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ABSTRACT

First, a brief overview of neural networks and their applications are described, 

including the BAM (Bidirectional Associative Memory) model.

A bucket-weight-matrix scheme is proposed, which is a data pattern encoding 

method that is necessary to transform a set of real-world numbers into neural 

network state numbers without losing the pattern property the set has. The 

scheme is designed as a neural net so that it can be combined with other data 

processing neural nets. The net itself can be used as a bucket-sorting net also. 

This shows that traditional data structure problems can be an area that neural 

networks may conquer, too.

A simulation of the net combined with the BAM model on a digital computer 

is done to show performance of the proposed data encoding method with both 

non-numerical image pattern and numerical data pattern examples.
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I Artificial Neural Networks

A Fundam entals

1 Neurons

Artificial Neural Networks are biologically inspired. Artificial Neural networks 

are composed of elements that perform in a manner that is analogous to the most 

elementary functions of the biological neuron. Figure 1 shows the corresponding 

components of the brain which inspired artificial neural networks.

The neuron is the fundamental cellular unit of the nervous system and in partic­

ular the brain. Its nucleus is a simple processing unit which receives and combines 

signals from many other neurons through input paths called dendrites. If the com­

bined signal is strong enough, it activates the firing of the neuron which produces 

an output signal; the path of the output signal is called the axon.

An estimated 10u neurons participate in 1015 interconnections over transmis­

sion paths in the human brain. The axon (output paths) of a neuron splits up and 

connects to dendrites (input paths) of other neurons through a junction referred to
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as a synapse. The amount of signal transferred depends on the synapse strength 

of the junction. This synaptic strength is what is modified when the brain learns, 

and the synapse can be thus considered the basic memory unit of the brain.

Figure 2: Artificial neuron with activation function

The artificial neuron was designed to mimic the first-order characteristics of 

the biological neuron. The artificial neuron has many input paths (dendrites) and 

combines the values on these input paths. The combined input is then modified 

by an activation function. This transfer function can be a threshold function or 

a continuous function of the combined input. The value output by the transfer 

function is generally passed directly to the output path of the neuron connected to 

input paths of other neurons through connection weights which correspond to the 

synaptic strength of neural connections. Figure 2 illustrates the above description.

2 Network operation

There are two main steps in the operation of a network -  Learning and Recall. 

Learning is the process of adapting the connection weights according to a prede­

termined procedure so that each input vector produces the desired output vector. 

Learning algorithms are categorized as supervised and unsupervised. Supervised
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learning requires the pairing of each input vector with a target vector representing 

the desired output. For each input vector, a desired output vector is presented 

to the system, and the network gradually configures itself to achieve that desired 

input/output mapping. Hopfield nets[lO] and perceptrons are trained with super­

vision. Such learning is generally some variation on one of three types :

1. Ilcbbian learning where a connection weight is incremented if the product 

of the excitation levels of both the input and desired output are high. That 

is, a neural pathway is strengthened each time it is used. In symbols:

it>ij(n + 1) = Wij(n) + aOUTiOUTj

where

W{j(n) — the value of a weight from neuron i to neuron j prior to adjustment 

Wij{n+ 1) = the value of a weight from neuron i to neuron j after adjustment 

a =  the learning rate coefficient

OUT{ — the output of neuron i and input to neuron j 

OUTj = the output of neuron j

2. delta rule learning based on reducing the error between an input and its 

desired output. In symbols:

8 = T  — A

A,- = Tjbxi

u)i(n +  1) =  Wj(n) +  A ,

where

8 = the difference between the desired output T and the actual output A 

t] — learning rate coefficient

A,- = the correction associated with the ilh input x,



Wi(n-\- 1) = the value of weight i after adjustment 

W{(n) = the value of weight i before adjustment

3. competitive learning in which processing elements compete among each other 

and the one which yields the strongest response to a given input modifies itself 

to become more like that input.

Unsupervised learning requires no target vector for the output. The learn­

ing algorithm modifies network weights to produce output vectors that are con­

sistent. Nets trained without supervision, such as the Kohonen’s feature-map 

forming nets[9], are used as vector quantizers or to form clusters. No information 

concerning the correct class is provided to these nets during training.

Recall refers to how the network globally processes an input vector and creates 

a response of an output vector.

3 Differences of neural computing from other computing

Artificial neural networks exhibit a surprising number of the brain’s characteris­

tics. The following are some of their capabilities and differences from traditional 

computing.

1. learning by examples : neural networks generate their own rules by learning 

from being shown examples.

2. distributed associative memory : the difference is the way to store informa­

tion. Neural computing memory is both distributed and associative. The 

connection weights are the memory units of a neural network. Two proper­

ties can be obtained here.

(a) generalization : once trained, a network’s response can be, to a degree, 

insensitive to minor variations in its input. This ability to see through



noise and distortion to the pattern that lies within is vital to pattern 

recognition in a real-world environment.

(b) fault tolerance : because information is not contained in one place, 

but is distributed throughout the system. Neural nets can survive the 

failure of some nodes.

3. parallelism : neural architectures provide a natural model for parallelism 

since each neuron is an independent unit. A massively parallel architecture 

like the human brain can solve serially operated computer’s slowing-down 

problems in many applications.

4. pattern recognition : neural computing systems possess the ability to match 

large amounts of input information simultaneously and then generate cate­

gorical or generalized output as well as the ability to learn and build unique 

structures for a particular problem.

5. abstraction : some artificial neural networks are capable of abstracting the 

essence of a set of inputs. In one sense, with this ability to extract an ideal 

from imperfect inputs, it might learn to produce something that it has never 

seen before.

B History, Properties and T heir A pplications

When the perceptron was first developed in the 1950s by Frank Rosenblatt, it 

created a considerable sensation. Artificial Intelligence was also affected, as the 

perceptron was based on biological and psychological approaches to computing 

architectures. AI was firmly rooted in logic and rules.

In the middle of 1960s, Minsky and Papert showed conclusively one vital flaw 

in the perceptron theory. They proved that it was incapable of doing a class of 

problems know’n as the exclusive-OR. As a result, artificial neural nets and other
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biologically-based approaches to computing lapsed for nearly two decades until 

backpropagation was invented in the early 1980s, providing a systematic means for 

training multilayer networks, thereby overcoming limitations presented by Minsky. 

After that, interest in artificial neural networks has grown rapidly over the past 

few years. Backpropagation has been used in many impressive demonstrations of 

artificial neural network capabilities such as data compression, signal processing, 

noisy filtering, etc. Many other network algorithms have been developed that 

have specific advantages, such as counterpropagation networks, Hopficld nets, as­

sociative memory, adaptive resonance theory, Boltzmann machines, cognition and 

more. In general, those nets belong to three big models according to their prop­

erties. A brief description of the three models[5] and their applications are given 

below :

1. Associative M em ory M odel offers many of the computational capabil­

ities of neural networks. This model is a mapping from data to data, a 

mathematical abstraction from the familiar associative structure of human 

and animal learning. This model can be used for simple visual processing. 

The network can associate or map variations of particular patterns. The 

model gives the network fault tolerance because input patterns are stored in 

a distributed fashion throughout the network.

2. O ptim ization M odel gives solutions to very difficult combinatorial opti­

mization problems, such as the traveling salesman problem which is an NP 

(nondeterministic polynomial) complete problem. This property can be used 

to perform many difficult tasks in computer vision, such as computing mo­

tion and brightness perception, surface interpolation, and localizing edges. 

This property is very important for real-time vision systems such as adaptive 

flight-control systems.
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3. Self-organization lets neural network based systems adapt to unpre­

dictable changes in their environment and unexpected situations that cannot 

be described mathematically. Self-organization is effective for dealing with 

problems that have a complicated or impossible-to-define algorithm, and it 

can be used for robotic control. Self-organization will enable control with 

inaccurately known mechanical structures.

Combinations of neural-network properties will become even more powerful. 

For example, a combination of self-organization and optimiza tion can be useful for 

robotic-control path minimization and collision avoidance.

Ncurocomputing is very powerful in many problems that humans do easily and, 

seemingly without thinking, such as language processing, data compressing, char­

acter recognition, pattern recognition, signal processing such as prediction and 

system modeling, financial and economic modeling, and optimization problems. 

Adaptive expert systems can be a good commercial product, which take advan­

tage of the prodigious pattern recognition, self-programming, learning, and fault 

tolerance capabilities of neural networks by using them as front ends for rule-based 

and knowledge-based expert systems.[8] As neural networking systems develop, 

they will play an important role in furthering many intelligent information pro­

cessing technologies and applications.

C B idirectional A ssociative M em ory (B A M )

1 Introduction

Human memory is often associative; one thing reminds us of another, and that, of 

still another. The BAM is a simple nonlinear neural-network associative memory 

that recalls or content-addresses stored associations (x,y) by minimizing a system 

energy. The BAM accepts an input vector on one set of neurons and produces a 

related output vector on another set as the input rolls into the nearest energy min­
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imum. Figure 3 shows the basic BAM configuration.[3] The BAM is a two-layer 

feedback network of interconnected neurons. Patterns are stored in the synapses 

between the neurons. The state of the neurons represents a short-term mem- 

ory(STM), as it may be changed quickly by applying another input vector. The 

values in the weight matrix form a long-term memory(LTM) and are changeable 

only on a longer time scale, using techniques to be discussed later. The short-term 

memory (STM) reverberations gradually seep pattern information into long-term 

memory (LTM), the synapses between the neurons. Associative memories are 

fundamental computing structures of artificial neural system and can be naturally 

implemented on neurocomputers.

Figure 3: Topology of a BAM, showing the two fields of neurons connected by
synapses

2 Training

In a BAM, all synaptic information is contained in an n-by-p connection matrix 

M which is long-term memory. With matrix M between/^ and FB, all inputs 

quickly map to a pattern of stable reverberation. The training in BAM is Hebbian
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learning. A BAM learns a particular set of associations (Mi, By), (Ar7i, Em) by 

summing bipolar correlation matrices. The learning scheme tends to place distinct 

associations (A,, B,) at or near local energy minima. The number of patterns to 

be stored and recalled cannot be more that the number n of neurons in f  A or the 

number p of neurons in Fb ■ BAM correlation learning improves if bipolar vectors 

and matrices are used instead of binary vectors and matrices. Bipolar matrices 

are binary matrices with — Is replacing Os. The bipolar version of a binary pattern 

Ai =  (1 0 1 0 1 0) is A’i =  ( + 1 — 1 + 1 -  1 +1 — 1). Assume that X and Y 

will denote the respective bipolar version of the binary vectors A and B.

The BAM learning scheme converts each binary pattern pair (A,, B,) to a bipo­

lar pair (A',-, V’,), converts them into a matrix Xj'Yi, and then adds up the matrices 

M = X f Tj -f A'.Jy2 + ..  ■ + A^y7,- where the colume vector A f  is the vector transpose 

of the row vector A', .

Suppose two binary associations are trained in the BAM 

Ay = (1 0 1 0 1 0) By -  (1 1 0 0)

a 2 = (i i i o o o) b 2 =  (1 0 1 0).

Convert these binary pairs to bipolar pairs:

A'i = ( 1 -1  1 -1  1 -1  ) Yy = ( 1 1 -1  -1  )

x7 =  ( i i i - i  - i  - i ) y2 =  ( i  - i  i - i ) .
Convert these bipolar vector pairs to two bipolar correlation matrices and compute 

the weight matrix M = XfYy + X jY 2:

(  1 1 - 1  - 1  \ (  1 _ i i - i  N l  2 0 0 - 2  \
- 1  - 1 1 1 i - i i - 1 0 - 2 2 0

1 1 - 1  - 1
+

i - i i - 1 2 0 0 - 2
- 1  - 1 1 1 - i i - i 1 - 2 0 0 2

1 1 - 1  - 1 - i i - i 1 0 2 - 2 0
 ̂ - 1  - 1 1  ̂ - i i - i 1 J l  - 2 0 0 2 )
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The matrix element m,y indicates the symmetric synapse between neurons a, 

and b{. The synapse is excitatory if m,j > 0, inhibitory if m,y < 0. An association 

(.4,, B{) from M can be erased by adding — A',7 4, to M. The BAM energy E of as­

sociation or state (.4,, Bt) is In the example, /^(Ai, B\) = £’(-42, B2) =

-G.

3 Recalling

Suppose that an input pattern A is presented to BAM field FA. The n neurons 

across FA have their binary values 1 or 0. Each neuron a, in FA fans out its binary 

value across the p pathways and the synaptic value m,j multiplies the binary value 

a,. Each neuron bj in Fg receives a fan-in of input products a,m,j from each of 

its n synaptic connections.
n

Oj = aim ij
i = l

We compute the output vector, given input vector .4j.

O = A jM

/ 2 0 0 - 2  \

0 - 2 2 0

2 0 0 - 2

- 2 0 0 2

0 2 - 2 0

V - 2 0 0 2 )
( 4  2 -2  -4  )

Now threshold this vector by applying the threshold rule :

bi=*
1, ifo, > 0,
0, ifo, < 0,
unchanged, ifo, = 0

Then threshold(O) = ( 1 1 0 0 )  which is the desired output J3L.

Neuron bj then fans out its output signal across the n pathways m,j to each 

neuron a,- in FA. Each a, then generates its binary signal from all its summed 

inputs and sends it back to Fg. And round and round the BAM goes. Each
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pass around the loop causes the system to descend toward an energy minimum, 

the location of which is determined by the values of the weights.

The BAM is error-correcting. For example, if an incomplete or partially incor­

rect vector is applied at A, the network tends to produce the closest memory at B, 

which may be required, but the network converges to the nearest stored memory. 

For example, the input A = (0 1  1 0 0 0 )  is just A2 perturbed by 1 bit. Then AM 

= (2-2 2 -2) = >  (l 0 1 0) = B2, and thus A evokes the resonant pair (M2, B2).
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II D ata Encoding

A Input Form ats

A taxonomy of nine important neural nets is presented in figure 4.[4] This taxon­

omy is first divided between nets with binary and continuous valued inputs. Below 

this, nets are divided between these trained with and without supervision.

Neural nets for fixed patterns

Binary Input

Supervised

"Hopfield net 
-Hamming net
L bam

Unsupervised

L c a rp e n te r/ 
Grossberg net

Continuouswalued^ Input 

Supervised Unsupervised

■perceptron
m ulti-layer 

perceptron 
• backpropagation

-Kohonen
self-organizing 

feature maps 
*“ counterpropagation

Figure 4: A taxonomy of nine neural nets

Many association memories and classifiers, such as the Hopfield net, Hamming 

net, bidirectional associative memory and Carpenter/Grossberg net use binary 

data as their inputs. These nets are most appropriate when exact binary repre­

sentations are possible as with black and white images where input elements are 

pixel values, or with ASCII representation of each character. These nets are less 

appropriate when input values are actually continuous, because a fundamental rep­

resentation problem must be addressed to convert the analog quantities to binary 

values. [4]

Although the other nets, such as the perceptron, backpropagation and Kohonen 

training nets can use continuous input data, they produce better classified results
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when they use binary inputs. As the data go through hidden layers, they are 

compressed into the range of 0 ~  1 by a sigmoid function or hard limit threshold 

of each neuron. So using binary inputs lets each neuron make a more accurate 

decision. Three different data patterns are tested on a backpropagation net that 

can use continuous inputs to see if binary inputs lead the net to a more accurate 

classification than continuous inputs.

Table I: Input data and its target output for backpropagation test

pattern continuous-valued input desired output

pattern A 45 13 32 5 4 1 0 0 0 0

pattern B 50 32 23 45 49 0 0 10  0

pattern C 4 19 37 24 11 0 0 0 0 1

Table I shows the continuous-valued input data and desired outputs to be tested 

on a backpropagation net. To represent the continuous-valued inputs with binary 

inputs, binary digits are used. That is, 45 is (0 0 0 0 1 0 1 1 0 1) in binary. For 

each decimal number, 10 digits are used in binary in this example. So 50 neurons 

are used in an input layer when binary inputs are used, while 5 neurons are used 

when continuous-valued inputs are used. Besides the input layer, there arc 3 more 

layers, 2 hidden layers which have 4 neurons each and an output layer which has 

5 neurons. For both cases, the net is trained 10000 times, respectively. The 

backpropagation nets are shown in figure 5. The result is shown in table II.

As seen in table II, although pattern C is classified correctly, pattern A and 

pattern B are not classified when continuous-valued inputs are used in backprop­

agation. Since pattern A and B produce the same outputs (0.5 0 0.5 0 0) even 

after 10,000 training steps, there is no hope of convergence into (1 0 0 0 0) and 

(0 0 1 0 0), respectively. On the contrary, when binary inputs are used, all three



14

Output layer 

Hidden layer 

Hidden layer 

Input layer

Figure 5: Backpropagation nets testing with different input formats

patterns, A, B, and C are classified correctly and produce almost the same actual 

outputs as those desired after 10,000 training steps. So using binary inputs helps 

the net to recognize patterns more accurately than using continuous valued inputs. 

Binary inputs provide the net a better degree of fault tolerance or robustness than 

continuous inputs. In the example above, five real-valued numbers are distributed 

to 50 binary valued neurons. So damage to a few nodes out of the 50 nodes or 

links need not impair the overall performance significantly. Damage to few nodes 

out of 5 real valued nodes will cause a great damage to performance of the net.

B Encoding schem es

Many current neural net algorithms are developed for pattern recognition. It is 

natural to feed the nets a pattern for its input, and the nets will consider a set 

of input data as one pattern. How to extract data from an input pattern is 

important, no matter whether it is an image pattern or a numeric valued pattern.

If the input pattern is an image pattern, it is rather easy to get binary data 

from the image pattern. Figure 6 shows a set of binary inputs for the letter A 

drawn on a grid.[l] If a line passes through a square, the corresponding neuron’s



Tabic II: Results when 2 different types of inputs are used

inputs testing patterns actual outputs

pattern A 0.51 0.01 0.49 0.01 0.01

continuous inputs pattern B 0.51 0.01 0.49 0.01 0.01

pattern C 0.01 0.0 0.0 0.0 0.99

pattern A 0.99 0.01 0.0 0.01 0.01

binary inputs pattern B 0.0 0.0 0.99 0.0 0.01

pattern C 0.01 0.0 0.01 0.0 0.99

input is one; otherwise, that neuron’s input is zero.

In many real-world problems of practical interest, the patterns to be trained 

and recalled in a neural net are described by a set of decimal numbers rather than 

ready-to-use binary numbers from a visual image pattern. For example, suppose 

that we want to implement a system that analyzes the stock price in a stock market 

using a neural network. The data to be used in the neural net algorithm is weekly 

closing stock prices of a company for a certain period, which is an array of decimal 

numbers, not binary numbers. And the data set has its own unique pattern. 

It is more natural to tell a neural net algorithm the pattern, not just data itself 

because the current algorithms are developed to be good at pattern recognition. 

There could be several different types of patterns according to the properties and 

purposes of the applications. The pattern used here is one that depends on the 

trend (up or down) of data value. For example, a set of data { 2, 4, 8, 11 } is real 

data which has an ’’ascending order” pattern. { 12, 14, 23, 40 } has a ’’ascending 

order” pattern also. But it is a little different from the former one because the 

ratio of rate is different. Even though there are some applications in which a data
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Figure 6: Image recognition

value itself is important, most applications use a pattern of the data, not just the 

value itself. Therefore, we must have a means to encode real-valued numbers into 

binary neural state numbers without losing its pattern. The converted binary data 

should have the same pattern that the real data had.

A new scheme is proposed to represent real-valued numbers by neuron state 

binary numbers, which is essential in solving numerical problems on neural net­

works. One way of mapping the positive integer space onto the neuron state space 

will be shown before the new transformation method is considered. Comparisons 

of the two schemes with examples will be considered also.

1 Binary scheme

The easiest way of converting numbers into binary data is to use binary digits. For 

example, 9 is expressed by 1001. This scheme is used in examples in the previous 

section to show the performance of binary inputs over continuous valued inputs.
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A number N uses [log2(Ar + 1)] bits to express itself in binary. If the number of 

elements of a data set is D, then D * [log2(Ar + 1)] bits are required. Despite the 

simplicity, this scheme has the following problems when it is used in neural net 

algorithms.

• Not noise-tolerant : Even a small distortion in a value might give rise to 

a large error in the binary number represented. For example, if a number 7 

(0111) decreases by 1 to 6 (0110), only 1 digit is contaminated in the binary 

number. What if the number 7 increases by 1 to 8? The 0111 becomes 

1000. All of the 4 digits are contaminated completely even though the 

decimal number has just a single digit of noise.

•  Not fault-tolerant : Even a single failure in a highly significant bit gives 

rise to a large error in the number represented. For example, if the most 

significant bit of (1 0 1 10 1) which is -15 in decimal is corrupted, it becomes 

( 0 0 1 1 0 1 )  which is 13.

• Obscure whole pattern : It is a set of data, not an clement of the set, 

that has a pattern. Converting each decimal number into a binary number 

can not represent the pattern that the set has. You can not see the forest 

for the trees.

2 Bucket-Weight Matrix (BW M ) scheme

Each element from a data set with a certain range of values is expressed with 

a number of buckets. The bucket corresponding to the element’s value is set 

to 1, and the rest are set to 0. The number of buckets is determined by the 

degree of distortion tolerance to be used in an application. For example, if the 

input values of a pattern range from 0 to 8 and the number of buckets is 4, then 

(the range o f  input values)/(ihe number o f  buckets) = (8 — 0)/4 = 2 is the



size of each bucket as well as the size of distortion tolerated. The first bucket 

corresponds to values from 0 to 2, and the second bucket is for values from 2 to 4, 

and so on. Since there are 4 buckets, each number is represented by 1 digits, and 

each digit represents each bucket. If the bucket contains the number, it is set to 

1, and the other buckets, that is, digits are set to 0. A number I is represented by 

0100, and 7 is represented by 0001 because the number 4 belongs in second bucket 

and the number 7 in fourth bucket. So the elements whose values are in the same 

bucket’s range are represented the same. A number 3 is represented by 0100 just 

like a number 4 because the second bucket represents elements whose values are 

more than 2 and less than or equal to I. Noise filtering ability can be obtained in 

this way.

Doing this for every element makes a so-called bucket-weight matrix for the data 

set. The matrix has a property of the pattern that the data set had. Besides 

the pattern keeping ability, this scheme has a good noise-filtering ability and works 

even with negative numbers and fractional numbers. This scheme will be discussed 

in the next chapter in more detail.

The following example will show how well the two schemes filter distorted 

patterns. Table III shows the three different input types from the three different 

schemes mentioned above for two patterns to be learned by backpropagation. The 

assumption of input data range and bucket numbers in a BWM scheme representa­

tion are the same as the ones mentioned above. These input data will be learned 

separately with the same desired outputs for each pattern. The nets arc trained 

10,000 times with the inputs, respectively. Table IV shows the distorted inputs of 

the data in table III. The bold faced digits are the ones contaminated by a change 

of 1 in the decimal input value.

As seen in table IV, for a small distortion in a decimal number, that is, 7 

8, the data using the binary scheme are corrupted completely, that is, 0111
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Table III: 3 different types of inputs arid desired outputs for 2 patterns trained by 
backpropagation

pattern scheme inputs desired outputs

pattern A

non-binary 7 4 2

1 0binary 0111 0100 0010

BWM 0001 0100 1000

non-binary 2 5 6

pattern B binary 0010 0101 0110 0 1

BWM 1000 0010 0010

1000, while the data using the BWM scheme are not corrupted. This is the worst 

case of the binary scheme because a small distortion in non-binary input causes 

100% of the binary bits to be corrupted. The worst case in the BWM scheme is 

when a distorted number is out of its original bucket. In pattern B of table 111 

and table IV, the number 5 belongs to the third bucket, and the distorted number 

4 belongs to the second bucket. So the BWM scheme input 0010 becomes 0100, 

that is, at most 2 bits are changed in the worst case of the BWM scheme no matter 

how long the inputs are. These three different types of inputs are recalled, and 

the results arc illustrated in tabic V.

As seen in table V, the binary scheme could not filter the distorted inputs of 

pattern A while the other two schemes corrected the input errors and produced 

correct outputs. The distorted input of pattern A using the binary scheme produce 

wrong outputs which axe closer to the desired outputs of pattern B and cause 

the net to make a wrong decision. From the results of table II and table V, 

it is shown that the BWM scheme helps a net’s accuracy of classification over 

continuous inputs and helps noisy filtering and fault-tolerance capabilities over a
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Table IV: 3 different types of distorted inputs for 2 patterns

pattern scheme noisy inputs desired outputs

pattern A

non-binary 8 4 2

1 0binary 1000 0100 0010

BWM 0001 0100 1000

non-binary 2 4 6

pattern B binary 0010 0100 0110 0 1

BWM 1000 0100 0010

binary scheme.

In next chapter, this BWM scheme will be implemented in a neural net called 

the Binary Pattern Net, and a bucket sorting method using the net will be given,

too.
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Table V: Results of recalling of the trained net

pattern scheme actual 01

w/ correct inputs
jtputs

w/noisy inputs
desired output

pattern A

non-binary 0.99 0.01 0.99 0.01

1 0binary 0.99 0.01 0.22 0.78

BWM 0.99 0.01 0.99 0.01

non-binary 0.01 0.99 0.01 0.99

pattern B binary 0.01 0.99 0.01 0.99 0 1

BWM 0.01 0.99 0.04 0.96
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I l l  Binary P attern  N et

The Bucket-weight matrix scheme, which was proposed in the previous section 

briefly, converts a set of input numbers into a set of neural net state binary numbers 

without losing its unique pattern. T his scheme is implemented in a neural net-like 

algorithm so that this net can be combined with other nets, which would be nets 

that have real world data processing ability. This binary pattern net can be used 

as a bucket sorting net as will be shown later in this chapter.

A constant number of buckets are generated according to the range of values 

in an input data set. Each element goes to its bucket and makes the bucket value 

1 and the others 0. A (number o f buckets) * (number o f elements) matrix is 

obtained after all of the elements in the set are put in their buckets. The pattern 

in the data set is determined according to how big and where, relatively, in the 

set each element is. Like other nets, the operation of this net has 2 steps, the 

training step and the recalling step. Since the bucket-weight matrix is generated 

in the training step, the bucket-weight matrix scheme is performed in this step. 

The recalling step is necessary for bucket sorting of the data set.

A Training step

In this step, a set of numbers becomes a set of binary pattern numbers. Figure 7 

illustrates the training model of the Binary Pattern Net.

Going through this net, n numbers become n * b binary numbers that are the 

bucket-weight matrix. The neurons in the first layer have input numbers, and the 

connection weights from the first layer to the second layer are initialized with I f  

that is the upper limits of buckets. The summation function of each neuron in the 

second layer is Nelij = Aj — B\, and the transfer function is a threshold function 

that is shown in figure 7. The Netij value represents the distance between an 

element, Aj, and a bucket boundary, B;. The transfer function in the C layer is a
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A(i) « Input data element 
n « the number of elements in the input data 
max *  the maximum value of the input data range 
min -  the minimum value of the input data range 
b » the number of buckets 
B(i) -  ( (max-min+1)/b ) * i

NETij* Aj-Bi 
OUTij=r -cd , if NETij > o

‘■NETij . o th erw ise

W inner-takes-all 
Cji y l, w inner for each i 

'•0, others

Figure 7: Training step of bin ary-pat tern net. The matrix C is the bucket-weight 
matrix. N  numbers are encoded into n * 6 numbers
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winner-take-all style, that is, C,j is set to 1 for the winner of all the elements of j, 

0 for the rest,. In this way, the n 4  bucket-weight matrix has n Is and (n * b — n) 

Os, and there is only one 1 in each row.

Example We have a set of data which has 5 elements { 7, 3, 11,5, 1 }. Suppose 

the range of input data values is 0 ~  12, and the number of buckets is 4.

We can show the process with matrix manipulation.

A(i; i= l,5) = 7, 3, 11,5, 1 

B(i; i=l,4) =  “f* = 3, 6, 9, 12

Definition of © : Net(i j )  =  A(i) 0  B(j) is defined as Nel^ — .4,- — Bj.

Neta —

7 \  
3 
11
5

V 1 )

© ( 3 6 9 12 )

/  4 1 - 2 -5 \
0 -3 - 6 - 9
8 5 2 -1
2 -1 - 4 - 7

V - 2 -5 - 8 -11 /

Outij =

Ci»J
■ I t

—oo, if Net^ > 0,
Netij, otherwise.
— oo —oo to1CM1 \

0 -3 - 6  -9
—oo —oo — oo —1
—oo -1 t-1Tt

- 2 - 5 - 8  -11 )
1, if the largest in ith row

otherwise.
/  0 0 1 0 \

1 0  0 0
0 0 0 1
0 1 0  0

% 1 0 0 0 #

The final matrix C is the bucket-weight matrix. The binary digits of each row 

represent each number of the data set. A \% 7, is represented by 0010, J=1 4
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that is first row of matrix C; .42, 3, is transformed to 1000, C2j t j=\..A and so on. 

Each column represents a bucket. The binary matrix C has the pattern that the 

continuous valued data set .4 had.

B Recalling step  (Bucket sorting)

In general, a bucket sort has three phases, which we may call distribution, sorting 

buckets, and combining 6ucfce<s.[l 1] Suppose there are k buckets. During the 

distribution phase, each key is examined. Then it does some work to indicate in 

which bucket the key belongs. In the second phase, an algorithm is used to sort 

buckets by a comparison of keys. The third phase requires that the keys be copied 

from the buckets into one file. If the distribution of the keys is known in advance, 

the range of keys to go into each bucket can be adjusted so that all buckets receive 

an approximately equal number of keys.

In this recalling step, the unsorted numbers in the input set of the training 

step arc distributed into buckets by the values. The bucket size can be adjusted. 

If this recalling step is recursively used to create smaller and smaller buckets or if 

a large number of buckets is used, then all of the keys can be sorted completely 

in the first phase, that is, this recalling step, even though this seems inefficient in 

terms of the amount of space needed.

Figure 8 illustrates the recalling model of a binary pattern net. The input 

numbers are the numbers in set A, and the weight matrix used is the bucket- 

weight matrix from the training step of this net.

Example This example is the same as the one in the training step.

Definition of <S> : S(i j )  =  A(i) <g> C(i j )  is defined as StJ = A, * C,y.

/  0 0 1 0 \
1 0  0 0
0 0 0 1
0 1 0  0

 ̂ 1 0 0 0 t

Sorted matrix S,j = ( 7 3 11 5 1 ) ®
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Al Is unsorted Input data

Cji is weights obtained 

in a training step 

Si a Aj*Cij, if Aj'Cij o  0

Sorted output data

Figure 8: Recalling step of a binary-pattern net. This step is used when bucket, 
sorting is required. The weight matrix C is from a bucket-weight matrix.

(  0 0 7 0 \
3 0 0 0
0 0 0 11
0 5 0 0

V 1 0 0 0

i i \ \
Si S2 S3 Si

Each column represents a bucket. The first bucket contains 1 and 3 ,the 

second bucket has 5, and so on. In this way the input data are bucket-sorted in 

this recalling step. Figure 9 shows the nets of this example.

The 1,000 numbers generated by a random number generator are distributed 

into buckets by this net on a serially operated computer, and the results are in the 

appendix D. Figure 10 illustrates the graph of running time of bucket sorting in 

this net.
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Figure 9: The net of the recalling step for a bucket sorting. The link weights are 
the key of the sorting.

m illi-sec

(a)

Figure 10: Bucket sorting time (in milli-seconds) for the binary-pattern net. (a) 
when the number of data is fixed at 1000 and (b) when the number of buckets is 
fixed at 100



28

C A nalysis

The performance of the net will be discussed in this section. The following are 

the properties of this net.

1. Encoding a set of real world numbers into a set of neural net state binary 

numbers without losing its unique pattern.

2. Good noise-filtering ability.

3. Linear complexity, Scalability.

1 Training time and memory used

Figure 10 shows that training time increases linearly with the number of elements or 

the number of buckets; that means that the computational-complexity function of 

a bucket-weight matrix net is linear. In the training step, suppose n is the number 

of elements and b is the number of buckets. A(n) Q B(b) becomes an n * t matrix, 

and it requires n* b multiplications and an average of 1/2 *n* b comparisons. In 

general, since the number of buckets, b, is constant, the training time is linear of n. 

So the complexity of the net when it is simulated on a serially operated computer 

is 0(n)i which means this net is scalable. Scalable, in this case, refers to the 

ability of a neural network developed on a digital computer to be enlarged easily 

to perform larger real-world tasks. When we want to enlarge a small experimental 

neural network into a real-world application, scalability becomes important. The 

graph in figure 11 compares three scalability standards.[7] If you improve a training 

algorithm from exponential to polynomial scalability, you will significantly increase 

the number of patterns you can train. The bucket-weight matrix net has linear 

scalability, which is an improvement over polynomial scalability.

The number of bits or neurons required in the BWM scheme depends on the 

number of buckets (b) and the number of elements in the set (n). It requires b*n
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Figure 11: Three standard measures of scalability; problem size can be from train­
ing patterns, neurons, or synapses

bits to express the set of data. Each element requires b bits regardless whether it is 

a large number or not. Generally, the memory used is linear in the problem size if 

b is constant. The numbers of neurons increases 6*100 (%) because n continuous 

valued numbers become b n  binary numbers. This might limit the possibility 

of covering large numbers of elements using a small number of neurons, but for a 

neural computer it is not a fatal disadvantage because the use of ample neurons 

with much redundancy is the key to improving its computational capability and 

system stability[6].

2 Noise filtering

This binary weight matrix net has a noise-filtering ability. The elements whose 

values belong to the same bucket are represented by same binary bits in the BWM 

scheme. So a little change of a value within the bucket size does not affect its 

binary result. The bucket size determines the noise-tolerance range and the bucket 

size is determined by the number of buckets. For example, consider the example 

data in the previous section, which is { 7, 3, 11, 5, 1 } and a bucket size of 3. If the 

first element 7 is contaminated by two units, it becomes 9. The resulting bucket 

weight matrix is the same because both 7 or 9 belong to the third bucket. But if
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the 7 is changed to 6, a different binary matrix is obtained because 6 belongs to the 

second bucket, not to the third bucket. So the number which is on the border of 

each bucket has a half chance to be filtered according to its noise direction. Figure 

12 shows a graph of the trade-offs between noise tolerance and accuracy of pattern 

recognition with the data used in the example of the training step. Different 

bucket-weight matrices for different bucket numbers or bucket sizes are shown in 

the figure also. In figure 12, by connecting the Is in the matrices, the similarity 

of input data pattern A and converted binary data C can be found.

Though the noise filtering ability is decreasing as the bucket size gets very 

small, the number of affected bits in the resulting binary matrix is 2 at most. 

Compared to the number of total bits, 2 bits are very few. These few distortions 

can surely be fdtered out in the main neural net algorithms that are going to use 

the binary matrix as its input data pattern data. Since most neural net algorithms 

have noise filtering ability, this net will increase the ability a lot when this net is 

combined with those nets.
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Figure 12: Trade-off between accuracy of recognition and noise-tolerance by vary 
ing bucket sizes
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IV  Exam ples

The bucket-weight scheme connected to the BAM model is simulated. The 

scheme is implemented in the training step of a binary pattern net. Two examples 

will be shown here; one is a pattern recognition with a non-visual numeric-valued 

pattern, and the other is with a visual image pattern.

A Exam ple w ith a numeric data pattern

Recognition of some patterns of stock prices in a stock market is performed here. 

The data collected are weekly closing prices of 2 companies, A and B, for 12 weeks. 

The 12 week stock prices of each company have their own pattern of the trend of 

prices, and we want to classify the patterns with the BAM model. Table VI shows 

the raw data of 2 companies.

The BAM model uses bipolar numbers for its inputs, but the data we have in 

this example is not bipolar. So we need a scheme to convert the raw data into 

bipolar data. The bucket-weight matrix scheme will be used for this example. A 

bucket-weight matrix will be generated in a training step of the binary pattern net. 

The matrix is used as an input set in the BAM. In a binary pattern net, suppose 

that 16 buckets are used so that the bucket size is (323.98 — 177.35)/16 = 9.16 

because the raw data is in the range 177.35 to 323.98 as seen in table VI. With this 

bucket size, the BWM scheme will have the noise-tolerance rate of 9.164/(323.98- 

177.35) * 100 = 6.25%. The final binary data, that is, bucket-weight matrix 

obtained in a training step of the binary pattern net are in figure 13. These data 

are trained in the BAM model with auto-associations of the two patterns. 

R esults

Figure 14 shows a graph of the trend (up and down) of the values in table VI and 

graphs of results of recalling with some incomplete inputs. The association model 

produces the complete output, the following stock prices, given the partial inputs,
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Tabic VI: Weekly closing prices of company A and B

Company A Company B

1,( week 177.35 265.84

2nd week 198.25 264.38

3rd week 221.89 257.72

4th week 249.01 249.01

5th week 271.47 239.56

6th week 260.91 231.62

7th week 262.13 229.54

8th week 295.73 229.97

9th week 310.07 241.03

10*h week 316.61 260.90

11th week 300.01 300.01

12th week 251.43 323.98

the first 3 weeks’ prices as seen in graph (a). Graph (b) shows the correct output, 

given noisy inputs. The noise in graph (c) is filtered in the binary-pattern net 

already before it goes to the BAM net. Since the BAM net has noise filtering 

property, a double noise filtering system can be obtained by using the two nets 

together. Another noisy input is tested in graph (d), which is a mixed input of 

pattern A and B. Appendix E has all of the input data and output data used in 

these tests. The program codes used in these tests are in appendix A and B.
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" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0  0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0  0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  

‘  ”  0 0 0 0 0 0 0 0 0 1 0 0  0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0  0 1 0 0 0  
0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
O O O O O O O O O O O O O l  0 0  
0 0 0 0 0 0 0 0 1  0 0 0  0 0 0 0

' 0 0 0 0 0 0  0 0 0 1  0 0 0 0 0 0 '  

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0  
0 0 0 0 0 0  0 1 0 0 0  0 0 0 0 0  
0 0 0 0 0 0 1  0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  

B  ~  0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1  0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 13: Matrix A is binary pattern matrix for company A, and matrix B is for 
company B.

B Exam ple w ith  a non-numeric image pattern

In many image recognition problems, the most common way to extract binary 

image numbers is illustrated in figure 15 which shows a set of inputs for a shape 

drawn on a grid. If a line passes through a square, the corresponding neuron’s 

input is one; otherwise, that neuron’s input is zero.

Even though this method is simple to get binary input numbers from an image 

pattern, it has unexpected side effects in terms of noise problems. This will be 

discussed by testing two patterns with the BAM model. Two different patterns 

in figure 16 will be trained and tested to be classified in the BAM model.
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company A company B
(a) weekly closing prices of company A and B

(b) recalling with partial inputs

weeks

weeks

Figure 14: Graphs of values in table VI and results of recalling with different inputs
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►  1

► o

Figure 15: Binary data extracting from a visual image pattern

• Pattern 2 •

Figure 16: Two input patterns
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noise 1 noise 2

horizontal noise by one square vertical noise by one square

Figure 17: Two possible noisy patterns of pattern 2

Say that pattern 2 is corrupted by one square horizontally and vertically as 

seen in figure 17. The horizontal noise of pattern 2 causes just one square to 

be changed while vertical noise causes seven squares to be changed even though 

both of them make just one square of noise. Figure 17 explains this. This side- 

effect will result in a wrong pattern classification. The two patterns in figure 

16 are trained in an auto-association manner like figure 18. After that, the two 

patterns distorted by one square in height are tested, and totally wrong outputs 

are obtained. Figure 19 shows the output results. The noisy input of pattern 1 

has 13 squares identical to pattern 1 while it has 16 squares identical to pattern 2; 

that is, the input pattern is 15% more closely matched to pattern 2 than pattern 

1. So wrong classification is performed. The same goes for the result of noisy 

input of pattern 2 and its wrong output. So another data extracting method is 

necessary to overcome this unexpected side effect. Vector values to represent the 

patterns can be used in this case.

Figure 20 illustrates one particular example of how to extract vector values
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Association of patternl

Figure 18: Input pairs for training

that have directions and scalar values from pattern 1. Suppose that the scalar 

value represents the number of squares. As seen in figure 18, the two patterns 

are composed of three lines each. The differences of the two patterns are the 

heights of the patterns and which side is open. Suppose that the starting point 

to extract vector values of lines is the end point of the upper line. Consecutive 

vectors begin at the end of previous vectors. The vector data obtained in this way 

is (—5, —4, +4) for pattern 1 and (+5, —3, —4) for pattern 2. Since the data 

is non-binary numerical, the scheme proposed in chapter III-A is used to convert 

the data into binary format. Suppose 5 buckets are used in this case. Then the 

bucket size is 2 since the maximum is +5, minimum is -5, and there are 5 buckets 

So the upper limits of the buckets B = {-3, -1, 1, 3, 5}. The two bucket-weight 

matrices from the two vector data are

p a tte rn l =  ( - 5 ,  —4, +4)
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noisy Input_________

Noisy pattern of patternl and It's 
wrong output pattern

wrong output

Noisy pattern of pattem2 and 
It's wrong output pattern

Figure 19: Recalling of noisy patterns and its incorrect output

Figure 20: Extracting vector values from image pattern 1 in figure 16
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Net:; —
/ -5  N\ ,

-4
0

- 3  -1 1 3
V +4 t/

/ -2 -4 -6  -8 -10  \
-1 - 3 -5  -7 -9

l  7 5 1 - 1

f  " 2 - 4 - e - 8 - 1 0
Outij = - 3 - 7 - 9

 ̂ —oo — oo — oo — oo - 1

( 1 0 0 0 0 ^
pat tern1 = 1 0 0 0 0

 ̂ 0 0 0 0 1 )
bucket weight matr ix  fo r  pattern 1 =

The bucket weight matrix for pattern 2 can be obtained in the same way as 

above.

pattern2

bucket weight matrix fo r  pattern2

(-1-5, —3, —l)
/  0 0 0 0 1 \

1 0 0 0 0
\  1 0 0 0 0 J

The vector values of the two noisy input patterns in figure 19 are ( — 5, —3, +3) 

and (+5, —4, —4), respectively. And their bucket-weight matrices are exactly 

same as the ones above. This means the noise is filtered in a bucket-weight matrix 

scheme before going through the BAM model. Even if there are many buckets and 

each bucket size is small, the number of input elements contaminated by a pattern 

noise is two at most. Two elements of noise in the matrix is small enough that 

the BAM model can surely filter it because the BAM model has a noise filtering 

ability.[3] The results in this way are shown in figure 21. This method is closer to 

the human’s pattern recognition method as we classify the two patterns by their 

rough shape, that is, whether the right side is open or the left side is open, not 

by their precise lengths and angles. In this way, we can recognize scaled patterns 

and rotated patterns easily while the first method cannot help it.

The two methods mentioned above can be compared in terms of noisy rate of 

input binary data. Suppose that an input pattern is distorted by one unit and
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noisy Input correct output

Figure 21: Recalling of noisy patterns and its correct outputs

the binary input data from the pattern has n * n  elements. Table VII compares 

the rates of corruption of the converted binary inputs caused by the distortion of 

the original input pattern.

Table VII: Noise rates of two methods

method best case worst case

first method 

second method

l /(n * n )*  100(%)

o(% )

2/n * 100(%)

2/(n *n) * 100(%)

The best case in the first method is the case of noise 1 in figure 17, and the 

worst case is the noise 2 case in the figure. In the case of the second method that 

uses vector inputs, the BWM scheme filters most of the small errors if the errors 

are in the noise-tolerance range. At worst, 2 bits in the bucket-weight matrix are



changed regardless the si/e of the matrix.
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V Conclusion and further research

Most current neural network algorithms have considerable power in pattern 

recognition. A method that extracts a particular pattern from real world data as 

closely as possible to the human’s pattern extracting method surely increases the 

neural networks’ pattern recognition ability. In this thesis, one of the input data 

encoding methods, the bucket-weight matrix scheme, is discussed and tested with 

both a visual image pattern and a noil-visual numeric pattern. The results show 

that this scheme is a very encouraging and effective data extracting method. This 

scheme provides a means to make neural net state input data from a numerical 

data pattern, avoids unexpected side effects that might happen in a data encoding 

procedure ,and has a good error-correcting property.

The binary-pattern net that implements the scheme can be used as a bucket- 

sorting net also. The procedure and results of a bucket-sorting net are shown in 

this report, and this gives us a positive possibility of another application of neu­

ral networks. That is, neural computing can contribute to many traditional data 

structure problems such as sorting, searching, indexing and the hashing function as 

well as pattern recognition problems. Since the basic structure and procedure of 

neural networks is parallel and distributed, some problems of data structures such 

as timing and fault tolerance can be solved with these neural networks properties. 

In implementing the algorithms on a parallel machine, there are some problems 

to be solved such as communication time problems. The under-construction neu­

rocomputers that are electrical or optical implementations of neural networks will 

surely solve these problems and open a new area of the computer world.

The adaptive expert system is a very encouraging application of neural net­

works. The expert system is the most successful one in terms of the practice of 

artificial intelligence. The strong point of the expert system is its inference ability 

while the neural network has a powerful recognition ability. So the combining of
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the two abilities, recognition and inference, will approach a human’s brain capa­

bility. There is no doubt that this neural network will contribute to humankind’s 

life as well as many artificial intelligence application areas.



Appendix A
Programming of the BAM model
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H. Kosko’s BAM model[3] is programmed in C language here.

/*
************************************************************** 
************* ************
************* BIDIRECTION ASSOCIATIVE MEMORY ************ 
************* ************
************* By Hyeoncheol Kim ************
************* 1990 ************
************* ************
**************************************************************
******************************************************************/ 
#include <stdio.h>
#include <math.h>

#define Number 2 /* The number of the patterns*/
ttdefine In_element 20 /* The number of the input elements */
#define Out_element 20 /* The number of the output elements */

/****************************************************************** 
DEFINING THE GLOBAL VARIABLES AND ARRAYS FOR MAIN PROGRAM 

*******************************************************************/

float M[In_element][Out_element]; /* The trained connections */

main(M

/******************************************************************* 
DEFINING THE LOCAL VARIABLES AND ARRAYS FOR MAIN PROGRAM 

*******************************************************************/

II char ans,fnl[l0], fn2[l0]; /* The name of the inputs */
n int flg,i, j, n; /* Integer Variables */
II float input [Number] [In_element] , output [Number] [Out_element] ; 
nnnn /* Variables for input and output*/

float Ml[In_element][Out_element];
/* Variable for connection */

n FILE *in_file, *out_file, *fopen(), *fclose();

/*******************************************************************
READ IN THE INPUT DATA AND THE NAME OF THE TWO FILES;
INPUT AND OUT PUT
******************************************************************/



n for(i-0;i<In_element;i++){ 
n for(j=0;j<Out_element;j++){
n M[i] [j] = 0 .0 ; 
n > 
n >
n /* The initial values of the connection */

II for(n=0;n<Number;n++){
n

n printf("Enter the file name of input data\n"); 
n gets (fnl);
n in_file = fopen(fnl,"r"); 
n if(in_file == NULL){ 
n printf("Error 0pening\n"); 
n exit(l);
n >
n /* Read in the first data for the associative memory */

n printf("Enter the file name of target output data\n") ; 
n gets(fn2);
II out_file = fopen(fn2, "r") ; 
n if(out_file == NULL){
II printf ("Error OpeningXn") ; 
n exit(2);
n >

/* Read in the second data for the associative menory

n for(i=0;i<In_element;i++){ 
n f scanf (in_f ile, "*/,f " ,&input [n] [i] ); 
n if(input[n][i] == 0.0){ 
n input [n][i] = -1.0;
nnn }

else{
n input [n][i] = 1.0;
n > 
nnnn }

/* With hard limit threshold, transform the data 
into the bipolar */

for(i=0;i<0ut_element;i++){
II f  scam.f (ou t_ f i l e  " .to u tp u t [n] [ i ] )  ;
n i f ( o u t p u t [ n ] [ i ]  == 0 .0 ) {
II output [n] [ i ]  = -1 .0 ;
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nnn }
e l s e {

II output [n] [ i ]  = 1 .0 ;
n > 
nnnn }

/*  With hard l im it  th re sh o ld , transform  the d ata  
in to  th e b ip o la r  * /

n fo r (i= 0 ;i< In _ e lem en t;i+ + H  
II fo r (j= 0 ;j< 0 u t.e le m e n t;j++){
II M l[i] [j] = input [n] [ i]  *output [n] [ j ]  ;
n > 
n }
n /*  C onstructing th e  connection  fo r  th e  h etero  a s s o c ia t iv e  memory * /

n fo r (i= 0 ;i< In _ e lem en t;i+ + ){
II for(j= 0;j< O u t_elem en t;j++ ){
II M [i][ j ]  = M [i][ j]  + M l[ i] [ j ] ;
n > 
n }
II } /*  The N p attern s have been learned * /

p r in t f ("*** End of T raining Step ! ***\n");

do{
flg = 0 ;

RECALLO ; /*  procedure o f r e c a l l in g  th e  data w ith  a r b itr a r y  in p u t */ 
p rin tf(" A n oth er t e s t ? ( y /n ) \n " ) ; g e ts (a n s ) ;  i f  (ans==, y , > f lg = l ;  
} w h i le ( f lg = l ) ;

n } /*  This i s  the end of the main fu n ctio n  */

/a * iti*************** **************************************** *********
THIS IS A PROCEDURE OF RECALLING THE OUTPUT FROM THE TRAINED NETWORK 
*******:M***’|c********1lE***’|c**#*******:***]|C’<c*>|c*>|c]|c*]|c*]|c***]|c1<c:<c:<t*!|c**1lc1lc**3lc’|c/

RECALLO /* The Name of th e r e c a l l in g  procedure * /
{
/>**************************************************************** 

DEFINING THE VARIABLES FOR THE RECALL
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****************************************************************/

char f n l[ lO ] ,  fn 2 [lO ];  
in t  i , j , k , 1;
f l o a t  in p u t[In .e le m e n t] , output[O ut_elem ent]; 
f l o a t  b u ffe r , ch eck [In _elem en t];

FILE * in _ f i l e ,  * o u t _ f i le ,  *fopen() , * f c lo s e ( ) ;

/  ******************************************************************* 
n READ IN THE NAME OF THE DATA FILE
******************************************************************* f

p r in tf(" E n ter  th e  Name of th e  input f i l e  fo r  r e c a l l in g \n " ) ; 
g e t s ( f n l ) ;
in _ f i l e  = fo p e n ( fn l , "r") ; 
i f ( i n _ f i l e  == NULL){ 
printf("O pening E rro r \n " ); 
e x i t (4 );
>

p rin tf(" E n ter  th e Name of the out f i l e  fo r  r e c a l l in g \n " ) ; 
g e t s ( f n 2 ) ;
o u t _ f i le  = fo p e n (fn 2 ,“r " ) ; 
i f ( o u t _ f i l e  == NULL){ 
printf("O pening E rro r \n " ); 
e x i t (4 );
}

/*************************************************************** 
CHANGING THE ELEMENTS INTO BIN.
BY LETTING THEM GO THROUGH THE THRESHOLD 
****************************************************************/

f o r ( i= 0 ;i< In _elem en t; i+ + ){
f  scan f (in _ f i le ," 7 ,f " ,&input [ i ]  ) ; /* i n i t i a l  value o f input[] */
rum >
f  o r (i= 0 ;i< 0 u t.e lem en t ;i++M
f  scan f (o u t_ file ," 7 ,f \n " ,fe o u tp u t[i]) ; /* i n i t i a l  value o f output [] */
rum >
/***************************************************************** 
TAKE THIS PROCEDURE UNTIL THE OUTPUT DOES NOT CHANGE 
BY FALLING INTO A HOLE
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******************************************************************/ 

do{

f  o r ( i= 0 ; i<In_elem ent; i+ + ){ 
check [ i]  = input [ i ]  ;
nnn }
nnn /*  I n i t ia l i z in g  th e checking v a r ia b le s  * /  

b u ffe r  = 0 .0 ;
f  o r ( i= 0 ; i<0u t_elem en t; i+ + ){ 
b u ffe r  = 0 .0 ;
fo r (j= 0 ;j< In _ e lem en t;j+ + ){  
b u ffe r  = b u ffer  + input [j ]  *M[j] [ i]  ;

}
i f ( b u ffer  > 0 .0  M  
o u tp u t[ i]  = 1 .0 ;
nn >
i f (  b u ffer  < 0 .0  ) {  
o u tp u t[ i]  = 0 .0 ;
nil } /*  i f  b u ffer  = 0 .0 ,  o u tp u t[] i s  not changed */

>
nnn /*  The output a t th e f i r s t  la y er  * /

f or(i=0;i<In_element;i++){ 
buffer = 0.0;
for(j=0;j<0ut.element;j++){ 
buffer = buffer + M[i] [j] *output[j] ;
nnn }
if( buffer > 0.0 ){ 
input[i] = 1.0;
nn }
if( buffer < 0.0 M
input[i] =0.0; /* If buffer = 0.0, input[] is not changed */
nn }
nnn }
nnn /* The output at the second layer */ 

buffer =0.0;
f or(i=0;i<In_element;i++){ 
if(check[i] != input[i]){ 
buffer = buffer +1.0;

>
nnn}
}while(buffer !=0.0);



printf("output: \n"); 
for(i=0;i<0ut_element;i++){ 
if ((i'/.5)==0) printf ("\n") ; 
printf Of " .output [i] ) ;
}
printf("\n");
/* THIS IS THE END OF THE RECALLING PROCEDURE */
}



Appendix B
Programming of Bucket-weight matrix scheme



B u c k e t - w e i g h t  m a t r i x  s c h e m e  i n  c h a p t e r  I I - B  i s  p r o g r a m m e d  i n  C  l a n g u a g e .

/*  ** ***************************************** ***********
* *
* Making Bucket-Weight Matrix *
* *
* By Hyeoncheol Kim *
* 1990 *
* *
if******************************************************/

^include <stdio.h>
#include <math.h>

ftdefine max_sor 100 /* Number of input elements */
fldefine max_bk 1000 /* Number of groups (buckets) */

main(){

char irum[l0] ;
in t  i , j ,bk , f l g , no_elem ent;
float fIt,ind_keys[max_bk] ,in_data[max_sor] , 

train[max_sor][max_bk] ; 
double mx,inn,scale,offset;

FILE *in_file, *out_file, *ifp, *ofp, *fopen(), *fclose();

printf ("Enter the input file name :\n"); /* raw input data */ 
gets(irum);
ifp = fopen(irum, "r"); 
ofp = fopen("conv.o", "w");

if (ifp == NULL I ofp == NULL){ 
printf("Error in opening file\n"); 
exit(1);
>

/* convert raw data to scaled data */

no_element = 0; 
mx = 0.0; inn = 9999999.0; 
while ( f scanf (ifp,"5Cf",&f it) == 1 ) { 

no_element = no.element + 1; 
if (fit < mn) mn = fit; 
if (fit > mx) mx = fit;

}
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s c a le  = 8 /  (mx-mn); 
o f f s e t  = 1 -scale*m n;

p r in tf  (" sc a le  = */..4f, o f f s e t  = '/..4 f\n " , s c a le ,  o f f s e t ) ;  

fseek C ifp , 01 , 0 );
w h ile  ( f  scan f ( i f  p, "'/.f " ,icf I t )  == 1 ){

f p r in t f ( o f p ,  "*/,.3f\n", f l t * s c a le + o f f s e t ) ;
>

f c lo s e ( i f p ) ;  f c lo s e ( o f p ) ;

bk = 16; /*  number of buckets * /
ind_keys [0] = 1 .5 ;
fo r  ( i= l; i< b k ; i+ + )  {
in d _ k ey s[i] = in d _ k e y s [ i- l]  + 0 .5 ;

>

i n _ f i l e  = f  openC'conv.o" ," r" ); 
i f ( i n _ f i l e  == NULL){ 
p rin tf(" E rror  in  opening f i l e \n " ) ;  
e x i t ( ) ;
>
fo r  (i= 0 ;i< n o_elem en t;i+ + ){  
fsc a n f ( in _ f  i l e ,  "’/.f\n",& in_ data [ i ] )  ; 
p r in t f  (" '/..Of " ,in _ d a ta [ i]  ) ;

}
p r in t f (" \n " ) ;

p r in tf(" E n ter  th e f i l e  name fo r  a p a ttern  ta b le  
(exep t c o n v .i ,  conv .o) : \n " );  

g e ts ( ir u m );
o u t . f i l e  = fopen(irum ,"w "); 
i f ( o u t _ f i l e  == NULL){ 
p rin tf(" E rror  in  opening f i l e \n " ) ;  
e x i t ( ) ;
}

/* making p a ttern  ta b le  o f binary data from th e sc a le d  data  */

fo r  (i= 0 ;i< n o_elem en t;i+ + ){  
f lg = 0 ;
fo r  ( j = 0;j<bk;j++){

i f  ( f lg = = l)  { t r a in [ i ] [ j ] = 0 .0 ; >  
e l s e  {



train[i] [j]=in_data[i]-ind_keys[j] ; 
if (train[i] [j]>0.0) {trainCi] [j]=0.0;> 
else {trainCi] [j] = l .0; flg=l;}

}
}

>

for (i=0;i<no_element; i++){ 
for (j=0;j<bk; j++){
fprintf (out_file,"*/..0f " ,trainCi] [j] ) ;

>
fprintf(out_file,"\n");

>

for (i=0;i<no_element; i++){ 
for (j=0;j<bk; j++){ 
printf(" ’/..Of ", trainCi] [j]) ;

>
printf("\n");

>

} /* end of program */



Appendix C
Programming of binary pattern net. (bucket sorting net)



The binary pattern net in chapter III-B is programmed in C language for bucket 
sorting.

/*********************************************************
* *
* BUCKET SORTING USING NEURAL NET *
* *
* By Hyeoncheol Kim *
* 1990 *
*  *  

**********************************************************/

ftinclude <stdio.h>
^include <math.h> 
tfinclude "types.h"
#include "macros.h"
Jfinclude "clocks.c"

ffdefine max_sor 1000 /* Number of elements to be sorted */
#define max_gv 100 /* Number of groups */

main (){

char fn[l0] ;
int i ,j,ttime,flg,Sor_element; 
float ind_keys[max_gv],sor_data[max_sor], 

train[max_sor][max_gv]; 
float gv,mx;

FILE *in_file, *fopen();

printf("Enter the # of data to be sorted:\n"); 
gets(c);
Sor_element=atoi(c); /* number of data to be sorted */

printf("Enter the maximum value:\n"); /* suppose minimum is 0 */ 
gets(c); 
mx=atoi(c);

printf("Enter the ’G' value (# of buckets):\n"); 
gets(c); 
gv=atoi(c);

for (i= 0 ;i< g v ;i+ + ) { 
in d _ k ey s[i] = (m x * (i+ l)) /g v ;

>



printf("Enter the file name to be searched :\n"); 
gets(fn);
in.file = fopen(fn,"r"); 
if(in_file == NULL){ 
printf("Error in opening file\n"); 
exit();
>
for (i=0;i<Sor_element;i++){ 
f scanf (in_f ile , "*/,f \n" ,&sor_data[i]); 
printf (" '/..Of " , sor_data[i] ) ; 
if ( (i'/,13) == 0) printf ("\n") ;

>
printf(" will be sorted! \n");

clock_init();
CL0CK_START(T0TAL_TIME);

/* training step and making sorted table * 
for (i=0;i<Sor_element;i++){ 
flg=0;
for (j=0;j<gv;j++){

if (flg==l) {trainCi] [j] =0.0;> 
else {
trainCi] Cj]=sor_dataCi]-ind_keys [j] ; 
if (trainCi) Cj]>0.0) {trainCi) Cj]=0.0;} 
else {trainCi] Cj]=sor_dataCi] ; flg=l;}

ttime=clock_val(TOTAL_TIHE); 
printf("\n Time is : */,d \n",ttime);

/* printing sorted data from the table */
for (i=0;i<gv; i++){ 
printf("\nbucket %d :",i); 
for (j=0;j<Sor_element; j++){

if (trainCj) [i] !=0.0) printf (" '/..Of " .train[j] Ci) ) ;
>
>

}■ /* end of program */



Appendix D
The result of bucket sorting using sorting net
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The results of bucket sorting using bucket sorting net in chapter III-B is shown 
here. 1,000 random numbers are bucket-sorted.

Enter the # of data to be sorted:
1000
Enter the maximum value:
1000
Enter the ’G ; value (# of buckets):
100
Enter the file name to be searched : 
sordata

176 309 535 948 172 702 226 495 125 84 390 277 368
983 535 766 646 767 780 823 152 625 315 347 917 520
401 607 785 932 870 867 675 758 582 389 356 200 827
416 464 979 126 213 958 737 409 780 758 957 28 319
757 243 590 43 956 319 59 442 !915 !572 119 570 252
496 237 477 406 873 427 358 382 43 161 522 697 97
401 773 245 343 230 298 305 887 37 651 399 676 733
938 233 838 967 779 432 674 809 159 280 135 864 750
208 140 295 803 219 563 716 198 990 250 431 755 861
895 978 395 432 127 458 238 986 653 604 242 455 790
79 476 153 246 945 614 988 477 800 744 381 480 527
98 594 347 143 780 711 446 705 95 963 551 740 579
638 782 188 302 283 684 293 565 418 307 445 566 488
607 416 130 256 36 977 115 378 647 350 553 358 565
476 164 615 172 555 292 872 835 845 896 595 541 168
655 691 264 107 815 191 423 352 839 137 263 177 480
380 505 503 352 526 121 520 607 733 557 344 802 591
267 671 552 789 888 890 68 801 907 644 165 301 166
285 842 536 36 207 21 358 621 !520 546 154 823 33
26 378 616 20 627 915 375 729 i396 (982 597 112 222
799 871 738 14 740 418 362 204 183 76 116 159 788
40 791 599 403 229 183 614 332 605 964 378 184 300
514 54 144 10 885 958 626 956 631 39 351 146 106 197
84 27 946 920 908 866 :L49 :L72 158 651 737 102 160
94 122 25 762 957 28 647 108 428 310 19 885 758
510 166 763 881 500 875 735 235 52 605 876 504 678
989 605 496 590 895 45 883 108 520 579 10 :387 •477
193 508 775 354 698 913 671 706 427 21 213 948 503
194 645 128 265 336 704 38 954 755 874 634 244 636
850 237 721 339 50 485 897 242 528 494 855 346 124
216 115 363 204 436 828 510 820 411 871 713 644 581
953 461 521 359 326 9 978 432 :L76 159 534 578 :314
342 158 437 243 201 720 220 195 423 774 831 245 5
514 346 82 705 260 351 536 869 304 79 454 377 <465
829 24 904 198 633 129 236 600 647 840 843 157 214
624 435 569 90 381 724 511 795 883 101 660 549 728
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451 841 774 386 833 627 620 440 225 246 496 623 73
133 62 720 851 973 659 957 351 577 641 957 927 435
587 851 408 294 844 650 898 595 389 470 190 126 468
693 992 726 980 669 719 377 85 49 27 552 986 341
844 131 381 789 95 756 522 154 853 954 375 514 121
869 842 652 978 967 504 144 297 529 869 734 761 300
588 88 390 122 597 518 303 908 675 786 926 788 366
560 380 778 749 629 247 814 16 468 448 498 326 249
447 391 914 881 503 209 914 190 179 753 860 820 838
928 355 950 339 687 855 424 655 248 42 394 625 423
764 52 567 411 3 558 969 890 837 764 968 758 872
805 849 360 112 178 276 555 725 377 469 454 695 700
58 188 798 307 819 531 909 127 24 741 72 714 609
449 325 632 898 944 742 474 77 702 660 113 165 497
557 258 673 934 558 933 692 767 31 953 616 820 241
14 224 869 538 454 332 334 37 ;327 753 108 271 832
757 382 779 742 769 804 89 878 523 814 88 262 376
498 224 18 19 814 521 624 291 !518 876 610 321 655
599 285 714 933 677 609 1 844 '713 773 74 874 31
612 814 628 895 420 650 237 326 275 251 880 475 465
70 755 28 104 978 367 608 538 (578 448 644 627 142
380 675 511 780 444 560 934 555 749 559 735 771 184
758 596 752 230 802 637 123 991 408 957 924 266 627
708 262 24 326 804 730 122 845 853 312 597 322 408
978 399 629 127 715 882 409 943 182 921 167 834 730
981 894 279 999 994 190 13 802 378 347 149 535 47
375 290 808 760 433 693 531 640 622 110 177 219 635
375 420 850 204 343 892 823 838 277 260 37 797 264
353 568 797 768 544 978 383 905 127 703 476 542 883
379 24 793 572 426 262 42 564 '761 517 48 327 959
56 251 986 723 920 866 687 998 237 857 964 578 957
379 849 541 503 800 919 367 290 877 31 78 585 189
930 240 678 421 471 174 835 593 671 224 998 819 296
415 696 709 221 357 153 983 268 730 37 410 745 198
844 659 406 94 367 155 52 718 :227 534 482 600 932
790 31 557 438 714 392 908 673 710 959 666 996 583
402 72 66 403 685 311 78 27 268 736 842 373 684
469 675 48 234 708 571 424 999 583 618 739 904 913
132 338 42 701 480 638 983 713 50 909 :281 988 352
465 904 610 708 367 799 611 499 221 320 317 444 169
727 5 883 672 479 207 511 166 !550 503 1568

w i l l  be sorted !

Time i s  : 3391 ms

R esu lt o f b u ck et-so r tin g  :
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bucket 0 : 10 1C 9 5 3 1 5
bucket 1 : 20 14 19 16 14 18 19 13
bucket 2 : 28 21 26 27 25 28 21 24 27 24 28 24 24 27
bucket 3 : 37 36 36 33 40 39 3£ 31 37 31 37 31 37 31
bucket 4 : 43 43 45 50 49 42 47 42 48 48 42 50
bucket 5 : 59 54 52 52 58 56 52
bucket 6 : 68 68 62 70 66
bucket 7 : 79 76 79 73 72 77 74 78 72 78
bucket 8 : 84 84 82 90 85 88 89 88
bucket 9 : 97 98 95 94 95 94
bucket 10 : 107 106 102 108 108 101 108 104 110
bucket 11 : 119 115 112 116 115 112 113
bucket 12 : 125 126 127 130 121 122 128 124 129 126 121

122 127 123 122 127 127
bucket 13 : 135 140 137 133 131 132
bucket 14 : 143 144 146 149 144 142 149
bucket 15 : 152 159 153 154 159 160 159 158 157 154 153

155
bucket 16 : 161 164 168 165 166 166 165 167 169 166
bucket 17 : 176 172 172 177 172 176 179 178 177 174
bucket 18 : 188 183 183 184 190 190 188 184 182 190 189
bucket 19 : 200 198 191 197 193 194 195 198 198
bucket 20 : 208 207 204 204 201 209 204 207
bucket 21 : 213 219 213 216 220 214 219
bucket 22 : 226 230 222 229 225 224 224 230 224 221 227

221
bucket 23 : 237 233 238 235 237 236 237 237 240 234
bucket 24 : 243 245 250 242 246 244 242 243 245 246 247

249 248 241
bucket 25 : 252 256 260 258 251 260 251
bucket 26 : 264 263 267 265 262 266 262 264 262 268 268
bucket 27 : 277 280 276 271 275 279 277
bucket 28 : 283 285 285 290 290 281
bucket 29 : 298 295 293 292 300 294 297 300 291 296
bucket 30 : 309 305 302 307 301 310 304 303 307
bucket 31 : 315 319 319 314 312 311 320 317
bucket 32 : 326 326 325 327 321 326 326 322 327
bucket 33 : 332 336 339 339 332 334 338
bucket 34 : 347 343 347 350 344 346 342 346 341 347 343
bucket 35 : 356 358 358 352 352 358 351 354 359 351 351

355 360 353 357 352
bucket 36 : 368 362 363 366 367 367 367 367
bucket 37 : 378 380 378 375 378 377 377 375 380 377 376

380 378 375 375 379 379 373
bucket 38 : 390 389 382 381 387 381 386 389 381 390 382
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bucket 39 399 395 396 391
bucket 40 : 401 409 406 401

402 403
bucket 41 : 416 418 416 418
bucket 42 : 427 423 428 427
bucket 43 i 432 431 432 436
bucket 44 i 442 446 445 448
bucket 45 : 458 455 454 451
bucket 46 i 464 461 465 470
bucket 47 : 477 476 477 480

480 479
bucket 48 488 485 482
bucket 49 495 496 500 496
bucket 50 505 503 510 504
bucket 51 514 520 520 520

517 511
bucket 52 ! 522 527 526 528
bucket 53 : 535 535 536 534
bucket 54 i 541 546 549 544
bucket 55 : 551 553 555 557

560 555 559 557
bucket 56 : 570 563 565 566
bucket 57 572 579 579 578
bucket 58 i 582 590 590 581
bucket 59 : 594 595 591 597

593 600
bucket 60 i 607 604 607 607

610
bucket 61 : 614 615 616 614
bucket 62 ; 625 621 627 626

627 627 629 622
bucket 63 : 638 631 634 636
bucket 64 \ 646 647 644 647
bucket 65 i 651 653 655 651
bucket 66 i 669 666
bucket 67 ; 675 676 674 671

678 671 673 675
bucket 68 i 684 687 687 685
bucket 69 i 697 691 698 693
bucket 70 i 702 705 706 704

701 708
bucket 71 716 711 713 720

714 713
bucket 72 i 729 721 724 728
bucket 73 : 737 733 740 733

394 399 392
403 408 408 408 409 410 406

411 411 420 420 415
423 424 423 426 421 424
432 437 435 440 435 433 438
447 449 448 444 444
454 454
468 468 469 465 469 465
476 480 477 474 475 476 471

494 496 498 497 498 499
508 503 510 504 503 503 503
520 514 511 514 518 518 511

521 522 529 523 521
536 531 538 538 535 531 534
542 541 550
552 552 560 558 555 557 558

565 569 567 568 564 568
577 572 578 571
587 588 585 583 583
599 600 595 597 599 596 597

605 605 605 609 610 609 608

620 616 612 618 611
624 627 623 629 625 624 628

633 632 637 640 635 638
645 644 647 641 650 650 644
660 659 652 655 660 655 659

678 671 675 673 677 678 675
672
684
695 700 692 693 696
705 702 708 703 709 710 708

720 719 714 714 713 715 718

726 725 730 730 723 730 727
738 740 737 735 734 735 736
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739
bucket 74 • 750 744 749 741 742 742 749 745
bucket 75 l 758 758 757 755 758 755 756 753 758 753

755 758 752 760
bucket 76 • 766 767 762 763 761 764 764 767 769 768
bucket 77 | 780 780 773 779 780 775 774 774 778 779

780 771
bucket 78 ! 785 790 782 789 788 789 786 788 790
bucket 79 1 800 799 791 795 798 797 797 793 800 799
bucket 80 : 809 803 802 801 805 804 802 804 802 808
bucket 81 i 815 820 814 820 819 820 814 814 814 819
bucket 82 i 823 827 823 828 829 823
bucket 83 ; 838 835 839 831 840 833 838 837 832 834

835
bucket 84 i 845 842 850 843 841 844 844 842 849 844

850 849 844 842
bucket 85 : 855 851 851 853 860 855 853 857
bucket 86 . 870 867 864 861 866 869 869 869 869 866
bucket 87 i 873 872 871 875 876 874 871 872 878 876

880 877
bucket 88 : 887 888 890 885 885 881 883 883 881 890

883 883
bucket 89 : 895 896 895 897 898 898 895 894 892
bucket 90 • 907 908 904 908 909 905 908 904 909 904
bucket 91 : 917 915 915 920 913 914 914 920 919 913
bucket 92 * 927 926 928 924 921 930
bucket 93 i 932 938 934 933 933 934 932
bucket 94 i 948 945 946 948 950 944 943
bucket 95 : 958 957 956 958 956 957 954 953 957 957

953 957 959 957 959
bucket 96 i 967 963 964 967 969 968 964
bucket 97 i 979 978 977 978 973 980 978 978 978 978
bucket 98 : 983 990 986 988 982 989 986 981 986 983

988
bucket 99 •• 992 991 999 994 998 998 996 999

7S7

761
773

838

845

874

882

954

983

s o r t e d ! !!



Appendix E
The data used in example in chapter IV-A
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All of the input data and outputs used for the tests in chapter IV-A are shown 
here; the raw data that  is weekly closing stock prices of company A and B. corre­
sponding bucket weight matrices obtained by the binary pattern net program in 
appendix 2, and the output obtained by the BAM program in appendix 1.

(1) Company A

Weekly closing stock prices for company A :

177.35
198.25
221.89
249.01 
271.47 
260.91 
262.13 
295.73 
310.07
316.61
300.01 
251.43

Binary input data obtained by Binary Pattern Net for company A :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(2) Company B

Weekly closing stock prices for company B :

265 .84
264 .38
257 .72
249.01



67

239 .56
231.62
229.54
229.97  
241.03
260.90
300.01
323.98

Binary input data obtained by Binary P attern  Net fo r  company B :

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3 ) P a r t ia l Input fo r  company A

Weekly c lo s in g  p r ic e s  for  th e  f i r s t  th ree  weeks fo r  company A :

177.35
198.25
221.89
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Binary input data obtained by Binary P attern  Net fo r  p a r t ia l  in p u t :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Output obtained by BAM fo r  p a r t ia l  input :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(4) N oisy input fo r  company A

Weekly c lo s in g  p r ic e s  with n o ise  fo r  company A :

177.35
198.25
221.89
249.01
271.47
251.00  -> n o ise  
262.13
295.73
310.07
320.61 -> n o ise
300.01  
251.43

Binary input data obtained by Binary P attern  Net fo r  n o isy  inp ut :
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Output obtained by BAM for noisy input :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(5) Mixed input o f company A and company B

Mixed p r ic e s  fo r  company A and B :

177.35
198.25
221.89
249.01  
239 .56
231.62  
229 .54
229.97  
241.03
260 .90
300.01
323.98
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Binary input data obtained by Binary Pattern Net for mixed input :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Output obtained by BAH for mixed input :

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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