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ABSTRACT

Improving the efficiency of retrieving information 
concerns users of computer systems involved in many 
applications- One way of addressing this concern is to 
organize a sorted sequence into a binary search tree. 
Knuth's Algorithm K is a bottom-up organization algorithm 
that always constructs a binary tree which minimizes 
average search time. However, the cost of executing 
Algorithm K is prohibitive for a large tree. The aim of 
this work is to find a less costly method of organizing 
sorted sequences into nearly-optimal binary search trees.

We present a top-down organization method which 
yields better average search times than top-down methods 
already available, specifically height-balancing and 
weight-balancing. The variation in access frequency among 
the members of a sequence is used to recommend specific 
values for some of the parameters in this new method of 
organization.

The new method improves considerably on the cost of 
organization as opposed to the cost of using Algorithm K 
while producing trees whose average search times are close 
to minimal. The new algorithm yields an average search 
time that is usually within 1% of the minimal average 
search time and for every case attempted has been no worse 
than 1.5% larger than minimal.
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I . INTRODUCTION

Improving the efficiency of retrieving information 
from a database concerns users of computer systems 
involved in many applications. In today's computerized 
society, faster response time is an expected luxury in 
some systems while a necessary characteristic of other 
systems. There are many ways of addressing this concern.

Ordering a table of records or indexes of records 
inherently simplifies the process of searching for a 
particular record. Without ordering or sorting a table, 
the only practical choice for searching the table is 
sequential scanning. However, when searching an ordered 
table a binary search method is more efficient than 
sequential scanning. The basic idea behind binary search 
is to first compare the key being searched for to the 
middle key in the table. "The result of this probe tells 
which half of the table should be searched next, and the 
same procedure can be used again, comparing K [the key 
being searched for] to the middle key of the selected 
half, etc."[l, pp. 406-407] It is easier to understand 
binary search when it is thought of as a "binary decision 
tree".tl< p. 409] To take this idea further, "...any 
algorithm for searching an ordered table of length N by 
means of comparison can be represented as a binary tree 
. .."[1 , p. 409] Knuth presents several variations of
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binary search which are obviously intended for use when
searching sequentially placed records. However, if the
table is being continually updated, as most tables are,
"...we might spend more time maintaining it than we save
binary searching it."Cl, P- 423] This brings us to the
concept of using explicit binary tree structures.

"The use of an explicit binary tree structure 
makes it possible to insert and delete records 
quickly, as well as to search the table 
efficiently. As a result, we essentially have 
a method which is useful both for searching and 
for sorting."Cl, p • 423]

Figure 1 is an example of a binary search tree where the 
records contain information concerning an airline's daily 
scheduled flights. The nodes are labeled using the 
airline's flight numbers.

Deciding to use explicit binary tree structures gives 
the user another decision to make: How does the user want 
to organize the sorted database into a binary tree? Once 
sequential placement is no longer a factor, there are 
other characteristics of the database which may be 
considered. Specifically, these are the relative 
frequency of access of a given record and the relative 
frequency of an unsuccessful search being terminated when 
reaching a given record during the search process. L.E. 
Knuth has developed an algorithm which uses these two 
characteristics and always constructs a binary tree 
structure which results in minimal average search time. 
Why, then, is any further research necessary? The cost of
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Figure 1. A Binary Search Tree Whose Keys are an Airline*s Flight Numbers

u>
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Knuth's method of organization is prohibitive when a table 
is very large. This cost is even more restrictive when 
dealing with a volatile file which requires frequent 
reorganization. The focus of this paper is to find a 
method of organizing sorted tables into binary trees which 
results in nearly minimal average search time, yet does 
not have a restrictive cost of reorganization.

In order to clarify the remainder of this discussion, 
a few definitions will be given.[1]

binary search tree - This is an ordered group of 
elements organized so that one element is 
the root and the remaining elements are 
divided into two trees called subtrees of 
the root. Each subtree is either empty or 
consists of a root and two resulting 
subtrees.

- The number of arcs between a node and the 
root of the tree.

- The number of search keys (or elements) in a 
given database (or binary tree).

- The ith search key in a database whose keys 
are ordered alphabetically or numerically. 
k(l)<k(2)<...<k(n)

- The subtree consisting of elements k(i+l) to 
to k(j) given the condition CKi<j^_n.

- The root of the subtree t(i,j).

level

n

Mi)

t(i,j) 

r(i,j)



5

p ( i) - The relative frequency that k(i) is the 
search argument for any given search of 
t(i,j). This value is also referred to as 
relative frequency or relative frequency 
of access.

q( i) - The relative frequency "that the search
argument lies between k(i) and k(i+l). (By 
convention, q(0) is the relative frequency 
that the search argument is less than k(l) 
and q(n) is the relative frequency that the 
search argument is greater than k(n).)"Cl, 
p. 434]

c(i,j) - The cost of subtree t(ifj) as a function of 
relative access frequency. (Sum of all 
p(i)*(level+1) and all g(i)*level.) 

w(i,j) - The weight of the subtree t(i,j), found by
summing all p(i), (i=i+l to j), and q(i), 
( i= i to j ) .

AST - Average search time (AST) is the average cost 
in number of accesses of a successful search 
for a given tree: c(0,n)/w(0,n).

Here is an illustration using some of the preceding terms
in order to clarify their meanings. A binary search tree 
of thirteen elements, t(0,13), with node six as its root, 
r(0,13)=6, would have two subtrees, t(0,5) and t(6,13). 
Figure 2 shows a picture of what this search tree might



look like. Table I lists example values for all p(i) for 
this tree. Table II lists sample corresponding roots, 
weights, and costs.

6

There will be two main variables used in 
differentiating various organization methods. The first 
and most obvious indicator of whether or not a particular 
method is appropriate for a given system is the average 
search time of the resulting binary tree. The second 
variable is the cost of determining the exact organization 
of the tree. Some systems can afford to allow ample time 
for reorganizing the trees used in database searching. 
Other systems cannot afford to be out of service for the 
time necessary for a full reorganization yielding optimal 
efficiency of retrieval. Reorganization is done when 
additions and deletions of records to the database have 
degraded the average search time to an unsatisfactory 
level. Those systems which this research concerns are 
those who need to decide how much they are willing to give 
up in retrieval time in order to keep the cost of 
reorganization down.

In the experimentation for this research it is 
assumed that estimates of the relative access frequencies, 
p(i)'s, are available. This is a realistic assumption 
when working with a database which has been in use for 
some time. These may be actual values gathered over a 
period of time, or educated guesses by those persons who



Figure 2. Binary Search Tree with Labeled Subtrees
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TABLE I

SAMPLE RELATIVE ACCESS FREQUENCIES 
FOR A BINARY SEARCH TREE OF SIZE THIRTEEN

NODE p (i)

1 4.0
2 7.0
3 3.0
4 9.0
5 6.0
6 2.0
7 14.0
8 1 . 0

9 9.0
10 7.0
11 2.0
12 3.0
13 3.0
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TABLE II

SAMPLE ROOTS, WEIGHTS, AND COSTS 
FOR A BINARY SEARCH TREE OF SIZE THIRTEEN

ROOTS WEIGHTS COSTS

r(0,13) = 6 w( 0,13) = 70.0 c(0,13 ) = 214.0

r(6,13) = 9 w(6,13) = 39.0 c (6,13) = 84.0

r ( 0,5) = 2 w(0,5 ) = 29.0 c ( 0,5 ) = 60.0

IIinCMu 4 w( 2,5 ) = 18.0 c(2,5) = 27.0

r(9,13 ) = 12 w(9,13) = 15.0 c(9,13) = 29.0
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have been working with the database. In some database 
applications one key in a table and its corresponding 
p(i) represents a group of records. For instance, many 
insurance files contain information on several members of 
a single family instead of having a separate file for each 
family member. In this case, the table being organized is 
a table of indices, k(i)'s, and the corresponding p(i)’s.

Knuth has presented an algorithm for organization of 
a sorted table into a binary tree which yields minimal 
average search time.[l] However, the cost of this 
organization is prohibitive when working with large tables 
(n>100). We have experimented with a heuristic-based tree 
organizing method to see how it compares to Knuth's 
optimal binary tree organization. Our aim was to find a 
method that organizes a table into a binary tree which 
yields near-minimal average search time while costing less 
than Knuth's algorithm. A description of this 
experimentation and the results are presented in this
paper.
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II. REVIEW OF LITERATURE

A. BOTTOM-UP ORGANIZATION METHODS
D.E. Knuth has presented an effective method of 

organizing a sorted database into an optimum binary tree. 
Ll] This is a bottom-up procedure which Knuth calls 
Algorithm K. This algorithm first examines all pairs of 
adjacent elements in the sorted database to determine 
which element in each pair should be the root of that 
subtree (consisting of two elements) in order to achieve 
the lowest cost. Next, using the results of the two- 
element subtree root-search and the fact that "...all 
subtrees of an optimum binary tree are optimum."[l, p. 
435j, Algorithm K finds the roots of all adjacent triples. 
This process continues for all groups of four elements, 
five elements, etc. until the root for the entire tree (a 
group of n elements) has been found. Algorithm K has been 
described as a "...computation procedure which systemati
cally finds larger and larger optimum subtrees."[1, p.
435j This method of organization will be described in 
more detail later in this paper (see Section III).

Although Algorithm K always produces an optimum 
binary tree, there is a drawback to using it for 
organization. Total running time of 0(n2) is required to 
determine an optimum binary tree. This says that the run 
time increases in proportion to n squared. For instance,
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given that the number of records in table A is n and the 
number of records in table B is 3n, table B requires 
approximately nine times as long to organize as table A 
does. If a small database is involved (n_<100), this run 
time is not necessarily a restriction. However, for 
larger trees most users need to look at alternate 
approaches to the problem of determining tree 
organization.

T.C. Hu and A.C. Tucker presented an algorithm for 
the special case where all p(i)=0.[2] (This says that all 
inquiries are unsuccessful.) In an extensive proof, Hu 
and Tucker explain how to first build an optimal binary 
tree disregarding alphabetical order using a "T-C level- 
by-level construetion"[2, p. 520] and then convert this 
tree into an optimal binary tree in alphabetical order.
The T-C stands for tentative connecting. Two nodes can be 
combined into a subtree (i.e. have a common father) only 
if they are T-C nodes. Two nodes are considered T-C nodes 
if the nodes are adjacent or their separation is only by 
internal nodes (roots of subtrees). The T-C level-by
level algorithm builds the binary tree in a bottom-up 
fashion, building a subtree of the pair of T-C nodes with 
minimum weight first. This method "...combines all nodes 
on the lowest level of the T-C tree first, then all nodes 
on the next-to-lowest level, and so on."[2, p. 520] (hence 
the name T-C level-by-level construction). A key theorem
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in Hu and Tuckers' proof basically says that for every 
tree in the "...class of all T-C level-by-level forests 
(including trees) ... there is an alphabetic forest (or 
tree) of the same cost."[2, p. 5213 This theorem is the 
basis for the second phase of Hu and Tucker's algorithm, 
the conversion of an unorderea optimal binary tree into an 
ordered optimal binary tree.

As in Knuth's Algorithm K, total running time of the 
Hu and Tucker algorithm is a restriction when a large 
database is used. The implementation presented required 
O(n^) operations. (In an ending note, they mention that 
Knuth suggests an implementation which "...needs only 
0(n log n) operations when suitable data structures are 
employed."[11] No details are presented on this 
implementation.)
B. TOP-DOWN ORGANIZATION METHODS

There are many ways of approaching a top-down tree 
structuring. The method which seems to be the natural 
choice is to simply choose the record with the largest 
frequency of the tree to be the root. Then choose the 
record with the largest frequency in subsequent subtrees 
as the subtrees' respective roots until the organization 
is complete. Reingold and Hansen call this the monotonic 
rule."[33 However, practical experiments have shown that 
the monotic rule does "...not produce acceptable nearly 
optimal trees."[4, pp. 307-3083 Some researchers have
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gone as far as to say that this method results in an
average search time which "...on the average...is no
better than a tree constructed at random."L5, pp. 291-292]

Obviously, there are better top-down methods of
organization. The balancing rule chooses each r(i,j) in
order to balance as nearly as possible the weight of the
subtrees on either side of the root.[5] It has been
suggested that trees constructed using the balancing rule
(weight-balanced trees [5]) are optimum when all q(i)=0
[6, pp. 142-144], but this is not the case.[7] Two
closely related classes of organization are bisection
trees and min-max trees.

Allen describes the construction of Mehlhorn's
bisection trees as follows:

"The root of the entire tree is chosen closest 
to the 50th percentile of the cumulative weight 
distribution. Its left and right sons are 
chosen closest to the 25th and 75th percentiles, 
respectively, and so on." [8, p. 259]

Min-max trees, introduced by Bayer, also use the weight of
the tree during organization. The root of the initial
tree is chosen in order to minimize the maximum weight of
the resulting left and right subtrees. This procedure is
repeated until all roots have been found.[8]

There are situations where all three of the
previously discussed classes of trees - weight-balanced
trees, bisection trees, and min-max trees - may result in
the same binary tree. Yet, using the informal definitions
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in this paper the resulting tree in any given class "...is 
not uniquely specified for certain weight distributions." 
C8, p. 259} These definitions are acceptable for weight- 
balanced trees and bisection trees. However, since Bayer 
"...makes a particular choice in his definition of min-max 
t r e e s . . p .  259], Allen's term "essentially min-max" 
will be used as a label for min-max trees which satisfy 
the more informal definition.[8]

When dealing with trees which have uniform relative 
frequencies (p(i)), any of these three methods perform an 
acceptable job of organizing a tree resulting in nearly 
optimal AST. However, as the relative values become more 
skewed, average search time becomes less predictable. 
Allen proves that for none of the three classes of 
organization methods (weight—balanced trees, bisection 
trees, and essentially min—max trees) is the cost of the 
tree bound.[8] The maximum value of the cost of a tree 
organized using these methods cannot be restricted. 
Therefore, a maximum value for average search time cannot 
be assumed.

Reingold and Hansen discuss another simple but 
relatively effective method of organization based solely 
on the number of elements in a tree or subtree (as opposed 
to relative frequency).[9] Their height-balanced trees 
are constructed by choosing the root of the tree such that 
the height of the resulting left and right subtrees
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differs by no more than one. The process is repeated for 
subsequent subtrees. The average search time for a 
height-balanced tree is equivalent to that of a binary 
search which is given by Lewis and Smith [10] (L is 
average search time):

L=log2 (n+1)-l, n>50
when the p(i)'s are all equal. As a matter of fact, for 
uniform access frequencies, the height-balanced and 
weight-balanced trees are nearly equivalent (often they 
are the same trees). In this case, height balancing is 
the better choice due to the absence of comparisons needed 
to organize the tree.

Another top-down method of organization is proposed 
by Walker and Gotlieb.[ll] Their approach requiring 
accurate estimates of all p(i) and q(i) combines a top- 
down method with Knuth* s Algorithm K to yield close-to- 
minimal average search time. They use an example 
application of the author index of a library catalog. In 
this example the relative access frequency is not expected 
to change much over a short period.

This method of constructing a binary search tree 
chooses the largest p(i) in the neighborhood of the 
centroid, the key whose left and right subtrees are most 
equal in weight. Notice that the centroid is the key 
which would be chosen as the root when organizing using 
the balancing rule. If a subtree is less than or equal to
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size Nq (a parameter in this algorithm), an optimal tree 
is structured using Algorithm K. F is the parameter which 
determines what the search width for the root around the 
centroid is. F is greater than or equal to 1, and the 
search width is (l/F * w(i,j)) where the subtree currently 
being searched is t(i,j). The value for F varies 
according to the ratio of the relative frequency of 
successful accesses to the database and the relative 
frequency of unsuccessful accesses.

This top-down algorithm requires time proportional to 
n log2 n to construct a binary search tree of size n. The 
authors say that an average search time within 1% of 
minimal can be expected. Knuth states that the results 
are "reportedly within 2 or 3 percent of the optimum."[12,
p. 4393
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III. THE MODEL

A. DATA GENERATION
We are going to test a Heuristic-based tree organizing 

method (HEUR) and see how it compares to optimum.
In order to clarify the development and experimentation of 
the new organization algorithm being presented in this 
paper, it is assumed that all q(i)=0. This is equivalent 
to assuming that all inquiries into a database are 
successful. Although this is not a totally realistic 
assumption, the initial results of experimentation are not 
biased by this assumption. In practice, the q(i)'s are 
quite small and very difficult to estimate from 
experience. All comparison results (binary trees built 
using Algorithm K) were constructed under the same 
assumption. While we are ignoring the q(i)'s, reality 
forbids assuming that the p(i)'s are equal, so we will 
attempt to model the nonuniformity of the p(i)*s (which we 
here consider known precisely). In effect we are modeling 
the expected traffic to the database.

Fifteen sets of data were generated for testing with 
each different table size. This data consisted of the 
values of p(i). These data sets, used in experimentation 
with the new organization algorithm being presented, HEUR, 
and comparison runs with Algorithm K, were generated in 
two steps. The first step was the generation of a uniform
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distribution of n numbers between zero and one using the 
multiplicative congruential method of random number 
generation. Given r(i), b,and m, the (i+l)th random 
number is produced using the formula:

r(i+l) = r(i)*b (mod m)
The three values, r(i), b, and m, are all positive with 
r(i)<m. Five different values for r(0) were used. 
Following the guidelines outlined in Bobillier, Kahan, and 
Probst’s simulation text [133# the following initial 
values were chosen: 

m = 107
b = 200*16-37 = 3163 
Seedl = r(0) = 1483 
Seed2 = r(0) = 1487 
Seed3 = r(0) = 2153 
Seed4 = r(0) = 3973 
Seed5 = r(0) = 4793

Due to the nature of the multiplicative congruential 
method of random number generation, each r(i) fell between 
zero and m-1. Division by m was then done to normalize 
the random numbers. The resulting values were then used 
to generate variates with desired probability density 
functions.

Three different probability density functions were 
used. These will be referred to as "delta-gamma rules". 
Each of these rules say that delta percent of the accesses
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to a table are made to gamma percent of the records in 
that table. The best known of the three is the 80-20 rule 
of thumb. This rule "holds approximately for many 
commercial files,"[14, p. 112J which is why it was chosen 
as a representative data set for testing. The 80-20 rule 
says that 80 percent of the accesses to a table are made 
to the most often used 20 percent of the records in that 
table.L143 The other two probability density functions 
are closely related to the 80-20 rule. They are the 70-30 
rule and the 90-10 rule. These rules state that 70 
percent of the accesses to a table are made to the most 
often used 30 percent of the records and 90 percent of the 
accesses are made to 10 percent of the records, 
respectively.

To produce the record access probabilities as random 
variables that conform to the "delta-gamma rules," uniform 
variates were transformed by the function

f(X ) = BETA*Cx^BETA_1h  , BETA = i°9GAMMA del t a 
This produced access probabilities for the records in each 
set to be organized. Since the set of such values for 
each tree was not constrained to sum to 1, the values were 
treated as estimates of record popularity and normalized 
later by division by the set sum when probabilities were 
needed.

To allow experimentation with relatively small record 
sets, the possible biasing effect of having a very popular
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record was removed by linearizing the functions in the 
popular record group. That is, the functions were 
modified to the definition below.

rax+b 0_<x_< gamma
f(x) = , .

beta*x'Deta 1 • garama^xU

The parameters of these functions for the three 
experimental cases are given in Table II. The functions 
are plotted in Figure 3.C153 
B. DESCRIPTION OF ALGORITHM K

Since Algorithm K is being used throughout this paper 
for comparison values, we present a detailed description 
of this algorithm (taking into consideration the 
assumption that all q(i)=0). Some details of the 
following description would be altered should q(i) not 
equal zero.

Algorithm K first initializes the cost of all null 
trees to zero. ("If i=j, t(i,j) is null; else its left 
subtree is t(i,r[i,j3 - 1) and its right subtree is 
t(r[i, j3, j) ."[16, p. 4363 The weights of all subtrees are 
also initialized by slimming the p(i)‘s of all elements in 
a given subtree. Before going on to the next step, the 
cost of all 1-node trees are assigned (which is actually 
the weight of each 1-node tree), and the roots of all 1- 
node trees are assigned.

The next step of Algorithm K finds the roots of
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TABLE III

VALUES USED IN RANDOM NUMBER GENERATION IN TRANSFORMING 
UNIFORM RANDOM NUMBERS TO DELTA-GAMMA RULES

DELTA GAMMA BETA m L>

.70 .30 .29625 -10.94725 3.97542

.80 .20 .13865 -34.45413 7.44541

.90 .10 .04576 -171.76361 17.58817

f(x) = mx + b, 0£x<gamma

f(x) = BETA * (x(BETA-D), gamma<x<l

BETA - 109GAMMA DELTA
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X

Figure 3. Transformation of Uniform Variates to
Conform to the Delta-Gamma Rules
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subtrees of 1) size two, 2) size three, 3) etc. until all 
roots are found. The algorithm starts at t(0,d) (d is the 
size of the subtree) and proceeds to find the optimal root 
of this subtree of size d. This is done by finding the 
node which, when chosen as the root of the subtree, 
produces the minimum cost possible for that subtree given 
rLi» j-11 ± k <_ r[i+l,j] [16]:

c[i,j] <- w[i,j]+min (c[i,k-1]+c[k,j3)k
The "monotonicity property" is applied here, eliminating 
redundant examination of sub-optimal roots. This property 
says that when an ordered table is organized into an 
optimum binary search tree, the sets of roots, R(i,j), 
satisfy

R(i, j-l)<R(i, j)_<R(i+l, j) for j-i>2 
whenever all p(i)'s and q(i)'s are nonnegative.[163 Knuth 
gives an illustration: "But if we discover by some means 
that R(0,n-l)j^5, it is unnecessary to determine R(i,n) for 
l_<i<4 when we compute R(0,n)."[17, p. 19] The roots of all 
subtrees of size d are found this way (moving next to 
t (1, d+1), the t (2, d+2 ), etc.). When all roots for 
subtrees of size d are found, d is incremented and the 
process is repeated. This procedure continues until 
r(0,n) is found.

The unit of "work" done in organizing a tree is 
measured in number of comparisons required to perform the 
organization. In Algorithm K, these comparisons arise in
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finding the minimum cost of a subtree by testing a the set 
of roots, R(i, j), to find the root of the subtree. The 
Computer Science Department at UMR has a copy of the 
author's implementation of Algorithm K.
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IV. DESIGN

The organizing method being presented in this paper, 
henceforth referred to as HEUR, is based on combining 
three previously discussed methods of organization. These 
are the balancing rule (weight-balanced trees), height 
balancing, and Knuth's Algorithm K.

The first step of HEUR uses the principle of the 
balancing rule while striving for better results. The 
median of the weight of the tree is calculated, w(0,n)/2. 
HEUR then locates the first element (sequentially) whose 
cumulative frequency of access is greater than or equal to 
the median (called the midpoint). This element is not 
automatically chosen to be the root of the tree. HEUR 
differs at this point from the balancing rule by comparing 
the p(i)'s within a given percent of the cumulative 
frequency of the tree to find the root. This search 
around the median is conducted to find a relatively large 
p(i) being located near the median. This is not an 
unlikely occurrence and it is often more efficient to 
choose the node with a larger p(i) as the root.

The percent of the cumulative frequency which is 
used to find the search width around the median is a 
parameter in HEUR. This parameter is called PERCEN. Note 
that this percent encompasses the entire search width. In 
other words, the search is conducted where the cumulative 
relative frequency falls between (median-w( i, j) *PERCJEN/2 )
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and (median+w(i, j)* PERCEN/2), inclusively. The root is 
being found for the tree or subtree t(i,j). Therefore, 
w(i,j) is the weight of the subtree currently being 
searched. (There is a restriction in that the search 
width must include at least three nodes.)

Before HEUR actually chooses a root from the search 
width around the median, a temporary frequency reduction 
process occurs. This reduction somewhat penalizes nodes 
at a distance from the median and is done in order to 
prevent nodes whose relative frequency of access is 
insignificantly larger than one near the median from 
unnecessarily moving the root away from the median. Since 
the median normally falls near the center of a table 
(regardless of the distribution of frequencies), reduction 
of frequencies is a way of incorporating the idea behind 
the height-balanced class of trees. Also, empirical 
evidence from numerous actual organizations using 
Algorithm K indicates that Algorithm K tends to produce 
binary trees where the depths of the left and right 
subtrees (in respect to the root of the tree) do not 
differ drastically. Walker and Gotlieb's method of 
organization picked the largest p(i) in a search width as 
the root, and had no penalty for elements which were at a 
distance from the median.C183

The reduction process is based on the idea that the 
importance of larger p(m)'s, with k(m) being the specific
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element being compared, is reduced linearly according to 
the distance (in relative frequency) from the median in 
relation to the frequency span of the tree. The slope of 
the reduction, NU, is a parameter of HEUR. The actual 
reduction formula is:

lambda = NU * (absolute value[median-w(0,m)2 ) * 2
w ( i, j)

p(m) = p(m) * (1-lambda)
The frequency reduction factor is graphed as a function of 
the distance from the median in Figure 4.

Once the p(m) values are reduced, the maximum p(m) in 
the search width is chosen as the root of the tree. In 
the case of two p(m) having the same value and both of 
them being the maximum value, the element k(m) which falls 
closer to the midpoint is chosen as the root. The 
original values of p(m) are not destroyed. A temporary 
table consisting of the reduced values of all p(m) within 
the search width is built for the initial tree and is 
rebuilt for each subsequent subtree.

After a root is found, HEUR is repeated for all 
resulting subtrees until a "small subtree is found. A 
subtree which contains less than or equal to a given 
number of elements (KVAL) cues the heuristic to organize 
the subtree using Algorithm K. KVAL is a third parameter 
used in HEUR. Since Algorithm K always builds an optimum 
binary tree and the cost is not restrictive when dealing
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with small trees (n_<100), it seems logical to use this 
method to achieve possible improvement in AST. (The 
actual results of such a decision will be described in 
Section V.)

Therefore, there are three parameters which must be 
assigned values when using HEUR to reorganize a table into 
binary trees:

PERCEN - The percent of the cumulative frequency used 
to find the search width around the median 
of any given subtree.

NU - The slope of a linear reduction of all p(i)
within the search width of any given 
subtree.

KVAL - The maximum size of a subtree to be
reorganized using Algorithm K. A "cut-over" 
point telling HEUR to default to 
Algorithm K.

The Computer Science Department at UMR has a copy of the 
author's implementation of HEUR.

We have to experiment with varying these in order to 
be able to recommend values of the parameters to use 
according to the characterization of a particular 
database. This characterization is determined by the 
level of uniformity of the relative access frequencies.
The tradeoff between organization cost and average search
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time may depend upon how non-uniform the relative access 
times are. The implications of varying these values will 
be discussed in the following section.
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V . EXPERIMENTAL RESULTS

A. TEST VALUES FOR UNSPECIFIED PARAMETERS
During experimentation, one of the three changing 

parameters in HEUR needed to be held constant. This 
choice was made by attempting to pick the parameter which 
matters the least or is the most predictable. Due to the 
well-understood nature of Knuth1s Algorithm K, KVAL was 
chosen as the initial parameter to be held constant. The 
test cases used in Walker and Gotlieb's research showed 
that increasing KVAL past a certain point decreased 
average search time very slowly.[183 When the sum of q(i) 
is less than the sum of p(i), the average search time 
levels out at KVAL = 15. However there is not much 
difference in the test results for KVAL = 5, 10, and 15.
We conducted several tests previous to picking a value for 
KVAL which indicated that a value of ten would be a 
logical initial "best choice" for KVAL. This choice had 
resulted in significant improvement in AST without 
sacrificing much run-time during organization.

Therefore, PERCEN and NU were the two remaining 
parameters to vary. A wide range of values were tested 
for PERCEN. These values spanned from 10 percent to 35 
percent in steps of 5 percent. Previous analyses 
indicated that PERCEN *= .35 was an unnecessarily extreme 
case, but it was included in order to gain a more accurate
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perspective of any patterns established during 
experimentation.

NU is varied from zero to one, NU = 0, 1/4, 1/3, 1/2, 
2/3, 3/4, and 1. Assigning a value of zero to NU is 
equivalent to eliminating the frequency reduction process. 
When NU equals one, the significance of a p(i) being 
greater than p(midpoint) is lessened considerably. If a 
large value of NU performs well, PERCEN could be reduced 
(narrowing the search width), as HEUR seems to be 
looking farther away from the median than required, 
unnecessarily increasing the number of comparisons.

Each of the previously discussed values of PERCEN and 
NU were tested on all three frequency distributions (the 
70-30 rule, the 80-20 rule, and the 90-10 rule) with five 
different sets of sample data generated for each frequency 
distribution rule. (The variation in sample data sets was 
produced by changing the initial seed when generating 
random numbers.) In other words, each different 
combination of PERCEN and NU was tested for fifteen 
different data sets.

Tests were run on sample record set sizes of 100, 
150, and 200 for both HEUR and Algorithm K. Due to the 
space required to test Algorithm K, it was prohibitive to 
run comparison tests for sample sizes greater than 200.
The results from the largest sample size (n*200) are 
presented in this paper. The results from organizing
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smaller trees supported the results of the larger record 
sets. Yet, as the size increased, the consistency of the 
data produced increased. Tests were run on HEUR for a 
sample record set of size 1000 in order to obtain 
information to assist in predicting the rate of increase 
of the number of comparisons as a function of the number 
of nodes in the tree.
B. ANALYSIS OF RESULTS

The analysis of experimental data will be presented 
in two parts. First, considering the quality of the 
search trees produced, the resulting AST values under each 
distribution rule will be discussed. Following that will 
be a look at the number of comparisons required to 
organize using HEUR.

When discussing the average search time achieved 
during experimentation the text will refer to the search 
penalty. This penalty is found by transforming the raw 
data (AST) into a ratio in respect to the values generated 
by Algorithm K. The ratio is then reduced by one and 
multiplied by one thousand to express the search penalty 
in parts per thousand.

search penalty = (HEUR AST/Optimal AST - 1) * 1000

A search penalty of 12 would thus indicate that the 
average tree search takes 1.2% more comparisons than for 
the optimal organization.
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The data produced when organizing a database with a 
frequency distribution according to the 70-30 rule appears 
to put some limits on the range of PERCEN and NU. In 
every case, the average search penalty for each PERCEN is 
lowest when NU is equal to .667. However, NU=.5 and NU 
=.75 differ only slightly in average search penalty. The 
lowest average search penalty occurs when PERCEN=.15, with 
a difference of less than 2 (parts per thousand) in the 
search penalty with PERCEN=.20. In both cases (PERCEN=.15 
and PERCEN=.20), the average AST when using HEUR is no 
more than .5% higher than optimal AST. There is an 
overall improvement in AST when PERCEN is greater than 
.10, and a degradation in AST when PERCEN is increased to 
.25 or greater.

The range of best values for PERCEN and NU when a
database whose distribution of relative frequency of
access fits the 70-30 rule are as follows.

.15 <_ PERCEN <_ .20 

.50 <_ NU _< .75
It appears that searching around the median is 

helpful, but a p(i) must be quite large in order to 
justify choosing the corresponding k(i) as the root. This 
is expected since the relative frequencies of the 70-30 
rule are still not extremely deviant from a uniform 
distribution. (See Table IV.)

The results from testing the frequencies produced
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TABLE IV
COMPARISON OP HEUR TO ALGORITHM K

AVERAGE PENALTY IN PARTS PER THOUSAND
70-30 Rule

Values of NU
0 .25 . 33 .50 .67 . 75 1.0

10% 11 8.8 | 8.8 8.8 8.8 8.4 9.4 11.4
Percent 15% 11 6.6 6.0 6.0 4.4 3.6 4.0 6.0SearchWidth 20% i1 9.4 8.6 7.6 5.4 5.0 5.8 6.8

25% 11 10.4 10.0 9.0 7.0 6.8 7.4 8.8
30% 11 15.0 | 11.8 11.0 8.4 8.0 8.4 9.6
35% 11 23.4 17.6 14.0 10.0 9.4 10.2 11.2

Difference = (HEUR AST/Optimal AST - 1) * 1000
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according to the 80-20 rule yield more specific 
limitations on both PERCEN and NU. Once again, there is 
definite improvement achieved by searching around the 
median with consistently better results when PERCEN=.20. 
There is a difference in the average search penalty of 
less than 2 (parts per thousand) when PERCEN is changed to 
15% or 25%. There is a marked degradation of the search 
penalty when PERCEN is increased to 30%. The smallest 
search penalties result from NU=.667 or .75 in most cases. 
If the smallest search penalty does result from a 
different value of NU, the improvement over NU=.667 or .75 
is no more than .6 (parts per thousand).

The range of best values for PERCEN and NU when a
database whose distribution of relative frequency of
access fit the 80-20 rule are as follows.

.15 <_ PERCEN <_ .25 

.67 _< NU <_ .75
Due to the wider span of values in the 80-20 rule (as 

opposed to the 70-30 rule), HEUR seems to be justified in 
looking farther away from the median in order to find a 
relatively large value of p(i). Still, off-median values 
of p(i) must "prove their worthiness" by being able to 
withstand large values for NU before the corresponding 
k(i) will be chosen as a root. (See Table V.)

The last data set (90-10 rule) proved to be the most 
interesting. The outstanding characteristic of these 
results is the extreme degradation of the average search
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Values of NU

TABLE V
COMPARISON OF HEUR TO ALGORITHM K

AVERAGE PENALTY IN PARTS PER THOUSAND
80-20 Rule

0 .25 .33 .50 .67 .75 1.0

10% 11 9.8j 9.8 9.8 9.6 10.0 10.8 14.0
Percent 15% 1 6.6 6.2 6.4 7.2 6.8 6.8 10.0Search
Width 20% 11 7.6 | 6.8 5.4 5.4 4.4 4.6 6.6

25% 11 8.6i 8.6 7.2 7.0 5.8 6.2 10.6
30% 11 15.6 1 16.0 16.0 13.0 9.6 9.0 11.6
35% 11 21.0 21.6 19.4 16.6 12.2 13.2 15.6

Difference = (HEUR AST/Optimal AST - 1) * 1000
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penalty for NU=1 when compared to the average search 
penalty when NU assumed any other value. This was 
apparent for all values of PERCEN. Another feature of the 
90-10 rule test results is that both the 10% and 35% 
search widths produced much poorer results than any other 
values of PERCEN. The best results are found when 
PERCEN=.15 or .20. NU may vary from .25 to .75 and still 
produce comparable results.

It seems that when the probability density function 
of p(i) fits the 90-10 rule, HEUR does not have to look as 
far for a k(i) with a suitably high p(i) in searching for 
an appropriate root. It is helpful to have NU>0 in order 
to weed out those p(i)'s which are insignificantly larger 
than the median. However, due to the wide variance of 
p(i)‘s, a value of NU=.25 is not any worse (or better) on 
the average than a value of NU=.75. The appropriate p(i) 
can survive larger values of NU. (See Table VI.)

The average number of comparisons required to run 
HEUR on a sorted database was relatively consistent among 
all fifteen test cases for each test value of n. In each 
case, the number of comparisons required was approximated 
by (alpha*nlog2n). The value of alpha decreased as the 
value of n increased. When n=100, alpha was equal to 
1.44. When n=200, alpha was equal to 1.29, and a value of 
1.11 for alpha resulted when n=1000. (See Table VII.) 
Obviously the decrease in alpha will level out at some
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TABLE VI
COMPARISON OF HEUR TO ALGORITHM K

AVERAGE PENALTY IN PARTS PER THOUSAND
90-10 Rule

Values of NU
0 .25 .33 .50 .67 .75 1.0

10% 11 12.6 12.2 12.4 12.2 12.2 12.4 51.0
15% 1 7.8 2.6 2.4 2.6 2.4 3.0 39.8

PercentSearch 20% 11 4.8 5.4 5.2 5.2 6.6 6.8 34.2
Width 25% 1i 6.6 1 8.4 8.4 6.0 7.8 8.2 34.0

30% l1 9.4 8.8 8.6 6.4 8.2 9.2 35.6
35% 11 13.2 19.2 19.0 20.2 17.4 18.6 46.2

Difference = (HEUR AST/Optimal AST - 1) * 1000
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NUMBER OF COMPARISONS REQUIRED 
FOR ORGANIZATION WITH HEUR

TABLE VII

AVERAGE NUMBER OFN COMPARISONS ALPHA RESULT

100 958.3 1.44 956.72
200 1979.1 1.29 1972.11

1000 11075.1 1.11 11062.02

RESULT = ALPHA * N Log2N
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point. This does not detract from the low number of 
comparisons, especially when compared to Algorithm K which 
requires 0(n2) comparisons. (See Table VIII.)

Variation of KVAL, the cut-over point to Algorithm K, 
has not been mentioned up to this point. Preliminary 
testing of HEUR showed that reducing KVAL from ten to two 
degraded the AST by no less than 300% and up to 600%.
This reduction of KVAL was equivalent to eliminating 
Algorithm K from HEUR. Using Algorithm K apparently 
improves AST considerably without increasing run-time 
significantly. Some testing was done with KVAL=7. The 
results of this testing were promising. Although it would 
be difficult to improve on the results presented 
previously in this paper, it appears that KVAL=7 may 
produce comparable results (but not quite as "nearly 
optimal") with a slight decrease in number of comparisons. 
Increasing KVAL to a value much greater than ten would 
obviously begin to degrade run-time, due to the 
characteristics of Algorithm K. Further experimentation 
in this area might prove interesting.
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TABLE VIII

AVERAGE COMPARISONS REQUIRED FOR HEUR AND ALGORITHM K

HEUR ALGORITHM K
RULE N=100 N=200 N=100 N=200

70-30 867.1 1790.4 11 9914.0 | 39400.6
80-20 964.8 1989.0 11 10033.6 | 38632.6
90-10 1043.0 2157.9 i1 10365.6 38802.2

AVG 958.3 1979.1 i1 10104.4 38945.1
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VI. CONCLUSIONS

A. RECOMMENDATIONS
Testing for a root around the median of the relative 

frequencies of a table of ordered elements whose 
frequencies are not uniform can always result in a better 
average search time than just picking the median as the 
root. However, one must be careful in choosing how far 
away from the median to "look." Merging the results from 
experimentation on tables whose p(i)'s probability density 
function fits the 70-30 rule, the 80-20 rule, or the 90-10 
rule, it is best to choose a percent of the cumulative 
frequency of a subtree (or a tree) which is between 15% 
and 20%. If a user knows a given database well enough to 
estimate exactly which category it falls under (the 70-30 
rule, the 80-20 rule, or the 90-10 rule), more specific 
information is provided in Section V.

For each of the distributions, an average degradation 
of average search time of no more than 1% over optimal can 
be expected. In each of the five test cases for each 
rule, actual data using PERCEN=.15 or PERCEN=.20 never 
resulted in an AST which was more than 1.5% worse than 
optimal. The run time is considerably better than that of 
Algorithm K. The cost of HEUR increases in proportion to 
n log2 n while the cost of Algorithm K increases 
proportional to n2. As was mentioned earlier, as the
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frequency distribution approaches uniformity, a height- 
balanced tree will produce acceptable results, 
b. RELATED CONCERNS

There are several related areas which have not been 
covered or have not been covered in depth in this 
research. One is how to update a dynamic database as 
insertions and deletions occur. There are many different 
possibilities. Applying the ideas of height balancing, 
weight balancing, or a combination of these two are just a 
few possible approaches.

Another related concern is the problem of when to 
reorganize a dynamic database. Schneiderman states that, 
"Reorganization can be performed at fixed time intervals 
or when the average search cost has deteriorated to a 
certain level." Ll9» p- 3623 He then proceeds to discuss 
different strategies for selecting optimum reorganization 
points according to the individual database's 
characteristics. Further investigation of that paper and 
its implications in the light of results reported here 
could prove profitable.

A third pertinent area of research which goes hand- 
in-hand with this discussion on how to organize is the 
problem of gathering and storing current information on 
the actual relative frequencies of access of each element 
in a table. How to accumulate this information and where 
to store it are the two most obvious problems. The
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difficulty of record popularities changing over time is 
also a problem. Should there not be some sort of time 
penalty for accesses which were made a "long time ago?" 
Perhaps the access counts should just be restarted after a 
given period of time or after each reorganization. If so, 
should all elements be restarted at the same initial 
value, or is there some method wherein certain elements 
could be assigned higher initial values? There are 
obviously many approaches to the problem of gathering and 
storing access information. Getting good estimates of 
p(i)'s is vital to the productive use of methods like 
HEUR. The cost of obtaining this information must be 
realistically assessed.

Another necessary inquiry concerns the effect on 
AST from errors in the p(i)'s used to organize the search 
tree. The results from this inquiry are important in 
determining what cost of getting good estimates of p(i)'s 
is justifiable. If a large margin of error is acceptable, 
an expert's approximation may be accurate enough for a 
particular database.

These are just a few areas in which further 
investigation is suggested when studying the problem of 
organization. As in any sector of Computer Science, the 
possibilities tor more extensive research seem endless.
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Yet this effort has made a start in this exploration. It 
has shown that there are efficient methods by which 
nearly-optimum search trees may be organized.
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