
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 May 1990

Input Data Pattern Encoding for Neural Net Algorithms Input Data Pattern Encoding for Neural Net Algorithms

Hyeoncheol Kim

George Winston Zobrist
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kim, Hyeoncheol and Zobrist, George Winston, "Input Data Pattern Encoding for Neural Net Algorithms"
(1990). Computer Science Technical Reports. 68.
https://scholarsmine.mst.edu/comsci_techreports/68

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/68?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

INPUT DATA PATTERN ENCODING
FOR NEURAL NET ALGORITHMS

*H. Kim and G. W. Zobrist

CSc-90-3

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314)341-4491

*This report is substantially the M.S. thesis of the first author,
completed May 1990.

I l l

ABSTRACT

First, a brief overview of neural networks and their applications are described,

including the BAM (Bidirectional Associative Memory) model.

A bucket-weight-matrix scheme is proposed, which is a data pattern encoding

method that is necessary to transform a set of real-world numbers into neural

network state numbers without losing the pattern property the set has. The

scheme is designed as a neural net so that it can be combined with other data

processing neural nets. The net itself can be used as a bucket-sorting net also.

This shows that traditional data structure problems can be an area that neural

networks may conquer, too.

A simulation of the net combined with the BAM model on a digital computer

is done to show performance of the proposed data encoding method with both

non-numerical image pattern and numerical data pattern examples.

Table of C ontents

ABSTRACT ii

ACKNOW LEDGEMENTS iii

LIST OF FIGURES vi

LIST OF TABLE viii

SECTION

I Artificial Neural Networks 1

A Fundam entals.. I

1 N eu rons... 1

2 Network o p e ra tio n ... 2

3 Differences of neural computing from other computing . . . 1

B History, Properties and Their Applications... 5

C Bidirectional Associative Memory (BAM)... 7

1 Introduction... 7

2 T ra in ing ... 8

3 Recalling... 10

II Data Encoding 12

A Input Form ats.. 12

B Encoding schemes.. 14

1 Binary scheme.. 16

2 Bucket-Weight Matrix (BWM) sc h em e 17

III Binary Pattern Net 22

A Training s t e p .. 22

V

B Recalling step (Bucket sorting) ... 25

C A nalysis.. 28

1 Training time and memory u s e d ... 28

2 Noise filtering.. 29

IV Examples 32

A Example with a numeric data p a tte rn ... 32

B Example with a non-numeric image pattern 31

V Conclusion and further research 43

APPENDICES 45

A Programming of BAM model .. 15

B Programming of Bucket-weight matrix schem e.................................... 52

C Programming of binary pattern net (bucket sorting n e t) 56

D The result of bucket sorting using bucket sorting net 59

E The data used in examples in chapter IV'-A.. 65

REFERENCES 71

vi

VITA 72

List of Figures

! Biological n e u ro n ..

2 Artificial neuron with activation function ...

3 Topology of a BAM, showing the two fields of neurons connected by

synapses...

1 A taxonomy of nine neural n e t s ..

5 Backpropagation nets testing with different input form ats............

(j Image recognition..

7 Training step of binary-pattern net. The matrix C is the bucket-

weight matrix. N numbers are encoded into n * b numbers

8 Recalling step of a binary-pattern net. This step is used when bucket

sorting is required. The weight matrix C is from a bucket-weight

matrix..

9 The net of the recalling step for a bucket sorting. The link weights

are the key of the sorting..

10 Bucket sorting time (in milli-seconds) for the binary-pattern net.

(a) when the number of data is fixed at 1000 and (b) when the

number of buckets is fixed at 1 0 0 ...

I 1 Three standard measures of scalability; problem size can be from

training patterns, neurons, or sy n ap ses ..

12 Trade-ofT between accuracy of recognition and noise-tolerance by

varying bucket sizes..

13 Matrix A is binary pattern matrix for company A, and matrix B is

for company B..

11 Graphs of values in table VI and results of recalling with different

i n p u t s ..

15 Binary data extracting from a visual image p a t t e r n

VII

12
8

12

II

16

23

26

27

27

29

31

31

35

36

VII]

16 Two input p a tte rn s .. 36

17 Two possible noisy patterns of pattern 2 .. 37

18 Input pairs for tra in ing ... 38

19 Recalling of noisy patterns and its incorrect o u t p u t 39

20 Extracting vector values from image pattern 1 in figure 1 6 39

21 Recalling of noisy patterns and its correct o u tp u ts 11

IX

List of Tables

I Input data and its target output for backpropagation t e s t 13

II Results when 2 different types of inputs are used............................... 15

III 3 different types of inputs and desired outputs for 2 patterns trained

by backpropagation... 19

IV 3 different types of distorted inputs for 2 p a tte rn s 20

V Results of recalling of the trained n e t .. 21

VI Weekly closing prices of company A and B ... 33

VII Noise rates of two m ethods... 11

I Artificial Neural Networks

A Fundam entals

1 Neurons

Artificial Neural Networks are biologically inspired. Artificial Neural networks

are composed of elements that perform in a manner that is analogous to the most

elementary functions of the biological neuron. Figure 1 shows the corresponding

components of the brain which inspired artificial neural networks.

The neuron is the fundamental cellular unit of the nervous system and in partic­

ular the brain. Its nucleus is a simple processing unit which receives and combines

signals from many other neurons through input paths called dendrites. If the com­

bined signal is strong enough, it activates the firing of the neuron which produces

an output signal; the path of the output signal is called the axon.

An estimated 10u neurons participate in 1015 interconnections over transmis­

sion paths in the human brain. The axon (output paths) of a neuron splits up and

connects to dendrites (input paths) of other neurons through a junction referred to

2

as a synapse. The amount of signal transferred depends on the synapse strength

of the junction. This synaptic strength is what is modified when the brain learns,

and the synapse can be thus considered the basic memory unit of the brain.

Figure 2: Artificial neuron with activation function

The artificial neuron was designed to mimic the first-order characteristics of

the biological neuron. The artificial neuron has many input paths (dendrites) and

combines the values on these input paths. The combined input is then modified

by an activation function. This transfer function can be a threshold function or

a continuous function of the combined input. The value output by the transfer

function is generally passed directly to the output path of the neuron connected to

input paths of other neurons through connection weights which correspond to the

synaptic strength of neural connections. Figure 2 illustrates the above description.

2 Network operation

There are two main steps in the operation of a network - Learning and Recall.

Learning is the process of adapting the connection weights according to a prede­

termined procedure so that each input vector produces the desired output vector.

Learning algorithms are categorized as supervised and unsupervised. Supervised

3

learning requires the pairing of each input vector with a target vector representing

the desired output. For each input vector, a desired output vector is presented

to the system, and the network gradually configures itself to achieve that desired

input/output mapping. Hopfield nets[lO] and perceptrons are trained with super­

vision. Such learning is generally some variation on one of three types :

1. Ilcbbian learning where a connection weight is incremented if the product

of the excitation levels of both the input and desired output are high. That

is, a neural pathway is strengthened each time it is used. In symbols:

it>ij(n + 1) = Wij(n) + aOUTiOUTj

where

W{j(n) — the value of a weight from neuron i to neuron j prior to adjustment

Wij{n+ 1) = the value of a weight from neuron i to neuron j after adjustment

a = the learning rate coefficient

OUT{ — the output of neuron i and input to neuron j

OUTj = the output of neuron j

2. delta rule learning based on reducing the error between an input and its

desired output. In symbols:

8 = T — A

A,- = Tjbxi

u)i(n + 1) = Wj(n) + A ,

where

8 = the difference between the desired output T and the actual output A

t] — learning rate coefficient

A,- = the correction associated with the ilh input x,

Wi(n-\- 1) = the value of weight i after adjustment

W{(n) = the value of weight i before adjustment

3. competitive learning in which processing elements compete among each other

and the one which yields the strongest response to a given input modifies itself

to become more like that input.

Unsupervised learning requires no target vector for the output. The learn­

ing algorithm modifies network weights to produce output vectors that are con­

sistent. Nets trained without supervision, such as the Kohonen’s feature-map

forming nets[9], are used as vector quantizers or to form clusters. No information

concerning the correct class is provided to these nets during training.

Recall refers to how the network globally processes an input vector and creates

a response of an output vector.

3 Differences of neural computing from other computing

Artificial neural networks exhibit a surprising number of the brain’s characteris­

tics. The following are some of their capabilities and differences from traditional

computing.

1. learning by examples : neural networks generate their own rules by learning

from being shown examples.

2. distributed associative memory : the difference is the way to store informa­

tion. Neural computing memory is both distributed and associative. The

connection weights are the memory units of a neural network. Two proper­

ties can be obtained here.

(a) generalization : once trained, a network’s response can be, to a degree,

insensitive to minor variations in its input. This ability to see through

noise and distortion to the pattern that lies within is vital to pattern

recognition in a real-world environment.

(b) fault tolerance : because information is not contained in one place,

but is distributed throughout the system. Neural nets can survive the

failure of some nodes.

3. parallelism : neural architectures provide a natural model for parallelism

since each neuron is an independent unit. A massively parallel architecture

like the human brain can solve serially operated computer’s slowing-down

problems in many applications.

4. pattern recognition : neural computing systems possess the ability to match

large amounts of input information simultaneously and then generate cate­

gorical or generalized output as well as the ability to learn and build unique

structures for a particular problem.

5. abstraction : some artificial neural networks are capable of abstracting the

essence of a set of inputs. In one sense, with this ability to extract an ideal

from imperfect inputs, it might learn to produce something that it has never

seen before.

B History, Properties and T heir A pplications

When the perceptron was first developed in the 1950s by Frank Rosenblatt, it

created a considerable sensation. Artificial Intelligence was also affected, as the

perceptron was based on biological and psychological approaches to computing

architectures. AI was firmly rooted in logic and rules.

In the middle of 1960s, Minsky and Papert showed conclusively one vital flaw

in the perceptron theory. They proved that it was incapable of doing a class of

problems know’n as the exclusive-OR. As a result, artificial neural nets and other

6

biologically-based approaches to computing lapsed for nearly two decades until

backpropagation was invented in the early 1980s, providing a systematic means for

training multilayer networks, thereby overcoming limitations presented by Minsky.

After that, interest in artificial neural networks has grown rapidly over the past

few years. Backpropagation has been used in many impressive demonstrations of

artificial neural network capabilities such as data compression, signal processing,

noisy filtering, etc. Many other network algorithms have been developed that

have specific advantages, such as counterpropagation networks, Hopficld nets, as­

sociative memory, adaptive resonance theory, Boltzmann machines, cognition and

more. In general, those nets belong to three big models according to their prop­

erties. A brief description of the three models[5] and their applications are given

below :

1. Associative M em ory M odel offers many of the computational capabil­

ities of neural networks. This model is a mapping from data to data, a

mathematical abstraction from the familiar associative structure of human

and animal learning. This model can be used for simple visual processing.

The network can associate or map variations of particular patterns. The

model gives the network fault tolerance because input patterns are stored in

a distributed fashion throughout the network.

2. O ptim ization M odel gives solutions to very difficult combinatorial opti­

mization problems, such as the traveling salesman problem which is an NP

(nondeterministic polynomial) complete problem. This property can be used

to perform many difficult tasks in computer vision, such as computing mo­

tion and brightness perception, surface interpolation, and localizing edges.

This property is very important for real-time vision systems such as adaptive

flight-control systems.

7

3. Self-organization lets neural network based systems adapt to unpre­

dictable changes in their environment and unexpected situations that cannot

be described mathematically. Self-organization is effective for dealing with

problems that have a complicated or impossible-to-define algorithm, and it

can be used for robotic control. Self-organization will enable control with

inaccurately known mechanical structures.

Combinations of neural-network properties will become even more powerful.

For example, a combination of self-organization and optimiza tion can be useful for

robotic-control path minimization and collision avoidance.

Ncurocomputing is very powerful in many problems that humans do easily and,

seemingly without thinking, such as language processing, data compressing, char­

acter recognition, pattern recognition, signal processing such as prediction and

system modeling, financial and economic modeling, and optimization problems.

Adaptive expert systems can be a good commercial product, which take advan­

tage of the prodigious pattern recognition, self-programming, learning, and fault

tolerance capabilities of neural networks by using them as front ends for rule-based

and knowledge-based expert systems.[8] As neural networking systems develop,

they will play an important role in furthering many intelligent information pro­

cessing technologies and applications.

C B idirectional A ssociative M em ory (B A M)

1 Introduction

Human memory is often associative; one thing reminds us of another, and that, of

still another. The BAM is a simple nonlinear neural-network associative memory

that recalls or content-addresses stored associations (x,y) by minimizing a system

energy. The BAM accepts an input vector on one set of neurons and produces a

related output vector on another set as the input rolls into the nearest energy min­

8

imum. Figure 3 shows the basic BAM configuration.[3] The BAM is a two-layer

feedback network of interconnected neurons. Patterns are stored in the synapses

between the neurons. The state of the neurons represents a short-term mem-

ory(STM), as it may be changed quickly by applying another input vector. The

values in the weight matrix form a long-term memory(LTM) and are changeable

only on a longer time scale, using techniques to be discussed later. The short-term

memory (STM) reverberations gradually seep pattern information into long-term

memory (LTM), the synapses between the neurons. Associative memories are

fundamental computing structures of artificial neural system and can be naturally

implemented on neurocomputers.

Figure 3: Topology of a BAM, showing the two fields of neurons connected by
synapses

2 Training

In a BAM, all synaptic information is contained in an n-by-p connection matrix

M which is long-term memory. With matrix M between/^ and FB, all inputs

quickly map to a pattern of stable reverberation. The training in BAM is Hebbian

9

learning. A BAM learns a particular set of associations (Mi, By), (Ar7i, Em) by

summing bipolar correlation matrices. The learning scheme tends to place distinct

associations (A,, B,) at or near local energy minima. The number of patterns to

be stored and recalled cannot be more that the number n of neurons in f A or the

number p of neurons in Fb ■ BAM correlation learning improves if bipolar vectors

and matrices are used instead of binary vectors and matrices. Bipolar matrices

are binary matrices with — Is replacing Os. The bipolar version of a binary pattern

Ai = (1 0 1 0 1 0) is A’i = (+ 1 — 1 + 1 - 1 +1 — 1). Assume that X and Y

will denote the respective bipolar version of the binary vectors A and B.

The BAM learning scheme converts each binary pattern pair (A,, B,) to a bipo­

lar pair (A',-, V’,), converts them into a matrix Xj'Yi, and then adds up the matrices

M = X f Tj -f A'.Jy2 + .. ■ + A^y7,- where the colume vector A f is the vector transpose

of the row vector A', .

Suppose two binary associations are trained in the BAM

Ay = (1 0 1 0 1 0) By - (1 1 0 0)

a 2 = (i i i o o o) b 2 = (1 0 1 0).

Convert these binary pairs to bipolar pairs:

A'i = (1 -1 1 -1 1 -1) Yy = (1 1 -1 -1)

x7 = (i i i - i - i - i) y2 = (i - i i - i) .
Convert these bipolar vector pairs to two bipolar correlation matrices and compute

the weight matrix M = XfYy + X jY 2:

(1 1 - 1 - 1 \ (1 _ i i - i N l 2 0 0 - 2 \
- 1 - 1 1 1 i - i i - 1 0 - 2 2 0

1 1 - 1 - 1
+

i - i i - 1 2 0 0 - 2
- 1 - 1 1 1 - i i - i 1 - 2 0 0 2

1 1 - 1 - 1 - i i - i 1 0 2 - 2 0
 ̂ - 1 - 1 1 ̂ - i i - i 1 J l - 2 0 0 2)

10

The matrix element m,y indicates the symmetric synapse between neurons a,

and b{. The synapse is excitatory if m,j > 0, inhibitory if m,y < 0. An association

(.4,, B{) from M can be erased by adding — A',7 4, to M. The BAM energy E of as­

sociation or state (.4,, Bt) is In the example, /^(Ai, B\) = £’(-42, B2) =

-G.

3 Recalling

Suppose that an input pattern A is presented to BAM field FA. The n neurons

across FA have their binary values 1 or 0. Each neuron a, in FA fans out its binary

value across the p pathways and the synaptic value m,j multiplies the binary value

a,. Each neuron bj in Fg receives a fan-in of input products a,m,j from each of

its n synaptic connections.
n

Oj = aim ij
i = l

We compute the output vector, given input vector .4j.

O = A jM

/ 2 0 0 - 2 \

0 - 2 2 0

2 0 0 - 2

- 2 0 0 2

0 2 - 2 0

V - 2 0 0 2)
(4 2 -2 -4)

Now threshold this vector by applying the threshold rule :

bi=*
1, ifo, > 0,
0, ifo, < 0,
unchanged, ifo, = 0

Then threshold(O) = (1 1 0 0) which is the desired output J3L.

Neuron bj then fans out its output signal across the n pathways m,j to each

neuron a,- in FA. Each a, then generates its binary signal from all its summed

inputs and sends it back to Fg. And round and round the BAM goes. Each

11

pass around the loop causes the system to descend toward an energy minimum,

the location of which is determined by the values of the weights.

The BAM is error-correcting. For example, if an incomplete or partially incor­

rect vector is applied at A, the network tends to produce the closest memory at B,

which may be required, but the network converges to the nearest stored memory.

For example, the input A = (0 1 1 0 0 0) is just A2 perturbed by 1 bit. Then AM

= (2-2 2 -2) = > (l 0 1 0) = B2, and thus A evokes the resonant pair (M2, B2).

12

II D ata Encoding

A Input Form ats

A taxonomy of nine important neural nets is presented in figure 4.[4] This taxon­

omy is first divided between nets with binary and continuous valued inputs. Below

this, nets are divided between these trained with and without supervision.

Neural nets for fixed patterns

Binary Input

Supervised

"Hopfield net
-Hamming net
L bam

Unsupervised

L c a rp e n te r/
Grossberg net

Continuouswalued^ Input

Supervised Unsupervised

■perceptron
m ulti-layer

perceptron
• backpropagation

-Kohonen
self-organizing

feature maps
*“ counterpropagation

Figure 4: A taxonomy of nine neural nets

Many association memories and classifiers, such as the Hopfield net, Hamming

net, bidirectional associative memory and Carpenter/Grossberg net use binary

data as their inputs. These nets are most appropriate when exact binary repre­

sentations are possible as with black and white images where input elements are

pixel values, or with ASCII representation of each character. These nets are less

appropriate when input values are actually continuous, because a fundamental rep­

resentation problem must be addressed to convert the analog quantities to binary

values. [4]

Although the other nets, such as the perceptron, backpropagation and Kohonen

training nets can use continuous input data, they produce better classified results

13

when they use binary inputs. As the data go through hidden layers, they are

compressed into the range of 0 ~ 1 by a sigmoid function or hard limit threshold

of each neuron. So using binary inputs lets each neuron make a more accurate

decision. Three different data patterns are tested on a backpropagation net that

can use continuous inputs to see if binary inputs lead the net to a more accurate

classification than continuous inputs.

Table I: Input data and its target output for backpropagation test

pattern continuous-valued input desired output

pattern A 45 13 32 5 4 1 0 0 0 0

pattern B 50 32 23 45 49 0 0 10 0

pattern C 4 19 37 24 11 0 0 0 0 1

Table I shows the continuous-valued input data and desired outputs to be tested

on a backpropagation net. To represent the continuous-valued inputs with binary

inputs, binary digits are used. That is, 45 is (0 0 0 0 1 0 1 1 0 1) in binary. For

each decimal number, 10 digits are used in binary in this example. So 50 neurons

are used in an input layer when binary inputs are used, while 5 neurons are used

when continuous-valued inputs are used. Besides the input layer, there arc 3 more

layers, 2 hidden layers which have 4 neurons each and an output layer which has

5 neurons. For both cases, the net is trained 10000 times, respectively. The

backpropagation nets are shown in figure 5. The result is shown in table II.

As seen in table II, although pattern C is classified correctly, pattern A and

pattern B are not classified when continuous-valued inputs are used in backprop­

agation. Since pattern A and B produce the same outputs (0.5 0 0.5 0 0) even

after 10,000 training steps, there is no hope of convergence into (1 0 0 0 0) and

(0 0 1 0 0), respectively. On the contrary, when binary inputs are used, all three

14

Output layer

Hidden layer

Hidden layer

Input layer

Figure 5: Backpropagation nets testing with different input formats

patterns, A, B, and C are classified correctly and produce almost the same actual

outputs as those desired after 10,000 training steps. So using binary inputs helps

the net to recognize patterns more accurately than using continuous valued inputs.

Binary inputs provide the net a better degree of fault tolerance or robustness than

continuous inputs. In the example above, five real-valued numbers are distributed

to 50 binary valued neurons. So damage to a few nodes out of the 50 nodes or

links need not impair the overall performance significantly. Damage to few nodes

out of 5 real valued nodes will cause a great damage to performance of the net.

B Encoding schem es

Many current neural net algorithms are developed for pattern recognition. It is

natural to feed the nets a pattern for its input, and the nets will consider a set

of input data as one pattern. How to extract data from an input pattern is

important, no matter whether it is an image pattern or a numeric valued pattern.

If the input pattern is an image pattern, it is rather easy to get binary data

from the image pattern. Figure 6 shows a set of binary inputs for the letter A

drawn on a grid.[l] If a line passes through a square, the corresponding neuron’s

Tabic II: Results when 2 different types of inputs are used

inputs testing patterns actual outputs

pattern A 0.51 0.01 0.49 0.01 0.01

continuous inputs pattern B 0.51 0.01 0.49 0.01 0.01

pattern C 0.01 0.0 0.0 0.0 0.99

pattern A 0.99 0.01 0.0 0.01 0.01

binary inputs pattern B 0.0 0.0 0.99 0.0 0.01

pattern C 0.01 0.0 0.01 0.0 0.99

input is one; otherwise, that neuron’s input is zero.

In many real-world problems of practical interest, the patterns to be trained

and recalled in a neural net are described by a set of decimal numbers rather than

ready-to-use binary numbers from a visual image pattern. For example, suppose

that we want to implement a system that analyzes the stock price in a stock market

using a neural network. The data to be used in the neural net algorithm is weekly

closing stock prices of a company for a certain period, which is an array of decimal

numbers, not binary numbers. And the data set has its own unique pattern.

It is more natural to tell a neural net algorithm the pattern, not just data itself

because the current algorithms are developed to be good at pattern recognition.

There could be several different types of patterns according to the properties and

purposes of the applications. The pattern used here is one that depends on the

trend (up or down) of data value. For example, a set of data { 2, 4, 8, 11 } is real

data which has an ’’ascending order” pattern. { 12, 14, 23, 40 } has a ’’ascending

order” pattern also. But it is a little different from the former one because the

ratio of rate is different. Even though there are some applications in which a data

16

Figure 6: Image recognition

value itself is important, most applications use a pattern of the data, not just the

value itself. Therefore, we must have a means to encode real-valued numbers into

binary neural state numbers without losing its pattern. The converted binary data

should have the same pattern that the real data had.

A new scheme is proposed to represent real-valued numbers by neuron state

binary numbers, which is essential in solving numerical problems on neural net­

works. One way of mapping the positive integer space onto the neuron state space

will be shown before the new transformation method is considered. Comparisons

of the two schemes with examples will be considered also.

1 Binary scheme

The easiest way of converting numbers into binary data is to use binary digits. For

example, 9 is expressed by 1001. This scheme is used in examples in the previous

section to show the performance of binary inputs over continuous valued inputs.

17

A number N uses [log2(Ar + 1)] bits to express itself in binary. If the number of

elements of a data set is D, then D * [log2(Ar + 1)] bits are required. Despite the

simplicity, this scheme has the following problems when it is used in neural net

algorithms.

• Not noise-tolerant : Even a small distortion in a value might give rise to

a large error in the binary number represented. For example, if a number 7

(0111) decreases by 1 to 6 (0110), only 1 digit is contaminated in the binary

number. What if the number 7 increases by 1 to 8? The 0111 becomes

1000. All of the 4 digits are contaminated completely even though the

decimal number has just a single digit of noise.

• Not fault-tolerant : Even a single failure in a highly significant bit gives

rise to a large error in the number represented. For example, if the most

significant bit of (1 0 1 10 1) which is -15 in decimal is corrupted, it becomes

(0 0 1 1 0 1) which is 13.

• Obscure whole pattern : It is a set of data, not an clement of the set,

that has a pattern. Converting each decimal number into a binary number

can not represent the pattern that the set has. You can not see the forest

for the trees.

2 Bucket-Weight Matrix (BW M) scheme

Each element from a data set with a certain range of values is expressed with

a number of buckets. The bucket corresponding to the element’s value is set

to 1, and the rest are set to 0. The number of buckets is determined by the

degree of distortion tolerance to be used in an application. For example, if the

input values of a pattern range from 0 to 8 and the number of buckets is 4, then

(the range o f input values)/(ihe number o f buckets) = (8 — 0)/4 = 2 is the

size of each bucket as well as the size of distortion tolerated. The first bucket

corresponds to values from 0 to 2, and the second bucket is for values from 2 to 4,

and so on. Since there are 4 buckets, each number is represented by 1 digits, and

each digit represents each bucket. If the bucket contains the number, it is set to

1, and the other buckets, that is, digits are set to 0. A number I is represented by

0100, and 7 is represented by 0001 because the number 4 belongs in second bucket

and the number 7 in fourth bucket. So the elements whose values are in the same

bucket’s range are represented the same. A number 3 is represented by 0100 just

like a number 4 because the second bucket represents elements whose values are

more than 2 and less than or equal to I. Noise filtering ability can be obtained in

this way.

Doing this for every element makes a so-called bucket-weight matrix for the data

set. The matrix has a property of the pattern that the data set had. Besides

the pattern keeping ability, this scheme has a good noise-filtering ability and works

even with negative numbers and fractional numbers. This scheme will be discussed

in the next chapter in more detail.

The following example will show how well the two schemes filter distorted

patterns. Table III shows the three different input types from the three different

schemes mentioned above for two patterns to be learned by backpropagation. The

assumption of input data range and bucket numbers in a BWM scheme representa­

tion are the same as the ones mentioned above. These input data will be learned

separately with the same desired outputs for each pattern. The nets arc trained

10,000 times with the inputs, respectively. Table IV shows the distorted inputs of

the data in table III. The bold faced digits are the ones contaminated by a change

of 1 in the decimal input value.

As seen in table IV, for a small distortion in a decimal number, that is, 7

8, the data using the binary scheme are corrupted completely, that is, 0111

19

Table III: 3 different types of inputs arid desired outputs for 2 patterns trained by
backpropagation

pattern scheme inputs desired outputs

pattern A

non-binary 7 4 2

1 0binary 0111 0100 0010

BWM 0001 0100 1000

non-binary 2 5 6

pattern B binary 0010 0101 0110 0 1

BWM 1000 0010 0010

1000, while the data using the BWM scheme are not corrupted. This is the worst

case of the binary scheme because a small distortion in non-binary input causes

100% of the binary bits to be corrupted. The worst case in the BWM scheme is

when a distorted number is out of its original bucket. In pattern B of table 111

and table IV, the number 5 belongs to the third bucket, and the distorted number

4 belongs to the second bucket. So the BWM scheme input 0010 becomes 0100,

that is, at most 2 bits are changed in the worst case of the BWM scheme no matter

how long the inputs are. These three different types of inputs are recalled, and

the results arc illustrated in tabic V.

As seen in table V, the binary scheme could not filter the distorted inputs of

pattern A while the other two schemes corrected the input errors and produced

correct outputs. The distorted input of pattern A using the binary scheme produce

wrong outputs which axe closer to the desired outputs of pattern B and cause

the net to make a wrong decision. From the results of table II and table V,

it is shown that the BWM scheme helps a net’s accuracy of classification over

continuous inputs and helps noisy filtering and fault-tolerance capabilities over a

20

Table IV: 3 different types of distorted inputs for 2 patterns

pattern scheme noisy inputs desired outputs

pattern A

non-binary 8 4 2

1 0binary 1000 0100 0010

BWM 0001 0100 1000

non-binary 2 4 6

pattern B binary 0010 0100 0110 0 1

BWM 1000 0100 0010

binary scheme.

In next chapter, this BWM scheme will be implemented in a neural net called

the Binary Pattern Net, and a bucket sorting method using the net will be given,

too.

21

Table V: Results of recalling of the trained net

pattern scheme actual 01

w/ correct inputs
jtputs

w/noisy inputs
desired output

pattern A

non-binary 0.99 0.01 0.99 0.01

1 0binary 0.99 0.01 0.22 0.78

BWM 0.99 0.01 0.99 0.01

non-binary 0.01 0.99 0.01 0.99

pattern B binary 0.01 0.99 0.01 0.99 0 1

BWM 0.01 0.99 0.04 0.96

99

I l l Binary P attern N et

The Bucket-weight matrix scheme, which was proposed in the previous section

briefly, converts a set of input numbers into a set of neural net state binary numbers

without losing its unique pattern. T his scheme is implemented in a neural net-like

algorithm so that this net can be combined with other nets, which would be nets

that have real world data processing ability. This binary pattern net can be used

as a bucket sorting net as will be shown later in this chapter.

A constant number of buckets are generated according to the range of values

in an input data set. Each element goes to its bucket and makes the bucket value

1 and the others 0. A (number o f buckets) * (number o f elements) matrix is

obtained after all of the elements in the set are put in their buckets. The pattern

in the data set is determined according to how big and where, relatively, in the

set each element is. Like other nets, the operation of this net has 2 steps, the

training step and the recalling step. Since the bucket-weight matrix is generated

in the training step, the bucket-weight matrix scheme is performed in this step.

The recalling step is necessary for bucket sorting of the data set.

A Training step

In this step, a set of numbers becomes a set of binary pattern numbers. Figure 7

illustrates the training model of the Binary Pattern Net.

Going through this net, n numbers become n * b binary numbers that are the

bucket-weight matrix. The neurons in the first layer have input numbers, and the

connection weights from the first layer to the second layer are initialized with I f

that is the upper limits of buckets. The summation function of each neuron in the

second layer is Nelij = Aj — B\, and the transfer function is a threshold function

that is shown in figure 7. The Netij value represents the distance between an

element, Aj, and a bucket boundary, B;. The transfer function in the C layer is a

23

A(i) « Input data element
n « the number of elements in the input data
max * the maximum value of the input data range
min - the minimum value of the input data range
b » the number of buckets
B(i) - ((max-min+1)/b) * i

NETij* Aj-Bi
OUTij=r -cd , if NETij > o

‘■NETij . o th erw ise

W inner-takes-all
Cji y l, w inner for each i

'•0, others

Figure 7: Training step of bin ary-pat tern net. The matrix C is the bucket-weight
matrix. N numbers are encoded into n * 6 numbers

21

winner-take-all style, that is, C,j is set to 1 for the winner of all the elements of j,

0 for the rest,. In this way, the n 4 bucket-weight matrix has n Is and (n * b — n)

Os, and there is only one 1 in each row.

Example We have a set of data which has 5 elements { 7, 3, 11,5, 1 }. Suppose

the range of input data values is 0 ~ 12, and the number of buckets is 4.

We can show the process with matrix manipulation.

A(i; i= l,5) = 7, 3, 11,5, 1

B(i; i=l,4) = “f* = 3, 6, 9, 12

Definition of © : Net(i j) = A(i) 0 B(j) is defined as Nel^ — .4,- — Bj.

Neta —

7 \
3
11
5

V 1)

© (3 6 9 12)

/ 4 1 - 2 -5 \
0 -3 - 6 - 9
8 5 2 -1
2 -1 - 4 - 7

V - 2 -5 - 8 -11 /

Outij =

Ci»J
■ I t

—oo, if Net^ > 0,
Netij, otherwise.
— oo —oo to1CM1 \

0 -3 - 6 -9
—oo —oo — oo —1
—oo -1 t-1Tt

- 2 - 5 - 8 -11)
1, if the largest in ith row

otherwise.
/ 0 0 1 0 \

1 0 0 0
0 0 0 1
0 1 0 0

% 1 0 0 0 #

The final matrix C is the bucket-weight matrix. The binary digits of each row

represent each number of the data set. A \% 7, is represented by 0010, J=1 4

25

that is first row of matrix C; .42, 3, is transformed to 1000, C2j t j=\..A and so on.

Each column represents a bucket. The binary matrix C has the pattern that the

continuous valued data set .4 had.

B Recalling step (Bucket sorting)

In general, a bucket sort has three phases, which we may call distribution, sorting

buckets, and combining 6ucfce<s.[l 1] Suppose there are k buckets. During the

distribution phase, each key is examined. Then it does some work to indicate in

which bucket the key belongs. In the second phase, an algorithm is used to sort

buckets by a comparison of keys. The third phase requires that the keys be copied

from the buckets into one file. If the distribution of the keys is known in advance,

the range of keys to go into each bucket can be adjusted so that all buckets receive

an approximately equal number of keys.

In this recalling step, the unsorted numbers in the input set of the training

step arc distributed into buckets by the values. The bucket size can be adjusted.

If this recalling step is recursively used to create smaller and smaller buckets or if

a large number of buckets is used, then all of the keys can be sorted completely

in the first phase, that is, this recalling step, even though this seems inefficient in

terms of the amount of space needed.

Figure 8 illustrates the recalling model of a binary pattern net. The input

numbers are the numbers in set A, and the weight matrix used is the bucket-

weight matrix from the training step of this net.

Example This example is the same as the one in the training step.

Definition of <S> : S(i j) = A(i) <g> C(i j) is defined as StJ = A, * C,y.

/ 0 0 1 0 \
1 0 0 0
0 0 0 1
0 1 0 0

 ̂ 1 0 0 0 t

Sorted matrix S,j = (7 3 11 5 1) ®

26

Al Is unsorted Input data

Cji is weights obtained

in a training step

Si a Aj*Cij, if Aj'Cij o 0

Sorted output data

Figure 8: Recalling step of a binary-pattern net. This step is used when bucket,
sorting is required. The weight matrix C is from a bucket-weight matrix.

(0 0 7 0 \
3 0 0 0
0 0 0 11
0 5 0 0

V 1 0 0 0

i i \ \
Si S2 S3 Si

Each column represents a bucket. The first bucket contains 1 and 3 ,the

second bucket has 5, and so on. In this way the input data are bucket-sorted in

this recalling step. Figure 9 shows the nets of this example.

The 1,000 numbers generated by a random number generator are distributed

into buckets by this net on a serially operated computer, and the results are in the

appendix D. Figure 10 illustrates the graph of running time of bucket sorting in

this net.

2 7

Figure 9: The net of the recalling step for a bucket sorting. The link weights are
the key of the sorting.

m illi-sec

(a)

Figure 10: Bucket sorting time (in milli-seconds) for the binary-pattern net. (a)
when the number of data is fixed at 1000 and (b) when the number of buckets is
fixed at 100

28

C A nalysis

The performance of the net will be discussed in this section. The following are

the properties of this net.

1. Encoding a set of real world numbers into a set of neural net state binary

numbers without losing its unique pattern.

2. Good noise-filtering ability.

3. Linear complexity, Scalability.

1 Training time and memory used

Figure 10 shows that training time increases linearly with the number of elements or

the number of buckets; that means that the computational-complexity function of

a bucket-weight matrix net is linear. In the training step, suppose n is the number

of elements and b is the number of buckets. A(n) Q B(b) becomes an n * t matrix,

and it requires n* b multiplications and an average of 1/2 *n* b comparisons. In

general, since the number of buckets, b, is constant, the training time is linear of n.

So the complexity of the net when it is simulated on a serially operated computer

is 0(n)i which means this net is scalable. Scalable, in this case, refers to the

ability of a neural network developed on a digital computer to be enlarged easily

to perform larger real-world tasks. When we want to enlarge a small experimental

neural network into a real-world application, scalability becomes important. The

graph in figure 11 compares three scalability standards.[7] If you improve a training

algorithm from exponential to polynomial scalability, you will significantly increase

the number of patterns you can train. The bucket-weight matrix net has linear

scalability, which is an improvement over polynomial scalability.

The number of bits or neurons required in the BWM scheme depends on the

number of buckets (b) and the number of elements in the set (n). It requires b*n

2 9

Figure 11: Three standard measures of scalability; problem size can be from train­
ing patterns, neurons, or synapses

bits to express the set of data. Each element requires b bits regardless whether it is

a large number or not. Generally, the memory used is linear in the problem size if

b is constant. The numbers of neurons increases 6*100 (%) because n continuous

valued numbers become b n binary numbers. This might limit the possibility

of covering large numbers of elements using a small number of neurons, but for a

neural computer it is not a fatal disadvantage because the use of ample neurons

with much redundancy is the key to improving its computational capability and

system stability[6].

2 Noise filtering

This binary weight matrix net has a noise-filtering ability. The elements whose

values belong to the same bucket are represented by same binary bits in the BWM

scheme. So a little change of a value within the bucket size does not affect its

binary result. The bucket size determines the noise-tolerance range and the bucket

size is determined by the number of buckets. For example, consider the example

data in the previous section, which is { 7, 3, 11, 5, 1 } and a bucket size of 3. If the

first element 7 is contaminated by two units, it becomes 9. The resulting bucket

weight matrix is the same because both 7 or 9 belong to the third bucket. But if

3 0

the 7 is changed to 6, a different binary matrix is obtained because 6 belongs to the

second bucket, not to the third bucket. So the number which is on the border of

each bucket has a half chance to be filtered according to its noise direction. Figure

12 shows a graph of the trade-offs between noise tolerance and accuracy of pattern

recognition with the data used in the example of the training step. Different

bucket-weight matrices for different bucket numbers or bucket sizes are shown in

the figure also. In figure 12, by connecting the Is in the matrices, the similarity

of input data pattern A and converted binary data C can be found.

Though the noise filtering ability is decreasing as the bucket size gets very

small, the number of affected bits in the resulting binary matrix is 2 at most.

Compared to the number of total bits, 2 bits are very few. These few distortions

can surely be fdtered out in the main neural net algorithms that are going to use

the binary matrix as its input data pattern data. Since most neural net algorithms

have noise filtering ability, this net will increase the ability a lot when this net is

combined with those nets.

31

b-1
s -1 2

b -2
s=6

b -3
s»4

b -4
s -3

b -6
s-2

b -1
8—1

A - { 7, 3, 11. 5, 1 }

noise tolerance
portion

b : the number of buckets
a : bucket size

Bucket-weight
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 matrix

1
1
1
1
1
01
10
01
10
1 0

010
100
001
010
100
001 o
1000
0001
0100
1000

000100
010000
000001
001000
100000

000000100000
001000000000
000000000010
000001000000
100000000000

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

M m m m m & m M m
m M m m m •iissisim M
m M m m m m iM M M m m
m m m m m im m M m m
m m m m m l m m ;S§m m

■gy
m W . m

m W . 1 &

m SSS: m

m 1 f& y .

m W fi

5-5S

oooo
o

Figure 12: Trade-off between accuracy of recognition and noise-tolerance by vary
ing bucket sizes

3 2

IV Exam ples

The bucket-weight scheme connected to the BAM model is simulated. The

scheme is implemented in the training step of a binary pattern net. Two examples

will be shown here; one is a pattern recognition with a non-visual numeric-valued

pattern, and the other is with a visual image pattern.

A Exam ple w ith a numeric data pattern

Recognition of some patterns of stock prices in a stock market is performed here.

The data collected are weekly closing prices of 2 companies, A and B, for 12 weeks.

The 12 week stock prices of each company have their own pattern of the trend of

prices, and we want to classify the patterns with the BAM model. Table VI shows

the raw data of 2 companies.

The BAM model uses bipolar numbers for its inputs, but the data we have in

this example is not bipolar. So we need a scheme to convert the raw data into

bipolar data. The bucket-weight matrix scheme will be used for this example. A

bucket-weight matrix will be generated in a training step of the binary pattern net.

The matrix is used as an input set in the BAM. In a binary pattern net, suppose

that 16 buckets are used so that the bucket size is (323.98 — 177.35)/16 = 9.16

because the raw data is in the range 177.35 to 323.98 as seen in table VI. With this

bucket size, the BWM scheme will have the noise-tolerance rate of 9.164/(323.98-

177.35) * 100 = 6.25%. The final binary data, that is, bucket-weight matrix

obtained in a training step of the binary pattern net are in figure 13. These data

are trained in the BAM model with auto-associations of the two patterns.

R esults

Figure 14 shows a graph of the trend (up and down) of the values in table VI and

graphs of results of recalling with some incomplete inputs. The association model

produces the complete output, the following stock prices, given the partial inputs,

33

Tabic VI: Weekly closing prices of company A and B

Company A Company B

1,(week 177.35 265.84

2nd week 198.25 264.38

3rd week 221.89 257.72

4th week 249.01 249.01

5th week 271.47 239.56

6th week 260.91 231.62

7th week 262.13 229.54

8th week 295.73 229.97

9th week 310.07 241.03

10*h week 316.61 260.90

11th week 300.01 300.01

12th week 251.43 323.98

the first 3 weeks’ prices as seen in graph (a). Graph (b) shows the correct output,

given noisy inputs. The noise in graph (c) is filtered in the binary-pattern net

already before it goes to the BAM net. Since the BAM net has noise filtering

property, a double noise filtering system can be obtained by using the two nets

together. Another noisy input is tested in graph (d), which is a mixed input of

pattern A and B. Appendix E has all of the input data and output data used in

these tests. The program codes used in these tests are in appendix A and B.

31

" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

‘ ” 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
O O O O O O O O O O O O O l 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

' 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 '

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

B ~ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 13: Matrix A is binary pattern matrix for company A, and matrix B is for
company B.

B Exam ple w ith a non-numeric image pattern

In many image recognition problems, the most common way to extract binary

image numbers is illustrated in figure 15 which shows a set of inputs for a shape

drawn on a grid. If a line passes through a square, the corresponding neuron’s

input is one; otherwise, that neuron’s input is zero.

Even though this method is simple to get binary input numbers from an image

pattern, it has unexpected side effects in terms of noise problems. This will be

discussed by testing two patterns with the BAM model. Two different patterns

in figure 16 will be trained and tested to be classified in the BAM model.

35

company A company B
(a) weekly closing prices of company A and B

(b) recalling with partial inputs

weeks

weeks

Figure 14: Graphs of values in table VI and results of recalling with different inputs

36

► 1

► o

Figure 15: Binary data extracting from a visual image pattern

• Pattern 2 •

Figure 16: Two input patterns

37

noise 1 noise 2

horizontal noise by one square vertical noise by one square

Figure 17: Two possible noisy patterns of pattern 2

Say that pattern 2 is corrupted by one square horizontally and vertically as

seen in figure 17. The horizontal noise of pattern 2 causes just one square to

be changed while vertical noise causes seven squares to be changed even though

both of them make just one square of noise. Figure 17 explains this. This side-

effect will result in a wrong pattern classification. The two patterns in figure

16 are trained in an auto-association manner like figure 18. After that, the two

patterns distorted by one square in height are tested, and totally wrong outputs

are obtained. Figure 19 shows the output results. The noisy input of pattern 1

has 13 squares identical to pattern 1 while it has 16 squares identical to pattern 2;

that is, the input pattern is 15% more closely matched to pattern 2 than pattern

1. So wrong classification is performed. The same goes for the result of noisy

input of pattern 2 and its wrong output. So another data extracting method is

necessary to overcome this unexpected side effect. Vector values to represent the

patterns can be used in this case.

Figure 20 illustrates one particular example of how to extract vector values

38

Association of patternl

Figure 18: Input pairs for training

that have directions and scalar values from pattern 1. Suppose that the scalar

value represents the number of squares. As seen in figure 18, the two patterns

are composed of three lines each. The differences of the two patterns are the

heights of the patterns and which side is open. Suppose that the starting point

to extract vector values of lines is the end point of the upper line. Consecutive

vectors begin at the end of previous vectors. The vector data obtained in this way

is (—5, —4, +4) for pattern 1 and (+5, —3, —4) for pattern 2. Since the data

is non-binary numerical, the scheme proposed in chapter III-A is used to convert

the data into binary format. Suppose 5 buckets are used in this case. Then the

bucket size is 2 since the maximum is +5, minimum is -5, and there are 5 buckets

So the upper limits of the buckets B = {-3, -1, 1, 3, 5}. The two bucket-weight

matrices from the two vector data are

p a tte rn l = (- 5 , —4, +4)

39

noisy Input_________

Noisy pattern of patternl and It's
wrong output pattern

wrong output

Noisy pattern of pattem2 and
It's wrong output pattern

Figure 19: Recalling of noisy patterns and its incorrect output

Figure 20: Extracting vector values from image pattern 1 in figure 16

10

Net:; —
/ -5 N\ ,

-4
0

- 3 -1 1 3
V +4 t/

/ -2 -4 -6 -8 -10 \
-1 - 3 -5 -7 -9

l 7 5 1 - 1

f " 2 - 4 - e - 8 - 1 0
Outij = - 3 - 7 - 9

 ̂ —oo — oo — oo — oo - 1

(1 0 0 0 0 ^
pat tern1 = 1 0 0 0 0

 ̂ 0 0 0 0 1)
bucket weight matr ix fo r pattern 1 =

The bucket weight matrix for pattern 2 can be obtained in the same way as

above.

pattern2

bucket weight matrix fo r pattern2

(-1-5, —3, —l)
/ 0 0 0 0 1 \

1 0 0 0 0
\ 1 0 0 0 0 J

The vector values of the two noisy input patterns in figure 19 are (— 5, —3, +3)

and (+5, —4, —4), respectively. And their bucket-weight matrices are exactly

same as the ones above. This means the noise is filtered in a bucket-weight matrix

scheme before going through the BAM model. Even if there are many buckets and

each bucket size is small, the number of input elements contaminated by a pattern

noise is two at most. Two elements of noise in the matrix is small enough that

the BAM model can surely filter it because the BAM model has a noise filtering

ability.[3] The results in this way are shown in figure 21. This method is closer to

the human’s pattern recognition method as we classify the two patterns by their

rough shape, that is, whether the right side is open or the left side is open, not

by their precise lengths and angles. In this way, we can recognize scaled patterns

and rotated patterns easily while the first method cannot help it.

The two methods mentioned above can be compared in terms of noisy rate of

input binary data. Suppose that an input pattern is distorted by one unit and

41

noisy Input correct output

Figure 21: Recalling of noisy patterns and its correct outputs

the binary input data from the pattern has n * n elements. Table VII compares

the rates of corruption of the converted binary inputs caused by the distortion of

the original input pattern.

Table VII: Noise rates of two methods

method best case worst case

first method

second method

l /(n * n)* 100(%)

o(%)

2/n * 100(%)

2/(n *n) * 100(%)

The best case in the first method is the case of noise 1 in figure 17, and the

worst case is the noise 2 case in the figure. In the case of the second method that

uses vector inputs, the BWM scheme filters most of the small errors if the errors

are in the noise-tolerance range. At worst, 2 bits in the bucket-weight matrix are

changed regardless the si/e of the matrix.

13

V Conclusion and further research

Most current neural network algorithms have considerable power in pattern

recognition. A method that extracts a particular pattern from real world data as

closely as possible to the human’s pattern extracting method surely increases the

neural networks’ pattern recognition ability. In this thesis, one of the input data

encoding methods, the bucket-weight matrix scheme, is discussed and tested with

both a visual image pattern and a noil-visual numeric pattern. The results show

that this scheme is a very encouraging and effective data extracting method. This

scheme provides a means to make neural net state input data from a numerical

data pattern, avoids unexpected side effects that might happen in a data encoding

procedure ,and has a good error-correcting property.

The binary-pattern net that implements the scheme can be used as a bucket-

sorting net also. The procedure and results of a bucket-sorting net are shown in

this report, and this gives us a positive possibility of another application of neu­

ral networks. That is, neural computing can contribute to many traditional data

structure problems such as sorting, searching, indexing and the hashing function as

well as pattern recognition problems. Since the basic structure and procedure of

neural networks is parallel and distributed, some problems of data structures such

as timing and fault tolerance can be solved with these neural networks properties.

In implementing the algorithms on a parallel machine, there are some problems

to be solved such as communication time problems. The under-construction neu­

rocomputers that are electrical or optical implementations of neural networks will

surely solve these problems and open a new area of the computer world.

The adaptive expert system is a very encouraging application of neural net­

works. The expert system is the most successful one in terms of the practice of

artificial intelligence. The strong point of the expert system is its inference ability

while the neural network has a powerful recognition ability. So the combining of

14

the two abilities, recognition and inference, will approach a human’s brain capa­

bility. There is no doubt that this neural network will contribute to humankind’s

life as well as many artificial intelligence application areas.

Appendix A
Programming of the BAM model

16

H. Kosko’s BAM model[3] is programmed in C language here.

/*
**
************* ************
************* BIDIRECTION ASSOCIATIVE MEMORY ************
************* ************
************* By Hyeoncheol Kim ************
************* 1990 ************
************* ************
**
**/
#include <stdio.h>
#include <math.h>

#define Number 2 /* The number of the patterns*/
ttdefine In_element 20 /* The number of the input elements */
#define Out_element 20 /* The number of the output elements */

/**
DEFINING THE GLOBAL VARIABLES AND ARRAYS FOR MAIN PROGRAM

***/

float M[In_element][Out_element]; /* The trained connections */

main(M

/***
DEFINING THE LOCAL VARIABLES AND ARRAYS FOR MAIN PROGRAM

***/

II char ans,fnl[l0], fn2[l0]; /* The name of the inputs */
n int flg,i, j, n; /* Integer Variables */
II float input [Number] [In_element] , output [Number] [Out_element] ;
nnnn /* Variables for input and output*/

float Ml[In_element][Out_element];
/* Variable for connection */

n FILE *in_file, *out_file, *fopen(), *fclose();

/***
READ IN THE INPUT DATA AND THE NAME OF THE TWO FILES;
INPUT AND OUT PUT
**/

n for(i-0;i<In_element;i++){
n for(j=0;j<Out_element;j++){
n M[i] [j] = 0 .0 ;
n >
n >
n /* The initial values of the connection */

II for(n=0;n<Number;n++){
n

n printf("Enter the file name of input data\n");
n gets (fnl);
n in_file = fopen(fnl,"r");
n if(in_file == NULL){
n printf("Error 0pening\n");
n exit(l);
n >
n /* Read in the first data for the associative memory */

n printf("Enter the file name of target output data\n") ;
n gets(fn2);
II out_file = fopen(fn2, "r") ;
n if(out_file == NULL){
II printf ("Error OpeningXn") ;
n exit(2);
n >

/* Read in the second data for the associative menory

n for(i=0;i<In_element;i++){
n f scanf (in_f ile, "*/,f " ,&input [n] [i]);
n if(input[n][i] == 0.0){
n input [n][i] = -1.0;
nnn }

else{
n input [n][i] = 1.0;
n >
nnnn }

/* With hard limit threshold, transform the data
into the bipolar */

for(i=0;i<0ut_element;i++){
II f scam.f (ou t_ f i l e " .to u tp u t [n] [i]) ;
n i f (o u t p u t [n] [i] == 0 .0) {
II output [n] [i] = -1 .0 ;

48

nnn }
e l s e {

II output [n] [i] = 1 .0 ;
n >
nnnn }

/* With hard l im it th re sh o ld , transform the d ata
in to th e b ip o la r * /

n fo r (i= 0 ;i< In _ e lem en t;i+ + H
II fo r (j= 0 ;j< 0 u t.e le m e n t;j++){
II M l[i] [j] = input [n] [i] *output [n] [j] ;
n >
n }
n /* C onstructing th e connection fo r th e h etero a s s o c ia t iv e memory * /

n fo r (i= 0 ;i< In _ e lem en t;i+ +){
II for(j= 0;j< O u t_elem en t;j++){
II M [i][j] = M [i][j] + M l[i] [j] ;
n >
n }
II } /* The N p attern s have been learned * /

p r in t f ("*** End of T raining Step ! ***\n");

do{
flg = 0 ;

RECALLO ; /* procedure o f r e c a l l in g th e data w ith a r b itr a r y in p u t */
p rin tf(" A n oth er t e s t ? (y /n) \n ") ; g e ts (a n s) ; i f (ans==, y , > f lg = l ;
} w h i le (f lg = l) ;

n } /* This i s the end of the main fu n ctio n */

/a * iti*************** ** *********
THIS IS A PROCEDURE OF RECALLING THE OUTPUT FROM THE TRAINED NETWORK
*******:M***’|c********1lE***’|c**#*******:***]|C’<c*>|c*>|c]|c*]|c*]|c***]|c1<c:<c:<t*!|c**1lc1lc**3lc’|c/

RECALLO /* The Name of th e r e c a l l in g procedure * /
{
/>**

DEFINING THE VARIABLES FOR THE RECALL

19

**/

char f n l[lO] , fn 2 [lO];
in t i , j , k , 1;
f l o a t in p u t[In .e le m e n t] , output[O ut_elem ent];
f l o a t b u ffe r , ch eck [In _elem en t];

FILE * in _ f i l e , * o u t _ f i le , *fopen() , * f c lo s e () ;

/ ***
n READ IN THE NAME OF THE DATA FILE
*** f

p r in tf(" E n ter th e Name of th e input f i l e fo r r e c a l l in g \n ") ;
g e t s (f n l) ;
in _ f i l e = fo p e n (fn l , "r") ;
i f (i n _ f i l e == NULL){
printf("O pening E rro r \n ");
e x i t (4);
>

p rin tf(" E n ter th e Name of the out f i l e fo r r e c a l l in g \n ") ;
g e t s (f n 2) ;
o u t _ f i le = fo p e n (fn 2 ,“r ") ;
i f (o u t _ f i l e == NULL){
printf("O pening E rro r \n ");
e x i t (4);
}

/***
CHANGING THE ELEMENTS INTO BIN.
BY LETTING THEM GO THROUGH THE THRESHOLD
**/

f o r (i= 0 ;i< In _elem en t; i+ +){
f scan f (in _ f i le ," 7 ,f " ,&input [i]) ; /* i n i t i a l value o f input[] */
rum >
f o r (i= 0 ;i< 0 u t.e lem en t ;i++M
f scan f (o u t_ file ," 7 ,f \n " ,fe o u tp u t[i]) ; /* i n i t i a l value o f output [] */
rum >
/***
TAKE THIS PROCEDURE UNTIL THE OUTPUT DOES NOT CHANGE
BY FALLING INTO A HOLE

50

**/

do{

f o r (i= 0 ; i<In_elem ent; i+ +){
check [i] = input [i] ;
nnn }
nnn /* I n i t ia l i z in g th e checking v a r ia b le s * /

b u ffe r = 0 .0 ;
f o r (i= 0 ; i<0u t_elem en t; i+ +){
b u ffe r = 0 .0 ;
fo r (j= 0 ;j< In _ e lem en t;j+ +){
b u ffe r = b u ffer + input [j] *M[j] [i] ;

}
i f (b u ffer > 0 .0 M
o u tp u t[i] = 1 .0 ;
nn >
i f (b u ffer < 0 .0) {
o u tp u t[i] = 0 .0 ;
nil } /* i f b u ffer = 0 .0 , o u tp u t[] i s not changed */

>
nnn /* The output a t th e f i r s t la y er * /

f or(i=0;i<In_element;i++){
buffer = 0.0;
for(j=0;j<0ut.element;j++){
buffer = buffer + M[i] [j] *output[j] ;
nnn }
if(buffer > 0.0){
input[i] = 1.0;
nn }
if(buffer < 0.0 M
input[i] =0.0; /* If buffer = 0.0, input[] is not changed */
nn }
nnn }
nnn /* The output at the second layer */

buffer =0.0;
f or(i=0;i<In_element;i++){
if(check[i] != input[i]){
buffer = buffer +1.0;

>
nnn}
}while(buffer !=0.0);

printf("output: \n");
for(i=0;i<0ut_element;i++){
if ((i'/.5)==0) printf ("\n") ;
printf Of " .output [i]) ;
}
printf("\n");
/* THIS IS THE END OF THE RECALLING PROCEDURE */
}

Appendix B
Programming of Bucket-weight matrix scheme

B u c k e t - w e i g h t m a t r i x s c h e m e i n c h a p t e r I I - B i s p r o g r a m m e d i n C l a n g u a g e .

/* ** *** ***********
* *
* Making Bucket-Weight Matrix *
* *
* By Hyeoncheol Kim *
* 1990 *
* *
if**/

^include <stdio.h>
#include <math.h>

ftdefine max_sor 100 /* Number of input elements */
fldefine max_bk 1000 /* Number of groups (buckets) */

main(){

char irum[l0] ;
in t i , j ,bk , f l g , no_elem ent;
float fIt,ind_keys[max_bk] ,in_data[max_sor] ,

train[max_sor][max_bk] ;
double mx,inn,scale,offset;

FILE *in_file, *out_file, *ifp, *ofp, *fopen(), *fclose();

printf ("Enter the input file name :\n"); /* raw input data */
gets(irum);
ifp = fopen(irum, "r");
ofp = fopen("conv.o", "w");

if (ifp == NULL I ofp == NULL){
printf("Error in opening file\n");
exit(1);
>

/* convert raw data to scaled data */

no_element = 0;
mx = 0.0; inn = 9999999.0;
while (f scanf (ifp,"5Cf",&f it) == 1) {

no_element = no.element + 1;
if (fit < mn) mn = fit;
if (fit > mx) mx = fit;

}

54

s c a le = 8 / (mx-mn);
o f f s e t = 1 -scale*m n;

p r in tf (" sc a le = */..4f, o f f s e t = '/..4 f\n " , s c a le , o f f s e t) ;

fseek C ifp , 01 , 0);
w h ile (f scan f (i f p, "'/.f " ,icf I t) == 1){

f p r in t f (o f p , "*/,.3f\n", f l t * s c a le + o f f s e t) ;
>

f c lo s e (i f p) ; f c lo s e (o f p) ;

bk = 16; /* number of buckets * /
ind_keys [0] = 1 .5 ;
fo r (i= l; i< b k ; i+ +) {
in d _ k ey s[i] = in d _ k e y s [i- l] + 0 .5 ;

>

i n _ f i l e = f openC'conv.o" ," r");
i f (i n _ f i l e == NULL){
p rin tf(" E rror in opening f i l e \n ") ;
e x i t () ;
>
fo r (i= 0 ;i< n o_elem en t;i+ +){
fsc a n f (in _ f i l e , "’/.f\n",& in_ data [i]) ;
p r in t f (" '/..Of " ,in _ d a ta [i]) ;

}
p r in t f (" \n ") ;

p r in tf(" E n ter th e f i l e name fo r a p a ttern ta b le
(exep t c o n v .i , conv .o) : \n ");

g e ts (ir u m);
o u t . f i l e = fopen(irum ,"w ");
i f (o u t _ f i l e == NULL){
p rin tf(" E rror in opening f i l e \n ") ;
e x i t () ;
}

/* making p a ttern ta b le o f binary data from th e sc a le d data */

fo r (i= 0 ;i< n o_elem en t;i+ +){
f lg = 0 ;
fo r (j = 0;j<bk;j++){

i f (f lg = = l) { t r a in [i] [j] = 0 .0 ; >
e l s e {

train[i] [j]=in_data[i]-ind_keys[j] ;
if (train[i] [j]>0.0) {trainCi] [j]=0.0;>
else {trainCi] [j] = l .0; flg=l;}

}
}

>

for (i=0;i<no_element; i++){
for (j=0;j<bk; j++){
fprintf (out_file,"*/..0f " ,trainCi] [j]) ;

>
fprintf(out_file,"\n");

>

for (i=0;i<no_element; i++){
for (j=0;j<bk; j++){
printf(" ’/..Of ", trainCi] [j]) ;

>
printf("\n");

>

} /* end of program */

Appendix C
Programming of binary pattern net. (bucket sorting net)

The binary pattern net in chapter III-B is programmed in C language for bucket
sorting.

/***
* *
* BUCKET SORTING USING NEURAL NET *
* *
* By Hyeoncheol Kim *
* 1990 *
* *

**/

ftinclude <stdio.h>
^include <math.h>
tfinclude "types.h"
#include "macros.h"
Jfinclude "clocks.c"

ffdefine max_sor 1000 /* Number of elements to be sorted */
#define max_gv 100 /* Number of groups */

main (){

char fn[l0] ;
int i ,j,ttime,flg,Sor_element;
float ind_keys[max_gv],sor_data[max_sor],

train[max_sor][max_gv];
float gv,mx;

FILE *in_file, *fopen();

printf("Enter the # of data to be sorted:\n");
gets(c);
Sor_element=atoi(c); /* number of data to be sorted */

printf("Enter the maximum value:\n"); /* suppose minimum is 0 */
gets(c);
mx=atoi(c);

printf("Enter the ’G' value (# of buckets):\n");
gets(c);
gv=atoi(c);

for (i= 0 ;i< g v ;i+ +) {
in d _ k ey s[i] = (m x * (i+ l)) /g v ;

>

printf("Enter the file name to be searched :\n");
gets(fn);
in.file = fopen(fn,"r");
if(in_file == NULL){
printf("Error in opening file\n");
exit();
>
for (i=0;i<Sor_element;i++){
f scanf (in_f ile , "*/,f \n" ,&sor_data[i]);
printf (" '/..Of " , sor_data[i]) ;
if ((i'/,13) == 0) printf ("\n") ;

>
printf(" will be sorted! \n");

clock_init();
CL0CK_START(T0TAL_TIME);

/* training step and making sorted table *
for (i=0;i<Sor_element;i++){
flg=0;
for (j=0;j<gv;j++){

if (flg==l) {trainCi] [j] =0.0;>
else {
trainCi] Cj]=sor_dataCi]-ind_keys [j] ;
if (trainCi) Cj]>0.0) {trainCi) Cj]=0.0;}
else {trainCi] Cj]=sor_dataCi] ; flg=l;}

ttime=clock_val(TOTAL_TIHE);
printf("\n Time is : */,d \n",ttime);

/* printing sorted data from the table */
for (i=0;i<gv; i++){
printf("\nbucket %d :",i);
for (j=0;j<Sor_element; j++){

if (trainCj) [i] !=0.0) printf (" '/..Of " .train[j] Ci)) ;
>
>

}■ /* end of program */

Appendix D
The result of bucket sorting using sorting net

6 0

The results of bucket sorting using bucket sorting net in chapter III-B is shown
here. 1,000 random numbers are bucket-sorted.

Enter the # of data to be sorted:
1000
Enter the maximum value:
1000
Enter the ’G ; value (# of buckets):
100
Enter the file name to be searched :
sordata

176 309 535 948 172 702 226 495 125 84 390 277 368
983 535 766 646 767 780 823 152 625 315 347 917 520
401 607 785 932 870 867 675 758 582 389 356 200 827
416 464 979 126 213 958 737 409 780 758 957 28 319
757 243 590 43 956 319 59 442 !915 !572 119 570 252
496 237 477 406 873 427 358 382 43 161 522 697 97
401 773 245 343 230 298 305 887 37 651 399 676 733
938 233 838 967 779 432 674 809 159 280 135 864 750
208 140 295 803 219 563 716 198 990 250 431 755 861
895 978 395 432 127 458 238 986 653 604 242 455 790
79 476 153 246 945 614 988 477 800 744 381 480 527
98 594 347 143 780 711 446 705 95 963 551 740 579
638 782 188 302 283 684 293 565 418 307 445 566 488
607 416 130 256 36 977 115 378 647 350 553 358 565
476 164 615 172 555 292 872 835 845 896 595 541 168
655 691 264 107 815 191 423 352 839 137 263 177 480
380 505 503 352 526 121 520 607 733 557 344 802 591
267 671 552 789 888 890 68 801 907 644 165 301 166
285 842 536 36 207 21 358 621 !520 546 154 823 33
26 378 616 20 627 915 375 729 i396 (982 597 112 222
799 871 738 14 740 418 362 204 183 76 116 159 788
40 791 599 403 229 183 614 332 605 964 378 184 300
514 54 144 10 885 958 626 956 631 39 351 146 106 197
84 27 946 920 908 866 :L49 :L72 158 651 737 102 160
94 122 25 762 957 28 647 108 428 310 19 885 758
510 166 763 881 500 875 735 235 52 605 876 504 678
989 605 496 590 895 45 883 108 520 579 10 :387 •477
193 508 775 354 698 913 671 706 427 21 213 948 503
194 645 128 265 336 704 38 954 755 874 634 244 636
850 237 721 339 50 485 897 242 528 494 855 346 124
216 115 363 204 436 828 510 820 411 871 713 644 581
953 461 521 359 326 9 978 432 :L76 159 534 578 :314
342 158 437 243 201 720 220 195 423 774 831 245 5
514 346 82 705 260 351 536 869 304 79 454 377 <465
829 24 904 198 633 129 236 600 647 840 843 157 214
624 435 569 90 381 724 511 795 883 101 660 549 728

(51

451 841 774 386 833 627 620 440 225 246 496 623 73
133 62 720 851 973 659 957 351 577 641 957 927 435
587 851 408 294 844 650 898 595 389 470 190 126 468
693 992 726 980 669 719 377 85 49 27 552 986 341
844 131 381 789 95 756 522 154 853 954 375 514 121
869 842 652 978 967 504 144 297 529 869 734 761 300
588 88 390 122 597 518 303 908 675 786 926 788 366
560 380 778 749 629 247 814 16 468 448 498 326 249
447 391 914 881 503 209 914 190 179 753 860 820 838
928 355 950 339 687 855 424 655 248 42 394 625 423
764 52 567 411 3 558 969 890 837 764 968 758 872
805 849 360 112 178 276 555 725 377 469 454 695 700
58 188 798 307 819 531 909 127 24 741 72 714 609
449 325 632 898 944 742 474 77 702 660 113 165 497
557 258 673 934 558 933 692 767 31 953 616 820 241
14 224 869 538 454 332 334 37 ;327 753 108 271 832
757 382 779 742 769 804 89 878 523 814 88 262 376
498 224 18 19 814 521 624 291 !518 876 610 321 655
599 285 714 933 677 609 1 844 '713 773 74 874 31
612 814 628 895 420 650 237 326 275 251 880 475 465
70 755 28 104 978 367 608 538 (578 448 644 627 142
380 675 511 780 444 560 934 555 749 559 735 771 184
758 596 752 230 802 637 123 991 408 957 924 266 627
708 262 24 326 804 730 122 845 853 312 597 322 408
978 399 629 127 715 882 409 943 182 921 167 834 730
981 894 279 999 994 190 13 802 378 347 149 535 47
375 290 808 760 433 693 531 640 622 110 177 219 635
375 420 850 204 343 892 823 838 277 260 37 797 264
353 568 797 768 544 978 383 905 127 703 476 542 883
379 24 793 572 426 262 42 564 '761 517 48 327 959
56 251 986 723 920 866 687 998 237 857 964 578 957
379 849 541 503 800 919 367 290 877 31 78 585 189
930 240 678 421 471 174 835 593 671 224 998 819 296
415 696 709 221 357 153 983 268 730 37 410 745 198
844 659 406 94 367 155 52 718 :227 534 482 600 932
790 31 557 438 714 392 908 673 710 959 666 996 583
402 72 66 403 685 311 78 27 268 736 842 373 684
469 675 48 234 708 571 424 999 583 618 739 904 913
132 338 42 701 480 638 983 713 50 909 :281 988 352
465 904 610 708 367 799 611 499 221 320 317 444 169
727 5 883 672 479 207 511 166 !550 503 1568

w i l l be sorted !

Time i s : 3391 ms

R esu lt o f b u ck et-so r tin g :

6 2

bucket 0 : 10 1C 9 5 3 1 5
bucket 1 : 20 14 19 16 14 18 19 13
bucket 2 : 28 21 26 27 25 28 21 24 27 24 28 24 24 27
bucket 3 : 37 36 36 33 40 39 3£ 31 37 31 37 31 37 31
bucket 4 : 43 43 45 50 49 42 47 42 48 48 42 50
bucket 5 : 59 54 52 52 58 56 52
bucket 6 : 68 68 62 70 66
bucket 7 : 79 76 79 73 72 77 74 78 72 78
bucket 8 : 84 84 82 90 85 88 89 88
bucket 9 : 97 98 95 94 95 94
bucket 10 : 107 106 102 108 108 101 108 104 110
bucket 11 : 119 115 112 116 115 112 113
bucket 12 : 125 126 127 130 121 122 128 124 129 126 121

122 127 123 122 127 127
bucket 13 : 135 140 137 133 131 132
bucket 14 : 143 144 146 149 144 142 149
bucket 15 : 152 159 153 154 159 160 159 158 157 154 153

155
bucket 16 : 161 164 168 165 166 166 165 167 169 166
bucket 17 : 176 172 172 177 172 176 179 178 177 174
bucket 18 : 188 183 183 184 190 190 188 184 182 190 189
bucket 19 : 200 198 191 197 193 194 195 198 198
bucket 20 : 208 207 204 204 201 209 204 207
bucket 21 : 213 219 213 216 220 214 219
bucket 22 : 226 230 222 229 225 224 224 230 224 221 227

221
bucket 23 : 237 233 238 235 237 236 237 237 240 234
bucket 24 : 243 245 250 242 246 244 242 243 245 246 247

249 248 241
bucket 25 : 252 256 260 258 251 260 251
bucket 26 : 264 263 267 265 262 266 262 264 262 268 268
bucket 27 : 277 280 276 271 275 279 277
bucket 28 : 283 285 285 290 290 281
bucket 29 : 298 295 293 292 300 294 297 300 291 296
bucket 30 : 309 305 302 307 301 310 304 303 307
bucket 31 : 315 319 319 314 312 311 320 317
bucket 32 : 326 326 325 327 321 326 326 322 327
bucket 33 : 332 336 339 339 332 334 338
bucket 34 : 347 343 347 350 344 346 342 346 341 347 343
bucket 35 : 356 358 358 352 352 358 351 354 359 351 351

355 360 353 357 352
bucket 36 : 368 362 363 366 367 367 367 367
bucket 37 : 378 380 378 375 378 377 377 375 380 377 376

380 378 375 375 379 379 373
bucket 38 : 390 389 382 381 387 381 386 389 381 390 382

383
bucket 39 399 395 396 391
bucket 40 : 401 409 406 401

402 403
bucket 41 : 416 418 416 418
bucket 42 : 427 423 428 427
bucket 43 i 432 431 432 436
bucket 44 i 442 446 445 448
bucket 45 : 458 455 454 451
bucket 46 i 464 461 465 470
bucket 47 : 477 476 477 480

480 479
bucket 48 488 485 482
bucket 49 495 496 500 496
bucket 50 505 503 510 504
bucket 51 514 520 520 520

517 511
bucket 52 ! 522 527 526 528
bucket 53 : 535 535 536 534
bucket 54 i 541 546 549 544
bucket 55 : 551 553 555 557

560 555 559 557
bucket 56 : 570 563 565 566
bucket 57 572 579 579 578
bucket 58 i 582 590 590 581
bucket 59 : 594 595 591 597

593 600
bucket 60 i 607 604 607 607

610
bucket 61 : 614 615 616 614
bucket 62 ; 625 621 627 626

627 627 629 622
bucket 63 : 638 631 634 636
bucket 64 \ 646 647 644 647
bucket 65 i 651 653 655 651
bucket 66 i 669 666
bucket 67 ; 675 676 674 671

678 671 673 675
bucket 68 i 684 687 687 685
bucket 69 i 697 691 698 693
bucket 70 i 702 705 706 704

701 708
bucket 71 716 711 713 720

714 713
bucket 72 i 729 721 724 728
bucket 73 : 737 733 740 733

394 399 392
403 408 408 408 409 410 406

411 411 420 420 415
423 424 423 426 421 424
432 437 435 440 435 433 438
447 449 448 444 444
454 454
468 468 469 465 469 465
476 480 477 474 475 476 471

494 496 498 497 498 499
508 503 510 504 503 503 503
520 514 511 514 518 518 511

521 522 529 523 521
536 531 538 538 535 531 534
542 541 550
552 552 560 558 555 557 558

565 569 567 568 564 568
577 572 578 571
587 588 585 583 583
599 600 595 597 599 596 597

605 605 605 609 610 609 608

620 616 612 618 611
624 627 623 629 625 624 628

633 632 637 640 635 638
645 644 647 641 650 650 644
660 659 652 655 660 655 659

678 671 675 673 677 678 675
672
684
695 700 692 693 696
705 702 708 703 709 710 708

720 719 714 714 713 715 718

726 725 730 730 723 730 727
738 740 737 735 734 735 736

51

739
bucket 74 • 750 744 749 741 742 742 749 745
bucket 75 l 758 758 757 755 758 755 756 753 758 753

755 758 752 760
bucket 76 • 766 767 762 763 761 764 764 767 769 768
bucket 77 | 780 780 773 779 780 775 774 774 778 779

780 771
bucket 78 ! 785 790 782 789 788 789 786 788 790
bucket 79 1 800 799 791 795 798 797 797 793 800 799
bucket 80 : 809 803 802 801 805 804 802 804 802 808
bucket 81 i 815 820 814 820 819 820 814 814 814 819
bucket 82 i 823 827 823 828 829 823
bucket 83 ; 838 835 839 831 840 833 838 837 832 834

835
bucket 84 i 845 842 850 843 841 844 844 842 849 844

850 849 844 842
bucket 85 : 855 851 851 853 860 855 853 857
bucket 86 . 870 867 864 861 866 869 869 869 869 866
bucket 87 i 873 872 871 875 876 874 871 872 878 876

880 877
bucket 88 : 887 888 890 885 885 881 883 883 881 890

883 883
bucket 89 : 895 896 895 897 898 898 895 894 892
bucket 90 • 907 908 904 908 909 905 908 904 909 904
bucket 91 : 917 915 915 920 913 914 914 920 919 913
bucket 92 * 927 926 928 924 921 930
bucket 93 i 932 938 934 933 933 934 932
bucket 94 i 948 945 946 948 950 944 943
bucket 95 : 958 957 956 958 956 957 954 953 957 957

953 957 959 957 959
bucket 96 i 967 963 964 967 969 968 964
bucket 97 i 979 978 977 978 973 980 978 978 978 978
bucket 98 : 983 990 986 988 982 989 986 981 986 983

988
bucket 99 •• 992 991 999 994 998 998 996 999

7S7

761
773

838

845

874

882

954

983

s o r t e d ! !!

Appendix E
The data used in example in chapter IV-A

G6

All of the input data and outputs used for the tests in chapter IV-A are shown
here; the raw data that is weekly closing stock prices of company A and B. corre­
sponding bucket weight matrices obtained by the binary pattern net program in
appendix 2, and the output obtained by the BAM program in appendix 1.

(1) Company A

Weekly closing stock prices for company A :

177.35
198.25
221.89
249.01
271.47
260.91
262.13
295.73
310.07
316.61
300.01
251.43

Binary input data obtained by Binary Pattern Net for company A :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(2) Company B

Weekly closing stock prices for company B :

265 .84
264 .38
257 .72
249.01

67

239 .56
231.62
229.54
229.97
241.03
260.90
300.01
323.98

Binary input data obtained by Binary P attern Net fo r company B :

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3) P a r t ia l Input fo r company A

Weekly c lo s in g p r ic e s for th e f i r s t th ree weeks fo r company A :

177.35
198.25
221.89
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Binary input data obtained by Binary P attern Net fo r p a r t ia l in p u t :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

68

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Output obtained by BAM fo r p a r t ia l input :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(4) N oisy input fo r company A

Weekly c lo s in g p r ic e s with n o ise fo r company A :

177.35
198.25
221.89
249.01
271.47
251.00 -> n o ise
262.13
295.73
310.07
320.61 -> n o ise
300.01
251.43

Binary input data obtained by Binary P attern Net fo r n o isy inp ut :

69

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Output obtained by BAM for noisy input :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(5) Mixed input o f company A and company B

Mixed p r ic e s fo r company A and B :

177.35
198.25
221.89
249.01
239 .56
231.62
229 .54
229.97
241.03
260 .90
300.01
323.98

7 0

Binary input data obtained by Binary Pattern Net for mixed input :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Output obtained by BAH for mixed input :

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

71

REFERENCES

1. Wasserman, P.D., Neural Computing: Theory and Practice, Van Nostrand

Rein hold, 1989.

2. Klimasauskas, C.C., Neural Works:An Introduction to Neural Computing,

NeuralWare Inc., 1988.

3. Kosko, B., Constructing an Associative Memory, Byte, September, 1989,

137-141.

4. Lippmann, R.P., /In Introduction to Computing with Neural Nets, IEEE

ASSP Magazine, April, 1987.

5. Josin, G., Neural-Network Heuristics, Byte, October, 1987, 183-192.

6. Takeda, M., and Goodman, J.W., Neural Networks for computation:number

representations and programming complexity, Applied Optics, Vol.25, No.18, (15

September, 1986).

7. Morse, K.G., In an Upscale World, Byte, August, 1989, 222-223.

8. Rosenfeld, E., Neurocomputing - A New Industry, IEEE proceedings , IV

831-838.

9. Kohonen, T., Self-Organization and Associative Memory, Springer-Verlag,

Berlin,1984.

10. Hopfield, J.J., Neural Networks and Physical Systems with Emergent Col­

lective Computational Abilities, Proc. Natl. Acad. Sci. USA, Vol.79, 2554-2558,

April, 1982.

11. Baase, S., Computer Algorithms, Addison-Wesley Publishing, 1978.

	Input Data Pattern Encoding for Neural Net Algorithms
	Recommended Citation

	tmp.1604327199.pdf.ErWuA

