [—1 + |nje3) <nj€%|] ho |nj€i) . (651b)

The double commutator [p, [(Hs — E,,),p]] vanishes for states with £ > 1 because of

7 (s = )] = B, Vo) = 9° |- 2] ~ 6(2). (652)
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The contribution due to the hyperfine correction to the wave function is thus

2aN € . . . .
00Ls0(nt;) = 3 g 1n [me(ZaV} {<”J€% [p*| ngeg) (njts [ho| njt3)
(653)
a
+ (njtk |p*hol nje§>} + ;(Za)%HFs,w(nej) .
8.2.4. Summary of Corrections in the Low-Energy Part.  Summing
up all four corrections in the low-energy part yields
(5@[,(?’1,@]-) = 69L,5j(n€j) + 6@L,5H(n£j) + 6@L,5E(n€j) + 5@L,5¢(n£j)
(654)

aN € _ ; ; ' o
~ 3rm2 In [me(Za)Q] (njt5 |I0', lho, p'N}| ni3) + —(Zc)*Burs(nt;)

where furs(nf;) is the sum

Burs(nt;) = Purs,s;(nl;) + Purssn(nl;) + Burs,se(nd;) + Bursse(nf;) . (655)
The double commutator

(njls |[p', [ho, P'll| nit3) = (njlz [Vho| njt3) (656)

has been evaluated for S states in Ref. [98] and for P states in Ref. [120]. For higher

excited states it vanishes which can be seen by writing V2hg in the form

4
3m?

- 4
[3v0v5(5f) G- V25(a‘:')ao] —-;n%ieojkv,-a(f)vk . (657)

4

V2he = ——V2§(F)00— o

Each of the terms is basically a second derivative of the absolute square of the wave
function at the origin, which is 0 for states with £ > 2.
Hence, the complete low-energy part up to including order a(Za)%A Eyrs for

states with £ > 2 takes the very simple form

50 L(nt;) = %(za)%ms(nej). (658)



210

8.3. HIGH-ENERGY PART

8.3.1. Orientation. For the high-energy part again a graphical expansion
is used. Only the self-energy correction to order a(Za)?AEyrs is considered. It is
therefore enough to treat only the diagram with one interaction with the binding
potential in Fig. 4.2. Following the derivation in Sec. 4.6, this can be calculated by
employing the modified Dirac Hamiltonian from Eq. (321)

HY = & (5= eF (V2| +8met+ Fy (VE)V + Fy(V?) -

T (ﬁ-ﬁ—ﬂz’i-é) . (659)

Compared to the high-energy part of the self-energy calculation in Sec. 4.6, the mag-
netic field and the vector potential are not zero anymore but given by Egs. (618) and
(619). Only the additional correction terms compared to those already included in
Sec. 4.6 are relevant [98]. The discussion goes through the terms from left to right in
the modified Hamiltonian.

8.3.2. F; Form-Factor Correction to the Hyperfine Interaction. Con-
sequently, the first term is the correction to the interaction with hyperfine vector
potential due to the form-factor F}

—eFI(0)V2E - Appy = — [m (ﬂ) + E] V2 Hyg, (660)

3n 2¢ 24
The lowest order term with F;(0) is the hyperfine splitting Hamiltonian due to
Fi(0) = 1. For the evaluation of this term it is very helpful to analyze the order
of the correction. In this case Fj(0) is of order @ and V? of order (Za)? because it
corresponds to p?. Hence, the whole expression is already of order a(Z«a)?AFEyps. To
obtain the QED correction of order a(Za)?A Eyrs, it is thus enough to evaluate this
on the nonrelativistic wave function, which is the term of order 1 in the Z« expansion
of the fully relativistic wave function. When the correction is scaled in the same way

as in the low-energy part, this yields for the first term

Me

501 (nt;) = N [m ( e

11 . .
bl )+ ﬁ] (nj€d |Vho| ngtd) . (661)

The operator acting on the nonrelativistic wave function in this matrix element has

already been evaluated in Eq. (657) in the last section and it is shown that it vanishes
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for states with £ > 2. For ©p; this implies
0Omu1(nl;) =0 (662)

for £ > 2.

8.3.3. I} Form-Factor Correction to the Potential. The next correction
is due to form factor Fj correction to the potential. This term was already included in
Sec. 4.6, so now the correction is given by having this operator act on the through the
hyperfine splitting perturbed wave function. In general, new terms arising because
of ji‘hfs are evaluated on the unperturbed wave function, whereas corrections already
present in Sec. 7 have to be evaluated on the perturbed wave function. The actual
calculation as carried out in Ref. [120] employs a Foldy-Wouthuysen transformation

acting on the matrix element. The correction term to the result in Sec. 4.6 is then [120]

2a/N M, 11 .
6@1.1,2(71@) = 37rm2 [ln (—2?) + ﬂ] <n_7€-;—

/

Again, V2V is proportional to the Dirac § and therefore only gives a contribution for

S states (£ = 0). Accordingly, for the states with £ > 2 it is found

§0ma(nt;) = 0. (664)

8.3.4. F3 Form-Factor Correction to the Electric Interaction. Also,
the correction due to the form factor F; interaction with the electric field is already
present in the self-energy calculation in Sec. 4.6. Therefore it has to be applied to
the perturbed wave function. In Ref. [120] this term was found to be

-i . = 1 !
V- VV | =———— | H,
2m67 v (E,/,—HD) hfs

80u3(nt;) = 2N F5(0) <¢T

w> , (665)

where Fj is the magnetic form factor. For F5(0), the Schwinger value F3(0) = 5> is
used. Order counting reveals that this has to be evaluated on the relativistic wave
function, which is denoted as 1. It has been shown in Ref. [120] that the calculation of
this matrix element can be greatly simplified when it is transformed with the Foldy-

Wouthuysen transformation from Sec. 4 without the hyperfine splitting Hamiltonian.
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Applying the transformation the correction term takes the form

N 2N [l t 1 ' i >
(5@H,3(Tl€3) <¢ ‘U U<4 )U (U(E¢—HD)UT) UHUWUY 666
2aN -, = ' 1 ! ;
w <<U¢> ¥ (g 9) 0 (o) e [

The transformation applied on the relativistic wave function gives the nonrelativistic

wave function including the spin i.e.
Uy) = |®) = |njtm) . (667)

For the Foldy-Wouthuysen transformed potential term and the hyperfine splitting
Hamiltonian, Ref. [120] found

-
U(4me

It is important to note that the relativistic hyperfine splitting Hamiltonian remains

g l+... (668)

— —1 — 1
) Ut=-—-3. V2V +
4m, m

UHuU' = Hyg + Hyps + . (669)

after the transformation because the Foldy-Wouthuysen transformation used here
only diagonalizes the Dirac Hamiltonian. In Sec. 4.6, the remaining mixing terms
are neglected, which is not possible here up to the required order. But, through
the transformation, the operators have been separated into mixing and non mixing
operators. The non-mixing part is considered first, which gives the first correction

?0’ Z(—l-) HHFS

Onanlnt) = ora < nit3 E, ~ Hs

[

nj€%> : (670)

To the required order, it is enough to only take terms of Hry up to including or-
der m.(Za)?, which is just the Schrédinger Hamiltonian, into account. The term
V2V/8m? is proportional to the Dirac § and does not contribute for states with
£>1.

There are now basically two ways to determine the contribution §©p 3, from the
non-mixing part. The first approach employs the numerical lattice method [78], which

is usually used to evaluate the contributions in the low-energy part (see Sec. 6.5). The
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resulting numerical value is first fitted to a fraction, before being fitted to a function
of the type a + b/n + ¢/n?.

The second way to determine the coefficient is, to find the first order perturba-
tion of the wave function explicitly and use it to determine the matrix element. Both
methods just evaluate the radial part and the angular algebra is dealt with already us-
ing Wigner-Eckhart theorem [23]. The perturbed wave function is determined based

on

150) — (EiH)IW\@)

(671)
= (E—~ H)|6®) =46V |P) — |D) (D |6V D) .
For the perturbed wave function an ansatz of the structure
|0®) = exp _Zr Z [c; 7* +di r*In(r) ] (672)
n ap p

is made and the coefficients determined by the above equation. This allows to obtain
all but one coefficient which is determined by the condition that the perturbed wave

function has to be orthogonal to the unperturbed wave function i.e.
(®|69) =0. (673)

Both methods are used, which allows to check both results for consistency. In this way
the coefficient 6©p 3, is obtained. For states with ¢ > 2 the result can be formulated

as

1 60* + 1200% + 55¢% — 50 ~ 3

20K (20 +1)2 (403 + 802 + £ — 3)

R S 0+1) )
2nk(20+1) 8n?k({+3)(¢—3))

5O .3n(nk;) = %(Za)Q (
(674)

!
where k = (=142 (5 + 1) is the Dirac quantum number.

The mixing part now has to be treated very carefully. For its evaluation, it
is instructive to consider how the relativistic hyperfine splitting Hamiltonian Hy,

given in Eq. (620), acts on the nonrelativistic wave function. With the notation of
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Eq. (230) this can be written as

% x d] 1 0 [Exdlo) (@ 1 0
o)== _ ==\ . ] (6
T ™\ [Z % o 0 0 ™\ [Z % &)o@

Hygs | D) ~

This shows that the upper component of the bispinor couples only to the lower com-
ponent in the intermediate state and therefore only its lower component has to be
different from zero. As outlined in Ref. [120], this allows to approximate the energy
of the state by its leading term the electron mass m.. The lowest order term of Hay,
for the lower components in Eq. (264) is —m,.. With VV = ZaZ /r® the correction

term is

Za(_, 7) 1
r3 i 2m

. aN .
66H,3m(n€j) = —lm <n3€% ths

e

nje§> . (676)

€

In Ref. [120] the complete contribution 6@y 3(n¥;) was also calculated within a fully
relativistic framework and the result was found to be in agreement with the approach
used here.

Following the explanation of the spinor structure of 6Oy 3, it is possible to
simplify the matrix element and evaluate part of its structure for arbitrary angular
momentum. The result can be expressed as

Zo
mird

oaN -k .
(5@H’3m(’n€j) = Tm <n]€%

nj£%> : (677)

in from of a radial matrix element to be evaluated. This radial matrix element was
already encountered in the high-energy part in Sec. 4.6 and can be evaluated using
known identities mentioned therein. The general form of the correction §©y 3m is

thus

6OH 3m(nt;) = %(Za)2 i (26 +1)(x* -~ 3) ( : 3

45(j+1) (20— 1)(20+3)(¢+ 1) \n2 e(£+1)> - (678)
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8.3.5. I, Form-Factor Correction to the Magnetic Interaction. The
last corrections in the high-energy part now arise from the form factor correction to

the magnetic interaction
& €M,

_ 2
F2(v ) 47

BE - B = Fa(V?) [ 2B (Ro+Fa) | (679)

2m,
l_is and ﬁd can be seen as the generalizations of Eg and I_iD to 4 X 4 matrices. They
are in fact the two terms from By in Eq. (619) when swapping ji and 5 and taking

out a factor of 2rm?2 as was done in the equation above. So they are

o = 302 2 000), (680)
L 3(E.HF-F
ho= = (681)

Up to the considered order, a(Za)?AExyrs, the first two terms in the expansion of
F5(V?) have to be included. The first term is thus

aN

o

6Om4(nt;) = NF3(0) (|6 (hso + hap)| ) = (¥ |8 (hso + Rao)|¥) . (682)

Because the term F3(0) = /2 itself is just of order «, this matrix element has to
be evaluated on the relativistic wave function expanded up to order (Za)? so that
the correction includes all corrections up to order a(Za)?AEgxrs. Through such an
expansion also divergences are avoided, which would arise otherwise when working
with the fully relativistic wave function. The ¢ part in the matrix element is 0 for
states with £ < 2 for the relativistic wave function and therefore only hso has to
be considered for these states. The term in order aAFEyrs for arbitrary angular
momentum and principal quantum number is given as 1/4x. This has been published
in Ref. [85] and can be found by generalizing the known expressions [120, 121] to
general k. By explicit integration for reference states with from £ = 2 to £ = 16 a

generalized expression for the contribution in order a(Za)?AEyrs can be obtained,
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which reads

all of 1 24k +18k2—k—1
JGHA(nej):;[E—I_(Za) (@ 4k3 +4k% -k -1

+3 1 + 1 11-3k
8nlklk n?2k2k—1

1
in terms of the Dirac quantum number k = (—=1)"**2(j + 1).

(683)

The last term is given by the next term in the expansion of F3(V?) and is

Fy0)5—BV* S By = 10— | 22p- {92 (R + Fa) }] (684)

Me 127 L 47

with F§(0) = a/127m. As F3(0)V? already is of order a(Za)?, this operator only has to
be applied to the nonrelativistic wave function. Thus, 3 can be replaced by unity and
) by &. This converts the relativistic operators hs and Ay into their nonrelativistic

counterparts Hs and i_iD and leads to the correction term
aN , o -
00 p5(nt;) = Ton (njes |V? (hso + hpo)| njed) . (685)

Recalling the earlier discussion in Eq. (657), it can be seen that for states with £ > 2

one finds
(5@1-1,5(716]') =0. (686)
8.3.6. Summary of Corrections in the High-Energy Part. This

completes the discussion of the various correction terms in the high-energy part. The
complete high-energy part of the self-energy correction is then the sum of all discussed

corrections

(5@H(n€J) = 5@1-111(715]') -+ (5@1{,2(71@‘) + 5@H,3n(n€j)
+ (SC"‘)H,;;m(TLEj) + 5@H,4(n£j) + 56H75(n€j) .

(687)
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As the discussed for states with ¢ > 2 shows, fortunately, only three terms give a

non-zero contribution. So the high-energy part reduces to
00u(nt;) = On30(nl;) + 0Om 3m(nl;) + IO 4(nl;) (688)

because all other correction terms vanish for the states with £ > 2 considered in this
work. With the results from the previous section, the complete high-energy part of

the self-energy correction is then given as

a1l 1 24k® +18k%2 -k —1
=212 2| 1
OOu(nt;) w{4n+(za) [8/-;3 4% +4Kk? — K — 1

N 1 60¢* + 12003 + 5502 — 5¢ — 3
2k (20+1)2(403 4802 +1¢-3)
3 i+3 2k +1)(k*— 1)
e+ 14+ 1) (26 - 1)(20+ 3)(€+ D) (689)
134G+3)+@+1) 1 4 4
n8k (20+1)(j+ 1) 8n2< P

1-2 &

(25 +1)(2k — 1)(2k + 1)? 3000 + 1) )1 } |

27(G+1)(26+3) (42— 1) K(+3)(—-1)

This can be simplified into a formula depending on the Dirac quantum number sk =

1
(—1Y 235 + 3) exclusively. Thus, the result for the high-energy part is

4K 8k3  (2k+1)2(2k —1)(k+ 1)
+13n 6k +1 +1 4k — 1
n 8|k| kK2(26 +1)  n2?2k(1 — 2k)

0Oy (nt;) = % { ~ 4 (Za)? [ L (P 1)+ L)(6k + 80— 1)

(690)

8.4. RESULTS

It is important to note in this problem that even though both the low-energy
as well as the high-energy part are finite separately for states with £ > 2, it is still
required to consider both parts in order to obtain all relevant correction terms.

The only contribution form the low-energy part is given by Ours(nf;), which
has a similar structure as the Bethe logarithm. It can only be evaluated numerically

for each specific states, using the lattice method of Ref. [78], described in Sec. 6.5
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and Ref. [42]. Results obtained for D states with principal quantum number between
n = 3 and n = 12 are found in Table 8.1. For states with angular momentum ¢ = 3
and ¢ = 4 calculations are carried out for principal quantum number up to n = 10,
the resulting values are given in Tables 8.2 and 8.3. In order to prevent an uncertainty
arising in the prediction of transition frequencies for nuclei with non zero nuclear spin,

Burs is also determined for Rydberg states. The results are given in Table 8.4.

Table 8.1. Low-energy contribution fyrs of the QED self-energy correction for the
hyperfine splitting for D states (¢ = 2) for principal quantum numbers n between 3
and 12. The numbers in parentheses are standard uncertainties in the last figure.

n Burs(nDs/q) Burs(nDs2)

3 —2.06839(5) x 1072 —3.455 22(5) x 1072
4 —1.30299(5) x 1072 —3.793 94(5) x 10~
5 —1.02592(5) x 1072 —3.965 95(5) x 1072
6 —0.943 28(5) x 1072  —4.084 82(5) x 1072
7  —0.93817(5) x 1072 —4.174 23(5) x 1072
8 —0.963 40(5) x 1072 —4.243 45(5) x 1072
9 —0.999 20(5) x 1072 —4.297 92(5) x 1072
10 —1.037 11(5) x 1072 —4.341 30(5) x 1072
11  —-1.07355(5) x 1072 —4.376 27(5) x 1072
12 —1.110 71(5) x 1072 —4.404 75(5) x 1072

The total QED self-energy correction to the hyperfine splitting is then given by
adding the contribution fyrg(nf;) from the low-energy part to the high-energy part
in Eq. (690), which yields

1

s0(nt;) = {_ + (Za)? l 1 (4k+1)(6x + 1)(6x% + 3k — 1)

8k¥ (2k+1)2(2k—1)(k+ 1)
+l§i 6k + 1 +l 4k — 1 + Burs(nt,)
n 8kl k2(2k + 1)  n22k(1—2k) | NI

ir (691)
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The total frequency shift due to the hyperfine splitting can then be found by
combining this result with Eq. (604). Here, the nonrelativistic expansion of the
fully relativistic hyperfine splitting energy is used and, thus, a relativistic and QED

expansion in Za and o simultaneously is obtained. In SI units, it is found to be

0) = Roc Z%* r(N) ®
Vois (4 T 14+rN) 03 14r(N) ||

I F(F+1) = I(I+1) = j(j + 1)]

. {1+(Za)2[ w1l 31, S-8 } (692)
2k?2(26 —1)(26+1)  2n|k| 2n2(2k - 1)
a
™
1
n

1 (46 +1)(6k + 1)(6k* + 3k — 1)
+ 5 (Ze)’ lS_n—g @+ 1228 — )(r + 1)
K 6k+1 1 4k -1
|&] K2(2k + 1) + n22k(1 — 2k) + 'BHFS(nej)] } .

Table 8.2. Low-energy contribution fyrs of the QED self-energy correction for the
hyperfine splitting for F states (£ = 3) for principal quantum numbers n between 4
and 10. The numbers in parentheses are standard uncertainties in the last figure.

Burs(nFs/o) Burs(nfr/z)
—1.021 46(5) x 1072 —0.953 04(5) x 10~2
—0.683 94(5) x 1072 —1.077 62(5) x 1072
—0.504 64(5) x 1072 —1.141 28(5) x 1072
—0.407 32(5) x 1072 —1.182 43(5) x 1072
—0.353 63(5) x 1072 —1.212 34(5) x 1072

(5) (5)
(5) (5)

o~ O O3

9 —0.32400(5) x 1072 —1.23541(5) x 1072
10 —0.308 07(5) x 1072 —1.253 79(5) x 1072

The hyperfine shift is considered for one particular example. The state n = 16,
¢ =15, and j = 31/2 in atomic hydrogen, which has a nuclear spin of I = % If the

total angular momentum j of state |2) couples with I to the total angular momentum
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of the hydrogen atom f = 16, the energy of state |2) gets shifted by

R
Vhf5(16 1531/2) = [1+T—(;/,)]2230£2T(N)9N

x 4.7730327 x 107" {1 + (Za)* [5.632635]

+% (—0.015625) + %(Za)2 [~6.323744 x 107] } (693)
= 254.094 691 40 Hz + 0.076 214 54 Hz

— 0.009 222 13 Hz — 0.000 000 02 Hz = 254.161 683 80 Hz.

Table 8.3. Low-energy contribution fyrs of the QED self-energy correction for the
hyperfine splitting for G states (¢ = 4) for principal quantum numbers n between 5
and 10. The numbers in parentheses are standard uncertainties in the last figure.

n Burs(nGr/2) Burs(nGo)2)

5 —0.368 23(5) x 1072 —0.341 76(5) x 1072
6 —0.147 39(5) x 1072  —0.388 58(5) x 1072
7  —0.01293(5) x 1072 —0.414 24(5) x 1072
8 (
9 (
(

0.072 16(5) x 10~ —0.430 98(5) x 10~2
0.127 85(5) x 10~2  —0.443 13(5) x 1072
10 0.165 33(5) x 1072 —0.452 55(5) x 10~

Including uncertainties for the transition from Sec. 7, |1) « |2), in hydrogen
with the nuclear spin added, the additional hyperfine transition frequency is thus

found as

1) = |n=15,¢=14,j = 29/2, f = 15) , (694a)
2) = |n=16,¢=15,j = 31/2, f = 16) , (694b)
Alhgs 12 = 254.161684(2) Hz — 351.002805(3) Hz, (694c)
Avhgs 12 = —96.8411213(8) Hz, (694d)



where the CODATA 2006 value [22]

is used for the g factor of the proton.

gp = 5.585694 713(46)

221

(695)

Table 8.4. Low-energy contribution fyps of the QED self-energy correction for the
hyperfine splitting for highly excited states. The numbers in parentheses are standard
uncertainties in the last figure.

n £ 2] kK Burs 2j K BHFs

16 15 29 15 0.006 310(5) x 1072 31 -16 —0.002130(5) x 102
16 14 27 14  0.016397(5) x 102 29 -15 —0.003041(5) x 10-2
15 14 27 14  0.006888(5) x 102 29 -15 —0.002795(5) x 10-2
15 13 25 13 0.019372(5) x 102 27 -14 —0.004086(5) x 102
14 13 25 13 0.007 420(5) x 10~2 27 -14  —0.003741(5) x 1072
14 12 23 12 0.023029(5) x 1072 25 -13 —0.005617(5) x 1072
13 12 23 12 0.007794(5) x 10-2 25 -13 —0.005122(5) x 102
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9. CONCLUSIONS

The fundamental interactions of nature are basically described by the standard
model. It contains the elementary particles and provides a set of rules of how these
interact but it also contains a number of free parameters, the fundamental constants,
which have to be fixed by a comparison of this model and actual experiments. These
fundamental constants cannot be explained by the standard model and imply that
the standard model is only an effective low energy limit of a more fundamental theory.

Consequently, the standard model is intensively studied at high energies in order
to find hints at this more fundamental theory. At high energies, even the more
exotic and heavy particles can be observed and not only arise as loop effects as for
low-energy processes. Hence, their characteristics can be measured and compared
to the predictions of the standard model. These investigations have lead to build
experiments, which allow to achieve higher and higher energies. Unfortunétely, in
order to reach the required energy scales as well as minimize energy loss due to
synchrotron radiation, these experiments have reached a scale, at which they can
only be realized by global efforts.

Due to the unprecedented precision, which has been achieved in the study of
the low energy regime of quantum electrodynamics, it has become possible to use
these systems as an alternative for the investigation of the fundamental structure
of interactions. While the effect from highly energetic particles may be very small
in these systems, the accuracy of the measurements and theoretical predictions is
so high that even these high energy effects have to be included. In fact, the most
accurately known fundamental constants, are determined by a comparison of theory
in experiment in this low-energy regime.

In this work, one of the most prominent low-energy systems of quantum electro-
dynamics is investigated, the atom. Here, the focus is set on one-electron ions because
these can approximately be treated as an effective one particle systems when recoil
corrections are included. Moreover, no electron-electron interactions are present, mak-
ing one-electron ions ideal study objects for the study of quantum electrodynamics

and a possible determination of fundamental constants.
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Compared to the theoretical study of free particles though, for bound states a
severe problem has to be overcome. For free particles QED perturbation theory has
a natural expansion in the fine-structure constant o and therefore, every diagram
contributes on a specific order in a. Due to the presence of the interaction with the
core in addition to the interaction with the quantized radiation field, this is no longer
the case in bound states. There, a diagram with a certain order « for the interaction
with the quantized radiation field receives contributions from all orders in Z« for the
interaction with the binding potential, thus destroying the possibility to order the
contributions in a. Therefore, a very careful study of QED theory for bound states
is carried out in this work. For this the work is organized as follows. The theory
is described in Secs. 3, 4 and 5. In Secs. 6, 7 and 8 the theory is then applied to a
number of problems namely, the two-photon decay and the self-energy correction to
the Lamb shift as well as self-energy corrections to the hyperfine structure for highly
excited states. Especially the later two are of great interest for reducing theoretical
uncertainties and enable a determination of fundamental constants in highly excited
Rydberg states.

In Sec. 3, the fully relativistic QED approach is investigated. Based on the
methods developed by Mohr in Ref. [7,8], it is explained how this problem can be dealt
with. An expression for the shift of the bound-state energies is derived based upon
a integral with respect to the energy of the virtual photon. First of all, the integral
has to be separated into a low- and a high-energy part. In the low-energy part only
the interaction with a virtual photon from the radiation field with energy up to the
bound state energy are considered. Because the photon energies are low, the electron
can be described by the bound Dirac equation and the corresponding Coulomb-Dirac
Green’s function. The resulting integral can then evaluated numerically. For the
high-energy part, the electron is basically scattered into free intermediate states as
the virtual photon energy is much larger than the strength of the binding potential.
Thus, it becomes possible to extract problematic terms by making use of a re-summed
perturbative expansion. The resulting integrals are then finite and can be evaluated
again numerically. The final result is then given as the sum of the low- and the
high-energy part. Both parts receive contributions, which are, in fact, of lower order

than the resulting correction. While these lower order terms cancel in the final result,
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they still necessitate high precision arithmetic for the numerical evaluation. With
this approach the energy shift in order o due to the interaction with the radiation
field, but in all orders in the interaction with the binding potential is calculated.

The second theoretical approach discussed in Sec. 4, also makes use of the
separation of the integral over the energy of the virtual photon into a low- and a
high-energy part. Instead of a finite overlapping parameter, an infinitesimal one is
used. Consequently, it becomes possible in the low-energy part to expand the fully
relativistic theory around its nonrelativistic limit because now both the electron as
well as the virtual photon are mainly described by nonrelativistic theory. This nonrel-
ativistic expansion can be achieved by the Foldy-Wouthuysen transformation of the
Dirac equation which gives the nonrelativistic Schrédinger equation plus corrections
in orders of the nonrelativistic expansion parameter v/c = Za. This expansion allows
to uniquely identify the physical origin of the correction terms and provides them with
a face. Even though, for example, the spin-orbit coupling is naturally contained in
the Dirac theory, it is much more apparent in the Foldy-Wouthuysen Hamiltonian in
Eq. (262), where it can directly be identified as the term [(Za)/4m,r®] & -£. Likewise,
corrections due to the relativistic energy momentum relation are spotted while these
are intertwined with the spin corrections in the Dirac equation.

In the high-energy part another expansion in Za is employed. As described high-
photon energies scatter the electron into basically free intermediate states. Hence, the
natural expansion for the high-energy part is in powers of the binding potential, which
also constitutes a Za expansion. The lowest order term without interaction with the
binding potential cancels the mass renormalization and the term with one interaction
with binding potential can be described by an effective Dirac Hamiltonian. Finally,
the two-interaction term is given by a separate Hamiltonian. In turn, both in the low-
and the high-energy part an expansion in powers of Z« is obtained, which is matched
together order by order at the end of the calculation to cancel the dependence on the
overlapping parameter. In this way additionally to the series in a from the interaction
with the radiation field also a series in Z« for interactions with the binding potential

is obtained and a natural ordering of contributions in powers of o and Z« is recovered.
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In Sec. 5, the application of the overlapping parameter both finite as well as
infinitesimal is elucidated in a model problem. It is also illustrated that an infinites-
imal overlapping parameter can be useful for the evaluation of integral with poles
at the boundaries of the integration interval. For this purpose the vacuum polariza-
tion correction to the Coulomb potential, the so-called Uehling potential is calculated
with the help of an infinitesimal overlapping parameter. After the theory has been
explained and discussed in Secs. 3 to 5, it is evaluated for the two-photon decay in
Sec. 6, for QED corrections to the Lamb shift in Sec. 7 and finally for the QED
corrections to the hyperfine structure in Sec. 8.

The nonrelativistic Za expansion of the fully relativistic theory is useful for
many calculations. As in the two-photon decay the photon energy is bounded by the
energy difference of the initial to the final state, the integral over the photon energy
is constraint to nonrelativistic photon energy. This makes it very well suited for an
investigation with the Za expansion. With this, the relativistic corrections in order
(Za)? as well as the leading logarithmic QED corrections of order a(Za)? In[(Za)~?|
are determined in Sec. 6. Furthermore, the nonrelativistic theory can also be formu-
lated in different gauge and the formulation in length gauge [29,45] for the two-photon
decay is also studied. It is shown that gauge invariance holds holds within the frame-
work of a "hybrid” gauge transformation, in which the gauge transformation of the
wave function is ignored. Again, the nonrelativistic theory is able to illustrate the
physical origin of the corrections and able to reveal interesting correlations between
the terms in the gauge transformation. The relativistic corrections to the two-photon

decay rate are given in the form
T=To [1+mn(Za)+...]. (696)

For the 25-1S5 two photon decay the coefficient in order (Za)? correcting the nonrel-
ativistic result of Goppert-Mayer in Ref. [70] reads

vy = —0.6636 . (697)

QED self-energy corrections with the Za expansion are then considered in Sec. 7.

Here, a special focus is set on Rydberg states. These are highly excited states with
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high angular momentum and offer the advantage that not only the general magnitude
of the corrections are relatively small but also that they are free of nuclear size effects.
This study is supplemented by an overview over all additional correction terms, which
have to be considered in order to theoretically predict transition frequencies in one-
electron ions. These additional terms are due to the finite nuclear mass and included
reduced mass effects of the electron as well as recoil terms. In this way, very accurate
theoretical predictions for the transition frequencies between Rydberg states in one-
electron ions can be obtained. For one such transition |1) < |2) between highly
excited Rydberg states, where |1) is the state with quantum numbers n = 15, £ = 14
and 7 = 29/2, and |2) has quantum numbers n = 16, £ = 15, and j = 31/2, the

transition frequency including all know corrections for A" = ‘Ne* is found to be
V12 = 7.081 331 009 805 59(4736) THz, (698)
where the frequency shift due to QED self-energy corrections alone is
vqep = —0.000 000 001 261 66 THz. (699)

With the availability of high precision spectroscopy for optical transitions using
frequency combs, these theoretical predictions can be very interesting for numerous
projects. Of special importance here is the possibility of determining a more accurate
value for the Rydberg constants in Rydberg states which is described in Sec. 7.5.3
and currently being pursued at NIST. The reason is the following, for lower-lying
states the theory contains basically two parameters which limit the accuracy of the
theoretical prediction, namely, the Rydberg constant and the RMS charge radius
of the nucleus. For a determination of either of these out of a comparison of high
precision spectroscopy and the theoretical prediction, one of them has to be known
from another source. However, both of these parameters are highly intertwined,
which implies that if one changes the other changes as well. This makes Rydberg
states so interesting because in them only the Rydberg constant is contained as a free
parameter. Another possible use of Rydberg states for the determination of nuclear

masses is explored in Sec. 7.5.4.
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A possible additional uncertainty in such a determination of the Rydberg con-
stant for nuclei with a non zero nuclear spin could arise from the hyperfine structure.
Therefore, in Sec. 8 QED self-energy corrections to the hyperfine structure up to
order a(Za)?AEgrs are calculated for the highly excited Rydberg states considered
in Refs. [83-85, 88] within the Za expansion. The result is a beautiful example of
the power of the nonrelativistic expansion as the resulting frequency shift can be
expressed as the leading nonrelativistic term times a factor, which contains the rel-
ativistic and QED corrections in a structured expansion, where each correction can

be uniquely identified. It reads

Rwc 2% tN) &

Vhfs:1+r(./\/') n® 1+r(N) |k |
gN .
1242 — 1 3 1 3-8k

{ [252(25 "D +1) Tone TR = 1)} (700)
al « o[ 1 (4k+1)(6k + 1)(6K% + 3k — 1)
ML) [8»«;3 2r+ 122k —1)(r+ 1)
13k 6541 1 4k—1

T BTR @R £ 1) | n?2k(1 = 2n) *ﬂHFSWH -

The first term is due to the relativistic corrections of the nonrelativistic result, ob-
tained by expanding the fully relativistic result in Za, the terms in order aAEyrs
and a(Za)zAEHFs are due to QED corrections. With this result also the additional
hyperfine splitting for the transition considered before for a nucleus with non zero nu-
clear spin can be determined. For hydrogen with nuclear spin I = -;— for the transition

|1) & |2), it is found with

1) =|n=15¢=14,j = 29/2, f = 15 , (

2) = |n = 16,£ =15,/ = 31/2, f = 16) , (
Avpg 12 = 254.161684(2) Hz — 351.002805(3) Hz, (701c
Abygs 12 = —96.841 121 3(8) Hz, (
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In the end, it is important to stress once again that Rydberg states offer unique
opportunities because they constitute a nearly pure QED system. Through the de-
termination of the Rydberg constant free of nuclear size effects, they can help the
investigation of the recent discrepancy of the RMS charge radius of the proton. In
muonic hydrogen, where a muon instead of an electron is bound by the proton, the
radius has been found as [100]

r, = 0.84184(67) fm, (702)
which deviates from the 2006 CODATA value of [22]
r, = 0.8768(69) fm (703)

as well as with other values from scattering experiments [101] by 5.00. Because the
nuclear size correction and the Rydberg constant are so intertwined, using the 2006
CODATA proton RMS charge radius [22] in the muonic hydrogen measurement would
lead to a determination of the Rydberg constant with a value, which reads [100, 125]

Rc=3289841960251(5) kHz. (704)

Naturally, this is in disagreement with the 2006 CODATA value for the Rydberg
constant [22]

Rooc = 3289841960 361(22) kHz. (705)

The Rydberg constant determined in Rydberg states would now be independent of
nuclear size effects and therefore ideally suited to clear up these disagreements because
the effects not related to the nuclear size could be quantified exactly.

Partial results from this work have been communicated to the scientific commu-
nity in Refs. [47,59,83-85].
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