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Abstract 

Bridge inspections ensure transportation infrastructure safety and save lives but current manual 
bridge inspections can be slow and costly. Automated bridge inspection research mitigates these 
problems and we investigate a multirobot approach to automated bridge inspection by mapping 
the inspection problem to the well known k-Chinese Postman problem and using multiple robots 
for faster, more cost-effective, and more standardized bridge inspections. We first show that a 
genetic algorithm quickly approaches the optimal solution to the 1-postman problem 
corresponding to a single robot inspecting a bridge. Then, we use the same genetic algorithm to 
efficiently solve the more difficult, multi-robot, NP-hard, MinMax k-postman problem (k > 1). 
The genetic algorithm’s solutions to this problem represent robot paths that traverse (and thus 
inspect) every truss at least once and that minimize the length of the longest path traversed by any 
of the k robots - thus minimizing time and distributing the workload. These simulation results from 
our immersive bridge inspection simulation and training system built with the Unity3D game 
engine, show that our genetic algorithm quickly and efficiently produces good paths, and in 
addition, achieves approximately linear speedup for each robot added to the inspection task. 

1. Introduction

According to ACSE’s 2017 Infrastructure Report Card, the U.S. has over 614,387 bridges, forty 
percent of which are over 50 years old, and nine percent of which are classified as structurally 
deficient. Additionally, while smaller bridges can be inspected visually, larger bridges require 
cranes, boats, or other equipment to do a thorough inspection. This type of inspection consumes a 
large portion of states’ budgets that could be significantly reduced by automating the inspection 
process. Current generation inspection robots require an operator to control their movements. The 
next generation of more autonomous robots will do much of the inspection without operator 
control and with only occasional need for operators to intervene. Human operators will manage 
(not tele-operate) five to ten autonomous robots at a time, intervening only to fix occasional errors. 
Thus, we will only need to train and use one human operator to oversee and manage multiple 
robots that cooperatively and simultaneously inspect the bridge more quickly, more effectively, 
and at significantly less cost. The problem then becomes one of finding paths for every robot such 
that all bridge trusses are inspected at least once and that the workload is split equally among all 
robots to minimize inspection time. This problem maps well to the MinMax k-Chinese Postman 
Problem (MM k-CPP). This problem is known to be a difficult, NP-Hard problem to solve to 
optimality as described by Edmonds (1973). In other words, the space of possible solutions to the 
MM k-CPP is too large to exhaustively search for the optimal solution within a reasonable amount 
of time. We thus use a Genetic Algorithm (GA) to efficiently search this poorly-understood space 
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results bear this out and show that our GA finds near-optimal solutions within a few minutes and 
that these solutions scale well with the number of robots. We begin the process of solving the k-
robot bridge inspection problem with GAs by representing the bridge truss as a graph, where nodes 
represent truss intersections and edges represent truss beams. This maps the k-robot bridge 
inspection problem to the MM k-CPP. The GA works with a population of individuals representing 
routes and starts by randomly generating k routes for each individual in the population. Each route 
is represented by a sequence of edges and we use Djikstra’s optimal algorithm to find routes 
between non-adjacent edges. Shorter paths have higher fitness and are likely to be reused to 
generate better solutions. The GA seeks to maximize fitness by perturbing individuals using 
genetic operators and evolves better routes over many generations (iterations). Experimental 
results show that GAs obtain near-optimal, equal length routes. We get linear speedup in inspection 
time as we add more robots - five robots are approximately five times as fast as one robot. Using 
a handful of autonomous robots to inspect a bridge can lead to significant savings in time and in 
the number of operators (one) needed to manage the robots.  
 
The remainder of this paper is organized as follows. Section II discusses related work in research 
on Chinese Postman Problems (CPP) and GAs. Section IV describes route representation, genetic 
operations, and route splitting used in our experiments. Section V presents preliminary results and 
compares the generated routes with the global optimal route obtained with the assumption of using 
one robot. Finally, the last section draws conclusions and discusses future work. 
 
2. Related Work 
 
The Chinese Postman Problem, defined by Mei-Ko Kwan in 1962 attempts to determine the most 
effective route for a postman to distribute the mail received from the post office and to return to 
the post office with the shortest walking distance during mail distribution by Eiselt (1995). 
Algorithms for traditional CPP problems have been well studied and the CPP on completely 
undirected graphs or completely directed graphs can be solved in polynomial time. Currently 
researchers are more interested in a variety of extensions of traditional CPP problems. 
Papadimitriou (1976) worked on a CPP based on a mixed graph with directed and undirected edges 
which turns the CPP for finding the least-cost route into an NP-hard problem. Minieka (1979) 
further extended the mix graph to a windy postman problem which assigns different costs for 
traveling an edge from different direction. Since the real world CPP problems can be very large, 
we can speed up total time needed to traverse all the edges by increasing the number of postmen 
or vehicles. The k-CPP was first introduced in Frederickson (1976) and it is NP-hard by a reduction 
from the k-partition problem. Comparing to the common objective of minimizing the total distance 
traveled by the k vehicles (k-CPP), MinMax k-Chinese postman problem (MM k-CPP) aims to to 
minimize the length of the longest of the k tours in order to balance the distance of each tour for k 
vehicles. Heuristic algorithms for the MM k-CPP were developed by Ahr and Reinelt (2002). A 
tabu search algorithm was also presented by Ahr and Reinelt (2006). Chen (2018) described a 
related MinMax Multiple-Depot Rural Postman Problem (MMMDRPP) and developed an 
efficient tabu-search-based algorithm and proposed three novel lower bounds to evaluate the 
routes. Gendreau and Hertz (1994) described a new tabu search heuristic for the vehicle routing 
problem with capacity and route length restrictions. Salhi and Sari (1997) proposed a multilevel 
composite heuristic to address the problem of simultaneously allocating customers to depots, 

and quickly find near-optimal solutions. Much empirical evidence shows that GAs are good at 
searching poorly-understood spaces and quickly finding optimal or near-optimal solutions. Our 
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finding the delivery routes and determining the vehicle fleet composition. GAs are a class of 
stochastic optimization algorithms that use the principles inspired from natural evolution for 
solving optimization problems. Sumichrast and Markham (1995) used the GA based method 
presented by Clarke and Wright (1964) for solving a problem where raw materials were transported 
from multiple depots to a set of plants. Thangiah and Salhi (2001) proposed a generalized 
clustering method based on a GA and applied a Genetic Clustering (GenClust) method for solving 
the multidepot vehicle routing problem.Wink and Back (2012) presented a Hybrid GA which 
incorporates problem-specific heuristics and domain knowledge into the algorithm for solving the 
Capacitated Vehicle Routing Problem. Choi and Seong (2003) presented a GA to solve the 
asymmetric traveling salesman problem. In this paper, we present a genetic  algorithm for the MM 
k-CPP problem with unfixed depots. 
 
3. Methodology 
 
In this section we introduce our method for 
route generation for multiple robots during 
a bridge inspection. To create a path for k > 
1 robots such that each edge on a bridge is 
covered at least once (k-CPP) and the 
workload is evenly distributed is difficult 
for a human expert, especially as k grows. 
Since the problem is also NP-Hard, we 
cannot use exhaustive search to find the 
optimal solution and we need to use some 
kind of heuristic search method such as a 
GA. Any heuristic search method requires us to compute the cost of a solution so that we can 
search for the minimal cost solution. The next two subsections describe our simulation 
environment and our cost computation. We used Unity3D as our simulation engine for simulating 
and visualizing bridges and robots. Fig. 1 shows a visualization of a test bridge used in our 
experiments. Once a final solution has been generated for k robots, we can observe their route in 
our simulation as they traverse the bridge. Each robot will leave a unique colored trail behind it, 
so that each robots path can be easily identified and it can be seen that the bridge has been 
completely covered. Furthermore, a human operator can be easily trained to manage multiple 
robots as they traverse truss members within this simulation, watching inspection progress, and 
intervening if robots run into trouble. The next subsection describes how this simulated bridge 
maps to the more abstract MM k-CPP. 
 
3.1 Translating a Bridge to a Graph 

The problem of generating k inspection routes for k robots maps to the MM k-CPP where the set 
of edges, E, maps to the set of bridge members and the set of vertices, V, map to joints. Thus, 
given a graph G = (V, E) corresponding to the bridge under consideration, solving the MM k-CPP 
solves the k-robot routing problem for bridge inspection. Specifically, we begin by translating the 
bridge into an undirected weighted graph, where the beams of the bridge are the edges, the 
connecting areas or joints, the vertices. The weight of each edge simply represent the distance 
along that path. Fig. 2 shows the bridge in Fig. 1 converted into a graph as described. We use a 

Figure 1. A bridge to be inspected. 
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distance matrix to represent the graph for our 
computation in GA by determining the shortest 
distance between any given two points to evaluate a 
possible solution. In order to solve the MM k-CPP 
problem we apply GA to generate possible solution 
paths and evolve solutions that minimize cost. GAs 
have been shown to find high-quality, near optimal 
solutions for problems with extensively large search 
spaces in polynomial time. Our results show that using 
the total length of all edges in our graph as the 
theoretical optimal solution, GAs can find the optimal 
path for one robot and consistently find a near optimal 
solution for k > 1 robots. 
 
3.2 Genetic Algorithms 

A Genetic Algorithm is a metaheuristic for optimization and search problems that evolves 
solutions by mimicking the process of natural selection. The process begins with an initial 
population comprised of randomly generated individuals; each individual contains a genetic 
representation of its solution called a chromosome. The process is iterative, each iteration produces 
a new population, or generation, of solutions. Every generation, each individual representing a 
candidate solution, is evaluated using a fitness function, this assigns a numeric value to each 
individual based on the quality of its solution; individuals with a higher fitness represent a better 
solution than those with a lower fitness. To form the next generation of solutions, individuals can 
be chosen using a variety of semi-random methods where the probability of any given individual 
being chosen is proportional to its fitness, so that high quality solutions are more likely to pass 
onto the next generation. Once a group of solutions has been selected, their chromosomes are 
combined, altered, or possibly randomly mutated to form the next generation using methods 
described further in the next subsection. This process will continue for a set number of generations 
or until a target fitness level is reached and the highest quality solution is returned. 
 
3.3 Chromosome Representation and Evaluation 

For a GA to work, it requires two things: a genetic 
representation of a candidate solution to the problem 
(usually encoded in a string like structure called a 
chromosome), and a fitness function to evaluate the 
quality of those solutions. In our GA an individual’s 
chromosome is stored as a string of numbers 
representing paths for k robots. Each number, read 
from left to right, represents an edge from the graph 
of our bridge to be traveled in that order; separating 
these numbers are robot identifiers, one unique identifier for each robot. An individual robots route 
is represented as the path of each edge starting from its identifier up until the next robots identifier. 
In the case where the end of the string is reached before another identifier is reached it will simply 
loop around to the beginning and continue until an identifier is found. Such a string like 

Figure 2. A graphical representation 
of the bridge. 

Figure 3. Chromosome and route splitting. 
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representation makes it easy for the genetic operators of crossover and mutation to generate new 
solutions. The GAs fitness function evaluates the individuals solution based on the distance of the 
path. There are two parts to this: the total path length, which is the combined length of all robots 
individual routes, and the length of the longest individual route. The fitness of a solution is equal 
to the longest route within the k routes. This way the fitness function is minimizing the longest 
route as well as minimizing the total length of k routes. When evaluating a member of the GA 
population, we convert the list of edges in the chromosome into a waypoint list as follows. If edges 
in the chromosome are adjacent nothing needs to be done and we add to the waypoint list. When 
two edges in the list are not adjacent, we uses Dijkstra’s algorithm to calculate the shortest path 
between the two edges and construct the waypoint list for that route. Individuals containing 
disconnected edges will have longer distance routes than individuals containing connected edges. 
Therefore, the GA will favor the individuals with more connected edges and less disconnected 
edges. To calculate the distance of a path, the GA translates the path representation from a series 
of edges into a series of waypoints, this process is done two edges at a time. The four points 
involved, each edges start and finish, are analyzed by running Dijkstra’s algorithm to find the 
shortest path between each point. Once all the edges have been converted to points on our graph, 
we can simply sum up the distance between them to get the routes length. In our GA, chosen 
individuals chromosomes are segmented and swapped using ordered crossover (OX) to form the 
next generation of solutions. 
 
4. Results and Discussion 
 
The experiments were designed to apply GAs to evolve routes for multiple inspection robots on a 
bridge inspection task. Each experiment is allowed to run for 106 fitness evaluations on the graph 
which is generated from the simulated bridge with 35 nodes and 81 arcs in total. As the global 
optima of the multiple robots path planning is unknown, the global optima of one robot path 
planning is used as a reference value to estimate the solution quality of different number of robots.  
 

 
 
 
 
 
 
 
 
 

Algorithm 1 Finding an Optimal Chinese Postman Route, Eiselt (1995) 
Step 1: List all odd nodes. 
Step 2: List all possible pairings of odd nodes. 
Step 3: For each pairing find the edges that connect the nodes with the minimum weight. 
Step 4: Find the pairings such that the sum of the weights is minimized. 
Step 5: On the original graph add the edges that have been found in Step 4. 
Step 6: The length of an optimal Chinese Postman route is the sum of all the edges added to 
the total found in Step 4. 
Step 7: A route corresponding to this minimum weight can then be easily found. 
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In a preliminary experiment the goal was to 
evaluate whether the GA is a suitable search 
algorithm for searching multiple routes for 
MM k-CPP problem. Therefore, we compare 
the quality of solutions produced by GAs 
with the solution using traditional method on 
a CPP with a single inspecting robot. To find 
a minimum Chinese Postman route we must 
go through each edge at least once and in 
addition we must also go through the least 
pairings of odd nodes on one extra occasion. 
We apply the Algo. 1 on the graph described 
in Fig. 2 which is derived from the bridge 
shown in Fig. 1 and found the optimal 
solution to be 51,268 which will be used as our upper bound baseline for our solutions found by 
GAs and for searching routes for multiple inspecting robots. Fig. 4 shows the result of finding a 
near optimal route for one robot. The result indicate that the best solution found by GA is 51,974 
which is only 1.377% extra distance compared to the optimal solution derived from Algo. 1.  
 
Although this experiment shows that GA finds 
near optimal routes close to the global optima 
for one robot, we are more interested in using 
multiple robots. Algo. 1 is no longer suitable for 
evenly splitting the optimal route into multiple 
routes. Therefore, we continue with our GA and 
investigate performance on the MM 2-CPP 
version of the problem with two robots. Fig. 5 
shows the evolutionary progress of GA on 
searching near optimal solutions for two robots. 
The best solution found by the GA for two 
robots is 52,968 which is 3.316% over the 
global optima on the one robot scenario. 
 
The two routes are visualized on Fig. 5 with route 1 to be 26,334 and route 2 to be 26,634 which 
is split closely by GAs. Comparing to the one robot scenario, the two robots are able to share the 
similar amount of the distance with the total 
amount of the two routes to be close to the best 
solution found by GAs for one robot scenario. 
This indicates that our total amount of time of 
using two robots to conduct the bridge inspection 
is only half of the time of using one robot. The 
best solution for two robots is shown in Table I . 
We noticed that the best solution found by GAs 
for two robots is slightly worse than the best 
solution found by GAs for one robot. This is 

Figure 4. The average over 10 runs of GA on one robot 

Figure 5. Average over 10 runs of GAs on 2 and 5 
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because we encoded robots into the chromosome along with the edges which means the more 
robots we have in the experiments, the larger search space our GAs need to search. This is also 
indicated by that at the same generation, the GAs found the distance for one robot is better than 
two robots. 
 
We further extend our experiments from two robots to five robots for evaluating the generalization 
of our approach. Fig. 5 shows the best solution found by GAs when using five robots to inspecting 
the same bridge described in Fig. 1. The results shows that the best solution for five robots is 
55,480 which is 8.216% extra distance 
comparing to the global optima. The best 
solution for five robots is shown in Table II. 
Comparing to the one robot scenario, the five 
robots are able to share the similar amount of 
the distance with the total amount of the five 
routes to be close to the best solution found by 
GAs for one robot scenario. This indicates that 
our total amount of time of using five robots to 
conduct the bridge inspection is only one fifth 
of the time of using one robot. The duration of 
a bridge inspection project linearly decreases 
based on the number of robots used in the 
project. 
 
6. Conclusion and Future Work 
 
This paper investigates using evolutionary algorithms on a MinMax k-Chinese postman problem 
on generating k routes each for a robot in bridge inspection projects. We encoded k routes for a 
group of inspecting robots as a series of edges to be traversed by the robots and used a GA to find 
near optimal solutions that minimize the total distance traversed while covering every edge and 
balancing the distances traversed by each robot. In order to put our work in context, we compare 
our experiment results with the global optimal solution based on one robot traverse the same graph. 
Then we extended our experiments to search for two balanced routes for two inspecting robots in 
a project. We further extended our experiments to search for five balanced routes which assumes 
we deploy five inspection robots. The results show that using our route representation, GAs could 
find a near optimal solution within 1.377% of the global optimum found using Algo. 1. For two 
robots, where Algo. 1 no longer applies, our GAs found two approximately equal length routes 
and each route is approximately half of the length comparing to the global optimal route. Extending 
to five robots, we get similar results which all the edges on the bridge are covered at least once 
and each route is approximately one fifth of the global optimal route. The results show that using 
our GAs we are able to linearly speedup our bridge inspection tasks for each robot added. By 
automating route generation for inspection robots we reduced the cost and time involved in routine 
bridge inspection. In future work, we are interested in applying our evolutionary approach on 
multiple extensions of MM k-CPP problems including robots moving with different speeds during 
inspection and traveling without inspecting. We are also interested in extending the undirected 
graph considered in MM k-CPP to a directed graph with different costs on different directions. 
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