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Abstract 
Robots such as drones have been leveraged to perform structure health inspection such as bridge 
inspection. Big data of inspection videos can be collected by cameras mounted on drones. In this 
project, we develop image analysis algorithms to support bridge engineers to analyze the big 
video data. Bridge engineers define the region of interest initially, then the algorithm retrieves all 
related regions in the video, which facilitates the engineers to inspect the bridge rather than 
exhaustively check every frame of the video. To perform this task, we propose a Multi-scale 
Siamese Neural Network. The network is initially trained by one-shot learning and is fine-tuned 
iteratively with human in the loop. Our neural network is evaluated on three bridge inspection 
videos with promising performances. 

1. Introduction

Traditionally, performing bridge inspections in hard-to-access areas is disruptive, difficult and 
dangerous. In many cases, bridges must be closed to traffic and inspectors must be lifted by 
heavy equipment. Manual inspection is time-consuming and costly. Using robotics to conduct 
bridge inspections will be safer, faster, and cheaper. Currently, big data from bridge inspections 
can be collected from videos recorded with cameras mounted on drones. With a frame rate of 30 
frames per second, 108,000 frames can be recorded in one hour. It is a tedious and inefficient 
process for bridge engineers to watch hours of video footage for bridge inspection.  

This project aims to deploy image analysis methodologies to provide decision-making support 
for bridge inspection through long videos. Fig. 1 illustrates the main steps of an automatic 
retrieval of the region of interest from a long video. An inspector first selects some regions of 

Fig. 1 Automatic retrieval of the region of interest based on the initial input by inspectors. 
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interest (e.g. joints, beams, and surface) in a frame. The image retrieval algorithm developed in 
this project then finds all related frames in the video. Finally, the collected set of images with 
localized regions of interest can be evaluated automatically by computer algorithms or verified 
by inspectors. 
 
The main challenges include: (1) the viewpoint is changing within a video captured by a camera 
mounted on a drone, (2) the camera vibration introduced by the drone movement affects the 
image quality, (3) the regions of interest have different scales in the videos, and (4) the regions to 
be inspected by bridge engineers may have different visual appearance or types. 
 
A simple template matching or comparing the similarity between hand-crafted features of the 
query image and reference images may not overcome the previous challenges. Neural networks 
were used from 1950s to solve the supervised learning problem. At the end of the 20th century, 
neural networks were applied to the handwriting digital recognition task and achieved superior 
performance. The neural network method relies on big training data, efficient optimization 
methods and powerful computation resources. In 2012, deep neural networks [1] were proposed 
to solve the large scale image classification problem. Since then, deep neural networks remained 
the hottest machine learning topic in many industry applications. 
 
In this project, after a bridge engineer selects a target object, we aim at retrieving the similar 
object from every frame of the video. The goal of our project is to assist engineers with less 
human effort (e.g., selecting the region of interest by a single image cropping operation). The 
proposed system has three main contributions: (1) we propose a Siamese neural network that 
extracts features from the target object patch and video frame using the same network 
architecture and detects the region of interest by feature similarity comparison; (2) we extend the 
network into a Multi-scale Siamese Neural Network, which is able to detect the region of interest 
at multiple scales when the camera on a drone moves away or towards the bridge; (3) since we 
only have one training sample from the initial selection of the bridge engineer, we leverage the 
one-shot learning to fine-tune the pre-trained network to the bridge inspection domain, and we 
propose an iterative approach to further refine the network performance with human-in-the-loop.   
 
2. Methodologies  
 
2.1 Preliminaries on Convolutional Neural Network 
The convolutional neural network (CNN) is composed of a large amount of neurons organized 
by multiple convolutional layers. Each layer contains multiple neurons. Each neuron has one 
convolutional kernel that can perform one particular task (e.g., detecting one particular pattern). 
From the perspective of transformation function, the first layer transfers the input image to a 
stack of feature maps. Then the following layers continue to transfer the feature maps to more 
abstract feature maps. The lower level feature map is more local, for example, edge or texture 
pattern recognition. The higher level feature map is more abstract, for example, part or object 
detection. In addition to convolutional layers, CNN has some other layers including pooling 
layer, normalization layer, fully connected layer, and different connections between layers (e.g., 
skip connection, dense net, split and merge, multi-scale Inception). 
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2.2 Siamese Neural Network 

The Siamese neural network [2] contains two network architectures which share the same 
network architecture to compare two images with the same size. We propose a new Siamese 
neural network that can compare two images with different sizes (i.e., the target object patch and 
the test image). Our network architecture contains mainly convolutional layers since fully 
convolutional layers [3] can adapt to input images with different sizes and generate the output 
with the corresponding size. As shown in Fig. 2, the channel number (or the number of 
convolutional kernels) increases at each layer, while the size (width and height) of the feature 
maps decreases at each layer. The max pooling layer, whose stride size is 2, decreases the feature 
map size by 2, as illustrated by one toy example of a single slice of the feature map in Fig.3. The 
size of the feature map generated from a convolutional layer follows the equation:  

   ைܹ ൌ ሺ	 ூܹ + 2 ൈ ݀ܽ݌	 െ ݐݏ	/	ሻݏ݇ ൅ 1, (1)  
where ைܹ and ூܹ denote the size of output and 
input, respectively. pad, ks and st denote the number 
of rows for zero-padding, kernel size and stride size, 
respectively. For example, the first convolutional 
layer of the test image in Fig. 2 has ݀ܽ݌ ൌ 0, ݏ݇ ൌ
11, and ݐݏ ൌ 4, so ைܹ ൌ

଼ଶ଴ାଶൈ଴ିଵଵ

ସ
൅ 1 = 203.  

The features from the test image I, ݄1	 ∈ ܴௐൈுൈ௄, 
are extracted by Siamese neural network G, where W,  H and K denote the width, height and 
channels of the feature map, respectively (W=48, H=48,  K=384 in Fig. 2). The feature maps of 
the test image contain the feature vectors at every location, i.e. ݄1௪,௛ is the feature vector at 
location (w,h). Since the fully convolutional layer can accept different input sizes, given the 
target object patch, one single feature vector, ݄2	 ∈ ܴଵൈଵൈ௄, is extracted by the same neural 
network G, The similarity between two feature vectors is measured by 

  ܲ൫݄1௪,௛, ݄2൯ ൌ ݀݅݋݉݃݅ܵ ൬
௛ଵೢ,೓	௛ଶ

ห௛ଵೢ,೓ห|௛ଶ|
൰. (1)  

where ܵ݅݃݉݀݅݋ሺݔሻ ≜ 1/ሺ1 ൅  ଵሻ. The similarity computation between the target object patchିݔ
and every location in the test image provides a 2D probability map that tells us how likely the 

Fig. 4 The Max-pooling example. 

 
Fig. 2 The proposed Siamese neural network. 

 
Fig. 3 The max-pooling example. 
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object is detected at specific locations in the test image. The two shared network architectures 
(G) can be trained in an end-to-end manner.  
 
2.3 Multi-scale Siamese Neural Network 
During the inspection, the camera on a drone may move towards or away from the target area, 
which changes the object scale continuously. Our image-patch Siamese Neural Network in Fig.2 
can work well at one scale, but it may fail if the scale changes too much. Thus, we propose a 
multi-scale Siamese neural network as shown in Fig.4. We up-sample and down-sample the 
target object patch to a few scales (e.g. ܹ1	 ൈ 	and ܹ2 1ܪ	 ൈ  ′′ܫ in Fig.4). The smaller patch 2ܪ	

with size ܹ2	 ൈ  will generate the feature (the camera moves far away from the bridge) 2ܪ	
vector, ݄3	 ∈ ܴଵൈଵൈ௄ଶ, at the lower level of the network G. The larger patch ܫ′ with size ܹ1	 ൈ
 will get the feature vector, ݄2, at the higher level of (the camera moves towards the bridge) 1ܪ	
the network G. The test image will also be given to the network G and generate the feature maps 
at different levels. At each level, a 2D probability map is generated, as described in the previous 
section. The generated probability map is turned into a bitmap through a threshold operation. The 
overall prediction is the union of the thresholded results from all scales.  
 
2.4 One-shot Learning and Fine-tune with Human in the Loop 
The region of interest initially selected by bridge engineers, as a single image patch, is obviously 
not enough for training a neural network from scratches. Thus, we deploy the pre-trained neural 
network model Alexnet [1] and then fine-tune the network to fit our bridge inspection project. 
The Alexnet is trained from the large-scale ImageNet [4] dataset. This dataset contains 1000 
categories, and each category contains more than 1000 images. Those 1000 categories don’t 
include the region of interest in our bridge inspection project, but the images in the dataset 
contain similar texture patterns. To let the network fit the bridge inspection problem much better 
when we only have one (or a few) training samples, one-shot (or few-shot) learning [5] is 
intuitively suitable for this situation.  
 

 

 
Fig.4 Multi-scale Siamese Neural Network. 
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We treat the region of interest detection as a binary classification problem. The region of interest 
cropped by human is the positive sample, then on the same frame, the other pixels belong to the 
background. Accordingly, the ground truth map ܻ is generated based on the positive and 
negative samples. Let ܲ denote the detected probability map, then the loss to be minimized is a 
weighted cross-entropy function: 
ݏݏ݋ܮ    ൌ ∑ െ ௪ܻ,௛ ൫݃݋݈ ௪ܲ,௛൯ െ ൫1ߙ	 െ ௪ܻ,௛൯݈݃݋	ሺ1 െ ௪ܲ,௛ሻ௪,௛ . (2) 
 
Since there are more negative pixel samples than positive samples, 
we use weight ߙ to balance the two classes (ߙ is set as 10 in our 
experiments). The loss function is calculated at each level of our 
Multi-scale Siamese Neural Network. The overall loss function is a 
weighted sum of the loss from all levels. After the one-shot training 
from the initially labeled sample, the detection results over the 
whole video are generated, which can be visualized as a mask 
overlaid on the original image as shown in Fig.5. Bridge experts 
can quickly skim the results and identify some false positives (incorrect detections) and select 
some correct detections with large appearance variations. Through the interaction with small 
human efforts, we can have a little more training data to fine-tune the Multi-scale Siamese 
Neural Network. The process can be iterated until satisfied detection performance is achieved. In 
our experiments, we manually select 15 frames in each iteration, which are added into the fine-
tune process. All the frames selected from the current and previous iterations are used for fine-
tuning the network in the current iteration. 
 
3. Experiments 
  
The feature extraction network in our Multi-scale Siamese Neural Network is similar as the first 
5 layers of Alexnet. The kernel sizes for the 5 layers are 11, 5, 3, 3, 3. The numbers of kernels 
for the 5 layers are 96, 256, 384, 384, and 256. The stride size is 4, 1, 1, 1, and 1. The patch sizes 
for multi-scale Siamese neural network are 120,70, and 50, and the feature vectors are extracted 
from the 5th, 3rd, 2nd convolutional layer. The optimizer is Stochastic Gradient Descent. The 
learning rate is set as 10-1 , then decreases by 10 until 10-4 when the loss doesn’t decrease. 
 

Videos One-shot learning Iteration 1 Iteration 2 
 prec recall f1 prec recall f1 prec recall f1 
Video 1 (7m:25s) .333 .448 .382 .730 .589 .652 .877 .514 .673 
Video 2 (5m:42s) .376 .75 .501 .693 .964 .806 .678 1.0 .809 
Video 3 (2m:26s) .348 .712 .467 .773 .787 .78 .818 .863 .84 

Table. 1 The detection performance on 3 videos. One shot learning column shows the results generated by the model 
trained by the first image patch only. Iteration 1 shows the results after the first round of human interaction with 15 
frames. Iteration 2 shows the results after the second round of human interaction with 30 frames which include the 

15 frames from the first round. ‘prec’ denotes the precision. ‘f1’ denotes the f1 score. 

Our network is evaluated on three bridge inspection videos. We manually label the ground truth 
for each frame of the videos. The number of target object (bridge joint in the experiments) in 
three videos is 181, 56, 70, respectively. For each video, we perform two iterations of human 

Fig.5 Mask overlays on image. 
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interaction. Table 1 summarizes the evaluation results, from which we observe that iteratively 
fine-tuning can improve the performance gradually. Due to the large appearance variation, there 
are still some miss detections and false alarms by our network using the initial one-shot training. 
More training samples will definitely help overcome this problem and we leave this as our future 
work. Some qualitative results are shown in Fig. 6. The first column is the hard prediction, which 
is thresholded form the soft prediction (the second column of Fig. 6). The last column is the 
original test image with the bounding box representing the detected area. 
 

 

    
Fig. 6 Hard prediction, soft prediction and detected bounding box on the test image.  

 
4. Conclusions 

In this paper, we aim to develop image analysis algorithms to provide decision-making support 
for bridge inspection through long videos. Our proposed algorithms include: (1) image-patch 
Siamese neural network; (2) multi-scale Siamese neural network; (3) one-shot learning and 
iteratively fine-tuning the pre-trained network with human-in-the-loop.   
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