
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

21 Oct 1993

A Run-Time Decision Procedure for Responsive Computing A Run-Time Decision Procedure for Responsive Computing

Systems Systems

Grace Tsai

Matt Insall
Missouri University of Science and Technology, insall@mst.edu

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Tsai, Grace; Insall, Matt; and McMillin, Bruce M., "A Run-Time Decision Procedure for Responsive
Computing Systems" (1993). Computer Science Technical Reports. 50.
https://scholarsmine.mst.edu/comsci_techreports/50

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/50?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A R U N -T IM E D E C ISIO N P R O C E D U R E F O R
R E S P O N S IV E C O M P U T IN G S Y S T E M S 1

Grace Tsai, Matt Insall2 and Bruce McMillin3

CSC-93-029

1This work was supported by UM research board, the National Science Foundation under Grant
Numbers MSS-9216479 and CDA-9222827, and from the Air Force Office of Scientific Research under
contract number F49620-92-J-0546.

2Matt Insall is with the Department of Mathematics and Statistics at the University of Missouri-Rolla,
Rolla, MO 65401.

3Grace Tsai and Bruce McMillin are with the Department of Computer Science at the University of
Missouri-Rolla, Rolla, MO 65401.

A b stract

A responsive computing system is a hybrid of real-time, distributed and fault-tolerant
systems. In such a system, severe consequences will occur if the logical and physical
specifications of the system are not met. In this paper, we present a logic, Interval
Temporal Logic (ITL), to specify responsive systems and give decision procedures to
verify properties of the system at run-time as follows. First, we collect, during execution,
events occurring in the system to represent a distributed computation. Next, we specify
properties of the system using ITL formulas. Finally, we apply the decision procedures
to determine satisfaction of the formulas. Thus, we can verify properties of the system
at run-time using these decision procedures.

1

A B S T R A C T

A responsive computing system is a hybrid of real-time, distributed and fault-tolerant
systems. In such a system, severe consequences will occur if the logical and physical spec­
ifications of the system are not met. In this paper, we present a logic, Interval Temporal
Logic (ITL), to specify responsive computing systems and give a decision procedure to
verify properties of the systems at run-time as follows. First, we specify properties of the
system using ITL formulas. Next, we collect, at run-time, events and maintain equivalent
event histories to represent system execution. Finally, we apply a decision procedure to
determine satisfaction of the formulas. The proposed decision procedure is essentially
a run-time procedure which makes use of event histories computed during execution to
verify properties of the system in the actual operational environment.

1 INTRODUCTION
A responsive computing system [1] is one which responds to internal programs or external
inputs in a timely, dependable and predictable manner. This system is a hybrid of real­
time, distributed and fault-tolerant systems. In such a system, any failure can cause
a catastrophe, and hence, it is very important to ensure that run-time behavior of the
system conforms to its expected behavior (specification). Thus, a logic, Interval Temporal
Logic (ITL), is developed to specify the behavior of a responsive computing system, and
a decision procedure is given to verify properties of the system at run-time.

With the logical system of ITL, we use inter and responsiveness assertions
to denote the logical specification of a responsive computing system. In the operational
environment, we expect that the run-time behavior of the system (the execution his­
tory) conforms to its logical specification. Otherwise, an error has occurred. Thus, to
verify properties of the system in the operational environment, the following steps are
performed:

1. given a responsive computing system specify the property that R must hold
using an ITL formula Sr ,

2. collect events and maintains an equivalent history V/, during execution, and

3. apply the decision procedure 11(14, Sr) to determine satisfaction of SR.

A distributed computation can be considered as a set of partially ordered events4, so an
execution history 14 can be obtained by collecting and partially ordering events occurring
in the system. This execution history 14 denotes run-time behavior of a system, and hence
it is expected to conform to the logical specification Sr of the system. Thus, at step 3, we
aPPfy the procedure II to check whether the specification Sr is satisfied by the history 14.
Since the history 14 is built at run-time, the decision procedure II is essentially a run-time
procedure which checks satisfaction of ITL formulas in the operational environment.

In our previous work, we used a decision procedure to check satisfaction of liveness
assertions in the operational environment [2]. A liveness assertion —► EF-0) denotes

4 An event can be modeled as execution of one statement or a set of statements.

1

that when a program starts from a state satisfying assertion <f>, eventually it will get to
a state satisfying assertion if). This kind of assertions can not describe properties that
must hold within bounded intervals and hence is not suitable for responsive computing
systems. Thus, this paper focuses on constructing a decision procedure II to check, at
run-time, satisfaction of responsiveness assertions and interval formulas which can assert
properties of the systems within bounded intervals of time.

For the determination of satisfaction of formulas, [3] translates temporal logic formulas
into finite automata. In contrast, we establish correspondence between states and events
in the history and examine the history for the determination of satisfaction of formulas.
The work of [4] embeds system constraints into programs and examines them at run­
time. However, they use a centralized monitor to obtain an execution history, while our
method does not require monitors to compute execution histories.

The organization of this paper is as follows. In Section 2, we introduce the logic ITL.
Next, we provide an approach to building execution histories, and present the decision
procedure n to determine satisfaction of ITL formulas at run-time. In Section 4, we give
an example on constructing execution histories and applying the decision procedure for
the determination of satisfaction of ITL formulas at run-time. Section 5 concludes this
paper.

2 INTERVAL TEMPORAL LOGIC
This section presents a logic, Interval Temporal Logic(ITL), for the specification of re­
sponsive computing systems. The logic ITL is an extension of Interleaving Set Temporal
Logic ([5], [6]). This logic ITL adopts a partial order semantics which considers a dis­
tributed computation as a set of partially ordered events. Hence, it can capture temporal
and distributed aspects of the responsive systems that we are modeling.

S yn tax

The logic ITL is built upon a classical predicate logic L as follows. The symbols of
ITL are those of classical predicate logic along with operators, U, E, F, X, Xn, and X.
Let $ be the smallest set of words over the symbols of ITL such that

• If p e Lthen p e $.

• If p, q6 $, then pV q,-ip G <&.

• If p, q e$, then pUq, Ep, F p , X p , X np, $.

• If p, q, rG $, then [p]r, [p, q]r 6 4>.

We call a member of $ a path formula, and a formula of the language L a state
formula. A path formula can be used to characterize a sequence of states, while a state
formula is interpretable only on a single state.

D efin ition 2.1 Let \o\ denote the length (possible infinite) of a state sequence a, and
let c(i) denote the i^ state of a state sequence o. We call i a t im e in d e x .

2

D efin ition 2.2 A state sequence £ = (£(0), ...,£([£|)) refines a given state sequence,
0 = (<r(0), • • • ,<x(M))> iff (3i € [0,H]) = 0 -
U lf < *}•

From the above, i?(cr) is a collection of subsequences of the state sequence a.

Sem antics

In this logic system, formulas are quantified by fundamental operators E, F, U, X,
X" , X, and X”, which are defined in the following semantics.

D efin ition 2.3 (S atisfaction) Let a be a state sequence, let i be an integer with 0 <
1 < \a\,let f be a state formula, and let p,q,(p,ipbe any formulas of ITL. Then, we write

(cm) h f if 0 (1) 1= / ,
(<M) b PV q if (a, i) h p or (cr, i) (= q,
(<M) b if not (a, i) p,
(<M) b pUq if there exists i < j <|cr|, such that both (cr, j) |= q and for

every k such that i < k < j,(cr, k) (= p,
(cm) b X<p if |oj > * + 1 and (cr, i + 1) f= ,
(cr,i) b Xn<p if (cr, i + n)|= <p,
(cm) b X(p if (3n > i) ((o ,i)[= X n<p),
(a ,i) b F <p if 3 (k> i){\/j > k)(a ,j) |= (p,
(cm) b \p\<P if we have that if (cr, i) |= p then (cr, j= ,
(cm) b \p,q](p if for every i G R (o) such that (£, 0) (= p and (^, |£|) \= q, if

there exists k{ G { 0 ,1,..., |^|})(^(A:i) = a(i)), then (^, k{) ^ ,
a 1= <P if for all i GO,..., |cr|, (0 , i) [= <p

In each case, the symbol |= is read ’’satisfies”. We abbreviate A X<p) by E(p.

Informally, an interval is of the form [p] or [p, 5] and an interval formula is of the
form \])}<p or [p, q\(p where p, qand 4> are any formulas of ITL. An interval formula \p](p
([p, q]4>) is true over a state sequence a, iff the interval [p] ([p, q\) cannot be found or the
formula (p holds on every interval [p] ([p, 5]). Thus, there are two ways to conclude that
an interval formula holds. This would cause a problem in the composition of interval
formulas. Thus, the following responsiveness assertions are proposed.

D efin ition 2.4 A responsiveness assertion is a path formula of the form ([p]0 —> [p,
where p, q, <p, and ip are formulas of IT L .

A responsiveness assertion ([p\<p —> \p,q]EFip) is true over a state sequence a, iff the
following holds: if (p holds whenever p holds, then ip will occur at or before any q following
p. The assertion ensures bounded response of ip to \p](p within the intervals [p, q\. The
following Progress Rule can be applied to reason about responsiveness properties. Let
p, q, r, <po,(pi,<p2 be any formulas of ITL,

3

i i +1 i + 2 i’ + 3

P r q r
00 ""'02 01 02

Figure 1: A computation sequence a fails to satisfy [p> q]EFfa.

Progress Rule
(1) \p]fa^\p,q]EFfa
(2) [^ - ^ r j E F ^
(3) [p,r]Eg___________________

\p]fa -* \p,r]E

From the above, we can conclude that if 0o holds whenever p holds, then will occur
in intervals [p, <y], if the following premises hold:

(1) if fa holds whenever p holds, then fa will occur at or before any q following p,

(2) if fa holds whenever q holds, then fa will occur at or before any r following

(3) q will occur within the intervals [p, r],

Notice that the premise (3) is necessary as follows. Consider a state sequence a in Figure 1
with an index i such that a(i) |= (p A fa), a(i + 1) (= (r A -'fa), a(i + 2) (= A fa),
and a (i + 3) |= (r A fa) where p, q, r, fa, f a , fa are state formulas. Clearly, a f= \p\fa ►
[p, <z]EF(/>i and a \= [q]fa —► [q,r]EFfa, but we can not derive a \p]fa —> \p,r]EFfa,
because o does not satisfy premise (3).

Note that the soundness and relative completeness of the logic system was shown in
|7).

3 THE DECISION PROCEDURE
In this section, we present a technique to build execution histories, and provide the
decision procedure II to determine satisfaction of ITL formulas at run-time. First, we
describe construction of execution histories, which is performed at run-time.

3.1 C onstructing Execution Histories
Recall that system execution can be viewed as a set of partially ordered events with each
process involved in the execution viewed as a sequence of events5. In other words, we

5Without loss of generality, we do not consider the concurrency between events on a process, intra-
process concurrency. A process designer may choose any granularity of events such as execution of a
statement or a set of statements.

4

can obtain system execution by collecting and ordering events occurring in the system.
Without external monitors, the following describes the construction of execution histories
by processes involved in a distributed computation.

Every process maintains an event history, which is a collection of events occurring
within itself, together with events occurring within other processes and observed by the
process through communications. An event in a process is either an internal event or
the sending or receiving of a message. A process assigns a timestamp to each event as it
occurs. To obtain events occurring in other processes, whenever there is a communication,
processes exchange their event histories, i.e., they exchange their observations of event
occurrences in the system. Note that the timestamps of events in a history are sent along
with the history.

Through the exchanges of event histories, every process obtains its collection of events
occurring within itself and within other processes. This collection of events can be ordered
according to a causal relation — which is defined as follows.

D efin ition 3.1 Event e precedes event f in an execution, i.e., » / , iff any one of the
following conditions holds [8];

1.e and f are events of the same process, and e occurs before f ,

2. e is a send event, and f is the corresponding receive event, or

3. there exists an event g, such that e —* g,and —> / .

D efin ition 3.2 Two events e, / are ca u sa lly re la ted if either —> / —> holds.
If neither e —► / nor f —► eholds, then e and f are considered as co n cu rren t or
in d e p e n d e n t events.

According to the casual relation — processes can partially order events in their own
histories. These histories are equivalent in the sense that they only differ in the order of
independent (not causally related) events. The relation can be implemented by the
existing vector clock scheme ([9], [10]) for the determination of causality between any
two events.

3.2 Com puting Histories for a Non-Faulty Environment
This subsection presents the construction of an event history of process P, in a non-
faulty environment. In Figure 2, processes P, and P j exchange their respective histories
Vhf and Vhj during a communication. Then, process P, computes its new history V*,. by
incorporating events in V},. into V/,t. (step 1). The function h incorporates every event in
a received history Vhj into 14; such that for every event e of 14., e does not cause any
event preceding e and e causes its next event. In other words, event e and its preceding
events are not causally related, but e is causally related to its next event in history V}H.
Notice that this is not the only way to incorporate events into a process’s history, since
events are timestamped by vector clocks and they form a partial ordering instead of a
total ordering. At step 2, process Pi updates its clock (C*) on the i lh component (C* [*']).

5

A run-time history 14,. of process F,- is computed as follows.
During a communication, processes Pi and Pj exchange their respective histories 1 4 ,and
Vhr After the exchange, both processes incorporate the received history into their own
histories. The following shows that process F, incorporates Vhj into its history Vhr

step 1 V h. = h (V hj , V h i).

s tep 2 C‘[i] = C’[i] + 1.

Figure 2: Computing History for process Pi

The examples of constructing event histories and the proof of the following theorem
are shown in [2].

T h eorem 3.1 The history, V/,.,bu ilt by the Computing History of Figure 2, is correct
in a non-faulty environment.

3.3 Com puting Histories in a Faulty Environment
This subsection presents the construction of an event history of process F,- in a faulty
environment. In such an environment, faulty processes may fool non-faulty ones by
sending incorrect values. In this case, processes may build incorrect histories due to
receipt of erroneous values. Thus, we introduce a consistency check to deal with faulty
processes sending inconsistent values to different processes.

Consistency Checks
The idea of a consistency check is that if a value of a variable is sent from a non-faulty
process to a set of processes on more than one path, then, under a bounded number of
faults, non-faulty processes will receive the same value of the variable, or an inconsistency
is detected. The following defines a consistency check.

D efin ition 3 .3 Let o(14 ,, 14,) denote a consistency check by process Pi against its re­
ceived history 14,., such that for a given event e in 14, and 14, , the message content of e
in V^ is different from that in Vhj.

From the above, if a given message is received by processes Pi and Pj, then the
contents of the message in their respective histories 14,. and 14 . should be the same, or
else an error has occurred. Figure 3 shows Computing History for a faulty environment.

Theorem 3.2 The history 14,, built according to the Computing History of Figure 3, is
correct [2].

6

An event history V/li of process Pi is computed as follows. During a communication, pro­
cesses Pi and Pj exchange their respective histories V/,,. and 14,. After the exchange, both
processes apply consistency checks and incorporate the received history into their own
histories. The following shows that process Pi does consistency checks and incorporates
Vhj into its history 14(.

1. If °(Vhi,Vhj),then STOP.

2. if -<(o(Vhi,Vh.))then Vhi = h{Vhj,Vhi).

3. C!'[i] = C*‘[i] + 1.

Figure 3: Computing History for process Pi

3.4 The Procedure
We have shown the construction of event histories, and the histories can represent the
execution of a responsive system R. In this subsection, we present the decision procedure
II which makes use of event histories to verify properties of the system R at run-time.
The formulas to which the decision procedure II can apply include interval formulas and
responsiveness assertions.

An interval formula \p]<j) (\p,q\<p) can be used to denote bounded response of within
the intervals [p] ([p, g]), where p,q,(f> are formulas of ITL. A responsiveness assertion
(\p](f> —► [p, <7]EF-0) ensures bounded response of to \j)]<p within the intervals [p, q]
where p, q, (p, ip are formulas of ITL. Therefore, both interval formulas and responsiveness
assertions denote a sequence of states. However, an event history is a collection of events
occurring in the system. Thus, we need to relate states to events in a history.

To establish the correspondence between states and events, we consider computations
to be event driven, i.e., a process receives a message, processes it, sends messages (possibly
zero) to other processes, and waits for the next message. Thus, the externally observable
events (send or receive events) are the actions that change the states of a process, and
they can be regarded as intermediate states of a program. [2] shows the correspondence
between states and externally observable events in a history.

After establishing the correspondence between states and events in a history, we define
satisfaction of a formula by a state in terms of satisfaction by an event.

D efin ition 3 .4 Given a history 14,-, an event e satisfies an assertion (p, denoted by
e \= (p , iff s \= (p, where s is the corresponding state of event e in V/,..

For an interval formula \F denoting behavior of one process, the following is the
procedure II for the determination of satisfaction of 'F with respect to the history V/,. of
process Pj.

D efin itio n 3.5 Let *F be an interval formula, \p\<p, which specifies behavior of one pro­
cess. According to the event history Vhi, the decision procedure 11(14,-,^) returns TRUE,

7

if for every event a of Pj satisfying p,then a satisfies (j). Otherwise, 11(14,-, 'F) returns
FALSE.

D efin ition 3.6 Let \F be an interval formula, [p, q\(f>, which specifies behavior of one
process. According to the event history V̂,the decision procedure n(V/l.,\Er) returns
TRUE, if the following condition holds:

for every event on of Pj satisfying p, if there exists an of Pj such that
on happens before a m and a m satisfies q, then must hold on the intervals
from on to a m.

Otherwise, 11(14,., \F) returns FALSE.

Note that the procedure is executed by every process to check behavior of
all the other processes according to its own history 14, - For a responsiveness assertion \F,
the following is the procedure II for the determination of satisfaction of 'F with respect
to the history V/,. of process P,-.

D efin ition 3.7 Let \F be a responsiveness assertion, [p]0 —> [p, which denotes be­
havior of one process. According to the event history 14,., the decision procedure 11(14,., \F)
returns TRUE, if the following condition holds:

for every event ai of Pj satisfying p —*■ there exists an event a m of Pj
such that on happens before a m and a m satisfies q, then a m must satisfy

Otherwise, 11(14,., ’F) returns FALSE.

The above interval formulas and responsiveness assertions involve behavior of one
process, so we only have to examine events of the process in history 14(. Next, we
consider formulas which specify behavior of more than one process. In this situation, we
need to know which events in an event history are executed concurrently, or which events
in the history correspond to a global state of a distributed system. This can be done by
utilizing consistent cuts ([11], [12], [10]) as follows.

D efin ition 3.8 A cu t is an ordered tuple of events with one event from each process.
A cut < ei,fcj, e2,fc2, . . . , enjkn > is a c o n s is te n t cut, if for any two events e,^. and
ej,kj (® 7̂ j) , %ki and ej>kj are concurrent.

D efin ition 3.9 A sn a p sh o t, s = < s ^ , . . . , s kn > , is an ordered tuple of states with
one state from each process, and with any two states of s being concurrent. A snapshot
is also a global state in a distributed computation.

T h eorem 3.3 Given a history 14, , for every consistent cut c = < e itkl, , . . . , en,fc„ > ,
there exists a unique global state s = < skl, . . . ,s%n > , and for every global state s, there
also exists a unique cut c [2].

Now, we define satisfaction of a formula by snapshots in terms of satisfaction by
consistent cuts.

8

D efin ition 3 .10 Given a history 1 4 .,a consistent cut c satisfies an assertion denoted
byc |= <p, iff s[= (f>,where s is the corresponding global state of c in 14;.

The following is the decision procedure 11(14,., VF) where 14, is the history of process
Pi and 'I' is an interval formula denoting behavior of multiple processes. In this case, the
satisfaction of the formula is determined by satisfaction of consistent cuts in the history
Vkr

D efin ition 3.11 Let 'J be an interval formula, \p}4>, which asserts behavior of more than
one process. According to the event history 14, , the decision procedure 11(14, , '£) returns
TRUE, if for every consistent cut c of Pj satisfying p, then c satisfies Otherwise,
11(14,-, returns FALSE.

D efin ition 3.12 Let 4/ be an interval formula, \p,q]4>, which asserts behavior of more
than one process. According to the event history 14,, the decision procedure 11(14,,’f)
returns TRUE, if the following condition holds:

for every consistent cut C\ of Pj satisfying p, if there exists a consistent cut
cm of Pj such that c/ happens before cm and cm satisfies q, then must hold
on the intervals from ci to cm.

Otherwise, 11(14;,’F) returns FALSE.

For a responsiveness assertion denoting behavior of multiple processes, the following
is the procedure II for the determination of satisfaction of 4/ with respect to the history
14, of process P,.

D efin ition 3.13 Let \F be a responsiveness assertion, —> [p, which specifies
behavior of multiple processes. According to the event history 14., the decision procedure
11(14,-,) returns TRUE, if the following condition holds:

For every consistent cut Ci satisfying p —> there exists a consistent cut
cm such that every event of ci happens before that of cm and cm satisfies q,
then cm must satisfy ip.

Otherwise, 11(14,-,'F) returns FALSE.

4 Railroad Crossing Example
In this section, we present a railroad crossing example to illustrate determination of
satisfaction of ITL formulas at run-time. For simplicity, we assume a non-faulty envi­
ronment. Thus, no consistency checks are applied to examine event histories. There are
four transitions associated with a train, traveling, approaching, ingate and departure.
Two transitions are associated with the gate, up and down. A warning signal is sent by
a train to the gate controller at a distance from the crossing or after the departure.

In Figure 4, when communication mi occurs, process Pgate is notified that the train
is approaching. Then, during communication m2 process Ptrain is notified that the gate

9

P train x = traveling x = approaching x = ingate x = departure
---------- 1--------------- r - -----------------1— — f ------- 1------—— •

[1, 0] [2, 0] [3>3] [4, 3] [5, 3]

Figure 4: Railroad crossing example

is down. Likewise, the messages of departure from a train is sent when communication
ra3 occurs.

First, we construct the event histories of processes P train and P gaie according to the
procedure Computing History of Figure 2. Then, we check satisfaction of an interval
formula <f> = [x = ingate]y = down against the event histories. In Figure 4, before
communication mi occurs, the train is traveling and the gate is up. Thus, processes
Ptrain and Pgate have the following state information in their histories, and

Vht = < (Ptrain, x = traveling, [1, 0]), = approaching, [2 , 0]) >
Vhg = < (Pgate, y = up, [0, 1]) >

The tuple (Ptrain, x = traveling, [1, 0]) shows that at (vector) time [1, 0] the train is
traveling, and (Ptrain, x = approaching, [2, 0]) denotes that at time [2, 0] the train is
approaching. Likewise, the tuple (Pgate,y = up, [0,1]) states that the gate is up at time
[0, 1].

When communication mi occurs, processes Ptrain and P gate exchange their respective
histories V/l< and Vhg , and incorporate received histories into their own histories. Recall
that the incorporation of histories is based on the causality on events. The histories of
processes Ptrain and P gate after the incorporation are as follows.

Vht = < (P tra in , x = traveling, [1, 0]), (Ptrain, x = approaching, [2 , 0]),
(Pgate, V t ip , [0, 1]), (P\train, Pgate, r e c e i v e , [2, 1]) >

Vhg = < (Pgate, V = up, [0, l]), (P tr a in ,x = traveling, [1, 0]),
(P tra in , x = approaching, [2, 0]), (P train, Pgate, [2, 1]) >

The tuple (Ptrain, Pgate, receive,[2, 1]) shows that at time [2, 1] process Pgate receives a
message from Ptrain-

10

After communications m 2 and m3, the histories 14, and T4e are as follows.

14, = < (P tra in , X = traveling, [1,0]), (X = approaching, [2,0]),
(P g a t e , V = ^LP> [0) 1])> (P tra in , Pgate, r e c e i v e , [2, 1]) >■
(Pgate, V ~ (loWTl, [2, 3]), gate, Ptrain, receive, [3, 3]) >
(P tra in , X = ingate, [4,3]), = departure, [5,3]),
(P tra in , Pgate, receive, [5,4]) >

Vh§ = < (P g a te ,V = up,[0, 1]) , (P tra in , x = traveling,[1, 0]) ,

(P tra in , X = approaching, [2,0]), (P tra in , Pgate, receive, [2,1]) >
(Pgate, V ~ down,[2,3]), gate, receive, [3, 3]) >
(P tra in , x = ingate, [4,3]), = departure, [5,3]),
(P tra in , Pgate, receive, [5,4]) >

Now, we apply the decision procedure II to check validity of the formula <j) = [x =
ingate]y = down. According to the procedure 11(14,, of Definition 3.11, 11(14, ,0)
returns TRUE, if the condition holds: whenever the train is ingate, the gate must be
down. For the events in histories 14,, the tuple = ingate, [4,3]) denotes that
the train is ingate, and the tuple (Pgate , V = down, [2,3]) denotes that the gate is down.
Also, by comparison of (vector) timestamps of [2, 3] and [4,3], (Pgate,y = [2, 3])
happens before (Ptrain,x = ingate, [4,3]). Therefore, history 14, satisfies the formula 0 at
run-time. Likewise, we can conclude that history satisfies the formula 0 at run-time.

5 CONCLUSION
We have presented a logic, Interval Temporal Logic (ITL), to specify a responsive com­
puting system and have given a decision procedure II to verify properties of the systems
as follows. First, properties of the system are specified using ITL formulas. Next, system
execution is obtained by collecting events and maintaining equivalent event histories.
Finally, the decision procedure II is applied to determine satisfaction of the formulas at
run-time. The procedure II is essentially a run-time procedure, since it verifies properties
of the system based on the event histories computed at run-time.

Currently, experiments on applying II to verify, at run-time, properties of a railroad
crossing system are under way. Future research will examine other types of assertions in
addition to interval formulas and responsiveness assertions for the run-time analysis of
the behavior of responsive computing systems.

11

References
[1] M. Malek, “Responsive systems: A challenge for the nineties,” in Proc.

CRO’90, 16th Symposium Microprocessing and Microprogramming, (Amersterdam,
The Netherlands), pp. 9-16, 1990. Keynote Address.

[2] G. Tsai, M. Insall, and B. McMillin, “Ensuring the satisfaction of a temporal specifi­
cation at run-time,” UMR Department of Computer Science Technical Report Num­
ber CSC 93-020, 1993.

[3] C. Jard and T. Jeron, “On-line model-checking for finite linear temporal logic specifi­
cations,” in Automatic Verification Methods for Finite State Systems, Lecture Notes
in Computer Science 407, pp. 189-196, 1989.

[4] S. E. Chodrow, F. Jahanian, and M. Donner, “Run-time monitoring of real-time
systems,” in IEEE Symposium on Real-Time Systems, pp. 74-83, 1991.

[5] S. Katz and D. Peled, “An efficient verification method for parallel and distributed
programs,” in Lecture Notes in Computer Science 354, PP- 489-507, 1988.

[6] D. Peled and A. Pnueli, “Proving partial order liveness properties,” 17th Colloquium
on Automata, Language and Programming, pp. 553-571, 1990.

[7] G. Tsai, M. Insall, and B. McMillin, “Constructing an interval temporal logic for
real-time systems,” UMR Department of Computer Science Technical Report Num­
ber CSC 93-025, 1993.

[8] L. Lamport, “Time, clocks and the ordering of events in a distributed system,”
Communications of the ACM, vol. 21, no. 7, pp. 558-565, 1978.

[9] J. Fidge, “Timestamps in message passing systems that preserve the partial order­
ing,” in Proceeding of the Tenth International Conference of Software Engineering,
pp. 182-187,1992.

[10] F. Mattern, “Virtual time and global states of distributed systems,” in Parallel and
Distributed Algorithms: Proceedings of the International Workshops on Parallel and
Distributed Algorithms (M. Cosnard et a l, eds.), pp. 215-226, Ed. Elsevier Science
Publishers B.V., 1989.

[11] L. Lamport, “Paradigms for distributed programs: Computing global states,” in
Distributed Systems-Methods and Tools for Specification, Lecture Notes in Computer
Science 190 (M. Paul and H. Siegert, eds.), pp. 454-468, 1985.

[12] S. Alagar and S. Venkatesan, “Hierarchy in testing distributed programs,” in Com­
puter Science Technical Report UTDCS-8-92, The University of Texas at Dallas,
1992.

12

	A Run-Time Decision Procedure for Responsive Computing Systems
	Recommended Citation

	tmp.1600974007.pdf.lHiO9

