
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jul 1984

A Focus Of Attention Algorithm For Expert Systems A Focus Of Attention Algorithm For Expert Systems

Kevin W. Whiting

Arlan R. DeKock
Missouri University of Science and Technology

John Bruce Prater
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Whiting, Kevin W.; DeKock, Arlan R.; and Prater, John Bruce, "A Focus Of Attention Algorithm For Expert
Systems" (1984). Computer Science Technical Reports. 55.
https://scholarsmine.mst.edu/comsci_techreports/55

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/55?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A FOCUS OF ATTENTION ALGORITHM
FOR EXPERT SYSTEMS

K e v i n W. Whiting*, Arlan R. DeKock
and John B. Prater

CSc-84-12

Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401 (314)-341-4491

* This report is substantially the M.S. thesis
of the first author, completed July, 1984.

A Focus of Attention Algorithm for Expert Systems

Abstract: This research is primarily concerned with
increasing the performance of expert systems. A refined
focus of attention strategy and its affect on performance
are discussed. Early expert systems used a brute force
approach to process the knowledge base. Each production
rule in the knowledge base was evaluated each cycle. More
recently, processing efficiency has been increased by
focusing the attention of the inference engine on a subset
of the rules by "filtering" for further testing, only rules
that could possibly fire given the current content of the
context base. Focus of attention as developed in this
research increases performance over filtering systems by
further narrowing the focus of attention of the inference
engine, down to the subexpression level. Positive results
are reported.

ACKNOWLEDGEMENT

The author is indebted to his advisor Dr. Arlan DeKock
and committee members Dr. John Prater and Dr. Ray Kluczny
for their invaluable guidance and encouragement.
Additionally, he would like to express gratitude to Dr. Karl
Kempf for technical consultation and Alan Sparks for his
often used programming insights. Appreciation is also
expressed to Joy Henderson and all others who lent support
to this effort.

V

TABLE OF CONTENTS

PAGE
PUBLICATION THESIS OPTION..................................... ii
ABSTRACT.. iii
ACKNOWLEDGEMENTS.. iv
TABLE OF CONTENTS.. V

LIST OF ILLUSTRATIONS... vi
LIST OF TABLES.. vii

I. INTRODUCTION... 1
II. HISTORICAL REVIEW...................................... 15

III. THEORETICAL VIEW....................................... 19
IV. DESIGN AND IMPLEMENTATION.............................23

A. OVERVIEW... 23
B. BRUTE FORCE INFERENCE ENGINE..................... 28
C. RULEFOCUS INFERENCE ENGINE...................... 28
D. SUBEXFOCUS INFERENCE ENGINE..................... 29

V. METHODS AND PROCEDURES................................ 35
VI. RESULTS.. 38

VII. CONCLUSIONS... 41
VII. FURTHER RESEARCH....................................... 45

BIBLIOGRAPY.. 48
VITA 49

VI

LIST OF ILLUSTRATIONS

Figures Page
1. A Perspective on the Thrust of this Research..........10
2. Rule 1 in Data Structure Form........................... 25
3. Rule 1 Converted to Subexfocus Form.................... 31

vii

LIST OF TABLES

Tables

I . A COMPARISON OF THREE INFERENCE ENGINES BY
GOAL BASED ON NUMBER OF NODES VISITED..............

II. A RATIO COMPARISON OF SUBEXFOCUS TO BRUTE FORCE
AND RULEFOCUS BASED ON THE NUMBER OF NODES VISITED

Page

. . 39

. .40

1

I .INTRODUCTION
Artificial Intelligence is a term that stands as an

umbrella to a varied collection of problem solving
techniques. As a sub-area of Computer Science, A.I. is not
defined as much by a specific application area as it is by
the class of problems it attacks. The class of problems
that require the specific computer science techniques
developed by Artificial Intelligence researchers may be
defined as those problems where: 1) there is no "turn the
crank" solutions, 2) the problem is combinatorially
complex, and 3) there is no optimum answer. By way of
definition, Artificial Intelligence is the branch of
computer science "...concerned with creating and studying
computer programs that exhibit behavioral characteristics we
identify as intelligent in human behavior..." [Barr 1982j.

As a quick overview, a partial and overlapping list of
examples is presented of problems that require Artificial
Intelligence technology and the applications that have
resulted from this technology: language processing and
translation, machine perception, which includes computer
vision or image processing, and speech understanding,
automatic programming, problem solving or planning, learning
programs, game playing programs, and expert systems. The
last area mentioned, expert systems, is the area of interest
in this research.

Expert systems have been defined as: "... a computer
program that provides expert-level solutions to important

2

problems ..." [Buchanan 1983a] Rule-based expert systems
evolved from a more general class of computational models
known as production systems. For an in depth description of
"pure" production systems the reader is referred to the
classical Davis paper on production systems [Davis 1975a].
The precise classification of the expert system model
referred to throughout this research is a rule-based pattern
directed inference system. However, it is presumed the
ideas developed here are applicable generally. In fact it
is difficult to exclude designs or methods on formal grounds
since there is really no one formal design for current
production systems and "recent implementations have
explored variations on virturally every aspect, their use
becomes more an issue of programming style than anything
else" [Davis 1975b].

Expert systems essentially emulate an expert as that
expert would apply his knowledge to a specific knowledge
domain. This includes the knowledge the expert might have
ascertained from books or formal training and more
importantly the heuristics or "rules of thumb" the expert
may have informally developed from years of experience. A
wide variety of domain areas have been successfully
addressed by expert systems. DENDRAL, one of the first
expert systems analyzed chemical compounds. MYCIN is a
medical application of an expert system which assists
physicians in diagnosing bacterial infections in the
bloodstream. PROSPECTER is a geological expert system that

3

has successfully predicted new mineral deposit locations.
CAT assists with the diagnosing of diesel engines. This is
but a partial list, meant to give a feeling for the diverse
domains that have been attacked. Although there have been
many well received expert systems developed that are in
everyday use, there are some limitations and problems
encountered in building and maintaining expert systems. A
few problems will be discussed to put the focus of this
research in context.

Extracting the knowledge from the expert has to date
proven a time-consuming and error prone task. Several
studies have focused on the problem but as yet knowledge
engineering , as the process is called, still remains a
major bottleneck in developing expert systems. There are
relatively few good knowledge engineers, certainly not
enough to fill the need being felt today to extract
knowledge from the experts and build systems to emulate
their thought processess.

Although computer power, i.e. processing speed, has
experienced exponential growth in the last decade, the
processing power required by expert systems demands even
more powerful computers than those available to date, if
they are to attack problems which require a wider breadth of
knowledge than what most expert systems apply themselves to
today. For instance, MYCIN performs at the expert level in
diagnosing bacterial infections in the blood stream but a
physician has to have first applied his expertise and

4

narrowed the problem down to the small domain in which MYCIN
is competent before MYCIN is of any use at all. Thus,
expert systems perform well within their narrow area of
expertise but it is not clear that present Artifical
Intelligence techniques and accompanying computing power
will be able to successfully address larger problem domains
and maintain the depth required to be truely functional.
Given the techniques and technology in use today it seems
doubtful that a "general problem solver" can be built.

An observation by Buchanan may serve to justify the
experimental approach used here and put the limitations
addressed in this research into a much larger context.

" AI is still very much in the so-called
'natural history1 stages of scientific activity in
which specimens are collected, examined,
described, and shelved. At some later time a
theory will be suggested that unifies many of the
phenomena noticed previously and will provide a
framework for asking questions. We do not now
have a useful theory.
Expert systems will provide many more data points
for us over the coming years. But it is up to
everyone in AI to do controlled experiments,
analyze them, and attempt to develop a scientific
framework in which we can generalize from
examples. At the moment we ourselves lack the
vocabulary for successful codification of our own
data" [Buchanan 1981c].

A look at the architecture and operation of expert
systems will be given before the specific limitations
addressed by this research are discussed.

The four steps in the cycle of a pattern directed
inference system (PDIS) will be stated formally, however

5

in this research the focus is almost entirely on the second
step, thus a general description of expert systems with step
one held as a constant will then be given.
Step 1:
Select a fact to begin inference with or ask the user about.
Step 2:
Find all rules that are satisfied. (Form the conflict set.)
Step 3:
Select one rule from those in Step 2. (Conflict resolution)
Step 4:
Execute this rule.(Fire it.)

The internal components of most expert systems can be
broken down into three functional modules: 1) the knowledge
base, 2) the inference engine, and 3) the context base to
use terminology prevalent at Stanford [Davis 1975aD. Other
terminology found in the literature describing the same
modules refers to the context base as the working
memory,scratch memory, or cache, the knowledge base as the
production memory, and the inference engine as the control
program.

The knowledge base (K.B.) contains production rules
which in effect are small "chunks" of knowledge, usually
found in the form of If-Then rules. For example:
Rule #1: IF (throat = red & temperature = 101.1)

Then symptom = flu
Rule #2: IF (throat =red & symptom = flu)

THEN sickness = pnuemonia
The K.B. may contain anywhere from 25 to 10,000 rules, the
point being there is not an average or pre-set number of

6

rules. These rules capture and store the expert’s knowledge
in a form that allows the inference engine to manipulate or
perform inferences on the knowledge.

As just mentioned the inference engine (I.E.)
manipulates the rules found in the knowledge base in order
to infer information from the information already known.
For example, if it is known (in a medical diagnosing
scenario) that the patient has a red throat and a high
temperature, the I.E. would infer that the patient may have
the flu (from Rule# 1 above). Given that the I.E. "knows"
that the patient has the flu, a red throat, and a high
temperature, another rule in the knowledge base may call for
these conditions to be known to be true before the I.E.
could infer the possibility of pneumonia from Rule #2. The
I.E. then takes information known to be true and checks the
rules in the K.B. to see if it can make a chain of
inferences leading to a problem solution. In the above
example this could be a diagnosis of the patients sickness
as pneumonia.

The third component of an expert system is the context
base. It was mentioned above that if a certain piece (or
pieces) of information were known, the I.E. could then
possibly infer other facts from the facts currently known.
The way these facts are "known" by the expert system is by
looking at the current contents of the context base. All
facts that are "known" were put into the context base as
they became known. There are two generally accepted ways in

which facts are put into the context base. First, as
already mentioned, when the "IF" part of a rule is

7

determined to be true by the I.E., that rule is said to be
"satisfied" and the "THEN" part of the rule (another fact)
is inserted into the context base. The astute reader might
wonder how the very first facts are put into the context
base to get the process started and secondly, what happens
if there are no more rules that can be satisfied - given the
current facts in working memory. These functions are
performed by another module or component of the expert
system referred to here as the user interface.

The user interface component of the expert system
varies more widely from system to system than do the other
three major components discussed and serves mainly as an
input mechanism to the system, thus it has not been included
as a major component in this discussion. As mentioned, the
user interface serves to query the system user at the
beginning of the consultation session, thus gaining an
initial set of facts to be inserted into the context base.
Secondly, when no new rules can be found to be supported by
the current facts in the context base, the user interface
may again be invoked to ask the user for more information.
The idea being that more facts, previously not found in the
context base, will be added to the context base, satisfying
a rule that in turn will put another new fact into context
base and the cycle will continue until a problem solution is
found or the program is terminated.

8

To summarize then, the user interface acts to
initialize the first set of facts into the context base.
The inference engine then searches the knowledge base to
find rules that are satisfied. A rule is said to be
satisfied when every condition stipulated in the rule's "IF"
part are found to be true in the context base. The "THEN"
part of the satisfied rule is then entered into the context
base. This cycle is then repeated until a problem solution
is found.

The inference engine actually has three parts, of which
only two parts have been discussed, the search and act
cycles. The third part is called conflict resolution.
Conflict resolution addresses the situation where more than
one rule is found to be satisfied on a given cycle. When a
rule is found to be satisfied, in most systems it is not
immediately "fired", i.e. its fact(s) found in the "THEN"
part is not immediately put in the context base, rather it
is said to be put into the conflict set. The conflict set
then is the set of all rules found to be satisfied - but not
yet selected to be fired. Conflict resolution then selects
one of the rules from the conflict set based on some
criteria and fires that rule. The criteria used for
selection of the rule to be fired varies from system to
system. As an example, one scheme used picks the rule with
the most facts in the "IF" part to be fired. There are
other schemes but conflict resolution is not the focus of
this research and thus will not be discussed further.

9

The thrust of this research, is to minimize the number
of rules tested or searched in the knowledge base of an
expert system by the inference engine. First, however a
graph may serve useful to clarify discussion thus far and
put the focus of this research in perspective. (See Figure
1 .)

Expert systems hold a large promise for the future but
several problems must be dealt with if they are to realize
this promise. Buchanan states "The state of the art in
expert systems technology is advancing, but to be quite
realistic we need to look at existing limitations as well as
potential power" [Buchanan 1981a] . He goes on to identify
"Focus of Attention on Relevant Facts and Relations" as one
of the limitations and further, cites Pople to support this
observation. "As the breadth of knowledge increases,
problem solvers need context-sensitive mechanisms for
focusing attention on parts of the problem and parts of the
knowledge base that appear most fruitful" [Pople 1977]. In
conclusion he says “many methods have been tried but we have
little understanding of their relative merits" [Buchanan
1981b].

Others share this concern for the need to have more
sophisticated focus of attention techniques. William Mark
states that "As rule-based systems grow to encompass a large
number of rules, and as they are forced to work on complex
knowledge structures to keep pace with modern knowledge base

10

Artificial Intelligence

Language Planning Machine Expert Learning Game
Processing Perception Systems Progs. Progs

Context
Base

Search/Test

Inference
Engine

Knowledge
Base

Conflict Resolution Act

Figure 1. A Perspective on the Thrust of this Research

11

organizations, two problems arise..." [Mark 1980]. The
first problem is particularly relevant to this research:
"The inference mechanism becomes inefficient: it is hard to
find the right rule to apply if there are many
possibilities" [Mark 19803. Several researchers have made
significant contributions toward resolving the limitations
described above. These contributions will be discussed in
the next section.

Focus of attention can be broken down into at least two
subproblems, the problem of organizing the context base and
the problem of organizing the knowledge base. Of course
these two factors interact with each other. In addressing
these factors McDermott identifies the cost of determining
which rules are satisfied on a given cycle as "essentially
linear in the product of the number of productions in
production memory and the number of assertions in working
memory" [McDermott 1978a3-

Here, rules are referred to as "productions", the
knowledge base as the "production memory", and the context
base as "working memory". Thus, as the number of elements
in the context base increase and the number of rules in the
knowledge base increase the cost of determining which rules
are satisfied increases in an undesirable manner. Put in the
light of the four steps in a cycle of a PDIS, selecting
which fact or element to act upon next (Step 1), and
determing which rules to test (Step 2) becomes unmanageable
if the system grows too large if one uses a brute force

12

approach. A focus of attention is mandatory if processing
is to be done in an acceptable amount of time, and if the
dependency on the size of the knowledge base and the size of
the context base is to be minimized.

McDermott claims that if a system has a mechanism
"that enables knowledge of the degree to which each
production is currently satisfied to be maintained across
cycles, then the dependency on the size of working memory
(context base) can be eliminated ..." [McDermott 1978a].
Additionally, he claims that if a system has a mechanism
that "enables knowledge of similarities among productions to
be precomputed and then exploited during a run, it is
possible to eliminate the dependency on the size of
production memory" [McDermott 1978a]. He indeed verifies
this claim by implementing and testing the mechanisms
mentioned with encouraging results.

One mechanism he used to focus on the "important" rules
may be described in an oversimplified manner as being an
index that contains the rule number where each element
occurred. Only the rules that contain the last element
inserted into the context base need to be tested,as they are
the only ones that may possibly fire at this point. This
information was used in conjunction with a mechanism that
kept track of the degree to which each rule was satisfied
across cycles. Thus, the rules that needed to be tested
were further narrowed down to only those rules that
contained the last element to enter the context base and

13

were determined to be nearly satisfied.
In an effort to be complete, Aikins has also addressed

the focus of attention problem in another way. By design,
her system, CENTAUR, focused its processing by recognizing
patterns of data. "The overall control structure is
sensitive to the initial data, and to the prototype that is
being explored, which results in a more focused
consultation" [Aikins 1983]. This enabled the system to
divide the problem into subproblems and focus only on the
rules and facts relevant within this subproblem. This type
of focus of attention holds much promise and is alluded to
throughout this paper. However, it is treated more as a
topic for future research then a central theme in the
research.

The focus of attention techniques just described
eliminates much redundant testing of rules. However, the
rules must still be tested. Specifically, the group of
rules that are determined to be "important" i.e., nearly
ready to fire, must be tested. This research focused on
developing an architecture/algorithm that would enable the
complete elimination of testing by carefully keeping track
of the exact degree to which each rule is satisfied. By
focusing on the subexpressions of each rule a more refined
focus of attention was achieved that increased the
efficiency of processing the knowledge base.

As a more general view, the goal of this research has
been to increase the efficiency of processing the knowledge

14

base of an expert system. This required a novel way of
organizing the knowledge base, which in turn required a
refinement of present focus of attention techniques. Thus,
the specific thrust of this research has been developing the
refined focus of attention techniques previoulsly mentioned.

15

II. HISTORICAL REVIEW

Many systems have focus of attention incorporated into
them. However, these have seldom (if at all) been proven to
be truely domain independent. An example of focus of
attention within a particular expert system will be
discussed as an example of this, followed by a discussion of
two efforts aimed at achieving different types of focus of
attention.

The expert system MYCIN has at least two functions
which interact in a manner that gives a definite focus of
attention to the system. In describing future developments
Shortliffe outlines [Shortliffe 1976] the possibility of
"pre-screening of rules". He notes the function FINDOUT
could use the LOOKAHEAD list to identify all rules
referencing the parameters in their PREMISE conditions. If
the condition turns out to be false FINDOUT could evaluate
the relevant conditions and mark the rule as failing. Then,
"whenever the MONITOR begins to evaluate rules that are
invoked by the normal recursive mechanism, it will check to
see if the rule has previously been marked as false by
FINDOUT" [Shortliffe 1976]. Although this is not a
particularly refined focus of attention, the point is that
many systems have some means of reducing the number of rules
that must be tested each cycle. They have some means of
focusing the attention of their inference engine or they
would undoubtedly not be "high performance" expert systems.

Another expert system that has focus of attention

16

"hardcoded" into it is Aikin's redo of PUFF, named CENTAUR
[Aikins 19833. CENTAUR utilizes frames or "prototypes"
along with production rules to improve the performance of
the system. The initial data along with a knowledge of the
prototypical situations are used to select the subproblem
the present consultation most closely fits, thus giving the
remaining consultation a more specific context within which
to work.

Traditional expert systems have not taken into account
the implicit groupings of rules according to Aikins. The
modularity of the rules in pure rule-based systems prevents
organizing the knowledge base in a manner that could
partition groupings of similar rules. The partitioning of
the rules in CENTAUR allows the system to focus on only
those rules that are relevant at a given time.

The frames in CENTAUR are used to guide rule selection
by focusing the search for new information and asking for
only the most relevant information from the user. This is
an obvious example of "Step 1" type focus of attention,
organizing the context base. Within the frames, there is a
set of slots. The slots "provide an explicit 'place' for
information in the frame so the system can better judge when
enough inforamtion is known to determine a solution for the
problem" [Aikins 1983]. This is not totally dissimilar from
McDermott's reference count which will be discussed further
momentarily. The point here is that the system architecture
can be designed to implicity focus the consultation and can

17

be useful in determining which fact needs to be asked next
and if a problem solution has been found. The focus of
attention techniques described here might well be applicable
generally but for now are embedded in a specific system.

As was mentioned in the previous section, McDermott has
addressed the focus of attention problem with positive
results. McDermott's techniques center around organizing
the knowledge base, i.e. deciding which rules should be
considered in a given cycle [McDermott 1978].

In developing his techniques he identifies two main
"knowledge sources" that can be taken advantage of to
reduce the cost of finding the conflict set. The "pre
execution" knowledge source he describes consists of the
knowledge about which elements or conditions occur in which
production rules. The "during-execution" knowledge source
consists of knowledge about which elements are supported by
the context base, i.e., within a rule, which of its elements
are presently known to be true in the context base. (Another
knowledge source was discussed briefly but not utilized in
the program implementation.)

The knowledge sources described above are used to set
up "filters". These filters admit for further testing only
those rules that are likely to be satisfied. As an example,
if 'A' was the last element to enter the context base, only
those rules containing 'A' would be tested. They are the
only rules that could become satisfied when A enters the

context base.

18

A refinement of this focus of attention involves the
use of another filter. This filter works in conjunction
with the first filter described by maintaing a reference
count based on the number of elements in each rule that need
to be known to be true, before the rule can be satisfied.
For example, as an element enters the context base the
reference count for all rules that contain this element in
their antecedent are decremented by one. When the reference
count of a rule decrements to zero, the rule is identified
as a candidate that is possibly satisfied and is tested.

Thus, McDermott utilizes different knowledge sources
and filters to focus the attention of the inference engine
on only the rules that are likely to be satisfied. This is
primarily aimed at increasing the efficiency of step 2 in
the PDIS cycle, organizing the knowledge base.

In summary, several systems have focus of attention
techniques "built in". MYCIN utilizes knowledge about which
rules have failed to prevent it from re-evaluating a rule
that has failed. CENTAUR focuses the attention of the
inference engine to pre-specified subproblems by being
sensitive to the initial data. Finally, McDermott has
pointed out knowledge sources one can take advantage of to
focus the attention of the inference engine on only the
rules that are likely to be satisfied on a given cycle.

19

III. THEORETICAL VIEW

In this section a theoretical view of techniques that
would optimize the focus of attention of the inference
engine will be discussed. The discussion briefly describes
the macro-level techniques that could be used and then
centers around the micro-level techniques. Macro-level is
referred to here as those techniques that organize the
knowledge base into partitions or subproblems, before the
actual inferencing to a problem solution is done. Micro-level
is referred to as those techniques that optimize the
inferencing itself. It is quickly acknowledged that these
classifications overlap and work in conjunction with each
other, but the "spirit" of the classifications may serve to
clarify the domain being discussed.

An optimal macro-level focus of attention technique
would narrow the entire knowledge base down to a "working
knowledge base", i.e. only a subset of the knowledge base.
This subset would need to contain all rules that might be
used during this consultation but not contain any rules that
the user, from the outset, can identify as being irrelevant
to this particular consultation. For example, if there was
an expert system which had a knowledge base large enough to
diagnose all possible diseases but the user could narrow the
disease down to either being a heart or lung disease from
the outset, only the rules that relate to heart or lung
diseases need be used during this consultation. At the
present time one of the limiting factors to having a

20

knowledge base of this size, is the lack of techniques to
focus the attention of the inference engine on the relevant
rules. However by "chunking" the knowledge base in the
manner described above this problem could possibly be
reduced to a manageable situation. This would allow faster
processing to a problem solution by focusing on only the set
of rules relevant at a given time. Further, this would
allow a more directed and focused asking of questions by the
system. Thus, both step 1 and step 2 of the PDIS cycle
would be made more efficient and focused.

An optimal micro-level focus of attention would use all
possible knowledge sources to focus on only the rules that
are satisfied. This would require preserving information
gained from past cycles, in a manner that would incur
minimal processing cost. Certainly the cost of utilizing
the technique must not exceed the gain realized from the
added focus of attention, and in fact unless the cost was
considerably less, one would question whether developing and
using the technique would be worth the time and effort at
all .

The minimum micro-level focus of attention technique
involves focusing on only rules that can possibly fire.
That is, any rule that contains a negated element of an
element found in the context base should be marked in some
manner so that the rule is never evaluated, as it cannot
fire. Additionally any rule that has already fired should
be marked so that it will not be evaluated again.

21

A more refined technique requires a knowledge source
that contains information about which rules contain each
element. Thus, as an element enters the context base the
system could narrow down immediately the set of rules that
may fire, i.e. the rules that contain that element in their
antecedent. A further refinement would require a mechanism
to monitor the degree to which each of the rules in the
above subset were satisfied. This would allow the testing
of only those rules that were determined to be "probably"
satisfied.

If the system was additionally augmented with a
technique that allowed monitoring of the rules at the
subexpression level, it could monitor the degree to which
each rule was satisfied in a more precise manner. For
example, in the expression "(A and B) or C implies D" it is
clear that at most, two of the elements found in the
antecedent of this rule must enter the context base before
the rule is satisfied. If the first element is "C", then
only one element in the antecedent of the rule is needed to
satisfy the rule. Thus, a knowledge source that contained
information on the exact degree to which the subexpressions
within the rules are satisfied, coupled with knowlege about
the logical relationships between the subexpressions, could
eliminate testing altogether.

The last described technique would require a way to
preserve the history of previous cycles. It would need a
mechanism that updated a reference count for each

22

subexpression within each rule as an element contained in
the subexpression was put into the context base. This would
preserve the history of previous cycles and eliminate the
need to repeatedly retest each element when one of the other
elements contained in the subexpression was inserted into
the context base.

In summary, the optimal focus of attention technique
would require a means to partition the knowledge base into a
"working knowledge base". Then within this working
knowledge base, the technique could focus on only the
relevant rules, and within the set of relevant rules, focus
on the number of elements each subexpression needed and the
relationships between the subexpressions. If done
carefully, this would eliminate the need to test the rules
altogether, as the system could be signaled that a rule was
satisfied when the required subexpressions within the rule
became satisfied. The problem with these techniques has
previously been the ability to do this in a cost effective
manner. The techniques developed in this research and
their ability to achieve the above in a cost effective
manner will be discussed in the remaining sections.

23

IV. DESIGN AND IMPLEMENTATION

A. OVERVIEW
As related to the four steps in the cycle of a PDIS as

outlined on page 4, this research is particularly aimed
at optimizing step 2, providing an improved technique for
organizing the knowledge base. More precisely, this
research is aimed at developing a system architecture that
increases the efficiency of processing in an expert system
by reducing the number of rules that must be tested on a
given cycle.

This goal is restated to accent the rationale behind
the implementation. As this research is more concerned with
step 2 than with step 1 of the PDIS cycle, the facts were
given to the systems in an arbitrary order. The entire
focus of attention problem of which fact is the best fact to
ask about or infer from next was ignored. The facts were
inserted into the context base in an intentionally
uninteresting sequence, so as not to influence the focus of
attention problem that is the thrust of this research. Thus
step 1 of the PDIS cycle for all three systems implemented
in this research amounted to reading one fact at a time from
data files.

The implementation of the ideas set forth earlier in
the paper will now be discussed in some detail. First the
components of the three systems will be identified, then the
three inference engines will be described.

All three systems can be broken down to two basic

24

components: 1) Genbase and 2) an inference engine. Genbase
generates the knowledge base that the three inference
engines, Brute4s, Rulefocus, and Subexfocus manipulate.
They all share the same basic data structures, with only a
few anomalies that will be discussed. Genbase reads in the
production rules one at a time from a text file and
compiles each rule into a tree structure. (See Figure 2.)
The pointer to the head of this tree is stored in an array.
Thus when all rules have been compiled, the knowledge base
is actually a collection of tree stuctures, with the head
node of each of these trees stored in an array called
"ruleset".

The rules read from the text file can be any arbitrary
expression of the form: "Antecedent => Consequence". The
antecedent is composed of variables logically connected by
any combination of ands(*), ors(+), and nots('), nested
within any number of matching parentheses. The "=>" is an
implication sign, which is followed by a list of variables
separated by commas which represent the consequences. The
Genbase module can process any depth of nesting of
parentheses and any number of variables on the antecedent
side and any number of variables listed on the consequence
side. The consequence side does not allow for logical
expressions of the type 11 Antecedent — > A or B".

The author has imposed limits, as general guidelines,
such that the rules actually used consist of one to four

RULE Is (A AND B) OR C IMPLIES D
IN TEXT FILE; (A * B) + C => D

25

RULE 1 CONVERTED TO DATA STRUCTURE FORM:
RULESET
ARRAY

Figure 2 Rule 1 in Data Structure Form

26

variables on the antecedent side and one variable on the
consequence side. This is felt to be a realistic
representation of production rules as they are found in
expert systems today.

To summarize, Genbase takes a file of rules from a text
file and constructs the knowledge base into the form of an
array of tree stuctures. Simply, Genbase is one form of a
rule compiler that utilizes simple recursive-descent parsing
techniques to process the rules into data structures.

To implement the algorithms discussed earlier, the tree
structures need to be in a slightly different form. The
procedure called "Normalize" accomplishes that. It
restructures the tree so that all "nots" are propagated down
to the bottom level or the leaves of the tree. Utilizing
DeMorgan's Law [Manlo 1972] all "nots" found in or before
expressions are forced down to the variable or fact level.
This allows for more efficient processing in the Brute4s
inference engine and is central to the building and
manipulation of the major indexes critical to the high
performance level achieved by the Subexfocus inference
engine.

Three systems are implemented in this research to
compare the increase in efficiency achieved when the
techniques described earlier in this paper are used to focus
the attention of the respective inference engines on first
all the rules (Brute4s), then a subset of the rules
(Rulefocus), and then the subexpressions (Subexfocus). The

27

first inference engine, Brute4s (brute force), provides a
benchmark. It searches the entire knowledge base and
evaluates all rules that have not already been fired on each
cycle. Inference engines in early expert systems did in
fact use this type of exhaustive searching and matching.

The Rulefocus inference engine demonstrates one of the
techniques developed by McDermott [1978]. Rulefocus builds
an index before execution that contains for each fact a
reference to the rules containing that fact. Rulefocus then
exploits this information during execution by evaluating
only the rules listed in the index for the last fact to be
entered into the context base. The Subexfocus inference
engine demonstrates an advance in design developed in this
research which increases the efficiency of processing the
knowledge base to a problem solution by focusing on
subexpressions of rules, rather than on rules.

Several of the program procedures are used by all
three inference engines. For example, they all use the same
procedures to 1) insert a rule found to be satisfied into
the conflict set, 2) perform conflict resolution, 3) detect
a problem solution, 4) insert the consequences into the
context base and 5) obtain facts from the user. Thus all
three programs use the same knowledge base and identical
context base schemes. As a footnote, the conflict
resolution used was a recency first scheme. The consequence
of the most recent rule to be inserted into the conflict set
for each cycle was inserted into the context b ase.

28

B . BRUTE FORCE INFERENCE ENGINE
The Brute4s inference engine, as mentioned, evaluates

each rule to determine if it is satisfied, given the facts
in the context base at that time. The procedure
"User_interface" is responsible for the initial insertion of
facts into the context base to get the process started. The
user is queried as to the facts he wishes to insert into the
context base. These facts are then inserted into the
context base one at a time. When a rule is found to be
satisfied by the procedure "Bruteval", it is inserted into
the conflict set. After each rule has been evaluated via
one pass through the knowledge base, (this is referred to as
one cycle) the conflict set will consist of the set of all
rules found to be satisfied at that point.

The procedure "Conflict__resolution" is then called to
select one rule from the conflict set to be fired, i.e. to
insert the consequent of the selected rule into the context
base. Cycle follows cycle until either 1) a problem
solution is found or 2) the conflict set becomes empty. Any
time a problem solution is found, it is printed out and the
program is halted. If the conflict set becomes empty before
a problem solution is found, User_interface is called to
insert another fact into the context base. The cycle is
then repeated until a problem solution is finally found.

C.RULEFOCUS INFERENCE ENGINE
The R u l e f o c u s i n f e r e n c e e n g i n e u t i l i z e s p r o c e d u r e s f r o m

29

the other two inference engines. It uses the same data
structures and evaluator as does Brute4s. (See Figure 2.)
The difference is that it does not evaluate every rule,
every cycle rather it evaluates only the rules that contain
the last fact entered into the context base.

The index it utilizes to guide it to these rules is
constructed in the same manner as the index for Subexfocus.
That is, as the data structures are being built, a fact list
is also built. The difference is that the fact list
references rules rather than subexpressions. The data
structures are not restructured with location pointers built
to point to the restructured operator nodes, rather the rule
number in which this element occurred is stored in the
location node(s) for each fact.

Thus as a fact enters the context base, the fact list
is searched to find the fact, then the rule list for this
fact is traversed. The same evaluator that is used in
Brute4s is then called for each rule number contained in the
rule list. In effect, all rules that contained this fact
are evaluated to see if they are satisfied at this point in
the consultation. As a rule is found to be satisfied it is
inserted into the conflict set and the cycles continue in a
manner identical to the other two inference engines.

D. SUBEXFOCUS INFERENCE ENGINE
T h e S u b e x f o c u s i n f e r e n c e e n g i n e r e q u i r e s a s p e c i a l d a t a

s t r u c t u r e , d i f f e r e n t f r o m t h e d a t a s t r u c t u r e s d e s c r i b e d s o

30

far. (See Figure 3.) The procedure "kwrestu" (restructure)
takes the data structures after they have been processed
into a normal form by the "normalize" procedure and
restructures them into a form that allows the Subexfocus to
evaluate them. The restructuring is performed in a
recursive descent manner one rule at a time for each rule in
the knowledge base as follows.

Before restructuring occurs, the head node of the data
structure is always the node containing the implication sign
,,= > ,‘ and two pointers -the right child and the left child.
The right child points to a node that contains a
consequence, which in turn may point to another consequence
if there are two facts to be asserted from this rule. The
left child points to the node containing either a fact in
the antecedent or a binary logical operator that in turns
points to other operators which point to facts contained in
the antecedent part of the rule.

The restructure process starts by building a new data
stucture from the implication node. The new data structure
contains two fields. The first field contains the
information that this node is an implication node. The
second field contains a pointer to the consequences, which
are left exactly as they were. The restructure procedure
keeps a pointer to this head node and starts to recursively
process down the left side of the tree.

31

(A * B) + C => D RESTRUCTURED FOR SUBEXFOCUS
INFERENCE ENGINE

RC = REFERENCE COUNT

Figure 3. Rule 1 Converted to Subexfocus Form

32

As the antecedent part of the tree is restructured, if
it finds that the node is an operator, it builds a node that
contains a reference count and a pointer which points back
up to the node above it in the tree. The reference count is
the number of facts that must be found to make this
expression true. For instance an "and" node (which points
to exactly 2 nodes) must always have exactly the two nodes
below it true before it is true itself. "And" nodes always
have a reference count of two. If the operator node is an
"or", then the reference count must always be one. These
reference counts follow from the boolean algebra definition
of conjunctive and disjunctive expressions which states that
only one of the conditions or facts of an "or" expression is
required to be known true for the expression to be true,
whereas all facts of an "and" expression must be known to be
true before that expression is considered true.

In the antecedent part of the rule, if the node is not
an operator then it must be a "variable" or fact. When the
restructure process finds a variable it creates a new node
that contains a pointer to the location of the node that is
directly above the variable in the tree, i.e. the operator
node of which this variable is a fact or condition. This
fact is inserted into a forward link list that acts as an
index. Each node in this forward link list contains a
pointer to the node that contains the operator to which
this variable is a condition. Thus variable "A" has a link
list associated with it that contains node(s) that point to

33

all the subexpressions which have the variable "A" as a
condition. Each variable that occurs in the knowledge base
has a list of nodes that point to all the subexpressions or
operators of which this fact is a condition if the
subexpression is to be true.

An index of this type has been used in previous expert
systems [McDermott 1978]. The distinguishing feature of
this index is that it does not contain the references to
rules in which each variable occurs; rather it contains a
reference pointer to the exact subexpressions in which each
variable occurs.

The Subexfocus inference engine is identical to the
Brute4s inference engine relative to the user interface,
conflict resolution, and notification of problem solution.
The difference between the two lies in the evaluator. The
evaluator for Subexfocus takes advantage of the restructured
data structures in the following manner. As a fact is
inserted into the context base, the procedure "kweval" is
called. This procedure indexes into the table described
above on the name of the fact. It then begins to traverse
the list of references to subexpressions where the fact
occurs. Each reference to a subexpression is implemented as
a reference to the appropriate operator node which contains
the expression's reference count.

DecskpO (decrement and skip on zero) first checks to
see if this is an operator node or if it is an implication
node. If it is an implication node the rule is assumed to

34

be satisfied and the corresponding consequence is put into
the conflict set. If it is not an implication node then it
must be an operator node and the node's reference count is
decremented by one. If this decrement brings the reference
count to zero, the subexpression has been found to be true
and decskpO recurses, this time with the pointer to the node
above this operator node. The procedure will recursively
call itself climbing up the restructured tree until it finds
either an operator node that has not been satisfied, i.e.
its reference count does not equal zero, or an implication
node is found signaling that the rule has been satisfied.

35

V. METHODS AND PROCEDURES

The metric used to measure the efficiency of the three
different architectures/algorithms and the conditions
surrounding the application of the metric will now be
addressed.

The experiment performed here was aimed at testing and
benchmarking the focus of attention techniques previously
described. Performing tests on a synthetic knowledge base
has hopefully removed any favoritism toward one of the three
systems tested that might occur in a non-synthetic
knowledge base. This was intended to either filter out or
hold constant secondary factors that might affect the
statistics ascertained from the experiments.

The metric used then was the number of nodes visited.
One node visit was counted when the inference engine visited
any of the following: 1) an implication node, 2) an operator
node or 3) a variable node. The implication node is the
head node in the data structures. An operator node is
either an "AND" node or an "OR" node. A variable node is a
node containing a fact, also called an element.

The metric should magnify the differences in the three
engines. As Brute4s repeatedly and redundantly evaluates
all subexpressions of each rule it would be expected to have
by far the largest number of nodes visited. Similarly, as
Rulefocus may re-evaluate all subexpressions within a rule
several times before the rule is found to be satisfied, it
would be expected to visit more nodes then Subexfocus. As

36

Subexfocus avoids redundant and repeated evaluations by
preserving the history of previous cycles, it would be
expected to visit the least number of nodes. Thus, the
metric does indeed accent the differences in the three
systems and provide a measure of the quality of focus of
attention each system provides.

Execution time was not used as a metric because it was
felt clever programming could easily bias one of the
methods. For instance, if the fact list and the location
list were hashed instead of sequentially searched, the
execution time of the Subexfocus system could have been
reduced considerably. The metric was chosen to accent the
technique developed as opposed to the programming
cleverness.

The conditions of the experiment were designed to
provide an unbiased environment in which to test the three
systems. All three systems ran on the same knowledge base
with the same sets of facts. Additionally, the three
systems used the same procedures for everything except the
procedures that guided the search of the knowledge base, as
this is the focal point of the experiment.

The knowledge base was derived from an acyclic-directed
graph. The graph was drawn with 22 nodes across the top of
the graph that branched down through 6 layers of
intermediate nodes to 10 terminal nodes. The top 22 nodes
represented initial observations, the intermediate nodes
represented inferences made from the initial observations

37

and the 10 terminal nodes represented the 10 goals.
From the graph, 117 rules were derived with 104

inferred facts. The goals required between 1 and 14 initial
facts to reach the 10 different goals.

By tracing back up through the graph from each of the
goals, the minimum number of initial facts required to reach
each goal was determined. Thus, there were 10 sets of
facts, one set for each goal. These sets were put into
separate data files.

As was detailed in the design and implementation
section, each system began execution by asking for a fact
and then inserting it into the context base. The inference
engine then inserted any satisfied rules into the conflict
set and performed a conflict resolution. This was repeated
until a goal was found or the conflict set was empty. If
the conflict set became empty the user was asked for another
fact and the process was repeated.

One run of the experiment consisted of putting one set
of facts that led to one of the goals into a file and
directing the inference engine to read from the file when a
fact was needed from the "user". Each of the three systems
was run on each of the 10 goals. The number of nodes
visited were counted for each of the 30 runs. The results
are presented in the following section.

38

V I . RESULTS

Table I presents a comparison of search method by goal
based on the number of nodes visited. The goals in the
table are listed in a manner such that goal 1 is the goal
that required the least number of initial facts and goal 10
is the goal that required the largest number of initial
facts. The average number of nodes visited for the three
inference engines for the 10 goals are as follows: 12,384
for Brute4s, 328 for Rulefocus, and 92 for Subexfocus. (See
Table 1.)

Table II presents this same information in ratio form.
Complexity of goal, as measured by the minimum number of
initial facts required to find each goal, did not affect the
relative frequencies for the three engines.

Ratios were calculated by dividing the number of visits
of each entry in the table for Brute4s and Rulefocus by the
number of visits in the corresponding row for Subexfocus.
The equation is “number of nodes visited/number of nodes
visited for Subexfocus". (See Table II.)

The Brute4s system required on the average 145.8 times
more node visits then the Subexfocus system. Rulefocus
required about 3.6 times more node visits then Subexfocus.

39

TABLE I

A COMPARISON OF THREE INFERENCE ENGINES BY
GOAL BASED ON NUMBER OF NODES VISITED

GOAL
BRUTE FORCE

ENGINE
RULEFOCUS

ENGINE
SUBEXFOCUS

ENGINE

1 1313 33 10
2 3510 81 21
3 7501 185 49
4 11736 318 83
5 13240 281 79
6 16487 431 118
7 14587 408 109
8 21719 536 151
9 22340 586 161

10 21313 525 155

AVG. 12384 328 92

40

TABLE II

A RATIO COMPARISON OF SUBEXFOCUS TO BRUTE FORCE
AND RULEFOCUS BASED ON THE NUMBER OF NODES VISITED

BRUTE FORCE
GOAL ENGINE

RULEFOCUS
ENGINE

1 131.3 3.3
2 167.1 3.8
3 153.1 3.7
4 141.4 3.8
5 167.6 3.6
6 139.8 3.6
7 133.9 3.8
8 143.8 3.5
9 140.5 3.7

10 138.8 3.3

AVG. 145.8 3.6

NUMBER OF NODES VISITED
RATIO

NUMBER OF NODES VISITED BY SUBEXFOCUS

41

VII. CONCLUSION

The statistics were consistent throughout and do indeed
support the premise on which the techniques developed in
this research were based; namely, that a refined focus of
attention may be achieved by focusing on subexpressions and
that this refinement can reduce the cost of finding the
conflict set, by reducing the number of nodes the system has
to visit. Roughly, Brute4s visited nearly 150 times more
nodes then did Subexfocus, while Rulefocus visited over
three times as many nodes as Subexfocus.

Brute4s was primarily used to give a benchmark to be
compared with and to be improved upon. The only knowledge
source that Brute4s avails itself of when searching the
knowledge base and testing each rule is the knowledge of
which rules have already fired. The Rulefocus inference
engine on the other hand lives up to its name and focuses
only on the rules that contain the last element that entered
the context base by availing itself of the pre-execution
knowledge of which rules each element occurred in.

The Subexfocus inference engine also lives up to its
name by focusing on the subexpressions within each rule. It
avails itself of more precise knowledge. For insight the
simplicity of the implementation of the updating process
will be shown here. The updating process in Subexfocus
centers around the procedure decskpO (decrement and skip on
zero). The core of this procedure is given to accent its
simplicity.

42

Procedure decskpO (subexpression);
reference count = reference count - 1;
if (reference count = 0) then
call decskpO (next subexpression);

end procedure;
The efficiency argues well for the ability of the Subexfocus
system to achieve many of the goals set forth in section III
in a cost effective manner.

The results follow from and verify the theoretical
view of optimizing search efficiency as discussed in Section
4. Brute4s has practically no focus of attention technique
built into its searching process. Rulefocus utilized
knowledge about which elements occurred in which rules and
greatly improved the focus of attention of the inference
engine as evidenced by its large reduction in number of node
visits. However, it did have to re-evaluate rules often
enough to lose an appreciable amount of effeciency.

The Subexfocus system demonstrated an improvement of
design. By a further refinement of focus of attention, i.e.
focusing on the subexpressions and preserving the history of
previous cycles, it avoided ever re-evaluating any
subexpressions or rules. Thus, it accomplished one goal of
the research and demonstrated a techniqued that reduces the
number of node visits. The reduction in the number of the
node visits in turn, reduces the cost of finding the
conflict set which increases processing efficiency.

Further, it is the author’s speculation that as the

43

average number of elements in the antecedent increased from
three (the average of the knowledge base used) to say,
eight, the Subexfocus system would show a more pronounced
superiority over systems such as Rulefocus. The rationale
being that if a rule contains eight elements in the
antecedent, all connected by ’’AND"s, a technique such as the
one used in Rulefocus would evaluate the rule seven times
more then neccessary. That is, as each of the eight
elements in the rule's antecedent entered the context base,
the rule would be evaluated. This would be done needlessly
because the rule would not be satisfied until the last
required fact entered the context base. Thus the system
would have had to visit eight varible nodes plus seven
operator nodes eight times, for a total of 120 node visits
before the rule was determined to be satisfied.

A Subexfocus scheme would require only eight node
visits. Admittedly, this is a worst case scenario but the
point is that this knowledge base did not bias the results
in favor of the Subexfocus system.

Throughout this research the number of nodes visited
has been the critical metric for reasons previously stated.
However, execution time will be the ultimate criteria for
the techniques developed here. Subexfocus could be
improved, from the point of view of execution time, by
avoiding a linear search of the fact list. This data
structure could be hashed for improved performance.

44

Other improvements and variations on the system and
techniques developed in this research are discussed as ideas
for further research in the next section.

45

VII. FURTHER RESEARCH

As the Subexfocus expert system was developed mainly as
a prototype to test the specific focus of attention
techniques described throughout this paper, it has numerous
possibilities for improvement and further research.

Perhaps the most obvious place for improvement is the
conflict resolution scheme. Two alternate schemes that
would be easy to implement are suggested. The first scheme
would be to pick as the rule to fire, the one which has as
its consequent that fact which is in the antecedent of the
greatest number of other rules. For example, if there are
two rules in the conflict set and one is to be chosen to
fire, i.e. its consequent is to be put in the context base,
go to a precomputed index that contains information on which
of the two consequences will help satisfy the greatest
number of other rules, and choose the rule that, if fired,
will satisfy the most other rules.

Another scheme, not totally dissimilar, would be to
scan all reference counts in the system and then pick the
rule, whose consequent would satsify either 1) the most
number of rules or 2) the "most important" rule. The
principle difference between this scheme and the former is
that the reference counts would be more recent information
then the precomputed index . The index could also be
updated, but this would incur considerably more processing
cost.

Determining the "most important" rule is indeed a topic

46

in and of itself. One idea will be presented. To select the
most important rule one could start at the goal nodes and
chain backward through the antecedents checking for any of
the consequences of the rules in the conflict set. The
first consequence of a rule in the conflict set that was
found as an antecedent to a goal, or an antecedent to a
goal's antecedents, would be picked to be inserted into the
context base. As an oversimplified example, "A and B
implies Goal", and "A" was in the context base,
it would be a judicious choice to pick the rule in the
conflict set that had as its consequence, "B".

Another possible scheme for future research, not
pertaining to conflict resolution, would amount to a depth
first search. Once a rule has been satisfied, fire it
immediately by allowing the decskpO (decrement and skip on
zero) recursive procedure to be invoked. The cascading
effects from this sort of technique might be interesting.

Another permutation that could be implemented would
allow "What if?" sessions. A fact could easily be retracted
by simply going back and incrementing all previously
decremented reference counts affected by the fact. Thus in
an interactive session, one could give it a fact, evaluate
any results from the addition of this fact, and then retract
the fact if results were not desirable.

Parallel processing is another addition to the system
that may expedite processing. When traversing the location
list, each pointer to an operator node on the list could be

47

sent off concurrently to do its processing with the
decrement and skip on zero procedure.

The last item for further research relates to meta
conclusions. Meta-conclusions would be most closely related
to Aikin’s research dealing with frames. The most obvious
difference is that meta-conclusions would provide domain
independent high level focus of attention, as opposed to
domain dependent.

One could precompute indexes on all the rules that were
involved in each of the goals line of inference. This could
be done by chaining back up through the antecedents of each
goal to the initial facts. Then if the user could narrow
down the goal possibilities by indicating any uninteresting
or implausible goals, the knowledge base could be reduced to
contain only the union of the sets of rules neccessary for
the remaining goals. This "working knowledge base" would
then be smaller and hopefully a bit more focused to the
problem being pursued.

This would in effect partition the knowledge base into
"chunks" similar to Aikin's prototypes. Given the
structures used in the Subexfocus system, this would not
require many alterations.

To summarize, further study could be done to improve
the expert system design developed in this research. Con
flict resolution, "What if?" games, parallel processing, and
meta-conclusions are all fertile areas for further research.

48

BIBLIOGRAPHY
Aikins, J. S. 1983. Prototypical knowledge for expert
systems. Artificial Intelligence 20,2, 169-210.
Barr, A. 1982. Artifical Intelligence: cognition as
computation. Rep. Stan—CS—82—956, Dept, of Computer Science,
Stanford Univ., Stanford, Calif., pp. 1.
Buchanan, B. 1981a. Research on expert systems. Rep. Stan-
c s -81-837, Dept, of Computer Science, Stanford
Univ.,Stanford, Calif., p p . 5.
Buchanan, B. 1981b. Research on expert systems. Rep. Stan-
CS-81-837, Dept, of Computer Science, Stanford
U n i v .,Stanford, Calif., p p . 11.
Buchanan, B. 1981c. Research on expert systems. Rep. Stan-
CS-81-837, Dept, of Computer Science, Stanford
U n i v .,Stanford, Calif., p p . 19.
Buchanan, B. 1983. Principles of rule-based expert systems.
Advances in Computers 20, p p . 164.
Davis, R. and J. King 1975a. An overview of production systems.
Rep. Stan-CS-75-524, Dept, of Computer Science, Stanford
U n i v .,Stanford, Calif.
Davis, R. and J. King 1975b. An overview of production systems.
Rep. Stan-CS-75-524, Dept, of Computer Science, Stanford
U n i v .,Stanford, Calif., pp. 1.
Manlo, M. 1972. Computer logic design. Prentice-Hall,
Inc.,1972, pp.39.
Mark, W. 1980. Rule-based inference in large knowledge
bases. First annual conference on artifical intelligence
proceedings, 1980, pp.190.
McDermott, J., Newell, A., and Moore, J. 1978. The efficiency of
certain production system implementations. In Pattern-
directed inference systems, edited by Waterman, D.A and
Hayes-Roth, F. Academic Press, New York , 1978, pp.155-176.
Pople, H.E. 1977. The formation of composite hypotheses in
diagnostic problem solving — an exercise in synthetic
reasoning. Proceedings IJCA—77, pp. 1030-1037.
Shortliffe, E.H. 1976. Compute-based medical consultations:
mycin. American Elseveir Publishing Co., Inc., 1976, pp.
153.

49

VITA

Kevin Wayne Whiting was born November 10, 1955 in
Great Bend, Kansas. He received his primary education in
Dighton, Kansas and secondary education in Newton, Kansas.
He has recieved his college education at University of
Nevada-Las Vegas, Las Vegas, Nevada, Kansas State
University, Manhattan, Kansas, and the University of
Missouri-Rolla, Rolla, Missouri. He received a Bachelor of
Science degree in Psychology from Kansas State University in
Manhattan, Kansas in May 1982.

H e h a s b e e n e n r o l l e d in t h e G r a d u a t e S c h o o l of t h e
U n i v e r s i t y of M i s s o u r i — R o l l a s i n c e S e p t e m b e r 1982.

	A Focus Of Attention Algorithm For Expert Systems
	Recommended Citation

	tmp.1600974007.pdf.2kXZ9

