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A Focus of Attention Algorithm for Expert Systems

Abstract: This research is primarily concerned with
increasing the performance of expert systems. A refined 
focus of attention strategy and its affect on performance 
are discussed. Early expert systems used a brute force 
approach to process the knowledge base. Each production 
rule in the knowledge base was evaluated each cycle. More 
recently, processing efficiency has been increased by 
focusing the attention of the inference engine on a subset 
of the rules by "filtering" for further testing, only rules 
that could possibly fire given the current content of the 
context base. Focus of attention as developed in this 
research increases performance over filtering systems by 
further narrowing the focus of attention of the inference 
engine, down to the subexpression level. Positive results 
are reported.
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I .INTRODUCTION
Artificial Intelligence is a term that stands as an 

umbrella to a varied collection of problem solving 
techniques. As a sub-area of Computer Science, A.I. is not 
defined as much by a specific application area as it is by 
the class of problems it attacks. The class of problems 
that require the specific computer science techniques 
developed by Artificial Intelligence researchers may be 
defined as those problems where: 1) there is no "turn the 
crank" solutions, 2) the problem is combinatorially 
complex, and 3) there is no optimum answer. By way of 
definition, Artificial Intelligence is the branch of 
computer science "...concerned with creating and studying 
computer programs that exhibit behavioral characteristics we 
identify as intelligent in human behavior..." [Barr 1982j.

As a quick overview, a partial and overlapping list of 
examples is presented of problems that require Artificial 
Intelligence technology and the applications that have 
resulted from this technology: language processing and
translation, machine perception, which includes computer 
vision or image processing, and speech understanding, 
automatic programming, problem solving or planning, learning 
programs, game playing programs, and expert systems. The 
last area mentioned, expert systems, is the area of interest 
in this research.

Expert systems have been defined as: "... a computer 
program that provides expert-level solutions to important
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problems ..." [Buchanan 1983a] Rule-based expert systems 
evolved from a more general class of computational models 
known as production systems. For an in depth description of 
"pure" production systems the reader is referred to the 
classical Davis paper on production systems [Davis 1975a]. 
The precise classification of the expert system model 
referred to throughout this research is a rule-based pattern 
directed inference system. However, it is presumed the 
ideas developed here are applicable generally. In fact it 
is difficult to exclude designs or methods on formal grounds 
since there is really no one formal design for current 
production systems and "recent implementations have 
explored variations on virturally every aspect, their use 
becomes more an issue of programming style than anything 
else" [Davis 1975b].

Expert systems essentially emulate an expert as that 
expert would apply his knowledge to a specific knowledge 
domain. This includes the knowledge the expert might have 
ascertained from books or formal training and more 
importantly the heuristics or "rules of thumb" the expert 
may have informally developed from years of experience. A 
wide variety of domain areas have been successfully 
addressed by expert systems. DENDRAL, one of the first 
expert systems analyzed chemical compounds. MYCIN is a 
medical application of an expert system which assists 
physicians in diagnosing bacterial infections in the 
bloodstream. PROSPECTER is a geological expert system that
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has successfully predicted new mineral deposit locations.
CAT assists with the diagnosing of diesel engines. This is 
but a partial list, meant to give a feeling for the diverse 
domains that have been attacked. Although there have been 
many well received expert systems developed that are in 
everyday use, there are some limitations and problems 
encountered in building and maintaining expert systems. A 
few problems will be discussed to put the focus of this 
research in context.

Extracting the knowledge from the expert has to date 
proven a time-consuming and error prone task. Several 
studies have focused on the problem but as yet knowledge 
engineering , as the process is called, still remains a 
major bottleneck in developing expert systems. There are 
relatively few good knowledge engineers, certainly not 
enough to fill the need being felt today to extract 
knowledge from the experts and build systems to emulate 
their thought processess.

Although computer power, i.e. processing speed, has 
experienced exponential growth in the last decade, the 
processing power required by expert systems demands even 
more powerful computers than those available to date, if 
they are to attack problems which require a wider breadth of 
knowledge than what most expert systems apply themselves to 
today. For instance, MYCIN performs at the expert level in 
diagnosing bacterial infections in the blood stream but a 
physician has to have first applied his expertise and
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narrowed the problem down to the small domain in which MYCIN 
is competent before MYCIN is of any use at all. Thus, 
expert systems perform well within their narrow area of 
expertise but it is not clear that present Artifical 
Intelligence techniques and accompanying computing power 
will be able to successfully address larger problem domains 
and maintain the depth required to be truely functional. 
Given the techniques and technology in use today it seems 
doubtful that a "general problem solver" can be built.

An observation by Buchanan may serve to justify the 
experimental approach used here and put the limitations 
addressed in this research into a much larger context.

" AI is still very much in the so-called 
'natural history1 stages of scientific activity in 
which specimens are collected, examined, 
described, and shelved. At some later time a 
theory will be suggested that unifies many of the 
phenomena noticed previously and will provide a 
framework for asking questions. We do not now 
have a useful theory.
Expert systems will provide many more data points 
for us over the coming years. But it is up to 
everyone in AI to do controlled experiments, 
analyze them, and attempt to develop a scientific 
framework in which we can generalize from 
examples. At the moment we ourselves lack the 
vocabulary for successful codification of our own 
data" [Buchanan 1981c].

A look at the architecture and operation of expert 
systems will be given before the specific limitations 
addressed by this research are discussed.

The four steps in the cycle of a pattern directed 
inference system (PDIS) will be stated formally, however
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in this research the focus is almost entirely on the second 
step, thus a general description of expert systems with step 
one held as a constant will then be given.
Step 1:
Select a fact to begin inference with or ask the user about. 
Step 2:
Find all rules that are satisfied. (Form the conflict set.) 
Step 3:
Select one rule from those in Step 2. (Conflict resolution) 
Step 4:
Execute this rule.(Fire it.)

The internal components of most expert systems can be 
broken down into three functional modules: 1) the knowledge 
base, 2) the inference engine, and 3) the context base to 
use terminology prevalent at Stanford [Davis 1975aD. Other 
terminology found in the literature describing the same 
modules refers to the context base as the working 
memory,scratch memory, or cache, the knowledge base as the 
production memory, and the inference engine as the control 
program.

The knowledge base (K.B.) contains production rules 
which in effect are small "chunks" of knowledge, usually 
found in the form of If-Then rules. For example:
Rule #1: IF (throat = red & temperature = 101.1)

Then symptom = flu
Rule #2: IF (throat =red & symptom = flu)

THEN sickness = pnuemonia
The K.B. may contain anywhere from 25 to 10,000 rules, the 
point being there is not an average or pre-set number of
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rules. These rules capture and store the expert’s knowledge 
in a form that allows the inference engine to manipulate or 
perform inferences on the knowledge.

As just mentioned the inference engine (I.E.) 
manipulates the rules found in the knowledge base in order 
to infer information from the information already known.
For example, if it is known (in a medical diagnosing 
scenario) that the patient has a red throat and a high 
temperature, the I.E. would infer that the patient may have 
the flu (from Rule# 1 above). Given that the I.E. "knows" 
that the patient has the flu, a red throat, and a high 
temperature, another rule in the knowledge base may call for 
these conditions to be known to be true before the I.E. 
could infer the possibility of pneumonia from Rule #2. The 
I.E. then takes information known to be true and checks the 
rules in the K.B. to see if it can make a chain of 
inferences leading to a problem solution. In the above 
example this could be a diagnosis of the patients sickness 
as pneumonia.

The third component of an expert system is the context 
base. It was mentioned above that if a certain piece (or 
pieces) of information were known, the I.E. could then 
possibly infer other facts from the facts currently known. 
The way these facts are "known" by the expert system is by 
looking at the current contents of the context base. All 
facts that are "known" were put into the context base as 
they became known. There are two generally accepted ways in
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already mentioned, when the "IF" part of a rule is
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determined to be true by the I.E., that rule is said to be 
"satisfied" and the "THEN" part of the rule (another fact) 
is inserted into the context base. The astute reader might 
wonder how the very first facts are put into the context 
base to get the process started and secondly, what happens 
if there are no more rules that can be satisfied - given the 
current facts in working memory. These functions are 
performed by another module or component of the expert 
system referred to here as the user interface.

The user interface component of the expert system 
varies more widely from system to system than do the other 
three major components discussed and serves mainly as an 
input mechanism to the system, thus it has not been included 
as a major component in this discussion. As mentioned, the 
user interface serves to query the system user at the 
beginning of the consultation session, thus gaining an 
initial set of facts to be inserted into the context base. 
Secondly, when no new rules can be found to be supported by 
the current facts in the context base, the user interface 
may again be invoked to ask the user for more information. 
The idea being that more facts, previously not found in the 
context base, will be added to the context base, satisfying 
a rule that in turn will put another new fact into context 
base and the cycle will continue until a problem solution is 
found or the program is terminated.
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To summarize then, the user interface acts to 
initialize the first set of facts into the context base.
The inference engine then searches the knowledge base to 
find rules that are satisfied. A rule is said to be 
satisfied when every condition stipulated in the rule's "IF" 
part are found to be true in the context base. The "THEN" 
part of the satisfied rule is then entered into the context 
base. This cycle is then repeated until a problem solution 
is found.

The inference engine actually has three parts, of which 
only two parts have been discussed, the search and act 
cycles. The third part is called conflict resolution. 
Conflict resolution addresses the situation where more than 
one rule is found to be satisfied on a given cycle. When a 
rule is found to be satisfied, in most systems it is not 
immediately "fired", i.e. its fact(s) found in the "THEN" 
part is not immediately put in the context base, rather it 
is said to be put into the conflict set. The conflict set 
then is the set of all rules found to be satisfied - but not 
yet selected to be fired. Conflict resolution then selects 
one of the rules from the conflict set based on some 
criteria and fires that rule. The criteria used for 
selection of the rule to be fired varies from system to 
system. As an example, one scheme used picks the rule with 
the most facts in the "IF" part to be fired. There are 
other schemes but conflict resolution is not the focus of 
this research and thus will not be discussed further.
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The thrust of this research, is to minimize the number 
of rules tested or searched in the knowledge base of an 
expert system by the inference engine. First, however a 
graph may serve useful to clarify discussion thus far and 
put the focus of this research in perspective. (See Figure 
1 . )

Expert systems hold a large promise for the future but 
several problems must be dealt with if they are to realize 
this promise. Buchanan states "The state of the art in 
expert systems technology is advancing, but to be quite 
realistic we need to look at existing limitations as well as 
potential power" [Buchanan 1981a] . He goes on to identify 
"Focus of Attention on Relevant Facts and Relations" as one 
of the limitations and further, cites Pople to support this 
observation. "As the breadth of knowledge increases, 
problem solvers need context-sensitive mechanisms for 
focusing attention on parts of the problem and parts of the 
knowledge base that appear most fruitful" [Pople 1977]. In 
conclusion he says “many methods have been tried but we have 
little understanding of their relative merits" [Buchanan 
1981b].

Others share this concern for the need to have more 
sophisticated focus of attention techniques. William Mark 
states that "As rule-based systems grow to encompass a large 
number of rules, and as they are forced to work on complex 
knowledge structures to keep pace with modern knowledge base
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organizations, two problems arise..." [Mark 1980]. The 
first problem is particularly relevant to this research:
"The inference mechanism becomes inefficient: it is hard to 
find the right rule to apply if there are many 
possibilities" [Mark 19803. Several researchers have made 
significant contributions toward resolving the limitations 
described above. These contributions will be discussed in 
the next section.

Focus of attention can be broken down into at least two 
subproblems, the problem of organizing the context base and 
the problem of organizing the knowledge base. Of course 
these two factors interact with each other. In addressing 
these factors McDermott identifies the cost of determining 
which rules are satisfied on a given cycle as "essentially 
linear in the product of the number of productions in 
production memory and the number of assertions in working 
memory" [McDermott 1978a3-

Here, rules are referred to as "productions", the 
knowledge base as the "production memory", and the context 
base as "working memory". Thus, as the number of elements 
in the context base increase and the number of rules in the 
knowledge base increase the cost of determining which rules 
are satisfied increases in an undesirable manner. Put in the 
light of the four steps in a cycle of a PDIS, selecting 
which fact or element to act upon next (Step 1), and 
determing which rules to test (Step 2) becomes unmanageable 
if the system grows too large if one uses a brute force
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approach. A focus of attention is mandatory if processing 
is to be done in an acceptable amount of time, and if the 
dependency on the size of the knowledge base and the size of 
the context base is to be minimized.

McDermott claims that if a system has a mechanism 
"that enables knowledge of the degree to which each 
production is currently satisfied to be maintained across 
cycles, then the dependency on the size of working memory 
(context base) can be eliminated ..." [McDermott 1978a]. 
Additionally, he claims that if a system has a mechanism 
that "enables knowledge of similarities among productions to 
be precomputed and then exploited during a run, it is 
possible to eliminate the dependency on the size of 
production memory" [McDermott 1978a]. He indeed verifies 
this claim by implementing and testing the mechanisms 
mentioned with encouraging results.

One mechanism he used to focus on the "important" rules 
may be described in an oversimplified manner as being an 
index that contains the rule number where each element 
occurred. Only the rules that contain the last element 
inserted into the context base need to be tested,as they are 
the only ones that may possibly fire at this point. This 
information was used in conjunction with a mechanism that 
kept track of the degree to which each rule was satisfied 
across cycles. Thus, the rules that needed to be tested 
were further narrowed down to only those rules that 
contained the last element to enter the context base and
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were determined to be nearly satisfied.
In an effort to be complete, Aikins has also addressed 

the focus of attention problem in another way. By design, 
her system, CENTAUR, focused its processing by recognizing 
patterns of data. "The overall control structure is 
sensitive to the initial data, and to the prototype that is 
being explored, which results in a more focused 
consultation" [Aikins 1983]. This enabled the system to 
divide the problem into subproblems and focus only on the 
rules and facts relevant within this subproblem. This type 
of focus of attention holds much promise and is alluded to 
throughout this paper. However, it is treated more as a 
topic for future research then a central theme in the 
research.

The focus of attention techniques just described 
eliminates much redundant testing of rules. However, the 
rules must still be tested. Specifically, the group of 
rules that are determined to be "important" i.e., nearly 
ready to fire, must be tested. This research focused on 
developing an architecture/algorithm that would enable the 
complete elimination of testing by carefully keeping track 
of the exact degree to which each rule is satisfied. By 
focusing on the subexpressions of each rule a more refined 
focus of attention was achieved that increased the 
efficiency of processing the knowledge base.

As a more general view, the goal of this research has 
been to increase the efficiency of processing the knowledge
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base of an expert system. This required a novel way of 
organizing the knowledge base, which in turn required a 
refinement of present focus of attention techniques. Thus, 
the specific thrust of this research has been developing the 
refined focus of attention techniques previoulsly mentioned.
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II. HISTORICAL REVIEW

Many systems have focus of attention incorporated into 
them. However, these have seldom (if at all) been proven to 
be truely domain independent. An example of focus of 
attention within a particular expert system will be 
discussed as an example of this, followed by a discussion of 
two efforts aimed at achieving different types of focus of 
attention.

The expert system MYCIN has at least two functions 
which interact in a manner that gives a definite focus of 
attention to the system. In describing future developments 
Shortliffe outlines [Shortliffe 1976] the possibility of 
"pre-screening of rules". He notes the function FINDOUT 
could use the LOOKAHEAD list to identify all rules 
referencing the parameters in their PREMISE conditions. If 
the condition turns out to be false FINDOUT could evaluate 
the relevant conditions and mark the rule as failing. Then, 
"whenever the MONITOR begins to evaluate rules that are 
invoked by the normal recursive mechanism, it will check to 
see if the rule has previously been marked as false by 
FINDOUT" [Shortliffe 1976]. Although this is not a 
particularly refined focus of attention, the point is that 
many systems have some means of reducing the number of rules 
that must be tested each cycle. They have some means of 
focusing the attention of their inference engine or they 
would undoubtedly not be "high performance" expert systems.

Another expert system that has focus of attention
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"hardcoded" into it is Aikin's redo of PUFF, named CENTAUR 
[Aikins 19833. CENTAUR utilizes frames or "prototypes" 
along with production rules to improve the performance of 
the system. The initial data along with a knowledge of the 
prototypical situations are used to select the subproblem 
the present consultation most closely fits, thus giving the 
remaining consultation a more specific context within which 
to work.

Traditional expert systems have not taken into account 
the implicit groupings of rules according to Aikins. The 
modularity of the rules in pure rule-based systems prevents 
organizing the knowledge base in a manner that could 
partition groupings of similar rules. The partitioning of 
the rules in CENTAUR allows the system to focus on only 
those rules that are relevant at a given time.

The frames in CENTAUR are used to guide rule selection 
by focusing the search for new information and asking for 
only the most relevant information from the user. This is 
an obvious example of "Step 1" type focus of attention, 
organizing the context base. Within the frames, there is a 
set of slots. The slots "provide an explicit 'place' for 
information in the frame so the system can better judge when 
enough inforamtion is known to determine a solution for the 
problem" [Aikins 1983]. This is not totally dissimilar from 
McDermott's reference count which will be discussed further 
momentarily. The point here is that the system architecture 
can be designed to implicity focus the consultation and can
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be useful in determining which fact needs to be asked next 
and if a problem solution has been found. The focus of 
attention techniques described here might well be applicable 
generally but for now are embedded in a specific system.

As was mentioned in the previous section, McDermott has 
addressed the focus of attention problem with positive 
results. McDermott's techniques center around organizing 
the knowledge base, i.e. deciding which rules should be 
considered in a given cycle [McDermott 1978].

In developing his techniques he identifies two main 
"knowledge sources" that can be taken advantage of to 
reduce the cost of finding the conflict set. The "pre­
execution" knowledge source he describes consists of the 
knowledge about which elements or conditions occur in which 
production rules. The "during-execution" knowledge source 
consists of knowledge about which elements are supported by 
the context base, i.e., within a rule, which of its elements 
are presently known to be true in the context base. (Another 
knowledge source was discussed briefly but not utilized in 
the program implementation.)

The knowledge sources described above are used to set 
up "filters". These filters admit for further testing only 
those rules that are likely to be satisfied. As an example, 
if 'A' was the last element to enter the context base, only 
those rules containing 'A' would be tested. They are the 
only rules that could become satisfied when A enters the

context base.
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A refinement of this focus of attention involves the 
use of another filter. This filter works in conjunction 
with the first filter described by maintaing a reference 
count based on the number of elements in each rule that need 
to be known to be true, before the rule can be satisfied.
For example, as an element enters the context base the 
reference count for all rules that contain this element in 
their antecedent are decremented by one. When the reference 
count of a rule decrements to zero, the rule is identified 
as a candidate that is possibly satisfied and is tested.

Thus, McDermott utilizes different knowledge sources 
and filters to focus the attention of the inference engine 
on only the rules that are likely to be satisfied. This is 
primarily aimed at increasing the efficiency of step 2 in 
the PDIS cycle, organizing the knowledge base.

In summary, several systems have focus of attention 
techniques "built in". MYCIN utilizes knowledge about which 
rules have failed to prevent it from re-evaluating a rule 
that has failed. CENTAUR focuses the attention of the 
inference engine to pre-specified subproblems by being 
sensitive to the initial data. Finally, McDermott has 
pointed out knowledge sources one can take advantage of to 
focus the attention of the inference engine on only the 
rules that are likely to be satisfied on a given cycle.
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III. THEORETICAL VIEW

In this section a theoretical view of techniques that 
would optimize the focus of attention of the inference 
engine will be discussed. The discussion briefly describes 
the macro-level techniques that could be used and then 
centers around the micro-level techniques. Macro-level is 
referred to here as those techniques that organize the 
knowledge base into partitions or subproblems, before the 
actual inferencing to a problem solution is done. Micro-level 
is referred to as those techniques that optimize the 
inferencing itself. It is quickly acknowledged that these 
classifications overlap and work in conjunction with each 
other, but the "spirit" of the classifications may serve to 
clarify the domain being discussed.

An optimal macro-level focus of attention technique 
would narrow the entire knowledge base down to a "working 
knowledge base", i.e. only a subset of the knowledge base.
This subset would need to contain all rules that might be 
used during this consultation but not contain any rules that 
the user, from the outset, can identify as being irrelevant 
to this particular consultation. For example, if there was 
an expert system which had a knowledge base large enough to 
diagnose all possible diseases but the user could narrow the 
disease down to either being a heart or lung disease from 
the outset, only the rules that relate to heart or lung 
diseases need be used during this consultation. At the 
present time one of the limiting factors to having a
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knowledge base of this size, is the lack of techniques to 
focus the attention of the inference engine on the relevant 
rules. However by "chunking" the knowledge base in the 
manner described above this problem could possibly be 
reduced to a manageable situation. This would allow faster 
processing to a problem solution by focusing on only the set 
of rules relevant at a given time. Further, this would 
allow a more directed and focused asking of questions by the 
system. Thus, both step 1 and step 2 of the PDIS cycle 
would be made more efficient and focused.

An optimal micro-level focus of attention would use all 
possible knowledge sources to focus on only the rules that 
are satisfied. This would require preserving information 
gained from past cycles, in a manner that would incur 
minimal processing cost. Certainly the cost of utilizing 
the technique must not exceed the gain realized from the 
added focus of attention, and in fact unless the cost was 
considerably less, one would question whether developing and 
using the technique would be worth the time and effort at 
all .

The minimum micro-level focus of attention technique 
involves focusing on only rules that can possibly fire.
That is, any rule that contains a negated element of an 
element found in the context base should be marked in some 
manner so that the rule is never evaluated, as it cannot 
fire. Additionally any rule that has already fired should 
be marked so that it will not be evaluated again.
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A more refined technique requires a knowledge source 
that contains information about which rules contain each 
element. Thus, as an element enters the context base the 
system could narrow down immediately the set of rules that 
may fire, i.e. the rules that contain that element in their 
antecedent. A further refinement would require a mechanism 
to monitor the degree to which each of the rules in the 
above subset were satisfied. This would allow the testing 
of only those rules that were determined to be "probably" 
satisfied.

If the system was additionally augmented with a 
technique that allowed monitoring of the rules at the 
subexpression level, it could monitor the degree to which 
each rule was satisfied in a more precise manner. For 
example, in the expression "(A and B) or C implies D" it is 
clear that at most, two of the elements found in the 
antecedent of this rule must enter the context base before 
the rule is satisfied. If the first element is "C", then 
only one element in the antecedent of the rule is needed to 
satisfy the rule. Thus, a knowledge source that contained 
information on the exact degree to which the subexpressions 
within the rules are satisfied, coupled with knowlege about 
the logical relationships between the subexpressions, could 
eliminate testing altogether.

The last described technique would require a way to 
preserve the history of previous cycles. It would need a 
mechanism that updated a reference count for each



22

subexpression within each rule as an element contained in 
the subexpression was put into the context base. This would 
preserve the history of previous cycles and eliminate the 
need to repeatedly retest each element when one of the other 
elements contained in the subexpression was inserted into 
the context base.

In summary, the optimal focus of attention technique 
would require a means to partition the knowledge base into a 
"working knowledge base". Then within this working 
knowledge base, the technique could focus on only the 
relevant rules, and within the set of relevant rules, focus 
on the number of elements each subexpression needed and the 
relationships between the subexpressions. If done 
carefully, this would eliminate the need to test the rules 
altogether, as the system could be signaled that a rule was 
satisfied when the required subexpressions within the rule 
became satisfied. The problem with these techniques has 
previously been the ability to do this in a cost effective 
manner. The techniques developed in this research and 
their ability to achieve the above in a cost effective 
manner will be discussed in the remaining sections.
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IV. DESIGN AND IMPLEMENTATION

A. OVERVIEW
As related to the four steps in the cycle of a PDIS as 

outlined on page 4, this research is particularly aimed 
at optimizing step 2, providing an improved technique for 
organizing the knowledge base. More precisely, this 
research is aimed at developing a system architecture that 
increases the efficiency of processing in an expert system 
by reducing the number of rules that must be tested on a 
given cycle.

This goal is restated to accent the rationale behind 
the implementation. As this research is more concerned with 
step 2 than with step 1 of the PDIS cycle, the facts were 
given to the systems in an arbitrary order. The entire 
focus of attention problem of which fact is the best fact to 
ask about or infer from next was ignored. The facts were 
inserted into the context base in an intentionally 
uninteresting sequence, so as not to influence the focus of 
attention problem that is the thrust of this research. Thus 
step 1 of the PDIS cycle for all three systems implemented 
in this research amounted to reading one fact at a time from 
data files.

The implementation of the ideas set forth earlier in 
the paper will now be discussed in some detail. First the 
components of the three systems will be identified, then the 
three inference engines will be described.

All three systems can be broken down to two basic
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components: 1) Genbase and 2) an inference engine. Genbase 
generates the knowledge base that the three inference 
engines, Brute4s, Rulefocus, and Subexfocus manipulate.
They all share the same basic data structures, with only a 
few anomalies that will be discussed. Genbase reads in the 
production rules one at a time from a text file and 
compiles each rule into a tree structure. (See Figure 2.) 
The pointer to the head of this tree is stored in an array. 
Thus when all rules have been compiled, the knowledge base 
is actually a collection of tree stuctures, with the head 
node of each of these trees stored in an array called 
"ruleset".

The rules read from the text file can be any arbitrary 
expression of the form: "Antecedent => Consequence". The 
antecedent is composed of variables logically connected by 
any combination of ands(*), ors(+), and nots('), nested 
within any number of matching parentheses. The "=>" is an 
implication sign, which is followed by a list of variables 
separated by commas which represent the consequences. The 
Genbase module can process any depth of nesting of 
parentheses and any number of variables on the antecedent 
side and any number of variables listed on the consequence 
side. The consequence side does not allow for logical 
expressions of the type 11 Antecedent — > A or B".

The author has imposed limits, as general guidelines, 
such that the rules actually used consist of one to four



RULE Is (A AND B) OR C IMPLIES D 
IN TEXT FILE; (A * B) + C => D
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RULE 1 CONVERTED TO DATA STRUCTURE FORM:
RULESET
ARRAY

Figure 2 Rule 1 in Data Structure Form
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variables on the antecedent side and one variable on the 
consequence side. This is felt to be a realistic 
representation of production rules as they are found in 
expert systems today.

To summarize, Genbase takes a file of rules from a text 
file and constructs the knowledge base into the form of an 
array of tree stuctures. Simply, Genbase is one form of a 
rule compiler that utilizes simple recursive-descent parsing 
techniques to process the rules into data structures.

To implement the algorithms discussed earlier, the tree 
structures need to be in a slightly different form. The 
procedure called "Normalize" accomplishes that. It 
restructures the tree so that all "nots" are propagated down 
to the bottom level or the leaves of the tree. Utilizing 
DeMorgan's Law [Manlo 1972] all "nots" found in or before 
expressions are forced down to the variable or fact level. 
This allows for more efficient processing in the Brute4s 
inference engine and is central to the building and 
manipulation of the major indexes critical to the high 
performance level achieved by the Subexfocus inference 
engine.

Three systems are implemented in this research to 
compare the increase in efficiency achieved when the 
techniques described earlier in this paper are used to focus 
the attention of the respective inference engines on first 
all the rules (Brute4s), then a subset of the rules 
(Rulefocus), and then the subexpressions (Subexfocus). The
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first inference engine, Brute4s (brute force), provides a 
benchmark. It searches the entire knowledge base and 
evaluates all rules that have not already been fired on each 
cycle. Inference engines in early expert systems did in 
fact use this type of exhaustive searching and matching.

The Rulefocus inference engine demonstrates one of the 
techniques developed by McDermott [1978]. Rulefocus builds 
an index before execution that contains for each fact a 
reference to the rules containing that fact. Rulefocus then 
exploits this information during execution by evaluating 
only the rules listed in the index for the last fact to be 
entered into the context base. The Subexfocus inference 
engine demonstrates an advance in design developed in this 
research which increases the efficiency of processing the 
knowledge base to a problem solution by focusing on 
subexpressions of rules, rather than on rules.

Several of the program procedures are used by all 
three inference engines. For example, they all use the same 
procedures to 1) insert a rule found to be satisfied into 
the conflict set, 2) perform conflict resolution, 3) detect 
a problem solution, 4) insert the consequences into the 
context base and 5) obtain facts from the user. Thus all 
three programs use the same knowledge base and identical 
context base schemes. As a footnote, the conflict 
resolution used was a recency first scheme. The consequence 
of the most recent rule to be inserted into the conflict set 
for each cycle was inserted into the context b ase.
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B . BRUTE FORCE INFERENCE ENGINE
The Brute4s inference engine, as mentioned, evaluates 

each rule to determine if it is satisfied, given the facts 
in the context base at that time. The procedure 
"User_interface" is responsible for the initial insertion of 
facts into the context base to get the process started. The 
user is queried as to the facts he wishes to insert into the 
context base. These facts are then inserted into the 
context base one at a time. When a rule is found to be 
satisfied by the procedure "Bruteval", it is inserted into 
the conflict set. After each rule has been evaluated via 
one pass through the knowledge base, (this is referred to as 
one cycle) the conflict set will consist of the set of all 
rules found to be satisfied at that point.

The procedure "Conflict__resolution" is then called to 
select one rule from the conflict set to be fired, i.e. to 
insert the consequent of the selected rule into the context 
base. Cycle follows cycle until either 1) a problem 
solution is found or 2) the conflict set becomes empty. Any 
time a problem solution is found, it is printed out and the 
program is halted. If the conflict set becomes empty before 
a problem solution is found, User_interface is called to 
insert another fact into the context base. The cycle is 
then repeated until a problem solution is finally found.

C.RULEFOCUS INFERENCE ENGINE
The R u l e f o c u s  i n f e r e n c e  e n g i n e  u t i l i z e s  p r o c e d u r e s  f r o m
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the other two inference engines. It uses the same data 
structures and evaluator as does Brute4s. (See Figure 2.) 
The difference is that it does not evaluate every rule, 
every cycle rather it evaluates only the rules that contain 
the last fact entered into the context base.

The index it utilizes to guide it to these rules is 
constructed in the same manner as the index for Subexfocus. 
That is, as the data structures are being built, a fact list 
is also built. The difference is that the fact list 
references rules rather than subexpressions. The data 
structures are not restructured with location pointers built 
to point to the restructured operator nodes, rather the rule 
number in which this element occurred is stored in the 
location node(s) for each fact.

Thus as a fact enters the context base, the fact list 
is searched to find the fact, then the rule list for this 
fact is traversed. The same evaluator that is used in 
Brute4s is then called for each rule number contained in the 
rule list. In effect, all rules that contained this fact 
are evaluated to see if they are satisfied at this point in 
the consultation. As a rule is found to be satisfied it is 
inserted into the conflict set and the cycles continue in a 
manner identical to the other two inference engines.

D. SUBEXFOCUS INFERENCE ENGINE
T h e  S u b e x f o c u s  i n f e r e n c e  e n g i n e  r e q u i r e s  a s p e c i a l  d a t a  

s t r u c t u r e ,  d i f f e r e n t  f r o m  t h e  d a t a  s t r u c t u r e s  d e s c r i b e d  s o
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far. (See Figure 3.) The procedure "kwrestu" (restructure) 
takes the data structures after they have been processed 
into a normal form by the "normalize" procedure and 
restructures them into a form that allows the Subexfocus to 
evaluate them. The restructuring is performed in a 
recursive descent manner one rule at a time for each rule in 
the knowledge base as follows.

Before restructuring occurs, the head node of the data 
structure is always the node containing the implication sign 
,,= > ,‘ and two pointers -the right child and the left child. 
The right child points to a node that contains a 
consequence, which in turn may point to another consequence 
if there are two facts to be asserted from this rule. The 
left child points to the node containing either a fact in 
the antecedent or a binary logical operator that in turns 
points to other operators which point to facts contained in 
the antecedent part of the rule.

The restructure process starts by building a new data 
stucture from the implication node. The new data structure 
contains two fields. The first field contains the 
information that this node is an implication node. The 
second field contains a pointer to the consequences, which 
are left exactly as they were. The restructure procedure 
keeps a pointer to this head node and starts to recursively 
process down the left side of the tree.
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(A * B) + C => D RESTRUCTURED FOR SUBEXFOCUS
INFERENCE ENGINE

RC = REFERENCE COUNT

Figure 3. Rule 1 Converted to Subexfocus Form
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As the antecedent part of the tree is restructured, if 
it finds that the node is an operator, it builds a node that 
contains a reference count and a pointer which points back 
up to the node above it in the tree. The reference count is 
the number of facts that must be found to make this 
expression true. For instance an "and" node (which points 
to exactly 2 nodes) must always have exactly the two nodes 
below it true before it is true itself. "And" nodes always 
have a reference count of two. If the operator node is an 
"or", then the reference count must always be one. These 
reference counts follow from the boolean algebra definition 
of conjunctive and disjunctive expressions which states that 
only one of the conditions or facts of an "or" expression is 
required to be known true for the expression to be true, 
whereas all facts of an "and" expression must be known to be 
true before that expression is considered true.

In the antecedent part of the rule, if the node is not 
an operator then it must be a "variable" or fact. When the 
restructure process finds a variable it creates a new node 
that contains a pointer to the location of the node that is 
directly above the variable in the tree, i.e. the operator 
node of which this variable is a fact or condition. This 
fact is inserted into a forward link list that acts as an 
index. Each node in this forward link list contains a 
pointer to the node that contains the operator to which 
this variable is a condition. Thus variable "A" has a link 
list associated with it that contains node(s) that point to



33

all the subexpressions which have the variable "A" as a 
condition. Each variable that occurs in the knowledge base 
has a list of nodes that point to all the subexpressions or 
operators of which this fact is a condition if the 
subexpression is to be true.

An index of this type has been used in previous expert 
systems [McDermott 1978]. The distinguishing feature of 
this index is that it does not contain the references to 
rules in which each variable occurs; rather it contains a 
reference pointer to the exact subexpressions in which each 
variable occurs.

The Subexfocus inference engine is identical to the 
Brute4s inference engine relative to the user interface, 
conflict resolution, and notification of problem solution. 
The difference between the two lies in the evaluator. The 
evaluator for Subexfocus takes advantage of the restructured 
data structures in the following manner. As a fact is 
inserted into the context base, the procedure "kweval" is 
called. This procedure indexes into the table described 
above on the name of the fact. It then begins to traverse 
the list of references to subexpressions where the fact 
occurs. Each reference to a subexpression is implemented as 
a reference to the appropriate operator node which contains 
the expression's reference count.

DecskpO (decrement and skip on zero) first checks to 
see if this is an operator node or if it is an implication 
node. If it is an implication node the rule is assumed to
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be satisfied and the corresponding consequence is put into 
the conflict set. If it is not an implication node then it 
must be an operator node and the node's reference count is 
decremented by one. If this decrement brings the reference 
count to zero, the subexpression has been found to be true 
and decskpO recurses, this time with the pointer to the node 
above this operator node. The procedure will recursively 
call itself climbing up the restructured tree until it finds 
either an operator node that has not been satisfied, i.e. 
its reference count does not equal zero, or an implication 
node is found signaling that the rule has been satisfied.
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V. METHODS AND PROCEDURES

The metric used to measure the efficiency of the three 
different architectures/algorithms and the conditions 
surrounding the application of the metric will now be 
addressed.

The experiment performed here was aimed at testing and 
benchmarking the focus of attention techniques previously 
described. Performing tests on a synthetic knowledge base 
has hopefully removed any favoritism toward one of the three 
systems tested that might occur in a non-synthetic 
knowledge base. This was intended to either filter out or 
hold constant secondary factors that might affect the 
statistics ascertained from the experiments.

The metric used then was the number of nodes visited. 
One node visit was counted when the inference engine visited 
any of the following: 1) an implication node, 2) an operator 
node or 3) a variable node. The implication node is the 
head node in the data structures. An operator node is 
either an "AND" node or an "OR" node. A variable node is a 
node containing a fact, also called an element.

The metric should magnify the differences in the three 
engines. As Brute4s repeatedly and redundantly evaluates 
all subexpressions of each rule it would be expected to have 
by far the largest number of nodes visited. Similarly, as 
Rulefocus may re-evaluate all subexpressions within a rule 
several times before the rule is found to be satisfied, it 
would be expected to visit more nodes then Subexfocus. As
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Subexfocus avoids redundant and repeated evaluations by 
preserving the history of previous cycles, it would be 
expected to visit the least number of nodes. Thus, the 
metric does indeed accent the differences in the three 
systems and provide a measure of the quality of focus of 
attention each system provides.

Execution time was not used as a metric because it was 
felt clever programming could easily bias one of the 
methods. For instance, if the fact list and the location 
list were hashed instead of sequentially searched, the 
execution time of the Subexfocus system could have been 
reduced considerably. The metric was chosen to accent the 
technique developed as opposed to the programming 
cleverness.

The conditions of the experiment were designed to 
provide an unbiased environment in which to test the three 
systems. All three systems ran on the same knowledge base 
with the same sets of facts. Additionally, the three 
systems used the same procedures for everything except the 
procedures that guided the search of the knowledge base, as 
this is the focal point of the experiment.

The knowledge base was derived from an acyclic-directed 
graph. The graph was drawn with 22 nodes across the top of 
the graph that branched down through 6 layers of 
intermediate nodes to 10 terminal nodes. The top 22 nodes 
represented initial observations, the intermediate nodes 
represented inferences made from the initial observations
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and the 10 terminal nodes represented the 10 goals.
From the graph, 117 rules were derived with 104 

inferred facts. The goals required between 1 and 14 initial 
facts to reach the 10 different goals.

By tracing back up through the graph from each of the 
goals, the minimum number of initial facts required to reach 
each goal was determined. Thus, there were 10 sets of 
facts, one set for each goal. These sets were put into 
separate data files.

As was detailed in the design and implementation 
section, each system began execution by asking for a fact 
and then inserting it into the context base. The inference 
engine then inserted any satisfied rules into the conflict 
set and performed a conflict resolution. This was repeated 
until a goal was found or the conflict set was empty. If 
the conflict set became empty the user was asked for another 
fact and the process was repeated.

One run of the experiment consisted of putting one set 
of facts that led to one of the goals into a file and 
directing the inference engine to read from the file when a 
fact was needed from the "user". Each of the three systems 
was run on each of the 10 goals. The number of nodes 
visited were counted for each of the 30 runs. The results 
are presented in the following section.
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V I . RESULTS

Table I presents a comparison of search method by goal 
based on the number of nodes visited. The goals in the 
table are listed in a manner such that goal 1 is the goal 
that required the least number of initial facts and goal 10 
is the goal that required the largest number of initial 
facts. The average number of nodes visited for the three 
inference engines for the 10 goals are as follows: 12,384 
for Brute4s, 328 for Rulefocus, and 92 for Subexfocus. (See 
Table 1.)

Table II presents this same information in ratio form. 
Complexity of goal, as measured by the minimum number of 
initial facts required to find each goal, did not affect the 
relative frequencies for the three engines.

Ratios were calculated by dividing the number of visits 
of each entry in the table for Brute4s and Rulefocus by the 
number of visits in the corresponding row for Subexfocus.
The equation is “number of nodes visited/number of nodes 
visited for Subexfocus". (See Table II.)

The Brute4s system required on the average 145.8 times 
more node visits then the Subexfocus system. Rulefocus 
required about 3.6 times more node visits then Subexfocus.
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TABLE I

A COMPARISON OF THREE INFERENCE ENGINES BY 
GOAL BASED ON NUMBER OF NODES VISITED

GOAL
BRUTE FORCE 

ENGINE
RULEFOCUS

ENGINE
SUBEXFOCUS

ENGINE

1 1313 33 10
2 3510 81 21
3 7501 185 49
4 11736 318 83
5 13240 281 79
6 16487 431 118
7 14587 408 109
8 21719 536 151
9 22340 586 161

10 21313 525 155

AVG. 12384 328 92
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TABLE II

A RATIO COMPARISON OF SUBEXFOCUS TO BRUTE FORCE 
AND RULEFOCUS BASED ON THE NUMBER OF NODES VISITED

BRUTE FORCE 
GOAL ENGINE

RULEFOCUS
ENGINE

1 131.3 3.3
2 167.1 3.8
3 153.1 3.7
4 141.4 3.8
5 167.6 3.6
6 139.8 3.6
7 133.9 3.8
8 143.8 3.5
9 140.5 3.7

10 138.8 3.3

AVG. 145.8 3.6

NUMBER OF NODES VISITED
RATIO

NUMBER OF NODES VISITED BY SUBEXFOCUS
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VII. CONCLUSION

The statistics were consistent throughout and do indeed 
support the premise on which the techniques developed in 
this research were based; namely, that a refined focus of 
attention may be achieved by focusing on subexpressions and 
that this refinement can reduce the cost of finding the 
conflict set, by reducing the number of nodes the system has 
to visit. Roughly, Brute4s visited nearly 150 times more 
nodes then did Subexfocus, while Rulefocus visited over 
three times as many nodes as Subexfocus.

Brute4s was primarily used to give a benchmark to be 
compared with and to be improved upon. The only knowledge 
source that Brute4s avails itself of when searching the 
knowledge base and testing each rule is the knowledge of 
which rules have already fired. The Rulefocus inference 
engine on the other hand lives up to its name and focuses 
only on the rules that contain the last element that entered 
the context base by availing itself of the pre-execution 
knowledge of which rules each element occurred in.

The Subexfocus inference engine also lives up to its 
name by focusing on the subexpressions within each rule. It 
avails itself of more precise knowledge. For insight the 
simplicity of the implementation of the updating process 
will be shown here. The updating process in Subexfocus 
centers around the procedure decskpO (decrement and skip on 
zero). The core of this procedure is given to accent its 
simplicity.
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Procedure decskpO ( subexpression);
reference count = reference count - 1;
if ( reference count = 0 ) then 
call decskpO (next subexpression);

end procedure;
The efficiency argues well for the ability of the Subexfocus 
system to achieve many of the goals set forth in section III 
in a cost effective manner.

The results follow from and verify the theoretical 
view of optimizing search efficiency as discussed in Section 
4. Brute4s has practically no focus of attention technique 
built into its searching process. Rulefocus utilized 
knowledge about which elements occurred in which rules and 
greatly improved the focus of attention of the inference 
engine as evidenced by its large reduction in number of node 
visits. However, it did have to re-evaluate rules often 
enough to lose an appreciable amount of effeciency.

The Subexfocus system demonstrated an improvement of 
design. By a further refinement of focus of attention, i.e. 
focusing on the subexpressions and preserving the history of 
previous cycles, it avoided ever re-evaluating any 
subexpressions or rules. Thus, it accomplished one goal of 
the research and demonstrated a techniqued that reduces the 
number of node visits. The reduction in the number of the 
node visits in turn, reduces the cost of finding the 
conflict set which increases processing efficiency.

Further, it is the author’s speculation that as the
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average number of elements in the antecedent increased from 
three (the average of the knowledge base used) to say, 
eight, the Subexfocus system would show a more pronounced 
superiority over systems such as Rulefocus. The rationale 
being that if a rule contains eight elements in the 
antecedent, all connected by ’’AND"s, a technique such as the 
one used in Rulefocus would evaluate the rule seven times 
more then neccessary. That is, as each of the eight 
elements in the rule's antecedent entered the context base, 
the rule would be evaluated. This would be done needlessly 
because the rule would not be satisfied until the last 
required fact entered the context base. Thus the system 
would have had to visit eight varible nodes plus seven 
operator nodes eight times, for a total of 120 node visits 
before the rule was determined to be satisfied.

A Subexfocus scheme would require only eight node 
visits. Admittedly, this is a worst case scenario but the 
point is that this knowledge base did not bias the results 
in favor of the Subexfocus system.

Throughout this research the number of nodes visited 
has been the critical metric for reasons previously stated. 
However, execution time will be the ultimate criteria for 
the techniques developed here. Subexfocus could be 
improved, from the point of view of execution time, by 
avoiding a linear search of the fact list. This data 
structure could be hashed for improved performance.
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Other improvements and variations on the system and 
techniques developed in this research are discussed as ideas 
for further research in the next section.
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VII. FURTHER RESEARCH

As the Subexfocus expert system was developed mainly as 
a prototype to test the specific focus of attention 
techniques described throughout this paper, it has numerous 
possibilities for improvement and further research.

Perhaps the most obvious place for improvement is the 
conflict resolution scheme. Two alternate schemes that 
would be easy to implement are suggested. The first scheme 
would be to pick as the rule to fire, the one which has as 
its consequent that fact which is in the antecedent of the 
greatest number of other rules. For example, if there are 
two rules in the conflict set and one is to be chosen to 
fire, i.e. its consequent is to be put in the context base, 
go to a precomputed index that contains information on which 
of the two consequences will help satisfy the greatest 
number of other rules, and choose the rule that, if fired, 
will satisfy the most other rules.

Another scheme, not totally dissimilar, would be to 
scan all reference counts in the system and then pick the 
rule, whose consequent would satsify either 1) the most 
number of rules or 2) the "most important" rule. The 
principle difference between this scheme and the former is 
that the reference counts would be more recent information 
then the precomputed index . The index could also be 
updated, but this would incur considerably more processing 
cost.

Determining the "most important" rule is indeed a topic
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in and of itself. One idea will be presented. To select the 
most important rule one could start at the goal nodes and 
chain backward through the antecedents checking for any of 
the consequences of the rules in the conflict set. The 
first consequence of a rule in the conflict set that was 
found as an antecedent to a goal, or an antecedent to a 
goal's antecedents, would be picked to be inserted into the 
context base. As an oversimplified example, "A and B 
implies Goal", and "A" was in the context base, 
it would be a judicious choice to pick the rule in the 
conflict set that had as its consequence, "B".

Another possible scheme for future research, not 
pertaining to conflict resolution, would amount to a depth 
first search. Once a rule has been satisfied, fire it 
immediately by allowing the decskpO (decrement and skip on 
zero) recursive procedure to be invoked. The cascading 
effects from this sort of technique might be interesting.

Another permutation that could be implemented would 
allow "What if?" sessions. A fact could easily be retracted 
by simply going back and incrementing all previously 
decremented reference counts affected by the fact. Thus in 
an interactive session, one could give it a fact, evaluate 
any results from the addition of this fact, and then retract 
the fact if results were not desirable.

Parallel processing is another addition to the system 
that may expedite processing. When traversing the location 
list, each pointer to an operator node on the list could be
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sent off concurrently to do its processing with the 
decrement and skip on zero procedure.

The last item for further research relates to meta­
conclusions. Meta-conclusions would be most closely related 
to Aikin’s research dealing with frames. The most obvious 
difference is that meta-conclusions would provide domain 
independent high level focus of attention, as opposed to 
domain dependent.

One could precompute indexes on all the rules that were 
involved in each of the goals line of inference. This could 
be done by chaining back up through the antecedents of each 
goal to the initial facts. Then if the user could narrow 
down the goal possibilities by indicating any uninteresting 
or implausible goals, the knowledge base could be reduced to 
contain only the union of the sets of rules neccessary for 
the remaining goals. This "working knowledge base" would 
then be smaller and hopefully a bit more focused to the 
problem being pursued.

This would in effect partition the knowledge base into 
"chunks" similar to Aikin's prototypes. Given the 
structures used in the Subexfocus system, this would not 
require many alterations.

To summarize, further study could be done to improve 
the expert system design developed in this research. Con­
flict resolution, "What if?" games, parallel processing, and 
meta-conclusions are all fertile areas for further research.
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