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A b stract

A responsive computing system is a hybrid of real-time, distributed and fault-tolerant 
systems. In such a system, severe consequences will occur if the logical and physical 
specifications of the system are not met. In this paper, we present a logic, Interval 
Temporal Logic (ITL), to specify responsive systems and give decision procedures to 
verify properties of the system at run-time as follows. First, we collect, during execution, 
events occurring in the system to represent a distributed computation. Next, we specify 
properties of the system using ITL formulas. Finally, we apply the decision procedures 
to determine satisfaction of the formulas. Thus, we can verify properties of the system 
at run-time using these decision procedures.
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A B S T R A C T

A responsive computing system is a hybrid of real-time, distributed and fault-tolerant 
systems. In such a system, severe consequences will occur if the logical and physical spec­
ifications of the system are not met. In this paper, we present a logic, Interval Temporal 
Logic (ITL), to specify responsive computing systems and give a decision procedure to 
verify properties of the systems at run-time as follows. First, we specify properties of the 
system using ITL formulas. Next, we collect, at run-time, events and maintain equivalent 
event histories to represent system execution. Finally, we apply a decision procedure to 
determine satisfaction of the formulas. The proposed decision procedure is essentially 
a run-time procedure which makes use of event histories computed during execution to 
verify properties of the system in the actual operational environment.

1 INTRODUCTION
A responsive computing system [1] is one which responds to internal programs or external 
inputs in a timely, dependable and predictable manner. This system is a hybrid of real­
time, distributed and fault-tolerant systems. In such a system, any failure can cause 
a catastrophe, and hence, it is very important to ensure that run-time behavior of the 
system conforms to its expected behavior (specification). Thus, a logic, Interval Temporal 
Logic (ITL), is developed to specify the behavior of a responsive computing system, and 
a decision procedure is given to verify properties of the system at run-time.

With the logical system of ITL, we use inter and responsiveness assertions 
to denote the logical specification of a responsive computing system. In the operational 
environment, we expect that the run-time behavior of the system (the execution his­
tory) conforms to its logical specification. Otherwise, an error has occurred. Thus, to 
verify properties of the system in the operational environment, the following steps are 
performed:

1. given a responsive computing system specify the property that R  must hold
using an ITL formula Sr ,

2. collect events and maintains an equivalent history V/, during execution, and

3. apply the decision procedure 11(14, Sr ) to determine satisfaction of SR.

A distributed computation can be considered as a set of partially ordered events4, so an 
execution history 14  can be obtained by collecting and partially ordering events occurring 
in the system. This execution history 14 denotes run-time behavior of a system, and hence 
it is expected to conform to the logical specification Sr of the system. Thus, at step 3, we 
aPPfy the procedure II to check whether the specification Sr is satisfied by the history 14. 
Since the history 14 is built at run-time, the decision procedure II is essentially a run-time 
procedure which checks satisfaction of ITL formulas in the operational environment.

In our previous work, we used a decision procedure to check satisfaction of liveness 
assertions in the operational environment [2]. A liveness assertion —► EF-0) denotes

4 An event can be modeled as execution of one statement or a set of statements.
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that when a program starts from a state satisfying assertion <f>, eventually it will get to 
a state satisfying assertion if). This kind of assertions can not describe properties that 
must hold within bounded intervals and hence is not suitable for responsive computing 
systems. Thus, this paper focuses on constructing a decision procedure II to check, at 
run-time, satisfaction of responsiveness assertions and interval formulas which can assert 
properties of the systems within bounded intervals of time.

For the determination of satisfaction of formulas, [3] translates temporal logic formulas 
into finite automata. In contrast, we establish correspondence between states and events 
in the history and examine the history for the determination of satisfaction of formulas. 
The work of [4] embeds system constraints into programs and examines them at run­
time. However, they use a centralized monitor to obtain an execution history, while our 
method does not require monitors to compute execution histories.

The organization of this paper is as follows. In Section 2, we introduce the logic ITL. 
Next, we provide an approach to building execution histories, and present the decision 
procedure n  to determine satisfaction of ITL formulas at run-time. In Section 4, we give 
an example on constructing execution histories and applying the decision procedure for 
the determination of satisfaction of ITL formulas at run-time. Section 5 concludes this 
paper.

2 INTERVAL TEMPORAL LOGIC
This section presents a logic, Interval Temporal Logic(ITL), for the specification of re­
sponsive computing systems. The logic ITL is an extension of Interleaving Set Temporal 
Logic ([5], [6]). This logic ITL adopts a partial order semantics which considers a dis­
tributed computation as a set of partially ordered events. Hence, it can capture temporal 
and distributed aspects of the responsive systems that we are modeling.

S yn tax

The logic ITL is built upon a classical predicate logic L as follows. The symbols of 
ITL are those of classical predicate logic along with operators, U, E, F, X, Xn, and X. 
Let $  be the smallest set of words over the symbols of ITL such that

• If p e  Lthen p e  $ .

•  If p, q6 $ , then pV q,-ip G <&.

• If p, q e$, then pUq, Ep, F p , X p ,  X np, $ .

•  If p, q, rG $ , then [p]r, [p, q]r 6 4>.

We call a member of $  a path formula, and a formula of the language L  a state 
formula. A path formula can be used to characterize a sequence of states, while a state 
formula is interpretable only on a single state.

D efin ition  2.1  Let \o\ denote the length (possible infinite) of a state sequence a, and 
let c(i) denote the i^  state of a state sequence o. We call i a t im e  in d e x  .
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D efin ition  2.2  A state sequence £ =  (£(0), ...,£([£|)) refines a given state sequence,
0 = (<r(0), • • • ,<x(M))> iff (3i  € [0,H]) = 0 -
U lf  < *}•

From the above, i?(cr) is a collection of subsequences of the state sequence a.

Sem antics

In this logic system, formulas are quantified by fundamental operators E, F, U, X, 
X" , X, and X”, which are defined in the following semantics.

D efin ition  2.3 (S atisfaction) Let a  be a state sequence, let i be an integer with 0 <
1 <  \a\,let f  be a state formula, and let p,q,(p,ipbe any formulas of ITL. Then, we write

(cm ) h f if 0 (1) 1= / ,
(<M) b PV q if (a, i) h  p or (cr, i) (= q,
(<M) b if not (a, i) p,
(<M) b pUq if there exists i <  j  <|cr|, such that both (cr, j ) |= q and for

every k such that i <  k <  j,(cr, k) (= p,
(cm ) b X<p if |oj >  * +  1 and (cr, i +  1) f= ,
(cr,i ) b Xn<p if (cr, i +  n)|= <p,
(cm ) b X(p if (3n >  i) ( (o ,i)[= X n<p),
(a ,i ) b F <p if 3 (k>  i){\/j >  k )(a ,j)  |= (p,
(cm ) b \p\<P if we have that if (cr, i) |= p then (cr, j= ,
(cm ) b \p,q](p if for every i  G R (o) such that (£, 0) (= p and (^, |£|) \= q, if

there exists k{ G { 0 ,1,..., |^|})(^(A:i) =  a(i)), then (^, k{) ^  ,
a  1= <P if for all i GO,..., |cr|, (0 , i) [= <p

In each case, the symbol |= is read ’’satisfies”. We abbreviate A X<p) by E(p.

Informally, an interval is of the form [p] or [p, 5] and an interval formula is of the 
form \])}<p or [p, q\(p where p, qand 4> are any formulas of ITL. An interval formula \p](p 
([p, q]4>) is true over a state sequence a, iff the interval [p] ([p, q\) cannot be found or the 
formula (p holds on every interval [p] ([p, 5]). Thus, there are two ways to conclude that 
an interval formula holds. This would cause a problem in the composition of interval 
formulas. Thus, the following responsiveness assertions are proposed.

D efin ition  2.4 A responsiveness assertion is a path formula of the form  ([p]0 —> [p, 
where p, q, <p, and ip are formulas of IT L .

A responsiveness assertion ( [p\<p —> \p,q]EFip) is true over a state sequence a, iff the 
following holds: if (p holds whenever p holds, then ip will occur at or before any q following 
p. The assertion ensures bounded response of ip to \p](p within the intervals [p, q\. The 
following Progress Rule can be applied to reason about responsiveness properties. Let 
p, q, r, <po,(pi,<p2 be any formulas of ITL,

3



i  i +1  i +  2 i’ +  3
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Figure 1: A computation sequence a fails to satisfy [p> q]EFfa.

Progress Rule
(1) \p]fa^\p,q]EFfa
(2) [ ^ - ^ r j E F ^
(3) [p,r]Eg___________________

\p]fa -* \p,r]E

From the above, we can conclude that if 0o holds whenever p holds, then will occur 
in intervals [p, <y], if the following premises hold:

(1) if fa  holds whenever p holds, then fa will occur at or before any q following p,

(2) if fa holds whenever q holds, then fa  will occur at or before any r  following

(3) q will occur within the intervals [p, r],

Notice that the premise (3) is necessary as follows. Consider a state sequence a  in Figure 1 
with an index i such that a(i) |= (p A fa), a(i +  1) (= (r A -'fa), a(i +  2) (= A fa), 
and a (i + 3 )  |= (r A fa) where p, q, r, fa, f a , fa  are state formulas. Clearly, a  f= \p\fa ►
[p, <z]EF(/>i and a \= [q]fa —► [q,r]EFfa, but we can not derive a \p]fa —> \p,r]EFfa, 
because o  does not satisfy premise (3).

Note that the soundness and relative completeness of the logic system was shown in
|7).

3 THE DECISION PROCEDURE
In this section, we present a technique to build execution histories, and provide the 
decision procedure II to determine satisfaction of ITL formulas at run-time. First, we 
describe construction of execution histories, which is performed at run-time.

3.1 C onstructing Execution Histories
Recall that system execution can be viewed as a set of partially ordered events with each 
process involved in the execution viewed as a sequence of events5. In other words, we

5Without loss of generality, we do not consider the concurrency between events on a process, intra- 
process concurrency. A process designer may choose any granularity of events such as execution of a 
statement or a set of statements.
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can obtain system execution by collecting and ordering events occurring in the system. 
Without external monitors, the following describes the construction of execution histories 
by processes involved in a distributed computation.

Every process maintains an event history, which is a collection of events occurring 
within itself, together with events occurring within other processes and observed by the 
process through communications. An event in a process is either an internal event or 
the sending or receiving of a message. A process assigns a timestamp to each event as it 
occurs. To obtain events occurring in other processes, whenever there is a communication, 
processes exchange their event histories, i.e., they exchange their observations of event 
occurrences in the system. Note that the timestamps of events in a history are sent along 
with the history.

Through the exchanges of event histories, every process obtains its collection of events 
occurring within itself and within other processes. This collection of events can be ordered 
according to a causal relation — which is defined as follows.

D efin ition  3.1 Event e precedes event f  in an execution, i.e., » / ,  iff any one of the 
following conditions holds [8];

1.e and f  are events of the same process, and e occurs before f ,

2. e is a send event, and f  is the corresponding receive event, or

3. there exists an event g, such that e —* g,and —> / .

D efin ition  3.2 Two events e, /  are ca u sa lly  re la ted  if either —> /  —> holds.
If neither e —► /  nor f  —► eholds, then e and f  are considered as co n cu rren t or
in d e p e n d e n t events.

According to the casual relation — processes can partially order events in their own 
histories. These histories are equivalent in the sense that they only differ in the order of 
independent (not causally related) events. The relation can be implemented by the 
existing vector clock scheme ([9], [10]) for the determination of causality between any 
two events.

3.2 Com puting Histories for a Non-Faulty Environment
This subsection presents the construction of an event history of process P, in a non- 
faulty environment. In Figure 2, processes P, and P j  exchange their respective histories 
Vhf and Vhj during a communication. Then, process P, computes its new history V*,. by 
incorporating events in V},. into V/,t. (step 1). The function h incorporates every event in 
a received history Vhj into 14; such that for every event e of 14., e does not cause any 
event preceding e and e causes its next event. In other words, event e and its preceding 
events are not causally related, but e is causally related to its next event in history V}H. 
Notice that this is not the only way to incorporate events into a process’s history, since 
events are timestamped by vector clocks and they form a partial ordering instead of a 
total ordering. At step 2, process Pi updates its clock (C*) on the i lh component (C* [*']).

5



A run-time history 14,. of process F,- is computed as follows.
During a communication, processes Pi and Pj exchange their respective histories 1 4 ,and 
Vhr  After the exchange, both processes incorporate the received history into their own 
histories. The following shows that process F, incorporates Vhj into its history Vhr

step  1  V h. =  h (V hj , V h i).

s tep  2 C‘[i] =  C’[i] + 1.

Figure 2: Computing History for process Pi

The examples of constructing event histories and the proof of the following theorem 
are shown in [2].

T h eorem  3.1 The history, V/,.,bu ilt by the Computing History of Figure 2, is correct 
in a non-faulty environment.

3.3 Com puting Histories in a Faulty Environment
This subsection presents the construction of an event history of process F,- in a faulty 
environment. In such an environment, faulty processes may fool non-faulty ones by 
sending incorrect values. In this case, processes may build incorrect histories due to 
receipt of erroneous values. Thus, we introduce a consistency check to deal with faulty 
processes sending inconsistent values to different processes.

Consistency Checks
The idea of a consistency check is that if a value of a variable is sent from a non-faulty 
process to a set of processes on more than one path, then, under a bounded number of 
faults, non-faulty processes will receive the same value of the variable, or an inconsistency 
is detected. The following defines a consistency check.

D efin ition  3 .3  Let o(14 ,, 14,) denote a consistency check by process Pi against its re­
ceived history 14,., such that for a given event e in 14, and 14, , the message content of e 
in V^ is different from that in Vhj.

From the above, if a given message is received by processes Pi and Pj, then the 
contents of the message in their respective histories 14,. and 14 . should be the same, or 
else an error has occurred. Figure 3 shows Computing History for a faulty environment.

Theorem 3.2 The history 14,, built according to the Computing History of Figure 3, is 
correct [2].

6



An event history V/li of process Pi is computed as follows. During a communication, pro­
cesses Pi and Pj exchange their respective histories V/,,. and 14,. After the exchange, both 
processes apply consistency checks and incorporate the received history into their own 
histories. The following shows that process Pi does consistency checks and incorporates 
Vhj into its history 14(.

1. If °(Vhi,Vhj),then STOP.

2. if -<(o(Vhi,Vh.))then Vhi =  h{Vhj,Vhi).

3. C!'[i] =  C*‘[i] +  1.

Figure 3: Computing History for process Pi

3.4 The Procedure
We have shown the construction of event histories, and the histories can represent the 
execution of a responsive system R. In this subsection, we present the decision procedure 
II which makes use of event histories to verify properties of the system R  at run-time. 
The formulas to which the decision procedure II can apply include interval formulas and 
responsiveness assertions.

An interval formula \p]<j) (\p,q\<p) can be used to denote bounded response of within 
the intervals [p] ([p, g]), where p,q,(f> are formulas of ITL. A responsiveness assertion 
(\p](f> —► [p, <7]EF-0 ) ensures bounded response of to \j)]<p within the intervals [p, q] 
where p, q, (p, ip are formulas of ITL. Therefore, both interval formulas and responsiveness 
assertions denote a sequence of states. However, an event history is a collection of events 
occurring in the system. Thus, we need to relate states to events in a history.

To establish the correspondence between states and events, we consider computations 
to be event driven, i.e., a process receives a message, processes it, sends messages (possibly 
zero) to other processes, and waits for the next message. Thus, the externally observable 
events (send or receive events) are the actions that change the states of a process, and 
they can be regarded as intermediate states of a program. [2] shows the correspondence 
between states and externally observable events in a history.

After establishing the correspondence between states and events in a history, we define 
satisfaction of a formula by a state in terms of satisfaction by an event.

D efin ition  3 .4  Given a history 14,-, an event e satisfies an assertion (p, denoted by 
e \=  ( p , iff s \= (p, where s is the corresponding state of event e in V/,..

For an interval formula \F denoting behavior of one process, the following is the 
procedure II for the determination of satisfaction of 'F with respect to the history V/,. of 
process Pj.

D efin itio n  3.5 Let *F be an interval formula, \p\<p, which specifies behavior of one pro­
cess. According to the event history Vhi, the decision procedure 11(14,-,^) returns TRUE,
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if for every event a  of Pj satisfying p,then a  satisfies (j). Otherwise, 11(14,-, 'F) returns 
FALSE.

D efin ition  3.6 Let \F be an interval formula, [p, q\(f>, which specifies behavior of one 
process. According to the event history V̂,the decision procedure n(V/l.,\Er) returns 
TRUE, if the following condition holds:

for every event on of Pj satisfying p, if there exists an of Pj such that
on happens before a m and a m satisfies q, then must hold on the intervals 
from on to a m.

Otherwise, 11(14,., \F) returns FALSE.

Note that the procedure is executed by every process to check behavior of
all the other processes according to its own history 14, - For a responsiveness assertion \F, 
the following is the procedure II for the determination of satisfaction of 'F with respect 
to the history V/,. of process P,-.

D efin ition  3.7 Let \F be a responsiveness assertion, [p]0 —> [p, which denotes be­
havior of one process. According to the event history 14,., the decision procedure 11(14,., \F) 
returns TRUE, if the following condition holds:

for every event ai of Pj satisfying p —*■ there exists an event a m of Pj 
such that on happens before a m and a m satisfies q, then a m must satisfy

Otherwise, 11(14,., ’F) returns FALSE.

The above interval formulas and responsiveness assertions involve behavior of one 
process, so we only have to examine events of the process in history 14(. Next, we 
consider formulas which specify behavior of more than one process. In this situation, we 
need to know which events in an event history are executed concurrently, or which events 
in the history correspond to a global state of a distributed system. This can be done by 
utilizing consistent cuts ([11], [12], [10]) as follows.

D efin ition  3.8 A cu t is an ordered tuple of events with one event from each process. 
A cut <  ei,fcj, e2,fc2, . . .  , enjkn >  is a c o n s is te n t cut, if for any two events e,^. and 
ej,kj (® 7̂  j ) ,  %ki and ej>kj are concurrent.

D efin ition  3.9 A sn a p sh o t, s = <  s ^ , . . .  , s kn > , is an ordered tuple of states with 
one state from each process, and with any two states of s being concurrent. A snapshot 
is also a global state in a distributed computation.

T h eorem  3.3 Given a history 14, , for every consistent cut c = <  e itkl, , . . .  , en,fc„ > ,
there exists a unique global state s = <  skl, . . .  ,s%n > , and for every global state s, there 
also exists a unique cut c [2].

Now, we define satisfaction of a formula by snapshots in terms of satisfaction by 
consistent cuts.

8



D efin ition  3 .10 Given a history 1 4 .,a consistent cut c satisfies an assertion denoted
byc |= <p, iff s[= (f>,where s is the corresponding global state of c in 14;.

The following is the decision procedure 11(14,., VF) where 14, is the history of process 
Pi and 'I' is an interval formula denoting behavior of multiple processes. In this case, the 
satisfaction of the formula is determined by satisfaction of consistent cuts in the history 
Vkr

D efin ition  3.11 Let 'J be an interval formula, \p}4>, which asserts behavior of more than 
one process. According to the event history 14, , the decision procedure 11(14, , '£) returns 
TRUE, if for every consistent cut c of Pj satisfying p, then c satisfies Otherwise, 
11(14,-, returns FALSE.

D efin ition  3.12 Let 4/ be an interval formula, \p,q]4>, which asserts behavior of more 
than one process. According to the event history 14,, the decision procedure 11(14,,’f )  
returns TRUE, if the following condition holds:

for every consistent cut C\ of Pj satisfying p, if  there exists a consistent cut 
cm of Pj such that c/ happens before cm and cm satisfies q, then must hold 
on the intervals from ci to cm.

Otherwise, 11(14;,’F) returns FALSE.

For a responsiveness assertion denoting behavior of multiple processes, the following 
is the procedure II for the determination of satisfaction of 4/ with respect to the history 
14, of process P,.

D efin ition  3.13 Let \F be a responsiveness assertion, —> [p, which specifies
behavior of multiple processes. According to the event history 14., the decision procedure 
11(14,-, ) returns TRUE, if the following condition holds:

For every consistent cut Ci satisfying p —> there exists a consistent cut
cm such that every event of ci happens before that of cm and cm satisfies q, 
then cm must satisfy ip.

Otherwise, 11(14,-,'F) returns FALSE.

4 Railroad Crossing Example
In this section, we present a railroad crossing example to illustrate determination of 
satisfaction of ITL formulas at run-time. For simplicity, we assume a non-faulty envi­
ronment. Thus, no consistency checks are applied to examine event histories. There are 
four transitions associated with a train, traveling, approaching, ingate and departure. 
Two transitions are associated with the gate, up and down. A warning signal is sent by 
a train to the gate controller at a distance from the crossing or after the departure.

In Figure 4, when communication mi occurs, process Pgate is notified that the train 
is approaching. Then, during communication m2 process Ptrain is notified that the gate

9



P train x = traveling x = approaching x = ingate x = departure
---------- 1--------------- r - -----------------1— — f ------- 1------—— •

[1, 0] [2, 0] [3>3] [4, 3] [5, 3]

Figure 4: Railroad crossing example

is down. Likewise, the messages of departure from a train is sent when communication 
ra3 occurs.

First, we construct the event histories of processes P train and P gaie according to the 
procedure Computing History of Figure 2. Then, we check satisfaction of an interval 
formula <f> =  [x =  ingate]y =  down against the event histories. In Figure 4, before 
communication mi occurs, the train is traveling and the gate is up. Thus, processes 
Ptrain and Pgate have the following state information in their histories, and

Vht =  <  (Ptrain, x =  traveling, [1, 0]), =  approaching, [2 , 0]) >
Vhg =  <  (Pgate, y  =  up, [0, 1]) >

The tuple (Ptrain, x =  traveling, [1, 0]) shows that at (vector) time [1, 0] the train is 
traveling, and (Ptrain, x  =  approaching, [2, 0]) denotes that at time [2, 0] the train is 
approaching. Likewise, the tuple (Pgate,y  =  up, [0,1]) states that the gate is up at time 
[0, 1].

When communication mi occurs, processes Ptrain and P gate exchange their respective 
histories V/l< and Vhg , and incorporate received histories into their own histories. Recall 
that the incorporation of histories is based on the causality on events. The histories of 
processes Ptrain and P gate after the incorporation are as follows.

Vht = <  (P tra in ,  x  =  traveling, [1, 0]), (Ptrain, x =  approaching, [2 , 0]),
(Pgate, V t ip , [0, 1]), (P\train, Pgate, r e c e i v e ,  [2, 1]) >

Vhg = <  (Pgate, V =  up, [0, l]), ( P tr a in ,x  =  traveling, [1, 0]),
(P tra in ,  x =  approaching, [2, 0]), ( P train, Pgate, [2, 1]) >

The tuple (Ptrain, Pgate, receive,[2, 1]) shows that at time [2, 1] process Pgate receives a
message from Ptrain-

10



After communications m 2 and m3, the histories 14, and T4e are as follows. 

14, = <  (P tra in ,  X =  traveling, [1,0]), ( X =  approaching, [2,0]),
( P g a t e , V = ^LP> [0) 1])> (P tra in ,  Pgate, r e c e i v e ,  [2, 1]) >■
(Pgate, V ~  (loWTl, [2, 3]), gate, Ptrain, receive, [3, 3]) >
(P tra in ,  X =  ingate, [4,3]), =  departure, [5,3]),
(P tra in , Pgate, receive, [5,4]) >

Vh§ = <  ( P g a te ,V =  up,[0, 1] ) ,  (P tra in , x = traveling,[1, 0] ) ,

(P tra in ,  X =  approaching, [2,0]), (P tra in ,  Pgate, receive, [2,1]) > 
(Pgate, V ~  down,[2,3]), gate, receive, [3, 3]) >
(P tra in ,  x =  ingate, [4,3]), =  departure, [5,3]),
(P tra in ,  Pgate, receive, [5,4]) >

Now, we apply the decision procedure II to check validity of the formula <j) =  [x =  
ingate]y =  down. According to the procedure 11(14,, of Definition 3.11, 11(14, ,0 )  
returns TRUE, if the condition holds: whenever the train is ingate, the gate must be 
down. For the events in histories 14,, the tuple =  ingate, [4,3]) denotes that
the train is ingate, and the tuple (Pgate ,  V = down, [2,3]) denotes that the gate is down. 
Also, by comparison of (vector) timestamps of [2, 3] and [4,3], (Pgate,y  =  [2, 3])
happens before (Ptrain,x =  ingate, [4,3]). Therefore, history 14, satisfies the formula 0  at 
run-time. Likewise, we can conclude that history satisfies the formula 0 at run-time.

5 CONCLUSION
We have presented a logic, Interval Temporal Logic (ITL), to specify a responsive com­
puting system and have given a decision procedure II to verify properties of the systems 
as follows. First, properties of the system are specified using ITL formulas. Next, system 
execution is obtained by collecting events and maintaining equivalent event histories. 
Finally, the decision procedure II is applied to determine satisfaction of the formulas at 
run-time. The procedure II is essentially a run-time procedure, since it verifies properties 
of the system based on the event histories computed at run-time.

Currently, experiments on applying II to verify, at run-time, properties of a railroad 
crossing system are under way. Future research will examine other types of assertions in 
addition to interval formulas and responsiveness assertions for the run-time analysis of 
the behavior of responsive computing systems.
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