
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Opportunities for Undergraduate Research
Experience Program (OURE) Student Research & Creative Works

16 Apr 1992

Computer Software Control of a Three-Joint Model Robot Computer Software Control of a Three-Joint Model Robot

John W. Fierke

Follow this and additional works at: https://scholarsmine.mst.edu/oure

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Fierke, John W., "Computer Software Control of a Three-Joint Model Robot" (1992). Opportunities for
Undergraduate Research Experience Program (OURE). 56.
https://scholarsmine.mst.edu/oure/56

This Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in
Opportunities for Undergraduate Research Experience Program (OURE) by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/oure
https://scholarsmine.mst.edu/oure
https://scholarsmine.mst.edu/student_work
https://scholarsmine.mst.edu/oure?utm_source=scholarsmine.mst.edu%2Foure%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Foure%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/oure/56?utm_source=scholarsmine.mst.edu%2Foure%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

COMPUTER SOFTWARE CONTROL OF A THREE-JOINT MODEL ROBOT
John W. Fierke

Department of Electrical Engineering
ABSTRACT

The general scope of the computer program to control a
three-joint model robot is presented. Several existing and
potential sources of difficulty are also mentioned. For all
specific explanations the reader is referred to the thesis papers
of Richard Wainwright [1] and Eric Stelzer [2]. This
presentation merely adheres to the description of the software to
control the robot using the existing information contained in
these two papers

INTRODUCTION
The purpose of this project was to make the Electrical

Engineering Departments Fishertechnik model robot functional
through the use of an IBM PC. It was desired to have it operate
as it was originally designed to operate on an Apple
microcomputer, as described by Richard Wainwright [1] and Eric
Stelzer [2].

The software control of the robot is the primary concern of
this paper. However, the software greatly hinges upon the design
of the existing auxiliary interface card, which has seemed to
pose the majority of the difficulty of this project. This card
was not accompanied by any documentation of any sort, no
schematic, no description. The greatest concern of the author
was to discover how the edge connectors of the card interfaced
with the connectors on the card slots of the IBM, and also to
learn the actual addresses of the slot connectors so as to be
able to communicate with the card (This has been postponed as the
author has been on co-op, away from all the materials).

The card*s primary component is an ADC0808CCN Analog-to-
Digital converter made by National Semiconductor Corporation [3].
Its function is to convert the voltages across the potentiometers
on the joints of the robot into numerical values corresponding to
positions of the arms.

Along with these pieces of information and the descriptions
by Wainwright[1] and Stelzer[2], it was decided to move on and
devise a "skeleton" program to handle the desired operations of
the robot without actually knowing the true addresses of the
interface card. It essentially ''steps through" all the processes
for the sake of having a base to build upon once the addressing
problem is conquered. Some small, specific subroutines have been
created to manipulate non-critical, unused memory locations,

117

treating them as the actual output and input addresses. These
subroutines simulate the robot's motion and provide all the
necessary values that would be experienced, were there an actual
robot attached, so that the various calculations can be
performed and verified. This simulation is still under
development and is useful only for the present until time can be
devoted to the robot itself at the lab in Rolla. Only then can
the pertinent modifications be made and the true results
observed.

Turbo Pascal was chosen as the programming language for its
structure and high level language characteristics in order that
the program could be more easily altered or updated in the
future.

Although the primary function of the model robot is to act
in a "machine vision" capacity; identify an object on a conveyor
belt, calculate the point of intersection, move to pick it up,
and deposit it in a corresponding bin; it should also be capable
of performing several specific operations and the user should
have control of most of its parameters such as speed, direction,
and position and be able to either provide a finite set of points
through which to move the robot or have the computer execute a
calculated set of moves to reach a desired position.

Following is a general description of the design and
operation of the Robotics Command System (RCS) and some of its
existing and potential disadvantages.

THE ROBOTICS COMMAND SYSTEM
ROBOT STATUS WINDOW

In keeping with Stelzer's design, most of the features he
mentions as being part of his Robotics Operating System (i.e.
MOVE, LEARN, CALIBRATE, Path Segments, Path Buffers, and Speed
Control) have been implemented with various modifications. This
program is not be command-line based but resembles the display
in Figure 1.

This is the operating environment for the user and allows
for complete visualization of all of the robot's present
parameters and the demands put upon it. The top portion, the
Robot Status Window (RSW), remains fixed at the top of the
screen and is constantly updated to relate the robot's present
values. Following are the parameters displayed in the RSW :
Mode

Mode depicts that the hardware controller switch is either
in the Computer (C) position, which transfers control to the
computer, or in the Manual (M) position, allowing manipulation of
the robot with the controls on the hardware controller. The
particular mode that it is in is checked upon every attempt to
output or input information so as to determine if the computer
can proceed with its operation or not. The corresponding letter
in the display will be highlighted.

118

ROBOTICS COMMAND SYSTEM (RCS)

**
* *

* MODE : C/M POSITION Cart
* Joint
* SPEED (%) __
* * **

(*)___ (y)___ (2)(1)__ (2)___ (3)
(1)__ (2)___ (3)'

MAGNET : ON/OFF *
*

nz Command Coordinates System Speed Options Elbow
i MOVE 0,0,0 J 100 RU2 12,5,-10 C 50 H4003 LPICK o

%
Oo J

4 15,4,15 c LD5 o
*
Oo J 756 E

7 CALIB8 A

Figure 1. The Robot Command System Window

Position
This portion of the RSW displays the position of the

manipulator as it moves in both Cartesian and joint coordinates.
The Cartesian coordinates; x, y, z; are expressed in centimeters
and the joint coordinates; Jl, J2, J3; in degrees. The joint
coordinates are obtained directly from reading the position of
the three pots and converting the resulting values (each can
range from 0 to 255) into degrees by applying a conversion factor
of 340 degrees/255. (340 degrees due to the physical limitations
of the joints as explained by Stelzer[2]. This RSW feature has
the definite potential of slowing down the program and thus the
smooth operation of the robot, because upon each sampling of the
robot*s position, the computer must convert the positions into
degrees, convert the degrees into Cartesian values, and print all
six values on the screen.
Speed

It is intended to also display the actual speed of each
joint as small compensations are made to correct the position of
each joint due to the effects of friction and gravity.
Constantly updated values such as speed and position may have to
be changed to be updated only once for a certain number of inputs
to speed up operation. The speed will initially be determined by
the user, but in given time intervals throughout the movement of
the manipulator the computer will compare the robot*s present
position (obtained by reading each joint*s potentiometer voltage)
to its expected position (calculated using the equation p^ =
vk*t + Cfc, in the manner described by Stelzer[2]; p is the

119

expected position of joint k, is the newly calculated velocity
of joint k, t is the time elapsed, and c^ is the starting
position of joint k.) and make appropriate speed adjustments to
each motor. In this manner the robot will best reach its
destination smoothly and as quickly as possible.
Magnet

This information is merely a means of identifying at a
certain moment if the manipulator's electromagnet is activated or
not, as is instructed by the user.

THE ROBOTICS COMMAND SYSTEM
ROBOT COMMAND WINDOW

In this portion of the screen the user is allowed to command
the robot to complete a certain action while also providing
various options. Each request is contained on one line of the
RCS table as shown in Figure 1. For example, for command #1, the
user would enter 'MOVE', tab to the next column, enter a set of
coordinates '0, 0, O', tab, signify which coordinate system was
to be used 'J' for Joint coordinates, tab, provide the desired
percent of full speed '100', tab, any other available options,
tab, the elbow configuration 'RU'-Right elbow Up, then press
Enter to execute the command or tab to the next line, in order to
make a list of commands to execute later.

At this point the most important aspects of the RCW are
Command, Coordinates, System, and Speed. Options, Elbow, and
Time will be developed at a later time.
Command

Currently, the user can enter one of four instructions in
the Command column-Move, L(earn), or Calib(rate) and A(uto).
Move

The Move command is used to initiate a move of the
manipulator from its current position to a designated point
specified in either Cartesian or Joint coordinates. If desired,
the Move command may be omitted, as is shown on lines 2, 4, and 5
in Figure 1, and CS will take for granted that a move is desired
since this will be the most commonly used command.
Learn

The Learn command is used in such a manner as to create a
file on disk in which to store a series of commands to execute at
any later time. The user merely follows the L with the desired
filename in which to store the upcoming commands. Some or all
the moves may be designated by switching the pulse-width
modulator to the manual mode and positioning it using the
controls on the box. By merely pressing enter, the present
coordinates of the manipulator will be stored and printed on the
appropriate line. The user may end the Learning session by
entering an 'E' for Exit in the command column, upon which the
file is stored on disk. Then to initiate those stored moves, the
user must enter the name of the file in the command column.

120

Calibrate
This command is used for designating the "zero" position of

the robot. When the command is entered the user must manually
position the robot in the desired "zero" position and press enter
to identify the robot’s position to the computer. This position
will replace the previous calibrated position and will be
referenced upon each startup until it is re-calibrated.
Auto

When the user enters an ’A' in the command column this sends
the robot into fully automatic operation, or ’’Machine Vision"
mode as mentioned previously, in that the robot is only actuated
upon the breaking of the light beam to the first photo cell on
the conveyor belt. In this case, the inputs from the photo cells
are considered and the path to the pickup point and the drop bins
are stored in a special predetermined file.
Coordinates and System

The user may specify his coordinates for a move in either
Cartesian or Joint coordinates by merely placing either a C or a
J in the Coords column. The program deals directly with
coordinates in degrees, so no conversion is necessary for Joint
coordinates. If Cartesian coordinates are specified, these x-y-z
values are converted to Joint coordinates through the use of the
solutions of the Kinematic equations as described by Stelzer [2].
Speed

This option allows the user to set the overall operation
speed of all three motors. For example, if the speed of motor 1
is 100% of full speed, motor 2 is 30%, and motor 3 is 80%, a
speed value of 100 would maintain these speeds, but, for
instance, a value of 50 would slow each motor to half its set
speeds (i.e., motor 1-50%, motor 2-15%, motor 3-40%). When
omitted, the default value used will be 50%.

The author regrets how unspecific this report may appear,
but the majority of the material has already been stated by
either Wainwright [1] or Stelzer [2]. The extent of this
author's work was in designing and programming the software to
accomplish the tasks mentioned. It was believed that discussing
the program code would not prove to be useful in a report of this
nature. Hopefully, the program will soon speak for itself.

ACKNOWLEDGMENTS
I wish to express my thanks to Dr. Randy Moss for

the time and effort he offered. I would also like to
thank Mr. Bob Dopher and Mr. Jim Ross for their
extensive technical advice.

121

REFERENCES
1. Stelzer, E. H., "A Control Program and Operating
System for a Three Joint Robot Arm on an Apple
Microcomputer,” M.S. Thesis, University of Missouri-
Rolla, 1982.
2. Wainwright, R.E., "Microprocessor Control of a
Model Robot System using Programmable Pulse Width
Modulation,” M.S. Thesis, University of Missouri-Rolla,
1982.
3. National Semiconductor Corporation, Semiconductor
Databook, The ADC0808CCN Analog-to-Digital Converter,
p. 48-58, 1989.

122

	Computer Software Control of a Three-Joint Model Robot
	Recommended Citation

	tmp.1642618443.pdf.0v39a

