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concentrated on the effect of strain rate on material properties and the structural strength of cold

formed steel members along with the behavior of hybrid members. The research findings for the 

period from 1988 through 1997 are summarized in this report. 
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1. INTRODUCTION 

In recent years, various grades of sheet steels have been widely used by automotive 

manufacturers to produce more economic vehicles. The design information for using sheet steels is 

provided in the AISI Automotive Steel Design Manual (A2). In order to provide more design 

information on the structural use of high strength sheet steels, a research project was conducted at 

the University of Missouri-Rolla since 1982 under the sponsorship of the American Iron and Steel 

Institute. Results of the UMR research have been reflected in various versions of the AISI Design 

Manual (A2). 

During the first six years of the study, the research work emphasized the study of mechanical 

properties of a selected group of high strength sheet steels along with the structural strength of cold

formed steel members subjected to static loading. The research findings were pr~sented in ten 

progress reports (Bl - BlO), three theses (Cl - C3), and eight journal and conference papers (Dl -

D8). The primary reason for these investigations was due to the fact that the design provisions 

adopted from the AISI Specification (AI) were originally developed for building design using 

relatively low strength sheet steels. The study of automotive components was involved with the 

structural strength of flat and curved elements using high strength steels because the curved elements 

are also used for vehicles. 

In view of the fact that automotive components are usually subject to dynamic loads, 

additional research work was carried out from 1988 though 1997 to study the effect of strain rate on 

material properties and the structural strength of cold-formed steel members including hybrid 

sections. The research findings on these subjects were presented in 12 progress reports (B 11 - B22), 
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two theses (C4 & C5), and 10 journal and conference publications (D9 - 018). 

In this report, the research results on the strain rate effects on material properties and member 

strength are summarized with cited references. Specifically, the effect of strain rate on material 

properties is presented in Section II. In Section III, discussions are dealing with the effect of strain 

rate on structural members including stub columns and beams. Finally the report is summarized in 

Section IV. 
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II. EFFECT OF STRAIN RATE ON MATERIAL PROPERTIES 

A. General 

During the period from 1988 through 1992, the effect of strain rate on mechanical 

properties was investigated for five grades of sheet steels. They were 35XF, 50XF, lOOXF, 

25AK, and 50SK. Among these five sheet steels, the effects of strain rate on the mechanical 

properties of 35XF, 50XF, and lOOXF sheet steels were reported in the 11th and 12th 

Progress Reports (B11 and BI2). A similar study of the mechanical properties of25AK and 

50SK sheet steels was presented in the 17th Progress Report (B 17). The aging effect on the 

material properties of these two sheet steels (25AK and 50SK) was discussed in the 21st 

Progress Report (B21). 

Details of the research findings for the effect of strain rate on material properties are 

summarized in subsequent subsections. 

B. Tensile Properties (B 11, B 14, B 17, and B 18) 

a. XF Sheet Steels (Bll, B14, and B18) 

The effect of strain rate on the tensile properties of35XF, 50XF, and lOOXF 

sheet steels was studied from May 1988 through December 1988. The research work 

included a review of literature and testing of 124 tensile specimens. Detailed 

information on the experimental investigation ofXF sheet steels was presented in the 

11 th Progress Report (B 11). In these tensile coupon tests, mechanical properties 

were determined for longitudinal (parallel to the direction of the rolling) and 



4 

transverse (perpendicular to the direction of the rolling) directions under three 

different strain rates of 10-4, 10-2
, and 1.0 in'/in./sec. Figures 2.1, 2.2, and 2.3 show 

graphically the effect of strain rate on the stress-strain curves of 3SXF, SOXF, and 

100XF sheet steels tested in longitudinal tension. The increases in longitudinal 

tensile yield stress for these three XF sheet steels are summarized in Table 2.1. These 

tested yield stresses are used in Section ill of this report for the evaluation of member 

strength of stub columns and beams. In addition to the virgin material properties, two 

of the three materials (3SXF and SOXF) were also tested in tension to determine the 

combined effects of cold-stretching and strain rate. In order to determine the 

combined effects of strain rate and aging, half of the coupons were tested during a 

period of two days after cold-stretching operation. The remaining half of the cold

stretched coupons were tested to failure at least 30 days after cold-stretching 

operation. No significant increase in static yield stress was observed due to the strain 

aging effect. However, the results indicated that all mechanical properties (F Y' F U' and 

elongation) were affected by the strain rate and the amount of cold':stretching when 

the strain rate increased from 10-4 to 1.0 in.lin.lsec. For the details, see References 

Bl1, B14, and B18. 

b. AK and SK Sheet Steels (B 17 and B 18) 

Up to November 1991, the UMR studies were limited only to the structural 

members which were fabricated and assembled with the same material in a given test 

specimen. At its November 13, 1991 meeting, the AISI Task Force on Automotive 
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Structural Design decided to investigate hybrid sections which are fabricated and 

assembled from two different sheet steels, one with a 25 ksi yield stress, and the 

other with a 50 ksi yield stress. Consequently, a total of 48 tensile coupons of25AK 

and 50SK sheet steels were tested in early 1992 to study the effect of strain rate on 

mechanical properties of these two sheet steels which have nominal yield stresses of 

25 ksi and 50 ksi. In those tests, the strain rate also ranged from 10-4 to 1.0 in.lin.lsec. 

The stress-strain curves for 25AK and 50SK sheet steels are shown in Figures 2.4 

and 2.5, respectively. The tested yield stresses for these two types of sheet steels are 

also given in Table 2.1 and used in Section III to evaluate the structural strength of 

hybrid sections. 

C. Compressive Properties (BI2, B14, B17, and B18) 

a. XF Sheet Steels (B12, B14, and B18) 

During the period from January 1989 through July 1989, the UMR research 

work dealt with a study of compressive mechanical properties of35XF, 50XF, and 

100XF sheet steels. The results of 54 tests were presented in the 12th Progress Report 

(B 12). Figures 2.6, 2.7, and 2.8 illustrate the effect of strain rate on the stress-strain 

curves of 35XF, 50XF, and 100XF sheet steels tested in longitudinal compression. 

The tested compressive yield stresses and proportional limits are summarized in 

Table 2.2. 

b. AK and SK Sheet Steels (B 17 and B 18) 

In early 1992, a total of 24 compression coupons of 25AK and 50SK sheet 
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steels were tested and reported in Reference B 17. Compressive stress-strain curves 

are shown in Figures 2.9 and 2.10 for 25SK and 50Sk sheet steels, respectively. The 

compression coupons were tested under four different strain rates ranging from 10-4 

to 1.0 in.lin.lsec. The tested compressive yield stresses and proportional limits are 

also given in Table 2.2. 

D. Predicted Tensile and Compressive Yield Stresses (Bll, B12, B17, and B18) 

a. Strain Rate Sensitivity 

The strain rate sensitivity was reviewed and discussed in the lith, 12th, and 

17th Progress Reports. Based on the test results on tensile and compressive 

mechanical properties of five different sheet steels, the strain rate sensitivity 

exponents m were computed as follows: 

(2.1) 

In the above equation, a I and O2 are the stresses corresponding to strain rates e I and 

e2, respectively. It was found that in general, the strain rate sensitivity increases as 

the strain rate increases and that it decreases progressively as the static yield stress 

level increases. The computed strain rate sensitivity exponents were presented in 

tables and figures, which were included in the progress reports. 

b. Prediction of the Dynamic Yield Stress 

In order to predict the dynamic tensile and compressive stresses for a given 

strain rate, the following second degree polynomial equation was developed in the 

12th Progress Report for 35XF, 50XF, and 100XF sheet steels by using the least 



square method in the strain rate range of 0.0001 to 1.0 in.lin.lsec. 

Y=A+BX+CX2 

where Y = yield stress 

X = log e 

e = strain rate 

A, B, and C = constants 

7 

(2.2) 

The polynomial parameters A, B, and C were determined from the test data 

of 35XF, 50XF, and 100XF sheet steels. These constants were given in the 12th 

Progress Report for each individual case tested under compression and tension. For 

25AK and 50SK sheet steels, the polynomial parameters were given in the 17th 

Progress Report. The polynomial equations for these five sheet steels tested under 

longitudinal tension and longitudinal compression are shown in Figures 2.11 through 

2.20. 

In order to simplify the design procedure, it is desirable to have a general 

equation to predict the yield stresses for different sheet steels under various strain 

rates. In the 18th Progress Report (B 18), a combination of material properties 

obtained from five different sheet steels (25AK, 35XF, 50XF, 50SK, and 100XF) 

were used to develop the following general equation (Eq. 2.3). Allowing some 

extrapolation of the test data, this equation is proposed for strain rates ranging from 

10-4 to 102 in.lin.lsec. 

(Fy}pred = (A e(BlFy) + l)(Fy) 

where F y = static yield stress 

(2.3) 



A = a l + b l log(e) + c i log(e)2 

B = ~ + b2 Iog(e) + c2 Iog(e)2 

e = base of natural logarithm = 2.718 

e = strain rate 

For tensile yield stress: 

al t = 0.023 

bit = 0.009 

cit = 0.001 

For compressive yield stress: 

ale = 0.033 

b le = 0.004 

a2t = 77.7 

b2t = 0.069 

C2t = -0.595 

a2e = 64.9 

b2e = 11.1 

c le = 0.000 c2e = -1.87 
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(2.4) 

(2.5) 

Based on Equations 2.3, 2.4, and 2.5, Figures 2.21 and 2.22 show graphically 

the predicted yield stresses for tension and compression, respectively, using different strain 

rates. Good agreements between the tested and predicted yield stresses were obtained in the 

18th Progress Report by using these general equations. For design purpose, Equations 2.3, 

2.4, and 2.5 are presently included in Revision 5 of the AISI Automotive Steel Design 

Manual (A2). 

E. Aging Effect (B 11 and B21) 

In Section n.B.a, it was mentioned that the combined effect of strain rate and aging 
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was studied briefly for 35XF and 50XF sheet steels in the 11 th Progress Report (B 11) by 

applying cold-stretching in tensile coupons, which were tested at different times. At the 

suggestion of the AISI Task Force, the aging effect on the mechanical properties of25AK 

and 50SK sheet steels were studied in August 1995 and January 1997. The mechanical 

properties obtained from the coupon tests conducted in 1992, 1995, and 1997 were compared 

in the 21st Progress Report (B21) as shown in Figures 2.23 and 2.24. It was found that at 

the strain rate of 0.0001 in'/in./sec, the yield stresses and tensile strengths of 25AK and 

50SK sheet steels increased by 4 to 6% over a time period of four years and ten months due 

to the aging effect. At the strain rate of 0.01 in'/in./sec, the yield stresses and tensile strengths 

of the same sheet steels increased by 4 to 10% over the same period of time. Based on the 

coupon tests conducted in 1995, at the strain rate of 0.0001 in'/in./sec., the yield stress of 

25AK and 50SK sheet steels increased by 6 to 9% over a time period of three years and five 

months. For details, see Table 2.3. 

It was also found that the percentage increases in the yield strength ·ofthe 25AK and 

50SK steels are approximately the same as the percentage increases in the tensile strength 

of both steels. The increases in both yield and tensile strengths of the 25AK steel appear to 

be slightly higher than that for the 50SK steel over the same period of time. 

F. Summary on the Effect of Strain Rate on Material Properties 

Based on the test results reported in References B 11, B 12, B 17, B 18, and B21, the 

following conclusions have been drawn for the effect of strain rate on the mechanical 



10 

properties of five selected sheet steels. 

1. The mechanical properties (proportional limit, yield stress, and ultimate tensile 

strength) increase with increasing strain rates. 

2. For most cases, the mechanical properties in transverse direction are slightly 

higher than those in the longitudinal direction under the same strain rate. 

3. Yield stress is more sensitive to strain rate than ultimate tensile strength. 

4. In general, the strain rate sensitivity values for yield stress in tension are similar 

to the values in compression. 

5. The strain rate sensitivity value is not a constant for each sheet steel. In most 

cases, the strain rate sensitivity value increases with increasing strain rate. 

6. The mechanical properties of the sheet steels having lower yield stresses are more 

sensitive to strain-rate than the sheet steels having higher yield stresses. Table 2.4 

lists the percentage increase in yield stress when the strain rate increases from 

0.0001 to 1.0 in.lin.lsec. 

7. Polynomial equations have been developed for the dyriamic tensile and 

compressive yield stresses of five selected sheet steels. These equations can 

predict the dynamic yield stress at higher strain rates than that used in the tests. 

8. For design purposes, a general equation (Equation 2.3) was developed to predict 

tensile and compressive yield stresses for the strain rates from 10-4 to 102 

in.lin.lsec. 

9. Based on the preliminary study of 35XF and 50XF sheet steels, no significant 

increase in yield stress was observed due to strain aging over a time period of 30 
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days. However, material properties were found to be affected by the strain rate 

and the amount of cold stretching. 

10. A study of25AK and 50SK sheet steels indicated that at the strain rate of 0.0001 

in'/in./sec., the yield stress increased by 4 to 6% over a time period of four years 

and ten months due to the aging effect. At the strain rate of 0.01 in'/in./sec., the 

yield stress increased by 4 to 10% over the same period of time. Based on the 

coupon tests conducted in 1995, at the strain rate of 0.0001 in'/in./sec., the yield 

stresses of 25AK and 50SK sheet steels increased by 6 to 9% over a time period 

of three years and five months. No coupon tests were conducted in 1995 for the 

strain rate of 0.01 in.lin.lsec. 
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III. EFFECT OF STRAIN RATE ON COLD-FORMED STEEL MEMBERS 

A. General 

The structural behavior and strength of cold-fonned steel members subjected to 

higher strain rates were studied since August 1989. Two materials (35XF and 50XF) were 

used in the first phase of investigation. The main purpose of this study was to detennine 

whether the AISI design fonnulas which were originally developed from static tests, can also 

be used for structural members subjected to dynamic loads. 

Up to April 1990, 37 stub columns and 30 beam specimens fabricated from 35XF 

sheet steel were tested by Kassar under different strain rates. Hat- and box- sections were 

used to determine the strength of structural members having stiffened compression elements. 

Channels and 1- sections were used to study the strength of members having unstiffened 

compression elements. Test results and evaluations were presented in the 13th and 14th 

Progress Reports (B13 and BI4). 

During the period from May 1990 through October 1990, 12 stub columns using 

35XF steel and 48 stub columns using 50XF steel were tested by Pan. Test results and 

evaluations were presented in the 15th and 18th Progress Reports (B 15 and B 18). 

In addition to the study of the stub columns using 50XF sheet steel, the study of the 

beam specimens fabricated from 50XF sheet steel subjected to dynamic loads was initiated 

in March 1991. Fifteen (15) channel specimens and 15 hat-sections were tested as beams 

under the strain rates from 10-5 to 10-2 in.lin.lsec. The test results were evaluated and 

presented in the 16th and 18th Progress Reports (B 16 and B 18). 
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Prior to 1992, the study was limited only to the structural members which were 

assembled with the same material in a given section. In order to determine the structural 

strength and behavior of hybrid sections using different sheet steels, 52 drop tower tests of 

stub columns using 25AK and 50SK sheet steels were conducted at General Motors 

Corporation during the summer of 1992. The impact velocities used for the tests were 28.5 

and 43.2 kmIhr. The research findings were presented by Schell and Pan at the 1993 and 

1994 International Body Engineering Conferences, respectively (D17 and Dl3). 

At the University of Missouri-Rolla, the study of hybrid stub columns fabricated from 

25AK and 50SK sheet steels was initiated in January 1993. A total of96 box-shaped stub 

columns and 48 hat-shaped stub columns were tested under strain rates from 10-4 to 10-1 

in.lin.lsec. Among these tests, 80 specimens were hybrid sections. The test results were 

evaluated and presented in the 19th Progress Report (B 19). 

With regard to hybrid beams, the testing of hat-shaped specimens was initiated in 

October 1993. A total of72 beams fabricated from 25AK and 50SK sheet steels were tested 

for dynamic loads under strain rates from 10-4 to 10-2 in.lin.lsec. The test results were 

presented in the 20th Progress Report (B20). 

Research findings on the effect of strain rate on cold-formed steel members are 

summarized in subsequent sections. 

B. UMR Study - Homogeneous Members 

As stated in Section ill.A, hat-sections, box-sections, channels, and 1- sections have 

been used to study the strength of cold-formed steel members for the purpose of verifying 
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the adequacy of the AISI design provisions for automotive components which are subjected 

to dynamic loads. Following a detailed review of literature and the conduct of extensive 

experimental investigations, the research results with evaluations were presented in seven 

progress reports (B 13 - B 16 , B 18 - B20). 

a. 13th Progress Report (B 13) - Stub Columns and Homogeneous Beams Fabricated 

from 35XF Steel 

The 13th Progress Report contains a literature review of the structural behavior and 

strength of compression elements under static and dynamic loads. It also includes the 

background information on the AISI design provisions. 

The experimental investigation and the evaluation of the experimental data presented 

in this report dealt with 37 stub columns and 30 beams fabricated from 35XF sheet steel. The 

ranges of wit ratios varied from 8.93 to 20.87 for unstiffened compression elements and from 

26.92 to 76.64 for stiffened compression elements with strain rates ranged from 10.5 to 0.1 

in.lin.lsec. 

Experimental Investigation 

1. Stub Columns 

Eighteen (18) box-sections and 19 I-sections (Figure 3.1 (a» were tested as 

stub columns under different strain rates. Test results were compared with the critical local 

buckling load (Eq. 3.1) and the ultimate axial load (Eq. 3.2) calculated as follows: 

(3.1) 

(3.2) 



where ~ = effective cross-sectional area of the stub column 

At = full cross-sectional area of the stub column 

fer = critical local buckling stress of compression element 

F y = static or dynamic yield stress of steel 

2. Beams 

15 

Fifteen (15) hat-sections and 15 channel-sections (Figure 3.1 (b)) were tested as 

simply supported beams under different strain rates. Test results were compared with the 

critical local buckling moment (Eq. 3.3) and the bending moment strength (Eq. 3.4 or 3.6) 

calculated as follows: 

where Sxe = elastic section modulus of the full cross section 

relative to the compression flange 

fer = critical buckling stress of the compression flange 

(3.3) 

For the bending moment strength, two approaches were used in'the evaluation of 

experimental results. i.e., initiation of yielding and inelastic reserve capacity, For these two 

approaches, the "Initiation of Yielding" approach can be used to determine the yield moment 

for any cross section. However, the "Inelastic Reserve Capacity" approach for computing 

the ultimate moment can only be used for certain sections subjected to some specific 

limitations. 

(i) Based on the Initiation of Yielding 

The yield moment is 



My = FySe 

where F y = static or dynamic yield stress of steel 

Se = elastic section modulus of the effective section 

(ii) Based on the Inelastic Reserve Capacity 

For neutral axis: f adA = 0 

For ultimate moment: Mu = f aydA 
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(3.4) 

(3.5) 

(3.6) 

In Equations 3.5 and 3.6, a is the stress in the element, A is the area of the element, 

and y is the distance from the centroid of the element to the neutral axis. 

Figure 3.2 shows the stress distribution in sections with yielded tension and 

compression flanges at ultimate moment. The following equations can be used to compute 

the values Ye' Yt, Yp' yep' and Yip as shown in Figure 3.2 and the ultimate moment, Mu' For the 

purpose of simplicity, midline dimensions were used in the calculations. 

Ye = (bt - be + 2d)/4 

Yt = d - Ye 

Yep = Ye - Yp 

yip = Yt -Yp 

Mu = Fyd bcYc + 2ycp(Y p + yJ2) + (4/3)(Yp)2 + 2ytp(yp + yJ2) + btYJ 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 



where be = effective width of the compression flange 

bl = total width of the tension flange 

d = depth of the section 

t = thickness of the section 

Cy = compression strain factor for stiffened 

compression elements without intermediate 

stiffeners, which can be determined as follows: 

Cy = 3 for wit $; Al 

Cy = 3 - 2(w/t - A I) I (A2 - AI) for Al < wit < A2 

Cy = 1 For wit 2 A2 

where Al = 1.111 (FJEf' 

A2 = 1.28/(FJEf' 
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(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

According to the AISI Specification (AI) and the Automotive Steel Design Manual 

(A2), the ultimate moment computed by using the inelastic reserve capacity procedure 

should not exceed the limit of (1.25 S;' y). 

In addition, the "Inelastic Reserve Capacity" approach can be used only when the 

following conditions are met: 

(1) The member is not subject to twisting or to lateral, torsional, or torsional-

flexural buckling. 
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(2) The effect of cold forming is not included in detennining the yield point. 

(3) The mtio of the depth of the compressed portion of the web to its 

thickness does not exceed 1.111 (F /Ef' 

(4) The shear force does not exceed 0.35Fy times the web area, ht. 

(5) The angle between any web and the vertical does not exceed 30 degrees. 

In addition to the study of moment capacity, deflections of beams were measured and 

compared with the calculated values. 

Summary 

Based on the test data and the evaluation in accordance with the Automotive 

Steel Design Manual (A2), the following conclusions were drawn for the effect of dynamic 

loads on the structural strength of cold-formed steel stub columns and beams fabricated from 

35XF sheet steel: 

1. For most of the tests, the critical local buckling strength, yield strength, and 

ultimate strength increased with increasing strain rates. The ultimate strengths 

showed larger increases at higher strain rates than at lower strain rates for 

specimens with various wit ratios. 

2. The effect of strain rate on member strength was found to be slightly higher than 

that for material properties. It is expected that the increase of member strength 

may be partially due to aging effect. 

3. The computed ultimate strength in accordance with the Automotive Steel Design 

Manual was found to be conservative for all stub column and beam tests. The 
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prediction of the ultimate capacity was improved by using the dynamic yield 

stress. 

4. Except for two channel beams, the computed midspan deflections of beams are 

slightly larger than those measured from tests. 

b. 14th Progress Re.port (B14) - First Summaty on the Study of the Effect of Strain Rate 

on Material Properties and Structural Strength of Stub Columns and Beams Using 

35XF Sheet Steel 

This report was based on Kassar's Ph.D. thesis completed in May 1990 (C4). It 

included (1) a comprehensive review of literature on materials and members, (2) 

experimental programs on material properties of three sheet steels (3SXF, SOXF, and 100XF) 

in tension and compression, (3) results of30 beam tests and 37 stub column tests using 35XF 

sheet steel for stiffened and unstiffened compression elements, (4) evaluation of material test 

data, (5) evaluation of the experimental data for structural members, and (6) conclusions. 

This document is the first summary on the study of the effect of strain rate on material 

properties and structural strength of cold-formed steel members which was conducted by 

Kassar _ at UMR since May 1988. The primary goal of this study was to determine the 

adequacy of the AISI effective width formulas for the design of automotive components 

subjected to dynamic loads. 

As the first phase of the research work, dynamic material properties of three sheet 

steels (3SXF, SOXF, and 100XF) were determined experimentally by using the MTS 880 

Test System. The strain rate used for the tests ranged from 10..4 to 1.0 in.lin.lsec. At the same 
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time, a large number of related publications and research reports were reviewed in detail. 

F or the experimental program, comprehensive discussions were presented for material 

properties concerning test equipment and test procedure with a complete set of figures and 

tables for three sheet steels tested in tension and compression both in longitudinal and 

transverse directions. The steel sheets used for the tests included virgin materials, 2% cold

stretched and 8% cold-stretched coupons tested under different strain rates at various times. 

The test data on stub columns and beams using 35XF sheet steel were based on the 13th 

Progress Report. 

All test results on material properties, stub columns, and beams were evaluated and 

compared with the computed values in accordance with the Automotive Steel Design 

Manual. Conclusions were drawn for the effect of strain rate on material properties and the 

effect of dynamic load on member strength. The following conclusions were based on the 

research findings on three different sheet steels combined with 67 cold-formed steel 

members using 35XF sheet steel: 

Materials 

J. Proportional limit, yield strength, and ultimate strength increase with increasing 

strain rate. 

2. Yield strength is more sensitive to strain rate than ultimate strength. 

3. The strain rate sensitivity value is not a constant. In most cases it increases with 

increasing strain rate. 

4. The mechanical properties of sheet steels having low yield strengths are more 
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sensitive to strain-rate effects. 

5. A second degree polynomial is well fitted to the experimental data for both 

tension and compression and can be used to predict the yield and ultimate 

strength at high strain rates above the range of the strain rate used in the tests. 

Structural Members 

1. The critical local buckling strength, yield strength, and ultimate strength for most 

of the tests increased with increasing strain rates. The ultimate strengths showed 

larger increases at higher strain rates than at lower strain rates. 

2. The effect of strain rate on member strength was found to be similar to those 

observed from the previous study of material properties as affected by different 

strain rates. However, ratios of dynamic to static ultimate strength for beams and 

stub columns conducted in this study were found to be slightly higher than those 

for tensile or compressive material yield stresses. 

3. The computed ultimate strength based on the Automotive Steel Design Manual, 

using static or dynamic yield stress, was found to be conservative for all beam 

and stub colwnn tests. The mean and standard deviation values for the ratios of 

tested-to-computed ultimate strengths were improved by using the dynamic yield 

stresses rather than the static values for all cases studied in this investigation. 

4. The computed midspan deflection under service moments are slightly larger than 

those measured from tests, except for two channel beams. 

c. 15th Pro~ess R~Qrt (BlS) - Additional Study of Stub Columns Having Large wit 
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Ratios and Fabricated from 35XF and 50XF Sheet Steels 

In the 13th Progress Report, the wit ratios used for stub columns with unstiffened and 

stiffened elements were limited to 20.87 and 76.64, respectively. In order to study the 

behavior of steel members with relatively large wit ratios, six I-shaped sections having 

unstiffened elements with wit ratios of about 44 and six box-shaped sections having stiffened 

elements with wit ratios of about 100 (Figure 3.1 (a)) were fabricated from 35XF steel and 

tested as stub columns in August 1990. In addition, 22 box-sections having stiffened 

elements with wit ratios up to 98 and 26 I-sections having unstiffened elements with wit 

ratios up to 35 were fabricated from 50XF sheet steel and tested as stub columns during the 

period from August through October 1990. 

In the evaluation of the test data, Equations 3.1 and 3.2 were used to compute the 

predicted critical local buckling load and the ultimate axial load using static and dynamic 

yield stresses. Based on the research findings on the additional stub column tests for 

relatively large wit ratios and the use of-two types of sheet steels, it was found that the 

predicted ultimate axial loads for the stub columns fabricated from 50XF sheet steel are less 

conservative than the stub columns fabricated from 35XF sheet steel. It was also noted that 

the predicted ultimate loads of the stub columns for studying stiffened elements are less 

conservative than the stub columns for studying unstiffened elements. Tables 3.1 and 3.2 

present a summary of the mean values and standard deviations of (P u ) tes/P u ) comp ratios based 

on the stub column tests for the study of stiffened elements in Table 3.1 and the study of 

unstiffened elements in Table 3.2. 

In this report, an attempt was made to study the effect of cold-work on the axial 
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capacity of stub columns. From the results presented in Appendix A of the 15th Progress 

Report, it was observed that for the box-shaped and I-shaped stub columns with relatively 

small wit ratios, a better prediction of ultimate axial loads can be obtained by considering 

the cold-work effect. 

d. 16th Progress Rcmort (B16) - Additional Study of Beams Using 50XF Sheet Steel 

In 1990, Kassar tested and studied 30 beam specimens using just 35XF sheet steel. 

During the period from February through May 1991, 15 additional hat-shaped beams and 15 

channel beams (Figure 3.1 (b)) were fabricated from 50XF sheet steel and tested by C.L. Pan. 

The wit ratios of the stiffened compression flanges ranged from 26.28 to 66.08. For the 

unstiffened compression elements, the wit ratios varied from 8.78 to 20.57. The strain rates 

were in the range of 10-5 to 10-2 in.lin.lsec. 

In the evaluation of the test data, Equations 3.3 and 3.4 were applied for the 

calculation of the critical local buckling moment and the yield moment, respectively. In 

addition, due consideration was given to the effect of cold-work of forming for the channel

beams having unstiffened compression flanges with small wit ratios. For some hat-shaped 

beams,the inelastic reserve capacity was calculated for the purpose of comparison if such 

a member can satisfy the specific AlSI requirements. 

Based on the evaluation of the beam tests using 35XF and 50XF sheet steels, 

conclusions were drawn for the effect of strain rate on the strength of cold-formed steel 

beams using these two types of sheet steels: 

1. For beam specimens using hat-sections and channels with small wit ratios, 
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a better prediction of yield moments can be achieved from the consideration of 

the cold work of forming with an exception for the hat-shaped beams fabricated 

from 50XF sheet steel. Tables 3.3 and 3.4 show the improvements of prediction 

by considering cold-work of fonning for hat-sections and channels with small 

wit ratios. For Table 3.3, the wit ratio ofthe stiffened flange varied from 29.05 

to 30.17 for hat sections. For Table 3.4, the wit ratio of the unstiffended flange 

varied from 9.03 to 9.28 for channels. 

2. From the beam tests using hat-sections and channels, the computed moments for 

the beams fabricated from 50XF sheet steel were found to be less conservative 

than the beams fabricated from 35XF sheet steel as indicated in Tables 3.5 and 

3.6. 

3. The computed ultimate moments of beam specimens having stiffened flanges 

are slightly less conservative than the beam specimens with unstiffened flanges. 

Other conclusions which were drawn in the 13th and 14th Progress Reports for 

the beams fabricated from 35XF sheet steel are applicable to those beams 

fabricated from 50XF sheet steel. 

e. 18th Progress Re.port (BI8) - Second Sumrow on the Study of the Effect of Strain 

Rate on Material Properties and Structural Strength of Stub Columns and Beams 

Usin~ 35XF and SOXE Sheet Steels 

This report was based on C.L. Pan's Ph.D. thesis completed in December 1992 (C5). 

It covered the study of the effect of strain rate on the material properties of five types of sheet 
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steels with nominal yield strengths ranging from 25 ksi to 100 ksi. Test results of 97 stub 

columns and 60 beams fabricated from 35XF and 50XF sheet steels were evaluated for the 

purpose of studying the member strength affected by the strain rate. 

In this report, in addition to the coverage of general subjects such as introduction, 

review ofliterature, experimental program, evaluation of experimental data, and conclusions, 

further discussions were included for material properties and test results of stub columns and 

beams. 

Specifically, this report is the second summary on the study of the effect of strain rate 

on material properties and member strength. The information used for the analysis and 

comparison with the AISI design provisions covered all the tests of five sheet steels and 157 

members conducted by Kassar and Pan during the period from 1988 through 1992. In the 

evaluation of material test results, a general equation (Eq. 2.2) was developed in the report 

for predicting the dynamic yield stresses. For the structural strength of stub columns and 

beams, both static and dynamic yield stresses were applied for the determination of the axial 

capacity of stub columns and the bending strength of beams. The cold-work of forming and 

the inelastic reserve capacity of beams were considered when the specific requirements are 

met. Other topics discussed in the report were related to the member strength as affected by 

the stress-strain relationship of the sheet steel and the improvement of the predicted member 

strength by using appropriate local buckling coefficients for unstiffened compression 

elements. 

Based on the available information and a detailed study, it was reconfirmed that the 

mechanical properties of sheet steels and the ultimate strength of cold-formed steel structural 
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members increase with increasing strain rates. For compact sections fabricated from 35XF 

sheet steel, the effect of cold-work should be considered in the calculation of the ultimate 

loads of stub columns and the yield moments of beams, provided that the AISI specific 

requirements are met. For noncompact stub columns and beams, the values oflocal buckling 

coefficient obtained from Kalyanaraman's equations (Equations Al through A7 in Appendix 

A) can be used for calculating the effective width of unstiffened compression elements. 

Based on these buckling coefficients, good comparisons were obtained between the tested 

and predicted ultimate loads for stub columns frabricated from 35XF and 50XF sheet steels. 

A better prediction for the ultimate capacity of stub columns and beams can be 

obtained by using the dynamic yield stress, for which a general equation (Eq. 2.3) was 

developed to provide good predictions for the dynamic yield stresses in both tension and 

compression. 

C. UMR Study - Hybrid Members 

a. 19th Progress R!(port (BI9) - Study of the Effect of Strain Rate on the Structural 

Stren~h and Crushin~ Behavior of Hybrid Stub Columns Usin~ 25AK and 50SK 

Sheet Steels 

Prior to December 1992, the UMR research work dealt only with the structural 

strength of cold-formed steel homogeneous members which were fabricated from or 

assembled with the same material in a given section. Since 1993, the study was concentrated 

on the strength of the hybrid sections using two different sheet steels in a built-up member. 

In this investigation, the material properties of25AK and 50SK sheet steels were determined 
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experimentally under the strain rates from 10-4 to 1.0 in.lin.lsec. An extensive review of 

literature was then conducted by c.L. Pan with an emphasis on the structural strength of 

hybrid members and the crushing load of stub columns. Finally, a total of96 box-shaped stub 

columns (Figure 3.3 (a» and 48 hat-shaped stub columns (Figure 3.3 (b» were fabricated 

from 25AK and 50SK sheet steels and tested under dynamic loads using strain rates from 

1 0-4 to 10-1 in.lin.lsec. Among these stub column tests, 80 specimens were hybrid sections. 

This progress report discusses the effect of strain rate on the structural strength and 

crushing behavior of cold-formed steel stub columns. In the evaluation of the test data, the 

ultimate axial load of hybrid stub columns was calculated by using the following equation: 

(3.25) 

The subscripts of "1" and "2" used in Equation 3.25 represent the components in 

the stub column fabricated from two different sheet steels. The effective design widths to be 

used for determining the effective cross-sectional areas, (~)1 and (~)2' were computed on 

the basis of (Fy)1 and (Fy)2' respectively. It should be noted that Equation 3.25 can be used 

to compute the ultimate axial load for hybrid sections only if the slenderness ratio of the 

column is small to avoid overall buckling of the member. 

As far as the mean crushing load is concerned, the following empirical equation was 

developed for predicting the mean crushing load by using the computed ultimate load for 

box-shaped and hat-shaped stub columns failed by folding: 

Pmean = [0.141 (a - 1.144) + 0.361]Pu (3.26) 
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where a = aspect ratio, d '/b,:' as defined in Figure 3.4. The mean crushing load computed 
/. 

according to Equation 3.26 was based on the computed ultimate load according to Equation 

3.25 using the dynamic yield stress corresponding to the strain rate used in the tests. 

Consequently, the following additional conclusions were drawn from this 

investigaton for hybrid stub columns (B19 and Dl3): 

1. Better predictions of the ultimate capacity can be achieved by using dynamic 

tensile yield stresses for both box-shaped and hat-shaped hybrid stub columns 

fabricated from 25AK and 50SK sheet steels. 

2. Equation 3.25 can be used for the prediction of the ultimate axial load for hybrid 

stub columns fabricated from 25AK and 50SK sheet steels, provided that the 

overall column buckling does not occur. 

3. In addition to the effect of cold-work of forming, the tested loads are also affected 

by the type of stress-strain relationship of the material. 

4. The percentage increases in mean crushing loads are found to be slightly less than 

the percentage increases in ultimate loads for the stub column specimens used in 

this investigation. 

5. The box-shaped stub columns fabricated from 50SK sheet steel are less strain-rate 

sensitive than those fabricated from the 25AK sheet steel for ultimate loads and 

mean crushing loads. 

6. For design purposes, the mean crushing loads may be estimated by using the 

computed ultimate load (Eq. 3.25) in Equation 3.26. For box-shaped and hat-
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shaped stub columns, the utlimate loads were calculated on the basis of d)TIamic 

tensile yield stresses. 

b. 20th Progress Re.port (B20) - Study of the Effect of Strain Rate on the Bending 

Strength of Hybrid Beams Using 25AK and 50SK Sheet Steels 

The study ofhybrid beams fabricated from 25AK and 50SK sheet steels was initiated 

at UMR in October 1993. A total of 72 hat-shaped beams (Figure 3.5) were tested under 

strain rates from 10-4 to 10-2 in.lin.lsec. 

Because 50SK sheet steel has a sharp-yielding stress-strain curve and 25AK sheet 

steel has a gradual-yielding stress-strain curve, the conventional method for determining the 

bending ultimate strength of homogeneous beams may not apply directly to hybrid beams 

using both 25AK. and 50SK sheet steels. For this reason, a different design procedure was 

used in the evaluation of test data by applying the actual stress-strain relationships derived 

from material tests. Conclusions for the effect of strain rate on the bending capacity of 

hybrid beam sections were presented in the 20th Progress Report. 

In the determination of yield moment, the following design approach was used 

in the evaluation of test data. (B20). 

• For the case of initiation of yielding occuring in the top compression flange of the 

hybrid beam: 

1. The section is sub-divided into a number of elements (a total of 12 segments 

were used in the calculation). 

2. A position of the neutral axis is assumed and the strain in the top fiber of the 
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compression flange is assumed to be the yield strain of the steel used. From the 

distance between the top fiber and the neutral axis and the yield strain, the 

average strains in various elements are calculated. 

3. From the tested stress-strain relationship obtained from material tests, the 

average stresses, a , in various elements corresponding to such computed strains 

are found. 

4. Calculate the effective width of the compression flange according to the yield 

stress of the steel in the compression flange. 

S. Compute the area (dA) for each element and use the effective section of the 

compression flange. 

6. The neutral axis can be located by iteration to satisfy the condition that ~dAa 

=0. 

7. The computed yield moment of a hybrid beam can be calculated by mUltiplying 

the force (dAa) by the distance from the neutral axis for each element and 

summing up these values (~dAay), in which y is the distance measured from 

the neutral axis to the centroid of each element. 

• For the case of initiation of yielding occuring in the bottom tension flange of the 

hybrid beam, the yield moment can be computed by using the same steps discussed 

above except that steps (2) and (4) are changed as follows: 
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2. A position of the neutral axis is assumed and the strain in the bottom fiber of 

the tension flange is assumed to be the yield strain of the steel used. From to 

these two values, the average strains in various elements are calculated. 

4. Calculate the effective width of the stiffened compression flange for the 

compression stress obtained from the yield strain of the steel in the tension 

flange and the assumed neutral axis. 

For the determination of the ultimate moment, the inelastic reserve capacity 

of flexural members may be used to allow partial plastification of the cross-section, provided 

that such members satisfy the specific requirements. However, the design procedures 

recommended in the Automotive Steel Design Manual (A2) may not be used directly to 

compute the ultimate flexural strength for the test specimens studied in this investigation, 

because the beam specimens were fabricated from two different sheet steels with different 

types of stress-strain curves. For this reason, the ultimate moments of hybrid beams were 

computed on the basis of the stress-strain diagrams given in this report for four different 

groups of cross sections. 

Based on the evaluation of available test data, the following conclusions were drawn 

in the 20th Progress Report for the hybrid beams fabricated from 25AK and 50SK sheet 

steels: 

• For most cases, the yield moment of hybrid beams increase with increasing strain 

rate for specimens having the similar wit ratios. 

• The dynamic material properties can be used for the calculation of yield moment 
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of hybrid beams. The computed yield moments calculated on the basis of the 

dynamic tensile stresses are less conservative than those calculated on the basis 

of the dynamic compressive stresses. 

• The calculation procedures presented in the 20th Progress Report give reasonable 

results for the yield moment of hybrid beams. 

• The dynamic stress-strain relationship can also be used for calculating the ultimate 

moment of hybrid beams. The measured or estimated strain under the ultimate 

load is needed for computing the ultimate moment for hybrid sections. 

• The effective cross-sectional area determined according to the Automotive Steel 

Design Manual (A2) can also be used in the calculation of yield moment and 

ultimate moment for hybrid sections. 

• For hybrid beams fabricated from gradual-yielding type of material, the 

calculation of ultimate moments may use a stress higher than the yield point in 

order to consider the inelastic reserve capacity. 

c. 21st Progress Re.port (B2l) - Aging Effect on the Yield Moment of Hybrid Beams 

The aging effect on the mechanical properties of 25AK and 50SK sheet steels was 

discussed in the 21st Progress Report and was summarized in Section II.E oftrus report. In 

order to study the changes of the computed yield moments as affected by the increases of the 

yield stress due to the aging effect, the yield moments of six hybrid beams were recomputed 

by using the dynamic tensile yield stresses interpolated from Figures 2.23 and 2.24 for the 

time of beam tests. These recomputed yield moments were compared with the original 
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values presented in the 20th Progress Report. It was found that the aging effect on the 

bending capacity of hybrid beams is slightly less than the aging effect on material properties 

of steel. 

d. 22nd Progress Re.port (B22) - Transformed Section Method for the Calculation of 

Yield Moment of Hybrid Beams 

In the 20th Progress Report, the yield moment of hybrid beams was detennined by 

an iterative design procedure using the stress-strain relationships obtained from material 

tests. This was because the hybrid beams used for the tests were fabricated from two 

different sheet steels, for which 50SK sheet steel had a sharp-yielding stress-strain curve and 

25AK. sheet steel had a gradual-yielding stress-strain curve (Figure 3.6). 

For the purpose of simplifying the design procedure, the Transformed Section 

Method is discussed in the 22nd Progress Report for the calculation of yield moment of 

hybrid beams by using the simulated stress-strain relationships as shown in Figure 3.7. 

When using this method, the yield stress, proportional limit, yield strain, and the strain for 

proportional limit of each material must be known from the coupon tests. Otherwise, if the 

stress-strain curves of both 50SK and 25AK. sheet steels were assumed to be sharp-yielding 

type, at the respective F y values, the calculations presented in the 20th Progress Report 

indicated that the computed moment would be conservative as compared with the tested 

value, particularly for the beams with small wit ratios. 

D. GM Study - Hybrid Stub Columns 

A total of 70 stub column tests were conducted in General Motors Corporation using 
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homogeneous and hybrid sections. Among these tests, 52 specimens were tested by using 

a drop silo test facility and 18 specimens were tested for the quasi-static condition. Seven 

types of stub column specimens were used in the GM tests. The selected speeds used for the 

tests were 43.2, 28.5, and 1.524 x 10-3 kmIhr (BI9). Test results indicate that the ultimate 

load, energy absorption, and mean crushing load were affected by the loading rate, type of 

steel for individual components, and cross-sectional geometry of the stub columns. Graphical 

comparisons of the GM and UMR tested mean crushing loads for box-shaped stub columns 

are shown in Figures 3.8 and 3.9. In Figure 3.8, specimens AI, Bl, and Cl are the box

shaped hybrid stub columns (Figure 3.3a) with relatively small width-to-thic1cless ratios for 

compression flanges. For stub columns A3, B3, and C3 with relatively large width-to

thickness ratios, the mean crushing loads are shown in Figure 3.9. Figure 3.10 shows the 

mean crushing loads for hat-shaped stub columns D 1 and E 1 (Figure 3 .3b) with small width

to-thickness ratios. Numerical comparisons of the tested and predicted mean crushing loads 

of box-shaped and hat-shaped stub columns were presented in Tables 4.21 through 4.25 of 

the 19th Progress Report (B 19). It was reported that the ratios of the tested-to-predicted 

mean crushing loads range from 0.84 to 1.27 for the GM and UMR tests. 

The research findings obtained from the GM tests were presented by Schell et al. 

and Pan et al. in two conference papers (D17 and D13). Based on the 19th Progress Report, 

Reference D13 concludes that the ultimate loads and mean crushing loads of cold-formed 

steel stub columns increase with increasing strain rates. Better prediction of ultimate loads 

can be obtained by using the dynamic yield stresses. The effective cross-sectional area can 

also be employed in the calculation of ultimate loads for hybrid sections. Equation 3.26 can 
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be used for computing the mean crushing loads of box-shaped and hat-shaped stub columns 

failed by folding. It can be used only for the stub columns having the aspect ratio between 

0.5 and 2.0 with sufficient connectors to prevent premature failure. 
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IV. SUMMARY 

This report summarizes the research work on automotive components conducted at the 

University of Missouri-Rolla during the period from 1988 through 1997 under the sponsorship of 

the American Iron and Steel Institute. The primary goals of this phase of the overall project were to 

investigate the effect of strain rate on material properties and the structural strength of cold-formed 

steel homogeneous and hybrid members and to determine whether the AISI design formulas 

originally developed from the static loads can also be used for structural members subjected to 

dynamic loads. The research findings presented herein are based on 12 progress reports, (B I1-B22) 

two theses, (C4 and C5), and 10 journal and conference papers (D9-DI8). Details of the test results 

with evaluations are given in the cited references. 

A. Effect of Strain Rate on Material Properties 

A total of five types of sheet steels with nominal yield stresses from 25 to 100 ksi 

have been selected to study the effect of strain rate on material properties. The research 

findings are summarized in this report. For design purpose, the tensile and compressive yield 

stresses can be estimated by using Equation 2.3 for the strain rates from 10-4 to 1 ()2 in.lin./sec. 

allowing some extrapolation of the test data as discussed in Section II.D.b. 

B. Effect of Strain Rate on the Structural Strength of Cold-Formed Steel Members 

In Section III of this report, the UMR research work for the effect of strain rate on 

the structural strength of cold-fonned steel stub columns and flexural members were 

summarized according to the sequence of progress reports. The strength and behavior of stub 
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columns and beams are briefly discussed in subsequent subsections. 

a. Homogeneous Stub columns 

For the homogeneous stub columns which were fabricated from the same material 

in a given member, conventional equations (Eqs. 3.1 and 3.2) were used to determine the 

critical local buckling load and the ultimate axial load. The load-displacement relationship 

of stub columns depends on (1) the type of the controlling compression element, i.e., 

stiffened or unstiffened, (2) the width-to-thickness ratio, wit, of the controlling compression 

element, (3) the stress-strain relationship of the material, i.e., sharp-yielding or gradual 

yielding, and (4) the strain rate used for the test. Figures 3.11 through 3.26 show graphically 

the differences between the load-displacement relationships for stub columns using 35XF 

and 50XF sheet steels. In these figures, Figures 3.11 through 3.18 are load-displacement 

curves for box-shaped stub columns, for which the strength was controlled by stiffened 

compression elements, while Figures 3.19 through 3.26 are dealing with I-shaped stub 

columns, for which the strength was governed by unstiffened compression elements. 

b. Homogeneous Beams 

For the homogeneous beams using the same material in a given section, Equations 

3.3,3.4, and 3.6 were used to compute the critical local buckling moment, yield moment, and 

ultimate moment, respectively. Figures 3.27 through 3.31 illustrate the load-displacement 

relationships of hat-shaped beams having stiffened compression flanges, while Figures 3.32 

through 3.37 show the load-displacement curves for channel beams having unstiffened 
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compression flanges. 

c. Hybrid Stub Columns 

For hybrid stub columns using two different sheet steels in a given section, Equations 

3.25 and 3.26 were used to compute the ultimate axial load and the mean crushing load, 

respectively. Figure 3.38 shows a typical load-displacement curve of a hybrid stub column 

having a total displacement of five inches. 

d. Hybrid Beams 

Because of the use of two different sheet steels in a given section, the conventional 

method for computing the bending moment of homogeneous beams may not be used directly 

for hybrid beams. An iterative procedure was used in the 20th Progress Report for the 

evaluation of the bending capacity. The load-displacement relationships were found to be 

affected by the beam composition and configuration, strain rate, and the width-to-thickness 

ratio of the compression flange. 

e. Conclusions 

In summary, the following combined conclusions were drawn for the design of 

compression and flexural members subjected to dynamic loads: 

1. For most of the member tests, the critical local buckling strength, yield strength, and 

ultimate strength increased with increasing strain rates. 

2. The effect of strain rate on member strength was found to be slightly higher than that 
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for material properties. This may be partially due to the increase of yield strength 

due to aging effect. 

3. The ultimate strength computed in accordance with the Automotive Steel Design 

Manual was found to be conservative as compared with the test results of stub 

columns and beams. The prediction of the ultimate capacity was improved by using 

the dynamic yield stress. 

4. For stub columns and beams having small wit ratios, a better prediction of the 

strength can usually be achieved by considering the cold-work of forming, provided 

that the specific requirements of the AISI Specification (AI) are met. 

5. The computed moments for the beams fabricated from 50XF sheet steel were found 

to be less conservative than the beams fabricated from 35XF sheet steel. 

6. The computed ultimate moments for beams having stiffened flanges were less 

conservative than the beams having unstiffened flanges. 

7. For noncompact stub columns and beams having unstiffened compression elements, 

Kalyanaraman's equations can be used for determining local buckling coefficients. 

8. For hybrid stub columns, Equation 3.7 can be used to predict the ultimate load, 

provided that the overall member buckling does not occur. The mean crushing load 

can be estimated by applying Equation 3.8. 

9. An iterative design procedure can be used to compute the yield moment of hybrid 

beams as illustrated in the 20th Progress Report by using the actual stress-strain 

relationships obtained from material tests. The Transformed Section Method is 

discussed in the 22nd Progress Report by using the simulated stress-strain 
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relationships of sheet steels. 

10. The aging effect on material properties may have a minor influence on the structural 

strength of automotive components cold-formed to shape from sheet steels. However, 

the equations developed from this investigation and the conclusions drawn from this 

study are applicable to the design of automotive components whether or not the 

aging effect on material properties is considered. 
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AISI 
Designation 

35XF 

50XF 

100XF 

25AK 

50SK 

Table 2.1 

A verage Tensile Mechanical Properties of Sheet Steels 
Longitudinal Tension, Virgin Material 

Strain Rate F Fu Elongation 
in.lin.lsec. (kli) (ksi) (percent) 

0.0001 32.87 49.35 38.9 
0.01 36.40 51.76 36.8 

1.0 42.37 56.63 40.9 

0.0001 49.50 72.97 31.0 
0.01 51.60 74.87 27.0 

1.0 54.66 78.73 25.8 

0.0001 124.25 124.25 9.5 
0.01 125.80 125.80 10.2 

1.0 128.91 128.91 ---

0.0001 24.60 42.76 ---
0.01 27.86 44.44 49.31 

1.0 35.13 51.25 58.18* 

0.0001 54.97 67.07 36.09 
0.01 56.83 68.98 33.34 

1.0 60.73 76.50 40.13 

Reference 
Report 

Bll, B14, B18 

Bll, B14, B18 

B11, B14, B18 

B17, B18 

B17, B18 

Because the maximum range for the extensometer is 1.0 inch, this elongation was measured from the 
distance between the gage marks of tension coupons. 

AISI 
Designation 

35XF 

50XF 

100XF 

25AK 

50SK 

Table 2.2 

Average Compressive Mechanical Properties of Sheet Steels 
Longitudinal Compression, Virgin Material 

Strain Rate F F Fp/Fy Reference 

in.lin.lsec. (k~b (kli) Report 

0.0001 17.79 29.83 0.60 B12, B14, B18 

0.01 20.03 31.92 0.63 

1.0 ----- 36.91 -----

0.0001 38.64 49.68 0.78 B12, B14, B18 

0.01 40.05 52.51 0.76 

1.0 -_ ... -- 54.79 -----

0.0001 71.25 107.29 0.66 B12, B14, B18 

0.01 88.44 111.26 0.79 

1.0 --_ ... - 114.91 - .. ----

0.0001 15.93 21.66 0.74 B17, B18 

0.01 19.55 24.77 0.79 

1.0 ----- 38.14 -----

0.0001 41.98 53.35 0.79 B17, B18 

0.01 42.46 55.91 0.76 

1.0 ----- 59.41 -----

46 
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Table 2.3 

Comparison of Mechancial Properties of 25AK and 50SK . 

Sheet Steels in Longitudinal Tension for Aging and Strain Rate Effect 

Strain Rate Yield Strength Tensile Strength 
Sheet Steel Ratio Ratio 

(in.lin.lsec.) Fy,9S / Fy,92 Fy,97 / Fy,92 
F u,97 / F u,92 

25AK 0.0001 1.09 1.06 1.05 

50SK 0.0001 1.06 1.05 1.04 

25AK 0.01 - 1.10 1.10 

50SK 0.01 - ~ L04· 

Table 2.4 

Percentage Increase in Yield Stress 

when the Strain Rate Increases from 0.0001 to 1,0 in.lin.lsec. 

AISI Longitudinal Tension Longitudinal 
Designation Compression 

35XF 29% 24% 

50XF 10% 10% 

100XF 4% 7% 

25AK 43% 76% 

50SK 10% 11% 
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Table 3.1 

Comparisons of Computed and Tested Ultimate 

Loads for Stub Columns Using Box-Shaped Sections 

(P u ) test / ( P u ) comp Ratios 

Based on Static Fy Based on Dynamic F y 

Material Mean Standard Mean Standard 
Value Deviation Value Deviation 

35XF 

Sheet Steel 1.222 0.149 1.148 0.105 

50XF 

Sheet Steel 1.020 0.061 0.981 0.044 

Table 3.2 

Comparisons of Computed and Tested Ultimate 

Loads for Stub Columns Using I-Shaped Sections 

Based on Static Fy Based on Dynamic F y 

Material Mean Standard Mean Standard 
Value Deviation Value Deviation 

35XF 

Sheet Steel 1.410 0.132 1.330 0.067 

50XF 

Sheet Steel 1.162 0.064 1.121 0.044 



Table 3.3 

Effect of Cold-Work of Fonning 

Comparisons of Computed and Tested Yield Motpents 

for Hat-Sections with a Stiffened Flange (35XF Steel) 

(My) test / (My) comp Ratios 

Based on Static F y Based on Dynamic F y 

Material Mean Standard Mean Standard 
Value Deviation Value Deviation 

Without 
Considering 

Cold -Work of 1.368 0.155 1.282 0.072 

Fonning 

Considering 
Cold -Work of 

Fonning 1.141 0.130 1.082 0.072 

Note: Based on Table 3.3 of the 16th Progress Report 

Table 3.4 

Effect of Cold-Work of Fonning 

Comparisons of Computed and Tested Failure Moments 

for Channels with Unstiffened Flanges (35XF Steel) 

(Mu ) test / (My ) comp Ratios 

Based on Static F y Based on Dynamic F y 

Material Mean Standard Mean Standard 
Value Deviation Value Deviation 

Without 
Considering 
Cold - Work 1.365 0.098 1.281 0.051 

of Forming 

Considering 
Cold - Work 
of Forming 1.139 0.081 1.083 0.045 

Note: Based on Table 3.11 of the 16th Progress Report 
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Table 3.5 

Comparisons of Computed and Tested Failure Moments 

for Hat-Sections with a Stiffened Flange 

(Mu ) test I (My ) comp Ratios 

Based on Static Fy Based on Dynamic F y 

Material Mean Standard Mean Standard 
Value Deviation Value Deviation 

35XF Sheet 1.270 0.198 1.191 0.169 
Metal 

50XF Sheet 1.063 0.075 1.036 0.063 
Steel 

Note: Based on Tables 3.5 and 3.6 of the 16th Progress Report. 
Cold-work of forming was not considered for all specimens 

Table 3.6 

Comparisons of Computed and Tested Failure Moments 

for Channels with Unstiffened Flanges 

(Mu) test I (My) comp Ratios 

Based on Static F y Based on Dynamic F y 

Material Mean Standard Mean Standard 
Value Deviation Value Deviation 

35XF Sheet 1.299 0.096 1.228 0.052 

Metal 

50XF Sheet 1.121 0.040 1.094 0.026 

Steel 

Note: Based on Tables 3.11 and 3.12 of the 16th Progress Report. 
Cold-work of forming was not considered for all specimens. 
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APPENDIX A 

LOCAL BUCKLING COEFFICIENTS DERIVED BY 
KAL Y ANARAMAN FOR UNSTIFFENED COMPRESSION ELEMENTS 

According to Kalyanaraman, the following equations can be used to calculate the 

local buckling coefficient of unstiffened elements of I-shaped stub columns under axial 

compression: 

Ke = 0.851 + 0.426 (eO.7 - 1.5)/(eo.7 + 1.5) (AI) 

~ = 0.637 + 0.212 (eO.74 
- 2.04)/(eO.74 + 2.04) (A2) 

In Equations Al and A2, the subscripts e and p represent the elastic and plastic 

buckling coefficients, respectively. The symbol "e" is a rotational edge restraint factor which 

can be detennined by using the following equation: 

(A3) 

In the above equation, Bb = width of bending element, Br = width of restraining 

element, Cf = correction factor, Db = flexural rigidity of the bending element, Dr = flexural 

rigidity of the restraining element, Nb == number of buckling elements at the junction, S," == 

rotational edge stiffness. 

The actual buckling coefficient, K, of a compression element can vary between Ke 

and ~ depending upon the yield stress ( (J y) and the element demensions. On the basis of the 

available test results, Kalyanaraman derived the following equations for determining the 

local buckling coefficient of unstiffened compression elements: 

a. K == Ke ifKy ~ 1.25Ke (A4) 



b. K = Ke - (Ke - ~)(1.25Ke -Ky) /(1.25~ -Ky) 

c.K=~ ifKy $; ~ 

where Ky == [oy12(1-)l2)(BJtb)2]/1t2E 

Oy = yield stress 

tb = thickness of element 

E = modulus of elasticity 

if 1.25 ~ ~ Ky ~ ~ 

(A6) 
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(AS) 

(A7) 
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