

Scholars' Mine

Professional Degree Theses

Student Theses and Dissertations

1918

Determination of critical point of concentrating tables on Arizona copper ore

J. C. Finagin Jr.

W. C. Hogoboom

Follow this and additional works at: https://scholarsmine.mst.edu/professional_theses

Part of the Metallurgy Commons

Department:

Recommended Citation

Finagin, J. C. Jr. and Hogoboom, W. C., "Determination of critical point of concentrating tables on Arizona copper ore" (1918). Professional Degree Theses. 43.

https://scholarsmine.mst.edu/professional_theses/43

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Professional Degree Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

DETERMINATION OF CRITICAL POINT OF CONCENTRATING
TABLES ON ARIZONA COPPER ORE.

 $\mathbf{B}\mathbf{Y}$

J.C.FINAGIN JR.

W.C.HOGOBCOM.

A

THESIS.

SUBMITTED TO THE FACULTY OF THE SCHOOL OF MINES, AND METALLURGY OF THE UNIVERSITY OF MISSOURI IN PARTIAL FULFILLMENT OF THE WORK REQUIRED FOR THE

DEGREE OF

ENGINEER OF METALLURGY

AND

ENGINEER OF MINES

ROLLA MISSOURI.

1918.

APPROVED	$\mathbf{B}\mathbf{Y}$			

DETERMINATION OF CRITICAL POINT OF CONCENTRATING TABLES ON AN ARIZONA COPPER ORE.

In the concentration of an ore by means of concentrating tables, there is a critical point in sizing beyond which the valuable minerals can not be recovered. Theoretically, the lighter gangue is washed over the side of the table and the heavier mineral, regulardless of size, is recoverable at the end, these concentrates being graded from coarse to fine sizes up the slope of the table. In practice, however, the finer sizes of concentrates are found mixed with the middlings and tailings, as indicated by the arrows on the diagram of the concentrating table shown below. The problem is to determine the critical sizes where the divisions occur, or in other words, the finest size of the valuable mineral which it is possible to recover in table concentration.

The following experiments were made in an attempt to determine these critical sizes in the concentration of an Arizona copper ore. Twelve samples for this purpose were obtained from the mill of the Miami Copper Company, these samples consisting of heads, concentrates, middlings and tailings from three Deister No.2 concentrating tables. These tables handle material differing somewhat in size

as shown by the screen analysis in the accompanying tables.

Each original sample was thoroughly mixed, and a small portion taken for chemical analysis. A screen analysis was then made on one kilogram of each sample, using a set of Tyler's Standard Screens, consisting of 35, 48, 65, 80, 100, 115, 150, 170 and 200 mesh screens. The use of these screens is recommended for screen analysis because the areas of the openings increase and decrease throughout the series in a fixed ratio and hence will divide the material in better proportion than a series of sieves which has no fixed relationship between the areas of the Many industries have established 200 mesh openings. screens as the minimum in screen sizing. The Bureau of Standards of the United States Government has taken as a standard 200 mesh sieve made from 0.0021 inch wire, and having an opening the linear dimension of which is 0.0029 inch. This sieve has been adopted as the base of the Tyler Stand-The 100 mesh sieve in this screen scale ard Screen Scale. also comes within the specifications adopted by the Bureau of Standards. The diameters of the openings in the scale increase in the ratio of the fourth root of 2, or 1.189, the factor recommended by Professor Richards in his work on ore dressing. This gives a ratio of the square root of 2, or 1.414, between the areas of the openings in successive

screens. This ratio applies to the finer sizes from 65 to 200 mesh. For the two coarser screens, the ratio between the diameters of the openings is the square root of 2, or 1.414, so that the area of each openings is double that of the opening in the next finer sieve.

The tailings, heads, middlings and concentrates were screened in the order named, to avoid any possible salting of the poorer samples, which might result if the richer samples were screened first. The product from each screen was weighed to the nearest gram, and analyzed for copper. All chemical analyses were made in duplicate.

The copper determinations were made by the potassium cyanide method, as follows; a standard solution of potassium cyanide was prepared by dissolving 21 grams of pure potassium cyanide in one liter of water. This solution was standardized in the following manner. Weighed accurately about 0.2 gram of pure copper foil and dissolved it in a beaker with 5 c.c. of nitric acid. Diluted with 25 c.c. of distilled water, and boiled to expel the nitrous fumes.

Added 50 to 75 c.c. of cold distilled water and neutralized with ammonium hydroxide, adding about 10 c.c excess.

Titrated slowly with the potassium cyanide solution. The weight of the copper foil used, divided by the number of cubic centimeters of the potassium cyanide solution required

to reach the end point in titration, gives the copper equivalent of one cubic centimeter of the standard solution. This solution was standardized every week, as we were able to work on only two consecutive afternoons each week.

In running the copper analyses on the samples of the different table products, we used two grams of the heads and tailings, one gram of the middlings, and one half gram of the concentrates. Each sample was placed in a 250 c.c. beaker, and 15 c.c. of a saturated solution of potassium chlorate in nitric acid was added. This was boiled for ten minutes, and 5 c.c. of hydrochloric acid was added slowly from a dispensing burette. This mixture was boiled to expel the nitrous fumes, diluted to 100 c.c. with distilled water, and neutralized with ammonium hydroxide, adding about 10 c.c. in excess, but avoiding a large excess. This was then boiled for five minutes, and filtered into a 400 c.c. beaker, washing the precipitate with boiling water. The precipitate was then washed into the original beaker, dissolved again in hydrochloric acid, and re-precipitated with ammonium hydroxide, again avoiding a large excess. This operation was to remove the last traces of copper from the iron hydroxide. This mixture was then filtered into the 400 c.c. heaker, and the

precipitate washed with boiling distilled water as before. The combined filtrate wehn cool was then titrated with the standard solution of potassium cyanide.

No. c.c. K C N X Standard % copper weight of sample

The results of the alanyses are to be found in the accompanying tables.

From the results of our experiments, we were unable to determine definitely the critical point for the particular ore upon which our tests were made. According to our screen analyses, the finer sizes in the tailings, and especially the material finer than 200 mesh, contained the higher percentages of copper in each case. This would seem to indicate that the critical point might be found somewhere below the 200 mesh.

The table products on which these tests were run came from a mill treating an ore in which copper occurs as a mixture of chalcocite and malachite. The latter, because of its lesser specific gravity and porosity is difficult to concentrate, and this factor must be taken into consideration in studying the results of our experiments. It seems reasonable to suppose that the copper losses in the coarser sizes are largely in the form of malachite. If this is true the losses of chalcocite are mainly in the finer sizes, and this again would indicate that the critical point might be

found below the 200 mesh.

From the chemical analyses it is seen that the concentrating tables which furnished our samples were recovering from 71.4% to 83.5% of the copper content in the feed. This high a recovery, on feed containing only 2.25% to 3.25% copper, leaves very little to be lost in the tailings, and this adds to the difficulty of determining the critical point.

In conclusion, it appears that the critical sizes occur somewhere below 200 mesh, and it is probable that a series of exhaustive experiments on many different samples conducted with alaborate apparatus for separating the material passing a 200 mesh sieve into its different sizes, would discover more closely the critical point sought.

CLASSIFIER SPIGOT # 2 DRISTER TABLES # 3 & # 4 HEADS ORIGINAL SAMPLE. Weight= 1000 g.m. Wet Assay= 3.25 % Cu Content= 32.5 g.m. SCREEN ANALYSIS. CHEMICAL ANALYSIS. OPENING WEIGHT WET ASSAY Cu MESH IN PER CENT CONTENT Cu THRU INCHES GRAMS GRAMS RATIO=1.414 35 0.0164 337 1.19 4,00 48 35 0.0116 298 1.40 4.17 65 3.56 **4**8 0.0082 185 4.73RATIO==1.189 80 65 0.0069 57 4.70 2,68 100 08 0.0058 52 9.12 4.75 100 115 0.0049 19 13.85 2.63 22.40 150 18 4.03 115 0.0041 170 150 0.0035 26.30 1.84 170 200 0.0029 7 25.70 1.80 200 20 11.30 2.26

CLASSIFIED SPIGOT # 2 DEISTED TAFFES # 3 8 # 4						
TAIJ.S						
ORIGINAL SAMPLE.						
Weight_	1000 g.m	. Wet Assay=	0.83 1	Cu Content=	= 8.3 g.m.	
Screen Analysis.			CHEMICAL ANALYSIS.			
MESH IN PER CENT CONT					Cu content	
THRU	ON	INCHES	GRAMS	<u>Cu</u>	GRAMS	
	35	o.0164	390	0.91	3.55	
35	48	0.0116	338	0.71	2.40	
48	65	0.0082	155	0.55	0.85	
65	80	0.0069	43	0.65	0.28	
80	100	0.0058	33	0.68	0.22	
100	115	0.0049	9	0.94	0.08	
115	150	0.0041	7	1.53	0.11	
150	170	0.0035	3	1.87	0.05	
170	200	0.0029	3	1.87	0.05	
200			19	1.90	0.36	

CLASSIFIED SPIGOT # 2 DEISTER TABLES # 3 & # 4 MIDDLINGS ORIGINAL SAMPLE. 4.94 Weight I 1000 g.m. Wet Assay Cu Content= 49.4g.m. CHEMICAL ANALYSIS. SCREEN ANALYSIS. OPENING WEIGHT WET ASSAY \mathbb{C}^{n_2} MESH PER CENT CONTENT THRU INCHES GRAMS CuGRAMS RATIO=1.414 35 0.0164 74 10.30 7.63 135 8.05 35 **4**8 0.0116 10.85 221 65 0.0082 48 4.25 9.40 RATIO== 1.189 65 80 0.0069 132 2.60 3.43 213 80 100 0.0058 2.60 5.54 115 100 0.0049 66 3.80 2.51 150 115 0.0041 81 5,20 4,22 170 26 150 0.0035 5.93 1.54 24 170 200 0.0029 5.60 1.34 200 26 6.95 1.81

CLASSIFIER SPIGOT # 3 DEISTEP TABLES # 3 & # 4 CONCENTRATES ORIGINAL SAMPLE. Weight 1000g.m. Wet Assay 47.1 Cu Content= 471 g.m. SCREEN ANALYSIS. CHEMICAL ANALYSIS. OPENING WET ASSAY WEIGHT Cu MESH PER CENT CONTENT THRU INCHES GRAMS GRAMS Cu RATIO=1.414 35 18 39.6 7.13 0.0164 **4**8 63 42.6 35 0.0116 26.85 65 48 0.0082 143 41.8 59.75 RATIO== 1.189 104 45.4 47.25 80 0.0069 65 100 80 0.0058 230 45.6 105.00 97 100 115 0.0049 46.8 45.40 115 150 0.0041 160 48.2 77.00 150 170 0.0035 61 51.5 31.40 170 200 0.0029 63 54.00 34.00 200 66 38.30 58.1

CLASSIFIED SPIGOT # 3 DEISTER TAPLES # 5 & 6 FEADS ORIGINAL'SAMPLE.

Weight_	1000 g.m	a. Wet Assay—	2.29	Cu Content=	= 22.9 g.m.
Screen Analysis. Chemical Analysis.					
MESH		OPENING IN	WEIGHT	WET ASSAY PER CENT	Gu content
THRU	ON	INCHES	GRAMS	Cu	GRAMS
	35	ratio=1.414 0.0164	121	0.685	0.83
35	48	o.oll6	318	0.610	1.64
48	65	0.0082	307	0.76	2,38
65	80	0.0069	97	1.37	1.33
80	100	0.0058	81	3,28	2.66
100	115	0.0049	20	9,50	1.90
115	150	0.0041	18	17.30	3.12
. 150	170	0.0035	7	28.60	2.00
170	200	0.0029	6	29.30	1.76
200			22	14.90	3.28

CLASSITIER SPIGOT # 3 DEISTER TARLES # 5 % # 6							
	TAILS						
ORIGINAL SAMPLE.							
Weight	1000g.m	. Wet Assay=	0.655 (Gu Content=	= 6.55g.m.		
Screen Analysis.				CHEMICAL	Analysis.		
M E THRU	SH	OPENING IN	WEIGHT	WET ASSAY PER CENT	Cu CONTENT		
- IRO	ON	RATIO=1.414	GRAMS		GRAMS		
materials for 1 february Monage (Monage (Monag	35	0.0164	145	0.57	0.82		
35	4 8	0.0116	396	0.62	2.46		
4 8	65	0.0082	296	0.595	1.76		
65	80	RATIO=1.189	74	0.62	0.46		
80	100	0.0058	48	0.735	0.35		
100	115	0.0049	10	1.02	0.10		
115	150	0.0041	8	1.76	0.14		
150	170	0.0035	3	2.90	0.08		
170	200	0.0029	3	3.52	0.10		
200			17	4.28	0.73		
				·			

CLASSIFIER SPIGOT # 3 DEISTER TAFLES # 5 & # 6						
	-11	MID	DLINGS			
ORIGINAL SAMPLE.						
Weight=	Weight= 1000g.m. Wet Assay= 3.1 Cu Content= 31.0g.m.					
	Scre	EN ANALYSIS.		CHEMICAL.	Analysis.	
ME	cu	OPENING	WEIGHT	WET ASSAY	Cu	
THRU	ON	1N INCHES	GRAMS	PER CENT	CONTENT GRAMS	
		RATIO=1.414				
	35	0.0164				
35	48	0.0116	100	3.28	5 . 38	
4 8	65	0.0082	273	2.92	7.97	
		RATIO=1.189				
65	80	0.0069	198	2.82	5.58	
80	100	0.0058	252	2,92	7.36	
100	115	0.0049	69	3.45	2.38	
115	150	0.0041	64	3.79	2.42	
150	170	0.0035	17	4.18	0.71	
170	200	0.0029	11	4.24	0/47	
200			16	5.32	0.85	

CLASSIFIER SPIGOT # 3 DEISTER MARLES # 5 & # 6 CONCENTRATES ORIGINAL SAMPLE. Weight= 1000 g.m. Wet Assay= 47.2 5 Cu Content= 472 g.m. SCREEN ANALYSIS. CHEMICAL ANALYSIS. OPENING WET ASSAY WEIGHT Cu MESH PER CENT CONTENT THRU INCHES Cu ON GRAMS GRAMS RATIO=1.414 35 0.0164 35 48 o.oll6 0.0082 48 65 60 37.2 22,39 RATIO== 1.189 65 80 0.0069 83 35.5 29.45 100 80 0.0058 211 40.2 84.90 115 111 100 0.0049 43.7 48.50 150 115 0.0041 221 49.1 108.75 53.0 88 46.70 170 150 0.0035 117 56.5 170 200 0.0029 . 66.10 200 111 57.5 64.00

CLASSIFIER SPIGOT # 4 DEISTER TABLES # 7 % # 8						
THE CONTRACT OF THE PARTY OF TH	HEADS					
- 1, ,	ORIGINAL SAMPLE.					
Weight= 1000 g.m. Wet Assay= 2.26 Cu Content= 22.6 g.m.						
Screen Analysis.				CHEMICAL	Analysis.	
M E	SH	OPENING IN	WEIGHT	WET ASSAY PER CENT	Cu content	
THRU	ON	INCHES	GRAMS	<u>Cu</u>	GRAMS	
	35	0.0164				
35	4 8	0.0116	6 9	0.495	0.34	
48	65	0.0082	251	0.396	0.99	
65	80	0.0069	173	0.467	0.81	
80	100	0.0058	260	0.576	1.50	
100	115	0.0049	84	1.21	1.02	
115	150	0.0041	70	2.94	2.06	
150	170	0.0035	27	8.40	2.27	
170	200	0.0029	22	15.20	3.04	
200			41	18,40	7.55	
•						

CLASSIFIER SPIGOT # 4 DEISTER TABLES # 7 & #8 TAILS ORIGINAL SAMPLE. Weight= 1000 g.m. Wet Assay= 0.372 d Cu Content= 3.72 g.m. SCREEN ANALYSIS. CHEMICAL ANALYSIS. OPENING WEIGHT WET ASSAY Cu MESH IN PER CENT CONTENT THRU onINCHES GRAMS GRAMS RATIO = 1.41435 0.0164 **4**8 0.0116 35 126 0.52 0.65 65 326 0.47 48 0.0082 1.53 RATIO=1.189 80 185 0.37 65 0.0069 0.68 100 0.0058 183 0.34 80 0.64 115 100 0.0049 69 0.38 0.03 150 115 0.0041 55 0.40 0.02 0.0035 16 0.51 150 170 0.08 170 200 0.0029 11 0.51 0.05 200 21 1.28 0.27

MITIDITAMES		CLASSIFIER SPIGOT # 4 DEISTER TAPLES # 7 & # 8						
MIDDLINGS								
ORIGINAL SAMPLE.								
Weight 1000 g.m. Wet Assay 0.863	Content=	= 8.63 g.m.						
Screen Analysis. Chemical Analysis.								
OPENING WEIGHT W	ET ASSAY	Cu						
THRU ON INCHES GRAMS	PER CENT Cu	CONTENT GRAMS						
RATIO—1.414								
35 o.ol64								
		angan aparamona (a. a. a						
35 4 8 o.oll6 24	0.74	0.17						
		April 1985						
48 65 0.0082 163	0.74	1.21						
RATIO=1.189								
65 80 0.0069 170	0.96	1.63						
80 100 o.oo58 316	0.90	2.84						
100 115 0.0049 92	0.90	0.83						
115 150 o.oo41 113	0.90	1.02						
150 170 0.0035 41	0.90	0.37						
170 200 0.0029 42	0.85	0.36						
200 49	1.41	0.69						

CLASSIFIED SPIGOT # 4 DFISTED TABLES # 7 % # 8							
CONCENTRATES							
	ORIGINAL SAMPLE.						
Weight_	1 000g.n	n. Wet Assay=	41.7 <	Cu. Content	= 41° g.m.		
Screen Analysis.				CHEMICAL ANALYSIS.			
MI	ESH	OPENING IN	WEIGHT	WET ASSAY PER CENT	Cu content		
THRU	ON	INCHES	GRAMS	Gu.	GRAMS		
2000	75	RATIC=1.414					
	35	0.0164		-			
35	48	0.0116					
4 8	65	0.0082					
		RATIO=1.189					
65	80	0.0069	22	18.1	3.98		
80	100	0.0058	96	22.6	21.70		
100	115	0.0049	72	28.3	21.00		
115	150	0.0041	202	37.6	76.00		
150	170	0.0035	112	43.2	48.30		
170	200	0.0029	198	44.8	88.80		
200			302	54.0	163.00		

Diagram of Wilfley Table Separation