
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Aug 1984

A Simple Method for Organizing Nearly Optimal Binary Search A Simple Method for Organizing Nearly Optimal Binary Search

Trees Trees

Joy L. Henderson

John R. Metzner
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Henderson, Joy L. and Metzner, John R., "A Simple Method for Organizing Nearly Optimal Binary Search
Trees" (1984). Computer Science Technical Reports. 57.
https://scholarsmine.mst.edu/comsci_techreports/57

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/57?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A SIMPLE METHOD FOR ORGANIZING
NEARLY OPTIMAL BINARY SEARCH TREES

Joy L. Henderson* and John R. Metzner
CSc-84-13

Department of Computer Science
University of Missouri-Rolla

Ro11a, MO 65401 (314)-341-4491

*This report is substantially the M.S. thesis
of the first author, completed August, 1984.

11

ABSTRACT

Improving the efficiency of retrieving information
concerns users of computer systems involved in many
applications- One way of addressing this concern is to
organize a sorted sequence into a binary search tree.
Knuth's Algorithm K is a bottom-up organization algorithm
that always constructs a binary tree which minimizes
average search time. However, the cost of executing
Algorithm K is prohibitive for a large tree. The aim of
this work is to find a less costly method of organizing
sorted sequences into nearly-optimal binary search trees.

We present a top-down organization method which
yields better average search times than top-down methods
already available, specifically height-balancing and
weight-balancing. The variation in access frequency among
the members of a sequence is used to recommend specific
values for some of the parameters in this new method of
organization.

The new method improves considerably on the cost of
organization as opposed to the cost of using Algorithm K
while producing trees whose average search times are close
to minimal. The new algorithm yields an average search
time that is usually within 1% of the minimal average
search time and for every case attempted has been no worse
than 1.5% larger than minimal.

H i

PAGE
ABSTRACT.. ii
TABLE OF CONTENTS..iii
LIST OF ILLUSTRATIONS.....................................iv
LIST OF TABLES.. .

I . INTRODUCTION....................................... 1
II. REVIEW OF LITERATURE.............................. 11

A. BOTTOM-UP ORGANIZATION METHODS............... 11
B. TOP-DOWN ORGANIZATION METHODS................ 13

III. THE MODEL... 18
A . DATA GENERATION.............................. 18
B. DESCRIPTION OF ALGORITHM K 21

IV. DESIGN...26
V. EXPERIMENTAL RESULTS.............................. 32

A. TEST VALUES FOR UNSPECIFIED PARAMETERS........32
B. ANALYSIS OF RESULTS.......................... 34

VI. CONCLUSIONS....................................... 44
A . RECOMMENDATIONS.............................. 44
B . RELATED CONCERNS............................. 45

BIBLIOGRAPHY.. 48

TABLE OF CONTENTS

VITA 50

I V

Figures Page

1. A binary search tree whose keys
are an airline's flight numbers.......................3

2. Binary search tree with labeled subtrees............. 7
3. Transformation of uniform variates to conform

to the delta-gamma rules............................. 23
4. Frequency reduction factor as a function of

distance from the median.............................29

LIST OF ILLUSTRATIONS

V

Tables Page

1. Sample relative access frequencies for
a binary search tree of size thirteen............ 8

II. Sample roots, weights, and costs for
a binary search tree of size thirteen.............. 9

III. Values used in random number generation in
transforming uniform random numbers to
delta-gamma rules............... 22

IV. Comparison of HEUR to Algorithm K
average penalty in parts per thousand
70-30 rule.. 36

V. Comparison of HEUR to Algorithm K
average penalty in parts per thousand
80-20 rule.. 38

VI. Comparison of HEUR to Algorithm K
average penalty in parts per thousand
90-10 rule..40

VII. Number of comparisons required for
organization with HEUR........................... 41

VIII. Average comparisons required for
HEUR and Algorithm K

LIST OF TABLES

43

1

I . INTRODUCTION

Improving the efficiency of retrieving information
from a database concerns users of computer systems
involved in many applications. In today's computerized
society, faster response time is an expected luxury in
some systems while a necessary characteristic of other
systems. There are many ways of addressing this concern.

Ordering a table of records or indexes of records
inherently simplifies the process of searching for a
particular record. Without ordering or sorting a table,
the only practical choice for searching the table is
sequential scanning. However, when searching an ordered
table a binary search method is more efficient than
sequential scanning. The basic idea behind binary search
is to first compare the key being searched for to the
middle key in the table. "The result of this probe tells
which half of the table should be searched next, and the
same procedure can be used again, comparing K [the key
being searched for] to the middle key of the selected
half, etc."[l, pp. 406-407] It is easier to understand
binary search when it is thought of as a "binary decision
tree".tl< p. 409] To take this idea further, "...any
algorithm for searching an ordered table of length N by
means of comparison can be represented as a binary tree
. .."[1 , p. 409] Knuth presents several variations of

2

binary search which are obviously intended for use when
searching sequentially placed records. However, if the
table is being continually updated, as most tables are,
"...we might spend more time maintaining it than we save
binary searching it."Cl, P- 423] This brings us to the
concept of using explicit binary tree structures.

"The use of an explicit binary tree structure
makes it possible to insert and delete records
quickly, as well as to search the table
efficiently. As a result, we essentially have
a method which is useful both for searching and
for sorting."Cl, p • 423]

Figure 1 is an example of a binary search tree where the
records contain information concerning an airline's daily
scheduled flights. The nodes are labeled using the
airline's flight numbers.

Deciding to use explicit binary tree structures gives
the user another decision to make: How does the user want
to organize the sorted database into a binary tree? Once
sequential placement is no longer a factor, there are
other characteristics of the database which may be
considered. Specifically, these are the relative
frequency of access of a given record and the relative
frequency of an unsuccessful search being terminated when
reaching a given record during the search process. L.E.
Knuth has developed an algorithm which uses these two
characteristics and always constructs a binary tree
structure which results in minimal average search time.
Why, then, is any further research necessary? The cost of

414

Figure 1. A Binary Search Tree Whose Keys are an Airline*s Flight Numbers

u>

4

Knuth's method of organization is prohibitive when a table
is very large. This cost is even more restrictive when
dealing with a volatile file which requires frequent
reorganization. The focus of this paper is to find a
method of organizing sorted tables into binary trees which
results in nearly minimal average search time, yet does
not have a restrictive cost of reorganization.

In order to clarify the remainder of this discussion,
a few definitions will be given.[1]

binary search tree - This is an ordered group of
elements organized so that one element is
the root and the remaining elements are
divided into two trees called subtrees of
the root. Each subtree is either empty or
consists of a root and two resulting
subtrees.

- The number of arcs between a node and the
root of the tree.

- The number of search keys (or elements) in a
given database (or binary tree).

- The ith search key in a database whose keys
are ordered alphabetically or numerically.
k(l)<k(2)<...<k(n)

- The subtree consisting of elements k(i+l) to
to k(j) given the condition CKi<j^_n.

- The root of the subtree t(i,j).

level

n

Mi)

t(i,j)

r(i,j)

5

p (i) - The relative frequency that k(i) is the
search argument for any given search of
t(i,j). This value is also referred to as
relative frequency or relative frequency
of access.

q(i) - The relative frequency "that the search
argument lies between k(i) and k(i+l). (By
convention, q(0) is the relative frequency
that the search argument is less than k(l)
and q(n) is the relative frequency that the
search argument is greater than k(n).)"Cl,
p. 434]

c(i,j) - The cost of subtree t(ifj) as a function of
relative access frequency. (Sum of all
p(i)*(level+1) and all g(i)*level.)

w(i,j) - The weight of the subtree t(i,j), found by
summing all p(i), (i=i+l to j), and q(i),
(i= i to j) .

AST - Average search time (AST) is the average cost
in number of accesses of a successful search
for a given tree: c(0,n)/w(0,n).

Here is an illustration using some of the preceding terms
in order to clarify their meanings. A binary search tree
of thirteen elements, t(0,13), with node six as its root,
r(0,13)=6, would have two subtrees, t(0,5) and t(6,13).
Figure 2 shows a picture of what this search tree might

look like. Table I lists example values for all p(i) for
this tree. Table II lists sample corresponding roots,
weights, and costs.

6

There will be two main variables used in
differentiating various organization methods. The first
and most obvious indicator of whether or not a particular
method is appropriate for a given system is the average
search time of the resulting binary tree. The second
variable is the cost of determining the exact organization
of the tree. Some systems can afford to allow ample time
for reorganizing the trees used in database searching.
Other systems cannot afford to be out of service for the
time necessary for a full reorganization yielding optimal
efficiency of retrieval. Reorganization is done when
additions and deletions of records to the database have
degraded the average search time to an unsatisfactory
level. Those systems which this research concerns are
those who need to decide how much they are willing to give
up in retrieval time in order to keep the cost of
reorganization down.

In the experimentation for this research it is
assumed that estimates of the relative access frequencies,
p(i)'s, are available. This is a realistic assumption
when working with a database which has been in use for
some time. These may be actual values gathered over a
period of time, or educated guesses by those persons who

Figure 2. Binary Search Tree with Labeled Subtrees

8

TABLE I

SAMPLE RELATIVE ACCESS FREQUENCIES
FOR A BINARY SEARCH TREE OF SIZE THIRTEEN

NODE p (i)

1 4.0
2 7.0
3 3.0
4 9.0
5 6.0
6 2.0
7 14.0
8 1 . 0

9 9.0
10 7.0
11 2.0
12 3.0
13 3.0

9

TABLE II

SAMPLE ROOTS, WEIGHTS, AND COSTS
FOR A BINARY SEARCH TREE OF SIZE THIRTEEN

ROOTS WEIGHTS COSTS

r(0,13) = 6 w(0,13) = 70.0 c(0,13) = 214.0

r(6,13) = 9 w(6,13) = 39.0 c (6,13) = 84.0

r (0,5) = 2 w(0,5) = 29.0 c (0,5) = 60.0

IIinCMu 4 w(2,5) = 18.0 c(2,5) = 27.0

r(9,13) = 12 w(9,13) = 15.0 c(9,13) = 29.0

10

have been working with the database. In some database
applications one key in a table and its corresponding
p(i) represents a group of records. For instance, many
insurance files contain information on several members of
a single family instead of having a separate file for each
family member. In this case, the table being organized is
a table of indices, k(i)'s, and the corresponding p(i)’s.

Knuth has presented an algorithm for organization of
a sorted table into a binary tree which yields minimal
average search time.[l] However, the cost of this
organization is prohibitive when working with large tables
(n>100). We have experimented with a heuristic-based tree
organizing method to see how it compares to Knuth's
optimal binary tree organization. Our aim was to find a
method that organizes a table into a binary tree which
yields near-minimal average search time while costing less
than Knuth's algorithm. A description of this
experimentation and the results are presented in this
paper.

11

II. REVIEW OF LITERATURE

A. BOTTOM-UP ORGANIZATION METHODS
D.E. Knuth has presented an effective method of

organizing a sorted database into an optimum binary tree.
Ll] This is a bottom-up procedure which Knuth calls
Algorithm K. This algorithm first examines all pairs of
adjacent elements in the sorted database to determine
which element in each pair should be the root of that
subtree (consisting of two elements) in order to achieve
the lowest cost. Next, using the results of the two-
element subtree root-search and the fact that "...all
subtrees of an optimum binary tree are optimum."[l, p.
435j, Algorithm K finds the roots of all adjacent triples.
This process continues for all groups of four elements,
five elements, etc. until the root for the entire tree (a
group of n elements) has been found. Algorithm K has been
described as a "...computation procedure which systemati
cally finds larger and larger optimum subtrees."[1, p.
435j This method of organization will be described in
more detail later in this paper (see Section III).

Although Algorithm K always produces an optimum
binary tree, there is a drawback to using it for
organization. Total running time of 0(n2) is required to
determine an optimum binary tree. This says that the run
time increases in proportion to n squared. For instance,

12

given that the number of records in table A is n and the
number of records in table B is 3n, table B requires
approximately nine times as long to organize as table A
does. If a small database is involved (n_<100), this run
time is not necessarily a restriction. However, for
larger trees most users need to look at alternate
approaches to the problem of determining tree
organization.

T.C. Hu and A.C. Tucker presented an algorithm for
the special case where all p(i)=0.[2] (This says that all
inquiries are unsuccessful.) In an extensive proof, Hu
and Tucker explain how to first build an optimal binary
tree disregarding alphabetical order using a "T-C level-
by-level construetion"[2, p. 520] and then convert this
tree into an optimal binary tree in alphabetical order.
The T-C stands for tentative connecting. Two nodes can be
combined into a subtree (i.e. have a common father) only
if they are T-C nodes. Two nodes are considered T-C nodes
if the nodes are adjacent or their separation is only by
internal nodes (roots of subtrees). The T-C level-by
level algorithm builds the binary tree in a bottom-up
fashion, building a subtree of the pair of T-C nodes with
minimum weight first. This method "...combines all nodes
on the lowest level of the T-C tree first, then all nodes
on the next-to-lowest level, and so on."[2, p. 520] (hence
the name T-C level-by-level construction). A key theorem

13

in Hu and Tuckers' proof basically says that for every
tree in the "...class of all T-C level-by-level forests
(including trees) ... there is an alphabetic forest (or
tree) of the same cost."[2, p. 5213 This theorem is the
basis for the second phase of Hu and Tucker's algorithm,
the conversion of an unorderea optimal binary tree into an
ordered optimal binary tree.

As in Knuth's Algorithm K, total running time of the
Hu and Tucker algorithm is a restriction when a large
database is used. The implementation presented required
O(n^) operations. (In an ending note, they mention that
Knuth suggests an implementation which "...needs only
0(n log n) operations when suitable data structures are
employed."[11] No details are presented on this
implementation.)
B. TOP-DOWN ORGANIZATION METHODS

There are many ways of approaching a top-down tree
structuring. The method which seems to be the natural
choice is to simply choose the record with the largest
frequency of the tree to be the root. Then choose the
record with the largest frequency in subsequent subtrees
as the subtrees' respective roots until the organization
is complete. Reingold and Hansen call this the monotonic
rule."[33 However, practical experiments have shown that
the monotic rule does "...not produce acceptable nearly
optimal trees."[4, pp. 307-3083 Some researchers have

14

gone as far as to say that this method results in an
average search time which "...on the average...is no
better than a tree constructed at random."L5, pp. 291-292]

Obviously, there are better top-down methods of
organization. The balancing rule chooses each r(i,j) in
order to balance as nearly as possible the weight of the
subtrees on either side of the root.[5] It has been
suggested that trees constructed using the balancing rule
(weight-balanced trees [5]) are optimum when all q(i)=0
[6, pp. 142-144], but this is not the case.[7] Two
closely related classes of organization are bisection
trees and min-max trees.

Allen describes the construction of Mehlhorn's
bisection trees as follows:

"The root of the entire tree is chosen closest
to the 50th percentile of the cumulative weight
distribution. Its left and right sons are
chosen closest to the 25th and 75th percentiles,
respectively, and so on." [8, p. 259]

Min-max trees, introduced by Bayer, also use the weight of
the tree during organization. The root of the initial
tree is chosen in order to minimize the maximum weight of
the resulting left and right subtrees. This procedure is
repeated until all roots have been found.[8]

There are situations where all three of the
previously discussed classes of trees - weight-balanced
trees, bisection trees, and min-max trees - may result in
the same binary tree. Yet, using the informal definitions

15

in this paper the resulting tree in any given class "...is
not uniquely specified for certain weight distributions."
C8, p. 259} These definitions are acceptable for weight-
balanced trees and bisection trees. However, since Bayer
"...makes a particular choice in his definition of min-max
t r e e s . . p . 259], Allen's term "essentially min-max"
will be used as a label for min-max trees which satisfy
the more informal definition.[8]

When dealing with trees which have uniform relative
frequencies (p(i)), any of these three methods perform an
acceptable job of organizing a tree resulting in nearly
optimal AST. However, as the relative values become more
skewed, average search time becomes less predictable.
Allen proves that for none of the three classes of
organization methods (weight—balanced trees, bisection
trees, and essentially min—max trees) is the cost of the
tree bound.[8] The maximum value of the cost of a tree
organized using these methods cannot be restricted.
Therefore, a maximum value for average search time cannot
be assumed.

Reingold and Hansen discuss another simple but
relatively effective method of organization based solely
on the number of elements in a tree or subtree (as opposed
to relative frequency).[9] Their height-balanced trees
are constructed by choosing the root of the tree such that
the height of the resulting left and right subtrees

16

differs by no more than one. The process is repeated for
subsequent subtrees. The average search time for a
height-balanced tree is equivalent to that of a binary
search which is given by Lewis and Smith [10] (L is
average search time):

L=log2 (n+1)-l, n>50
when the p(i)'s are all equal. As a matter of fact, for
uniform access frequencies, the height-balanced and
weight-balanced trees are nearly equivalent (often they
are the same trees). In this case, height balancing is
the better choice due to the absence of comparisons needed
to organize the tree.

Another top-down method of organization is proposed
by Walker and Gotlieb.[ll] Their approach requiring
accurate estimates of all p(i) and q(i) combines a top-
down method with Knuth* s Algorithm K to yield close-to-
minimal average search time. They use an example
application of the author index of a library catalog. In
this example the relative access frequency is not expected
to change much over a short period.

This method of constructing a binary search tree
chooses the largest p(i) in the neighborhood of the
centroid, the key whose left and right subtrees are most
equal in weight. Notice that the centroid is the key
which would be chosen as the root when organizing using
the balancing rule. If a subtree is less than or equal to

17

size Nq (a parameter in this algorithm), an optimal tree
is structured using Algorithm K. F is the parameter which
determines what the search width for the root around the
centroid is. F is greater than or equal to 1, and the
search width is (l/F * w(i,j)) where the subtree currently
being searched is t(i,j). The value for F varies
according to the ratio of the relative frequency of
successful accesses to the database and the relative
frequency of unsuccessful accesses.

This top-down algorithm requires time proportional to
n log2 n to construct a binary search tree of size n. The
authors say that an average search time within 1% of
minimal can be expected. Knuth states that the results
are "reportedly within 2 or 3 percent of the optimum."[12,
p. 4393

18

III. THE MODEL

A. DATA GENERATION
We are going to test a Heuristic-based tree organizing

method (HEUR) and see how it compares to optimum.
In order to clarify the development and experimentation of
the new organization algorithm being presented in this
paper, it is assumed that all q(i)=0. This is equivalent
to assuming that all inquiries into a database are
successful. Although this is not a totally realistic
assumption, the initial results of experimentation are not
biased by this assumption. In practice, the q(i)'s are
quite small and very difficult to estimate from
experience. All comparison results (binary trees built
using Algorithm K) were constructed under the same
assumption. While we are ignoring the q(i)'s, reality
forbids assuming that the p(i)'s are equal, so we will
attempt to model the nonuniformity of the p(i)*s (which we
here consider known precisely). In effect we are modeling
the expected traffic to the database.

Fifteen sets of data were generated for testing with
each different table size. This data consisted of the
values of p(i). These data sets, used in experimentation
with the new organization algorithm being presented, HEUR,
and comparison runs with Algorithm K, were generated in
two steps. The first step was the generation of a uniform

19

distribution of n numbers between zero and one using the
multiplicative congruential method of random number
generation. Given r(i), b,and m, the (i+l)th random
number is produced using the formula:

r(i+l) = r(i)*b (mod m)
The three values, r(i), b, and m, are all positive with
r(i)<m. Five different values for r(0) were used.
Following the guidelines outlined in Bobillier, Kahan, and
Probst’s simulation text [133# the following initial
values were chosen:

m = 107
b = 200*16-37 = 3163
Seedl = r(0) = 1483
Seed2 = r(0) = 1487
Seed3 = r(0) = 2153
Seed4 = r(0) = 3973
Seed5 = r(0) = 4793

Due to the nature of the multiplicative congruential
method of random number generation, each r(i) fell between
zero and m-1. Division by m was then done to normalize
the random numbers. The resulting values were then used
to generate variates with desired probability density
functions.

Three different probability density functions were
used. These will be referred to as "delta-gamma rules".
Each of these rules say that delta percent of the accesses

20

to a table are made to gamma percent of the records in
that table. The best known of the three is the 80-20 rule
of thumb. This rule "holds approximately for many
commercial files,"[14, p. 112J which is why it was chosen
as a representative data set for testing. The 80-20 rule
says that 80 percent of the accesses to a table are made
to the most often used 20 percent of the records in that
table.L143 The other two probability density functions
are closely related to the 80-20 rule. They are the 70-30
rule and the 90-10 rule. These rules state that 70
percent of the accesses to a table are made to the most
often used 30 percent of the records and 90 percent of the
accesses are made to 10 percent of the records,
respectively.

To produce the record access probabilities as random
variables that conform to the "delta-gamma rules," uniform
variates were transformed by the function

f(X) = BETA*Cx^BETA_1h , BETA = i°9GAMMA del t a
This produced access probabilities for the records in each
set to be organized. Since the set of such values for
each tree was not constrained to sum to 1, the values were
treated as estimates of record popularity and normalized
later by division by the set sum when probabilities were
needed.

To allow experimentation with relatively small record
sets, the possible biasing effect of having a very popular

21

record was removed by linearizing the functions in the
popular record group. That is, the functions were
modified to the definition below.

rax+b 0_<x_< gamma
f(x) = , .

beta*x'Deta 1 • garama^xU

The parameters of these functions for the three
experimental cases are given in Table II. The functions
are plotted in Figure 3.C153
B. DESCRIPTION OF ALGORITHM K

Since Algorithm K is being used throughout this paper
for comparison values, we present a detailed description
of this algorithm (taking into consideration the
assumption that all q(i)=0). Some details of the
following description would be altered should q(i) not
equal zero.

Algorithm K first initializes the cost of all null
trees to zero. ("If i=j, t(i,j) is null; else its left
subtree is t(i,r[i,j3 - 1) and its right subtree is
t(r[i, j3, j) ."[16, p. 4363 The weights of all subtrees are
also initialized by slimming the p(i)‘s of all elements in
a given subtree. Before going on to the next step, the
cost of all 1-node trees are assigned (which is actually
the weight of each 1-node tree), and the roots of all 1-
node trees are assigned.

The next step of Algorithm K finds the roots of

22

TABLE III

VALUES USED IN RANDOM NUMBER GENERATION IN TRANSFORMING
UNIFORM RANDOM NUMBERS TO DELTA-GAMMA RULES

DELTA GAMMA BETA m L>

.70 .30 .29625 -10.94725 3.97542

.80 .20 .13865 -34.45413 7.44541

.90 .10 .04576 -171.76361 17.58817

f(x) = mx + b, 0£x<gamma

f(x) = BETA * (x(BETA-D), gamma<x<l

BETA - 109GAMMA DELTA

23

X

Figure 3. Transformation of Uniform Variates to
Conform to the Delta-Gamma Rules

24

subtrees of 1) size two, 2) size three, 3) etc. until all
roots are found. The algorithm starts at t(0,d) (d is the
size of the subtree) and proceeds to find the optimal root
of this subtree of size d. This is done by finding the
node which, when chosen as the root of the subtree,
produces the minimum cost possible for that subtree given
rLi» j-11 ± k <_ r[i+l,j] [16]:

c[i,j] <- w[i,j]+min (c[i,k-1]+c[k,j3)k
The "monotonicity property" is applied here, eliminating
redundant examination of sub-optimal roots. This property
says that when an ordered table is organized into an
optimum binary search tree, the sets of roots, R(i,j),
satisfy

R(i, j-l)<R(i, j)_<R(i+l, j) for j-i>2
whenever all p(i)'s and q(i)'s are nonnegative.[163 Knuth
gives an illustration: "But if we discover by some means
that R(0,n-l)j^5, it is unnecessary to determine R(i,n) for
l_<i<4 when we compute R(0,n)."[17, p. 19] The roots of all
subtrees of size d are found this way (moving next to
t (1, d+1), the t (2, d+2), etc.). When all roots for
subtrees of size d are found, d is incremented and the
process is repeated. This procedure continues until
r(0,n) is found.

The unit of "work" done in organizing a tree is
measured in number of comparisons required to perform the
organization. In Algorithm K, these comparisons arise in

25

finding the minimum cost of a subtree by testing a the set
of roots, R(i, j), to find the root of the subtree. The
Computer Science Department at UMR has a copy of the
author's implementation of Algorithm K.

26

IV. DESIGN

The organizing method being presented in this paper,
henceforth referred to as HEUR, is based on combining
three previously discussed methods of organization. These
are the balancing rule (weight-balanced trees), height
balancing, and Knuth's Algorithm K.

The first step of HEUR uses the principle of the
balancing rule while striving for better results. The
median of the weight of the tree is calculated, w(0,n)/2.
HEUR then locates the first element (sequentially) whose
cumulative frequency of access is greater than or equal to
the median (called the midpoint). This element is not
automatically chosen to be the root of the tree. HEUR
differs at this point from the balancing rule by comparing
the p(i)'s within a given percent of the cumulative
frequency of the tree to find the root. This search
around the median is conducted to find a relatively large
p(i) being located near the median. This is not an
unlikely occurrence and it is often more efficient to
choose the node with a larger p(i) as the root.

The percent of the cumulative frequency which is
used to find the search width around the median is a
parameter in HEUR. This parameter is called PERCEN. Note
that this percent encompasses the entire search width. In
other words, the search is conducted where the cumulative
relative frequency falls between (median-w(i, j) *PERCJEN/2)

27

and (median+w(i, j)* PERCEN/2), inclusively. The root is
being found for the tree or subtree t(i,j). Therefore,
w(i,j) is the weight of the subtree currently being
searched. (There is a restriction in that the search
width must include at least three nodes.)

Before HEUR actually chooses a root from the search
width around the median, a temporary frequency reduction
process occurs. This reduction somewhat penalizes nodes
at a distance from the median and is done in order to
prevent nodes whose relative frequency of access is
insignificantly larger than one near the median from
unnecessarily moving the root away from the median. Since
the median normally falls near the center of a table
(regardless of the distribution of frequencies), reduction
of frequencies is a way of incorporating the idea behind
the height-balanced class of trees. Also, empirical
evidence from numerous actual organizations using
Algorithm K indicates that Algorithm K tends to produce
binary trees where the depths of the left and right
subtrees (in respect to the root of the tree) do not
differ drastically. Walker and Gotlieb's method of
organization picked the largest p(i) in a search width as
the root, and had no penalty for elements which were at a
distance from the median.C183

The reduction process is based on the idea that the
importance of larger p(m)'s, with k(m) being the specific

28

element being compared, is reduced linearly according to
the distance (in relative frequency) from the median in
relation to the frequency span of the tree. The slope of
the reduction, NU, is a parameter of HEUR. The actual
reduction formula is:

lambda = NU * (absolute value[median-w(0,m)2) * 2
w (i, j)

p(m) = p(m) * (1-lambda)
The frequency reduction factor is graphed as a function of
the distance from the median in Figure 4.

Once the p(m) values are reduced, the maximum p(m) in
the search width is chosen as the root of the tree. In
the case of two p(m) having the same value and both of
them being the maximum value, the element k(m) which falls
closer to the midpoint is chosen as the root. The
original values of p(m) are not destroyed. A temporary
table consisting of the reduced values of all p(m) within
the search width is built for the initial tree and is
rebuilt for each subsequent subtree.

After a root is found, HEUR is repeated for all
resulting subtrees until a "small subtree is found. A
subtree which contains less than or equal to a given
number of elements (KVAL) cues the heuristic to organize
the subtree using Algorithm K. KVAL is a third parameter
used in HEUR. Since Algorithm K always builds an optimum
binary tree and the cost is not restrictive when dealing

MEDIAN - w(0,m)
Figure 4. Frequency Reduction Factor as a

Function of Distance from the Median
w
VO

30

with small trees (n_<100), it seems logical to use this
method to achieve possible improvement in AST. (The
actual results of such a decision will be described in
Section V.)

Therefore, there are three parameters which must be
assigned values when using HEUR to reorganize a table into
binary trees:

PERCEN - The percent of the cumulative frequency used
to find the search width around the median
of any given subtree.

NU - The slope of a linear reduction of all p(i)
within the search width of any given
subtree.

KVAL - The maximum size of a subtree to be
reorganized using Algorithm K. A "cut-over"
point telling HEUR to default to
Algorithm K.

The Computer Science Department at UMR has a copy of the
author's implementation of HEUR.

We have to experiment with varying these in order to
be able to recommend values of the parameters to use
according to the characterization of a particular
database. This characterization is determined by the
level of uniformity of the relative access frequencies.
The tradeoff between organization cost and average search

31

time may depend upon how non-uniform the relative access
times are. The implications of varying these values will
be discussed in the following section.

32

V . EXPERIMENTAL RESULTS

A. TEST VALUES FOR UNSPECIFIED PARAMETERS
During experimentation, one of the three changing

parameters in HEUR needed to be held constant. This
choice was made by attempting to pick the parameter which
matters the least or is the most predictable. Due to the
well-understood nature of Knuth1s Algorithm K, KVAL was
chosen as the initial parameter to be held constant. The
test cases used in Walker and Gotlieb's research showed
that increasing KVAL past a certain point decreased
average search time very slowly.[183 When the sum of q(i)
is less than the sum of p(i), the average search time
levels out at KVAL = 15. However there is not much
difference in the test results for KVAL = 5, 10, and 15.
We conducted several tests previous to picking a value for
KVAL which indicated that a value of ten would be a
logical initial "best choice" for KVAL. This choice had
resulted in significant improvement in AST without
sacrificing much run-time during organization.

Therefore, PERCEN and NU were the two remaining
parameters to vary. A wide range of values were tested
for PERCEN. These values spanned from 10 percent to 35
percent in steps of 5 percent. Previous analyses
indicated that PERCEN *= .35 was an unnecessarily extreme
case, but it was included in order to gain a more accurate

33

perspective of any patterns established during
experimentation.

NU is varied from zero to one, NU = 0, 1/4, 1/3, 1/2,
2/3, 3/4, and 1. Assigning a value of zero to NU is
equivalent to eliminating the frequency reduction process.
When NU equals one, the significance of a p(i) being
greater than p(midpoint) is lessened considerably. If a
large value of NU performs well, PERCEN could be reduced
(narrowing the search width), as HEUR seems to be
looking farther away from the median than required,
unnecessarily increasing the number of comparisons.

Each of the previously discussed values of PERCEN and
NU were tested on all three frequency distributions (the
70-30 rule, the 80-20 rule, and the 90-10 rule) with five
different sets of sample data generated for each frequency
distribution rule. (The variation in sample data sets was
produced by changing the initial seed when generating
random numbers.) In other words, each different
combination of PERCEN and NU was tested for fifteen
different data sets.

Tests were run on sample record set sizes of 100,
150, and 200 for both HEUR and Algorithm K. Due to the
space required to test Algorithm K, it was prohibitive to
run comparison tests for sample sizes greater than 200.
The results from the largest sample size (n*200) are
presented in this paper. The results from organizing

34

smaller trees supported the results of the larger record
sets. Yet, as the size increased, the consistency of the
data produced increased. Tests were run on HEUR for a
sample record set of size 1000 in order to obtain
information to assist in predicting the rate of increase
of the number of comparisons as a function of the number
of nodes in the tree.
B. ANALYSIS OF RESULTS

The analysis of experimental data will be presented
in two parts. First, considering the quality of the
search trees produced, the resulting AST values under each
distribution rule will be discussed. Following that will
be a look at the number of comparisons required to
organize using HEUR.

When discussing the average search time achieved
during experimentation the text will refer to the search
penalty. This penalty is found by transforming the raw
data (AST) into a ratio in respect to the values generated
by Algorithm K. The ratio is then reduced by one and
multiplied by one thousand to express the search penalty
in parts per thousand.

search penalty = (HEUR AST/Optimal AST - 1) * 1000

A search penalty of 12 would thus indicate that the
average tree search takes 1.2% more comparisons than for
the optimal organization.

35

The data produced when organizing a database with a
frequency distribution according to the 70-30 rule appears
to put some limits on the range of PERCEN and NU. In
every case, the average search penalty for each PERCEN is
lowest when NU is equal to .667. However, NU=.5 and NU
=.75 differ only slightly in average search penalty. The
lowest average search penalty occurs when PERCEN=.15, with
a difference of less than 2 (parts per thousand) in the
search penalty with PERCEN=.20. In both cases (PERCEN=.15
and PERCEN=.20), the average AST when using HEUR is no
more than .5% higher than optimal AST. There is an
overall improvement in AST when PERCEN is greater than
.10, and a degradation in AST when PERCEN is increased to
.25 or greater.

The range of best values for PERCEN and NU when a
database whose distribution of relative frequency of
access fits the 70-30 rule are as follows.

.15 <_ PERCEN <_ .20

.50 <_ NU _< .75
It appears that searching around the median is

helpful, but a p(i) must be quite large in order to
justify choosing the corresponding k(i) as the root. This
is expected since the relative frequencies of the 70-30
rule are still not extremely deviant from a uniform
distribution. (See Table IV.)

The results from testing the frequencies produced

36

TABLE IV
COMPARISON OP HEUR TO ALGORITHM K

AVERAGE PENALTY IN PARTS PER THOUSAND
70-30 Rule

Values of NU
0 .25 . 33 .50 .67 . 75 1.0

10% 11 8.8 | 8.8 8.8 8.8 8.4 9.4 11.4
Percent 15% 11 6.6 6.0 6.0 4.4 3.6 4.0 6.0SearchWidth 20% i1 9.4 8.6 7.6 5.4 5.0 5.8 6.8

25% 11 10.4 10.0 9.0 7.0 6.8 7.4 8.8
30% 11 15.0 | 11.8 11.0 8.4 8.0 8.4 9.6
35% 11 23.4 17.6 14.0 10.0 9.4 10.2 11.2

Difference = (HEUR AST/Optimal AST - 1) * 1000

37

according to the 80-20 rule yield more specific
limitations on both PERCEN and NU. Once again, there is
definite improvement achieved by searching around the
median with consistently better results when PERCEN=.20.
There is a difference in the average search penalty of
less than 2 (parts per thousand) when PERCEN is changed to
15% or 25%. There is a marked degradation of the search
penalty when PERCEN is increased to 30%. The smallest
search penalties result from NU=.667 or .75 in most cases.
If the smallest search penalty does result from a
different value of NU, the improvement over NU=.667 or .75
is no more than .6 (parts per thousand).

The range of best values for PERCEN and NU when a
database whose distribution of relative frequency of
access fit the 80-20 rule are as follows.

.15 <_ PERCEN <_ .25

.67 _< NU <_ .75
Due to the wider span of values in the 80-20 rule (as

opposed to the 70-30 rule), HEUR seems to be justified in
looking farther away from the median in order to find a
relatively large value of p(i). Still, off-median values
of p(i) must "prove their worthiness" by being able to
withstand large values for NU before the corresponding
k(i) will be chosen as a root. (See Table V.)

The last data set (90-10 rule) proved to be the most
interesting. The outstanding characteristic of these
results is the extreme degradation of the average search

38

Values of NU

TABLE V
COMPARISON OF HEUR TO ALGORITHM K

AVERAGE PENALTY IN PARTS PER THOUSAND
80-20 Rule

0 .25 .33 .50 .67 .75 1.0

10% 11 9.8j 9.8 9.8 9.6 10.0 10.8 14.0
Percent 15% 1 6.6 6.2 6.4 7.2 6.8 6.8 10.0Search
Width 20% 11 7.6 | 6.8 5.4 5.4 4.4 4.6 6.6

25% 11 8.6i 8.6 7.2 7.0 5.8 6.2 10.6
30% 11 15.6 1 16.0 16.0 13.0 9.6 9.0 11.6
35% 11 21.0 21.6 19.4 16.6 12.2 13.2 15.6

Difference = (HEUR AST/Optimal AST - 1) * 1000

39

penalty for NU=1 when compared to the average search
penalty when NU assumed any other value. This was
apparent for all values of PERCEN. Another feature of the
90-10 rule test results is that both the 10% and 35%
search widths produced much poorer results than any other
values of PERCEN. The best results are found when
PERCEN=.15 or .20. NU may vary from .25 to .75 and still
produce comparable results.

It seems that when the probability density function
of p(i) fits the 90-10 rule, HEUR does not have to look as
far for a k(i) with a suitably high p(i) in searching for
an appropriate root. It is helpful to have NU>0 in order
to weed out those p(i)'s which are insignificantly larger
than the median. However, due to the wide variance of
p(i)‘s, a value of NU=.25 is not any worse (or better) on
the average than a value of NU=.75. The appropriate p(i)
can survive larger values of NU. (See Table VI.)

The average number of comparisons required to run
HEUR on a sorted database was relatively consistent among
all fifteen test cases for each test value of n. In each
case, the number of comparisons required was approximated
by (alpha*nlog2n). The value of alpha decreased as the
value of n increased. When n=100, alpha was equal to
1.44. When n=200, alpha was equal to 1.29, and a value of
1.11 for alpha resulted when n=1000. (See Table VII.)
Obviously the decrease in alpha will level out at some

40

TABLE VI
COMPARISON OF HEUR TO ALGORITHM K

AVERAGE PENALTY IN PARTS PER THOUSAND
90-10 Rule

Values of NU
0 .25 .33 .50 .67 .75 1.0

10% 11 12.6 12.2 12.4 12.2 12.2 12.4 51.0
15% 1 7.8 2.6 2.4 2.6 2.4 3.0 39.8

PercentSearch 20% 11 4.8 5.4 5.2 5.2 6.6 6.8 34.2
Width 25% 1i 6.6 1 8.4 8.4 6.0 7.8 8.2 34.0

30% l1 9.4 8.8 8.6 6.4 8.2 9.2 35.6
35% 11 13.2 19.2 19.0 20.2 17.4 18.6 46.2

Difference = (HEUR AST/Optimal AST - 1) * 1000

41

NUMBER OF COMPARISONS REQUIRED
FOR ORGANIZATION WITH HEUR

TABLE VII

AVERAGE NUMBER OFN COMPARISONS ALPHA RESULT

100 958.3 1.44 956.72
200 1979.1 1.29 1972.11

1000 11075.1 1.11 11062.02

RESULT = ALPHA * N Log2N

42

point. This does not detract from the low number of
comparisons, especially when compared to Algorithm K which
requires 0(n2) comparisons. (See Table VIII.)

Variation of KVAL, the cut-over point to Algorithm K,
has not been mentioned up to this point. Preliminary
testing of HEUR showed that reducing KVAL from ten to two
degraded the AST by no less than 300% and up to 600%.
This reduction of KVAL was equivalent to eliminating
Algorithm K from HEUR. Using Algorithm K apparently
improves AST considerably without increasing run-time
significantly. Some testing was done with KVAL=7. The
results of this testing were promising. Although it would
be difficult to improve on the results presented
previously in this paper, it appears that KVAL=7 may
produce comparable results (but not quite as "nearly
optimal") with a slight decrease in number of comparisons.
Increasing KVAL to a value much greater than ten would
obviously begin to degrade run-time, due to the
characteristics of Algorithm K. Further experimentation
in this area might prove interesting.

43

TABLE VIII

AVERAGE COMPARISONS REQUIRED FOR HEUR AND ALGORITHM K

HEUR ALGORITHM K
RULE N=100 N=200 N=100 N=200

70-30 867.1 1790.4 11 9914.0 | 39400.6
80-20 964.8 1989.0 11 10033.6 | 38632.6
90-10 1043.0 2157.9 i1 10365.6 38802.2

AVG 958.3 1979.1 i1 10104.4 38945.1

44

VI. CONCLUSIONS

A. RECOMMENDATIONS
Testing for a root around the median of the relative

frequencies of a table of ordered elements whose
frequencies are not uniform can always result in a better
average search time than just picking the median as the
root. However, one must be careful in choosing how far
away from the median to "look." Merging the results from
experimentation on tables whose p(i)'s probability density
function fits the 70-30 rule, the 80-20 rule, or the 90-10
rule, it is best to choose a percent of the cumulative
frequency of a subtree (or a tree) which is between 15%
and 20%. If a user knows a given database well enough to
estimate exactly which category it falls under (the 70-30
rule, the 80-20 rule, or the 90-10 rule), more specific
information is provided in Section V.

For each of the distributions, an average degradation
of average search time of no more than 1% over optimal can
be expected. In each of the five test cases for each
rule, actual data using PERCEN=.15 or PERCEN=.20 never
resulted in an AST which was more than 1.5% worse than
optimal. The run time is considerably better than that of
Algorithm K. The cost of HEUR increases in proportion to
n log2 n while the cost of Algorithm K increases
proportional to n2. As was mentioned earlier, as the

45

frequency distribution approaches uniformity, a height-
balanced tree will produce acceptable results,
b. RELATED CONCERNS

There are several related areas which have not been
covered or have not been covered in depth in this
research. One is how to update a dynamic database as
insertions and deletions occur. There are many different
possibilities. Applying the ideas of height balancing,
weight balancing, or a combination of these two are just a
few possible approaches.

Another related concern is the problem of when to
reorganize a dynamic database. Schneiderman states that,
"Reorganization can be performed at fixed time intervals
or when the average search cost has deteriorated to a
certain level." Ll9» p- 3623 He then proceeds to discuss
different strategies for selecting optimum reorganization
points according to the individual database's
characteristics. Further investigation of that paper and
its implications in the light of results reported here
could prove profitable.

A third pertinent area of research which goes hand-
in-hand with this discussion on how to organize is the
problem of gathering and storing current information on
the actual relative frequencies of access of each element
in a table. How to accumulate this information and where
to store it are the two most obvious problems. The

46

difficulty of record popularities changing over time is
also a problem. Should there not be some sort of time
penalty for accesses which were made a "long time ago?"
Perhaps the access counts should just be restarted after a
given period of time or after each reorganization. If so,
should all elements be restarted at the same initial
value, or is there some method wherein certain elements
could be assigned higher initial values? There are
obviously many approaches to the problem of gathering and
storing access information. Getting good estimates of
p(i)'s is vital to the productive use of methods like
HEUR. The cost of obtaining this information must be
realistically assessed.

Another necessary inquiry concerns the effect on
AST from errors in the p(i)'s used to organize the search
tree. The results from this inquiry are important in
determining what cost of getting good estimates of p(i)'s
is justifiable. If a large margin of error is acceptable,
an expert's approximation may be accurate enough for a
particular database.

These are just a few areas in which further
investigation is suggested when studying the problem of
organization. As in any sector of Computer Science, the
possibilities tor more extensive research seem endless.

47

Yet this effort has made a start in this exploration. It
has shown that there are efficient methods by which
nearly-optimum search trees may be organized.

48

2 .

3.

4.

5.

6 .

7.

8 .

9.

10 .

1

BIBLIOGRAPHY

Knuth, D.E. The Art of Computer Programming, Volume
3: Sorting and Searching. Reading, MA: Addison- Wesley, 1973.

Hu, T.C. and A.C. Tucker. "Optimal Computer Search Trees and Variable-Length Alphabetical Codes,"
SIAM Journal of Applied Mathematics, Vol. 21, No. 4, December 1971, pp.514-532.

Reingold, Edward M. and Wilfred J. Hansen. Data
Structures, ed. Gerald M. Weinberg. Boston:
Little, Brown, and Company, 1983.

Walker, W.A. and C.C. Gotlieb. "A Top-Down Algorithm
for Constructing Nearly Optimal Lexicographic Trees," Graph Theory and Computing, ed. Ronald C.
Read. New York: Academic Press, 1972.

Reingold, Edward M. and Wilfred J. Hansen. Data
Structures, ed. Gerald M. Weinberg. Boston:
Little, Brown, and Company, 1983.

Iverson, K.E. A Programming Language. New York:
John Wiley and Sons, Inc., 1962.

Knuth, D.E. "Optimum Binary Search Trees,” Acta
Informatica, 1:14-25, 1971.

Allen, Brian. "On the Costs of Optimal and Near-Optimal Binary Search Trees," Acta Informatica,
18:258-263, 1982.

Reingold, Edward M. and Wilfred J. Hansen. Data Structures, ed. Gerald M. Weinberg. Boston:
Little, Brown, and Company, 1983.

Lewis, T.G. and M.Z. Smith. Applying DataStructures. Boston: Houghton Mifflin Company,
1976.

Walker, W.A. and C.C. Gotlieb. "A Top-Down Algorithm for Constructing Nearly Optimal Lexicographic Trees," Graph Theory and Computing, ed. Ronald C. Read. New York: Academic Press, 1972, pp.303-
323.

1 1 .

49

12. Knuth, D.E. The Art of Computer Programming, Volume
3: Sorting and Searching. Reading, MA:AddTson- Wesley, 1973.

13. Bobillier, P.A. and others. Simulation with GPSS and
GPSS V. Englewood Cliffs, New Jersey: Prentice- Hall, Inc., 1976.

14. Heising, W.P. "Note on Random Addressing
Techniques," IBM Systems Journal, Vol. 2, June
1963, pp. 112-116.

15. Metzner, John R. Personal interview. June 20, 1984.
16. Knuth, D.E. The Art of Computer Programming, Volume

3: Sorting and Searching. Reading, MA: Addison-
Wesley, 1973.

17. Knuth, D.E. "Optimum Binary Search Trees," Acta
Informatica, 1:14-25, 1971.

18. Walker, W.A. and C.C. Gotlieb. "A Top-Down Algorithm for Constructing Nearly Optimal Lexicographic Trees," Graph Theory and Computing, ed. Ronald C.
Read. New York: Academic Press, 1972.

Shneiderman, Ben. "Optimum Data Base Reorganization
Points," Communications of the ACM, Vol.16, No.6,
June, 1973, pp. 362-365.

19.

50

VITA

Joy Lanelle Henderson was born on July 14, 1959 in
Union City, Tennessee. She received her primary and
secondary education in Martin, Tennessee. She received a
Bachelor of Science degree in Computer Science from the
University of Tennessee-Martin, in Martin, Tennessee in
December 1981.

She has been enrolled in the Graduate School of the
University of Missouri-Rolla since January 1982. She has
held a graduate assistantship for the duration of her
enrollment at UMR, and held a Chancellor's Fellowship from
August 1982 through December 1984.

	A Simple Method for Organizing Nearly Optimal Binary Search Trees
	Recommended Citation

	tmp.1601391904.pdf.p1A_b

