MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Computer Science Technical Reports Computer Science

10 Jul 1993

Parallel Algorithm Fundamentals and Analysis

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Hanan Lutfiyya
Grace Tsai

Jun-Lin Liu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

b Part of the Computer Sciences Commons

Recommended Citation

McMillin, Bruce M.; Lutfiyya, Hanan; Tsai, Grace; and Liu, Jun-Lin, "Parallel Algorithm Fundamentals and
Analysis" (1993). Computer Science Technical Reports. 39.
https://scholarsmine.mst.edu/comsci_techreports/39

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/39?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PARALLEL ALGORITHM FUNDAMENTALS
AND ANALYSIS

B. McMillin*1 H. Lufiyya**2, G. Tsail J.- L. Liul

CSc-93-17

Depaitment of Computer Science
University of Missouri - Rolla

Rolla, MO 65401 (314)341-4491

*supported in part by the National Science Foundation under Grant Numbers MSS-9216479 and
CDA-9222827, and, in part, from the Air Force Office of Scientific Research under contract
number F49620-92-J-0546.

ANsupported in part by the National Sciences and Research Council of Canada (NSERC) under
contract number OGP0138180-S365A2, and in part, from University of Western Ontario NSERC
internal funding under contract number Z001A8-S365A1.

Parallel Algorithm Fundamentals
and Analysis
CSC 93-17

Bruce McMillin *A Hanan Lutfiyya **2, Grace Tsail, Jun-Lin Liul

1 Department of Computer Science
University of Missouri-Rolla
Rolla, MO 65401 USA
2 Department of Computer Science
University of Western Ontario
London, Ontario N6A 5B7 Canada

Abstract. This session explores, through the use of formal methods, the “intuition” used in cre-
ating a parallel algorithm design and realizing this design on distributed memory hardware. The
algorithm class NG and the LSTM machine are used to show why some algorithms realize their
promise of speedup better than others and the algorithm class NP is used to show why other algo-
rithms will never be good for parallelization. The realities of algorithm design are presented through
partitioning and mapping issues and models. Finally, correctness through cooperative axiomatic
reasoning provides an additional basis for understanding parallel algorithm design and specifi-
cation and is used for run-time assurance of distributed computing systems through operational
evaluation.

Key Words: Algorithm Design, Embeddings, Speedup, Class NG, Reasoning, Operational Evaluation

This paper appears, in its entirety, in the Proceedings of the International Summer Institute on
Parallel Computer Architectures, Languages, and Algorithms, July 5-10, 1993, Prague, Czech Republic,
IEEE Computer Society Press.

1 Parallel Algorithms and Parallelization of Algorithms - Intuitive Design

Parallel processing can really only make sense if we understand how to program the parallel hardware
that the technology is capable of producing. For example, 10,000 personal computers, each capable of 1

* supported in part by the National Science Foundation under Grant Numbers MSS-9216479 and ODA-9222827,
and, in part, from the Air Force Office of Scientific Research under contract number F49620-92-J-0546.

** supported in part by the National Sciences and Engineering Research Council of Canada (NSERC) under
contract number OGP0138180-S365A2, and in part, from University of Western Ontario NSERC internal
funding under contract number Z001A8-S365A1.

2 ISIPCALA’93

MFLOPS, has an enormous aggregate processing power of 10 GFLOPS, however, there is really no way
to exploit this processing power for a realistic single job. Organizing these 10,000 PCs together, using a
high-speed interconnection, such as in a multicomputer, helps, but the task remains to make the job run
well. This is the study of parallel programming and parallel algorithms.

The goal of parallel programming and parallel algorithm study is to find a wciy to break a job into
N units that can execute concurrently on N or fewer processors. Given the complexity of programming,
in general, trying to program in parallel seems an insurmountable task. Indeed, a parallelizing compiler
which transforms a sequential program into a parallel program would be very attractive. This idea, also
coined the “Dusty Deck Syndrome” has received much research attention.

Parallelizing compilers work, for the most part, on identifying certain constructs within the sequential
language. Execution profiles of computationally-intensive programs can show that often, only a few
percent of code (by volume) accounts for 50% of the run time of the program. It\s not hard to see where
this lies. DO loops and computational kernels account for a great deal of a program’s run time. Loops
typically appear in program code as follows.

DO i = 1, 100
100 a(i)=b(i)+c(i)

This loop parallelizes easily, and is easy for the compiler to detect and produce the following parallel
(vector) code which executes all 100 assignments independently, in parallel.

a(l) = b(l) + c(l)
a(2) = b(2)+ c(2)

a(100) = b(100) + c(100)

or a(l : 100) = 6(1 : 100) + c(l : 100) Now, of course, not all loops are easily decomposed. Sometimes
there are loop dependencies. These can be solved by the introduction of temporary storage. Other times,
there are dependencies that cannot be removed, such as in the case of linear recurrences of the form
ai = cii-\bi + Ciji > 1L FORTRAN code appears as follows,

DO 100i= 2 N
100 a(i) = a(i-*b(i) + c(

Notice that the data dependency between a(i) and a(i-1) cannot be parallelized completely. The (rather
complex) solution

a(l:N) = c(I:N)
DO i= 1 log2 N
DO in parallel for all Pj where 21<j <N
a(j) = a(j) + b()*a(j-2’- 1)
b(@) = b()*@-2*-")

200 continue

builds up partial results in parallel, i.e. at i=2, at the end of the parallel statement, we have (for j > 4):
a(i) = b()*b(-)*[b(-2)*c(j-3)+c(i-2)]+b()*c.(-D+c.()
b(@) = b(G)*b(j-)*b(j-2)

Now while the above construction is complex, once derived, a compiler can identify this looping
structure and perform the appropriate parallel code substitution.
The problem with relying too much on compilers to do our work is twofold:

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 3

1 A compiler can only detect loop parallelism. Thus, there is still 50% of the run time unaccounted for
that a compiler cannot easily detect. In terms of parallel program performance, this will limit the
Speedup or increase in performance obtained by parallelism.

2. The sequential algorithm may actually obscure parallelism inherent in the problem such that even an
ideal compiler cant extract it. Indeed, a sequential algorithm may not be the best parallel algorithm,
at all.

In the next section we will examine the first issue, more closely, when we discuss the metrics of
Speedup. The second issue is really one of language.

1.1 Language as an Impediment to Parallelism

The choice of language really can inhibit the expression of parallelism that may be inherent in an appli-
cation. Consider the model of Imperative Language Programming which is the basis for FORTRAN, C,
PASCAL, etc. An imperative language, consists of statements which are a sequence of predicate trans-
formations on a program’s state. For example, an imperative matrix multiplication c¢/Xh = a/xm&mxn is
expressed as follows,

for i from 1to |
for j from 1to m
for kfrom 1to n
—Cik

This is the way that matrix multiplication is usually presented. However, it is not clear, at all, how
to perform the operations in parallel. Certainly, since this is loop parallelism, we can create | ¢ en
processes, as above. However, a better way is to re-examine the specification of matrix multiplication
rather than its implementation in a particular (here imperative) language.

Matrix multiplication is, fundamentally, a collection of inner products of the elements of the multiplier
and multiplicand matrices. This is expressed below, in a version of matrix multiplication expressed in
FP [3]

Given a pair of matrices stored as a sequence of rows,
<ab > witha=<« i , >and &=<a;p,... >
¢ <—Inner.Product e Distribute.Left « Distribute.Right « [a, transpose”b)]
Whose evaluation results in:
¢ < Inner.Product e« Distribute.Left ¢ Distribute.Right < a, b' >
¢ Inner.Product *Distribute.Left. << a\,b' >,...,< a/,IV>>
¢ <—Inner.Product < PuP2>.. > > where pi —« cii,bof >,...,< a;, bm»

By the Church-Rosser property, the Inner-Products may be applied in parallel in any order. Thus,
we note that the execution order is neither constrained nor specified as in imperative languages. The
maximum amount of parallelism is expressed by the functional program.

Now the FP example is rather extreme. No one is suggesting that everyone switch to functional
languages simply to use parallel computing. Note, however, that by analyzing the specification of the
problem, the observation that matrix multiplication is nothing more than a collection of inner products,
yields not only the functional program above, but the imperative program, below.

do in parallel for Pij,i=1,...,/j=1..,m
for kfrom 1to n
—ak bMijbj k

Thus, rather than express or constrain the computation of these inner products, as in the imperative
algorithm, we just write an imperative program which is expressed in the fundamental parallel units

4 ISIPCALA’93

of the problem. We then feed the inner product computations, in any order, to the processors of the
system. Thus, rather than a parallel version of a sequential algorithm, this is a parallel algorithm.

Successful parallel programming consists of (1) specifying the problem, (2) identifying the funda-
mental units and their interaction, and (3) mapping these fundamental units to processes with their
interactions specified by communication primitives.

Given that the only control we have in parallel programming, at the system level, is process creation
and send/receive communication, all examples can be constructed using this primitive set of operations.
Later we will present a more formal model of this in Hoare’s GSP [14].

1.2 PARALLEL SORTING

Consider the problem of sorting an array a into ascending order using the a (very simple) Sequential
Sorting Algorithm (Exchange Sort).

Sort N numbers a(l), a(2), ..., a(7V) into ascending order
for i from 1to N
for j from 1to N
if (a(i) > a())
temp=a(i)
a(i)=a(j)
a(j)=ternp

This algorithm runs in N2 comparisons. If we identify the fundamental units and operations in
sorting, the compare/exchange is the basic function which operates on the array elements. If we have
N processors available we should be able to make it run in N time by using the N processors to do N
comparisons in parallel.

ODD-EVEN Transposition Sort If we arrange the N processors in a linear array and let processor K
hold value a(i), then processors alternately exchange their values based on whether their index is even
or odd.
Code for each processor »j
forj=0,iVv-I
do in parallel for all P{yi = O,N —1
if j is even and i is even orj is odd and i is odd
send a(i) to P{—1
receive a(i) from F{ —1
else
receive a(i+l) from P{-1-1
ifa(i+1) < a(i)
temp=a(i)
a(i)=a(i+l)
a(i+l)=temp
send a(i-bl) to Pi + 1
end

This achieves the desired result, a parallel algorithm which runs in N time on N processors.

1.3 Relaxation

Perhaps the most important use of parallel computing is the relaxation methods for solving, iteratively,
Partial Differential Equations of the form

d2u d2u _

dx2 dy2

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 5

Fig. 1. Odd-Even Transposition Sort

A numerical approximation U to the solution 11 yields the matrix form
AU =0

where the matrix A is a sparse, tridiagonal, system of linear equations.

The problem of parallelizing a solution to this seems insurmountable. However, this problem is
amenable to Domain Decomposition which splits the physical model™ domain over the processors as in
the point discretization of Figure 2.

G
G
0
a
0
0
0
0
0
0

O ©O 0o © o o o © o QO
©O 0O o o O ©o o o o o
O © © © o ©o o o o o
O ©O 0o O O o o o o o
O © o 0o 0o © o o ©o @
©O © o o o o o o o QO
©O © o o o © o o o g
O © o o o ©o o © © O
O o0 o OO © O ° © O

Fig. 2. Discretization of Physical Domain - Domain Decomposition

6 ISIPCALA'93
Let U = (Uij) be the approximation of the solution u

&

UlJ 1] 4/*j+| + r/.+|j

Each point (element) is iteratively solved as a function of its neighbors as in Figure 3.

0 0 0 0 [¢]
f E—— 1
0 ' 0 | 0 0 0
< i
i |
r aJ L
10 o) ! o] 0
[ij i+
i r
I t
I I
I k
o] ' o 0 0 0
131 I
1_: 1
0 0 0 0 0

Fig. 3. Localized Computational Molecule

1.4 NUMERICAL INTEGRATION

As another example of domain decomposition, consider the problem of an approximation to calculating
using numerical integration.

1
« dx
m 1+ X2
The natural numerical decomposition is to break the problem domain into strips and calculate the
numeric function value at each strip to approximate the solution to the problem.

A'-
return

In parallel, each Pi gets I/ACth of the integration to perform, as in Figure 4. A tree reduction
summation is used to sum up all the slices in logarithmic time.

1,5 Summary

In creating a parallel algorithm, one must start with the specification of the problem to be solved.
From this specification, identifiable units can be extracted that can be solved in parallel. Attempting to
“engineer” a parallel solution from an existing sequential code, written in an imperative language, will
not yield the best parallel algorithm since the imperative language imposes a computational order that
does not always express the maximal parallelism present in the problem.

The remainder of this paper will explore metrics for measuring parallel performance, algorithmic,
classes of parallel algorithms, and a formal methods of reasoning about parallel programs.

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 7

Fig. 4. Domain Decomposition

2 Analysis of Parallel. Algorithms

In the previous section, we presented a vague idea of how to measure the effectiveness of a parallel
algorithm. In this section, we refine these concepts and present a theoretical basis for parallel algorithm
performance.

2.1 Speedup

From a hardware standpoint, it’s easy to build parallel hardware with enormous speed ratings. What
the user desires is a machine to make his/her job run fast. If we assume that we can decompose the job
into N parts, then speedup is just how much faster the decomposed job runs on N processors. Speedup
measures address both the optimal and expected performance.

Figure 5 characterizes the best case, pessimistic case, and average case for possible speedups.

Minsky’s conjecture [17] forms a lower bound on what we can reasonably expect from a parallel
program. The key observation is that as N grows, the performance becomes dominated by system
bottlenecks and communication. Thus, perhaps the best speedup, S is 0(log2N). This is a disappointing
result, if true, as it says there is not much benefit from parallelism beyond only a few processors.

In sharp contrast to Minsky’s conjecture is the notion of ideal speedup, For ideal speedup to be real-
ized, the problem must be perfectly decomposed in N parts and no communication or system bottlenecks
must occur. Then the speedup is linear, as N grows, the speedup S = N.

Between these two extremes, are two measures of what occurs when system bottlenecks, overhead,
imperfect parallel decomposition occur.

Amdahl’s law [1] treats every program as consisting of a sequential component s and a parallel
component p = 1—5. The crucial observation is that a program’ speedup will be limited, severely,
by the amount of non-parallelizable code. Simply put, if there are N processors, then the speedup .S is
bounded as follows:

g< STP
84 N
For example, if N = 1024 and s —0, then
S< i
0+

11124

8 ISIPCALA’33

Fig. 5. Speedup Models

or S < 1024, which is, essentially, the ideal speedup case. However, if even a small sequential component
is present, such as if N = 1024 and $= 0.01, then

or S <91.18.

Under the Amdahl’s law speedup model, the limitations of parallelizing compilers become apparent.
If we believe that 50% of the code is recognizable as parallel (p = 0.5), then 50% is not parallelizable
(s = 1—p —0.50). Thus the maximum speedup is

im S< lim
yv-00 0,50 + ~

or S < 2 no matter how many processors are used!

These results seem disappointing. However, [12] in 1988 observed that programs are made parallel,
for the most part, as they are have run times which grow as the problem scales. This scaling can be a
finer grid resolution or an increase in the number of time steps proportional to the number of processors
in the system. However, the sequential time, which is the time to load the program, collect the results,
and perform overhead calculations remains relatively constant over varying computational problem sizes.
This Scaled Size model assumes that, by contrast to Amdahl’s law, p is not independent of N. Thus, we
can calculate a scaled speedup Ss, as

s p'M
S =3 Zi'ﬁ"

Experimental results using this speedup measure report scaled speedups of 1020 on a 1024 processor
machine [12]. There is still much debate, however, on the usefulness of this model.

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 9

2.2 Theoretical Basis for Speedup

Given the two speedup models for S and Ss given above, it is easy to calculate the speedup for a
particular application. However, if the actual ratios p and s are not known, then experimentation is
necessary. However, given that the best tools available are parallelizing compilers, determining p may be
difficult since the p obtained is only an estimate of the amount of parallelism inherent in the problem.
What is necessary is a way of classifying algorithms by their parallel complexity. The class AfC is one such
class. To explore the class AfC}we need to first examine the fundamental nature of parallel processes.

2.3 CSP

Hoare’s model of concurrent programming, Communicating Sequential Processes (CSP) [14], is a model
reflecting properties that should be in all concurrent programming languages. It was not intended to be
used as a programming language per se, but it does reflect Hoare’s concerns of proving the correctness of
programs. However, CSP has provided a medium of discussion of synchronous systems and has inspired
a great deal of development. One result is the multitasking and rendezvous properties of Ada. Hoare
has suggested the following three properties that every concurrent, language should have: the ability to
express parallelism, communication primitives and non-determinism. This section provides an informal
brief description of the syntax and meaning of CSP commands. Full details of CSP are contained in [14].

Communicating Sequential Processes (CSP) was proposed as a preliminary solution to the problem
of defining a synchronous message-based language,

A CSP program consists of a static collection of processes. The basic command of CSP is [pi]|...||pn]
expressing concurrent execution of sequential processes pi,..., pn. Each individual process pi has a distinct
address space and consists of statements Si. We can also express parallelism between program statements
as well as between processes.

Coordination between processes is implemented by message exchange between pairs of processes. It
involves the synchronized execution of .se?>r/(output) and rec.eive(input) operations by both processes. The
send and receive operations in processes pj and pi take the following forms: pily and pjlx> respectively.

Input command pj?x expresses a request to pj to assign a value to the (local) variable x of pj.
Output command pjly expresses a request to pi to receive a value from pj. Execution of pj?x and pjly
is synchronized and results in assigning the value of y to x. pj?x and pj\y are said to be a matching pair
of communication statements. We define a communication sequence of process pi as the sequence of all
communications that pi has so far participated in.

The alteration command allows for a path to be non-deterministically chosen from a set of paths.
The repetition rule allows for repeated non-deterministic choosing of a path from a set of paths.

The alteration and repetition commands are as follows:

ifh\;ci -+ S[O... D6n;cn -> Snfi

do&i;ci —Si cn —>Sn od

Alteration and repetition are formed from sets of guarded commands. A guarded command b; ¢ —»S
consists of a guard bic. and a command S. In the guard, b is a boolean expression and c is either skip
or one of the communication primitives. The symbol is used as a delimiter for separating different
program statements. If b is false, the guard is failed. If b is true and c=skip, the guard is ready. If b
is true and c is one of the communication primitives, then the guard is prepared to communicate with
the process named in the communication primitive. It is ready when the other process is prepared to
communicate and blocked at other times.

Execution of an alteration command selects a guarded command with a ready guard and executes the
sequence c;S. If ¢ is skip, execution is independent of other processes. If ¢ is a communication command,
then a matching communication command must be executed simultaneously. When some guards are
blocked and none are ready, the process is blocked and must wait. If all guards are failed, the process
aborts.

10 ISIPCALA’93

Execution of the repetitive command is the same except that, whereas execution of alternation selects
one guarded command and is completed, for repetition the selection is repeated until all guards are failed,
at which time execution of the repetition is repeated until all guards are failed, at which time execution
of the repetition is completed.

2.4 Complexity

The questions of complexity and computability that exist for sequential computer programs, are also
interesting questions for concurrent/parallel computer programs. If the Turing Machine is the abstract
computational model for a sequential program, what is the corresponding model for a concurrent program
and how does this model relate to the. sequential Turing Machine model?

From [15], the fundamental measures of complexity are parallel time, space, and sequential time. If
we have an abstract model which provides these three measures, then we can succinctly define speedup
and characterize classes of algorithms which are amenable to parallelism.

If the model of concurrent computation is represented by CSP, concurrent programs are really ex-
pressed by sequential programs that communicate with each other. Since the Turing Machine is the
model of sequential programs, it is natural to express a concurrent program as a set of communicating
Turing machines, Specifically, a concurrent program is represented by a Multitape Turing machine which
has a read-only input tape, k work tapes (k > 1), and a write-only output tape. Roughly, the input tape
and output tape correspond to the message passing that occurs in CSP ?,! barrier rendezvous and each
work tape corresponds to the internal storage of one of the k processes of the (ISP program.

Definition 1. Formally, a Turing Machine (TM) is described by
M = (QJIEt6t\>iF)

where Q is the finite set of states, E is the tape alphabet, |1 C 17 is the input, 8 is the move function, b
is a special blank symbol, © E Q is the start state, and F C Q is the set of final states.

Definition2. For a TM M and input w}t(w) is the total number of steps taken for input w and

t(n) = max{t(u>) | Y < n)

is the time complexity of M .

Definition3. Fora TM M and input w, s(w) is the total maximum length of any work tape used for
input w and
s(n) —max{$(u>) | W\ < n]

is the space consumption of of M.
Definition4. Let ID be the instantaneous description of M,
ID = E*QE* =xqy

where Xy are tape contents and the tape head is scanning the leftmost symbol of y in state g and b
represents a move of M .

Definitions, Let 1Do b ID\ b ID* b ee*be a computation of M for input w. If, in two successive
steps, ID \~ID* ~ID" a work tape moves in different directions, we say a head changes its movement
during ID b ID* b ID". Define (/,j), / < j as a phase of this computation if no work tape head changes
its movement direction during ID{ b ID{ + 1b IDj, + 2 b «*mb IDj where in ID b ID* every tape head
moves if, L) or S where R and L are different directions and S is no movement.

B. McMillin efc al: Parallel Algorithm Fundamentals and Analysis 1

Next we define a machine which will help relate the phases to the concept of data dependencies
between sequential processes through message passing.

Definition6. Let a Transform Machine be a TM constructed from M adding a special state gf. Upon
entering g', it removes all the contents from the input tape, copies the output tape to the input tape,
changes the work tape and output, tape to blanks, and works normally starting in state co.

Definition?. The width complexity iv(n) is the maximum total length of the input and output tape
contents during the computation for all input of length < n.

Remark. What these, definitions show is that if we can use n work tapes in a single phase, independently,
this implies there are no data dependencies between the work tapes. The end of a phase (entering state ¢()
implies that a communication or synchronization is necessary. Thus, in the Turing Machine formulation,
the width complexity corresponds to the total amount computational space (complexity) and the space
complexity corresponds to the longest space complexity of an individual work tape (process).

A special type of transform machine is of interest, since it describes a computation which is amenable
to parallelism in logarithmic time.

Definitions. If a transform machine satisfies

«») = 0(log(tu(n)),
it is a Log-Space Transform Machine (LSTM).

For example, there is a LSTM that satisfies the computation of a tree-reduction summation.

Example L An LSTM which satisfies the computation of ~ Xj for mm-fix* where the X[.s are
binary numbers as input as follows.

In Phase 1, M gets ¥¢i#//2# 23# ***on its output tape where ja —x<t + X2i+1-

In Phase 2, M 2/i#2/2# * «becomes the input and M gets on its output tape where
zi — z2i + M2«+im

This continues until the output is J2 g* This clearly takes logk phases. The width complexity w(n) —
0(n), k <n and the phase complexity is log k.

The problems that can be solved by a LSTM form a complexity class, AfC.

Definition9. A problem is in MC if there exists an LSTM solving it in polynomially related phase
0(log* 7) and width 0(n*) where g(n) —/*(??) ify(v) = p{f{n)) for some polynomial,/).

Thus, the class MC represents the class of nicely parallel]zable problems with time polynomial in the
logarithm of the size of the problem (poly-log) using only a polynomial number of processors. Clearly any
problem in V is in MC}since any problem in MC when solved serially, is in T . However, the reverse is not
necessarily true since, for example, the best-known parallel algorithm for maximum flow is 0(?i2log?}.)
steps using 0(n) processors.

2.5 M'P-Completeness and Parallel Computing

While the results above show that the class MC contains problems amenable to parallel computing, there
are algorithm classes in which parallel computing is ineffective.

The class of MV-Complete problems, or those solvable in nondeterministic polynomial time form just
such a class. Since it is not known if any M'V problems can be solved in deterministic polynomial time,
attempting to solve an WP-complete problem requires exponential time on a sequential computer.

12 ISIPCALA93

Since, by the above discussion, that our notion of a parallel computer is really expressed by a multitape
Turing Machine, and, since multitape and single tape Turing Machine computations are related, then,
by the Church-Turing hypothesis, any N T-Complete problem can be expressed as a parallel algorithm
on the multitape Turing machine. However, by our notion of speedup, .S, using N processors, the best
speedup is A, a linear factor. However, an exponential problem, E ygrows in some exponential power of
NyE —O(cN). Thus, since a parallel machine grows in power, only linearly, it cannot effectively reduce
the exponential complexity of the problem. Put more succinctly, parallel computers only reduce the
complexity of an exponential problem by a polynomial factor S\ thus, leaving the complexity exponential
since E/S = CN/N is still exponential.

However, parallel computers are useful in evaluating expensive hueristic.s for approximation to the
solution of NV -Complete problems. Techniques such as simulated annealing [23] provide good results,
but are computationally complex. Parallel computing can help speed their evaluation.

3 Interconnection Networks and Embeddings

In the presentation so far, we have assumed that all processors arc connected to each other (a completely
connected network). The crosshar switch [17] attempts to connect, each processor to each other processor.
However, the number of switch elements grows as the square of the number of processors, making this
technology infeasible for large multicomputer networks. The bus interconnection [17], by contrast, is
inexpensive, but exhibits a performance bottleneck as interproc.essor communication grows.

Multistage interconnection networks attempt to minimize the cost of interconnecting processors by
providing a subset of possible interconnection patterns between the processors, at any one time. Examples
of multistage interconnection networks are shown in Figure 6. Each network is arranged in n stages where
each stage, has N/k k x k switches, each with N = k% ports. Thus, each processor can communicate
with each other processor using n hops in the switch, however, as mentioned above, only a subset of
simultaneous connections are possible.

The multistage interconnect is the basis for many commercial and research parallel processors such
as PASM [3] and the IBM RS/6000-based POWEliparallel 1 (SP1) System [18]. However, if we exam-
ine the examples of Section 1 the communication patterns between processors are all nearest neighbor.
Indeed, the most natural parallel algorithms result from domain decomposition into spatially local com-
munication patterns such as mesh, ring, or tree. Thus, a fixed architecture which can be a host to these
guest graphs is all that is really necessary.

A fixed interconnection topology is the usual choice in constructing multicomputers. The topology
is based on a graph theoretical model in which processors are represented by nodes or vertices and links
are represented by edges so that all links are bidirectional.

A path is a sequence of links from the source node to a destination node. The path length (distance)
between two nodes is the minimum number of links between these two nodes. The degree of a node is
the number of links (bidirectional) connecting to a node.

3.1 Graph Embedding

The need for the embedding arises from at least two different directions. First, with the widespread
availability of distributed memory architectures based on the hypercube interconnection scheme, there
is an ever-growing interest in the portability of algorithms developed for architectures based on other
topologies, such as linear arrays, rings, two-dimensional meshes, and complete binary trees, into the
hypercube. Clearly, this question of portability reduces to one of embedding the above interconnection
schemes into the hyperc.ube. Second, the problem of mapping parallel algorithms onto parallel architec-
tures naturally gives rise to graph embedding problems. Graph embedding problems have applications in
a wide variety of computational situations. For example, the flow of information in a parallel algorithm
defines a program graph and embedding this into a network tell us how to organize the computation on

B. McMillin et al: Parallel Algorithm Funda,mentals and Analysis 13

ABukEB\BlefynuoTeidisae

Fig. 6. Sample Multistage Interconnection Networks

the network. Other problems that can be formulated as graph embedding problems are laying out cir-
cuits on chips, representing data structures in computing memory, and finding efficient program control
structures.

The problem of mapping a graph representing the computation and communication needs of the
program onto the underlying physical interconnection of a multiprocessor so as to minimize the commu-
nication overhead and maximize the parallelism is called the mapping problem. The mapping problem
is the assignment of processes to processors so as to maximize the number of pairs of communicating
processes that fall on pairs of directly connected processors.

In mapping problems, the guest graph G is the network topology that we are interested in simulating
using a host graph H. Let Vg and Vjj denote the vertex sets of the graph G and H, respectively, and Eq
and Ejj denote the edge sets of the graph G and //, respectively. An embedding f of a graph G into a
graph H is a mapping of the vertices of G into the vertices of H, together with a mapping of the edges of
G into the simple paths of H such that ife = (7,v) E Eq, then /(e) is a simple path of H with endpoints
f(u) and f(v). If /(e) lias length greater than one, then it lias one or more intermediate nodes which
are all nodes on the path other than the two endpoints. An embedding / is isomorphic if it is injective
and for each (u,Vv) E Eq, /(t>)) £ Eh-Throughout this paper, unless indicated otherwise the term
“embeddings” will always means isomorphic embeddings, and the terms “embedding” and “mapping”
will mean the same and used interchangeably.

It has been known for a long time that the general graph embedding problem (i.e., subgraph iso-
morphism problem) is NP-complete. It was shown that the embedding of general graphs into the binary
hypercube is also NP-cornplete [6]. However, with rich interconnection structure the hypercube con-
tains as a subgraph many the regular structures (i.e., rings, two-dimensional meshes, higher-dimensional
meshes, and almost complete binary trees). Most of the mapping research in these years has dealt with
effectively simulating these regular structures in the hypercubes, (for example, [36]).

Let / be an embedding function which maps a guest graph G into a host graph H. \Vq| denotes the

14 ISIPCALA93

(d) chordal ring (e) ring () fully connected
0--0--0—0

°~'O'~T -0

T 1°0-7°°

0--0--0--0
(h) 2-D mesh

Fig. 7. Some Interconnection Topologies

cardinality of the set Vq. Terminology related to the mapping problem are formally defined as follows.

Definition 10. The expansion of the mapping is the ratio of the size (in number of nodes) of the host
graph to that of the guest graph, that is, Ef — jp”j. If the embedding is injective, then the expansion
is a measure of processor utilization,

Definition 11. The edge dilation of edge (i,j) E Eq is disi(f(i)¥f(j)). The dilation of the mapping is
Df = ma f(j)), V(,j) 6 Eq-The average edge dilation is
dilation of a mapping represents the communication delay between the communication nodes.

Definition 12. The congestion of an edge ¢’ E Eh is the cardinality of e E E(G): € is in path /(e).
That is, \d1”™ ~7(e)I* The congestion of the mapping is niax{"eeE(,,\ef OEj~ |}, W 6 Eh-The
average congestion of the mapping is similarly defined.

Definition 13. The max-load is the maximum number of nodes in G that are mapped to a node in H.
Max-load = 1if the mapping is one-to-one.

It should be noted that unit dilation implies unit congestion. Thus the class of dilation-1embeddable
graphs in a hypercube is a proper set of the class of congestion-1 embeddable graphs. If each node
of the guest graph is mapping to a distinct node of the host, the slow down due to nearest neighbor
communication in the original graph being extended to communication along paths is a function of the
length of the path (i.e., edge dilation) and the congestion of the edges on the path.

Ba (lis

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 15
3.2 The k-ary n-cube Interconnection Topology

One of the most general type of interconnection network is the k-ary n-cube which has kn nodes organized
as a cube with dimension n and k nodes in each dimension. Each node i is identified by an n-digit radix

k number, the 6-th digit of the number represents the node’s position in the 6-th dimension. The nodes
are interconnected to their nearest neighbors in a radix k representation as follows.

Definition 14. If in-\ m-«0is the radix k representation for node i, then its neighbors in the intercon-
nection are

Mt —2%9%6+1N H1' D

and
in-iin-2 ee*ib+iiiH-x **eio for each 0 < 6< n —1
where
tj" = (ib 4-1) mod k
and

i~ —(i6—1) mod k

An example of a 3-ary 2-cube is shown in Figure 7 g.
Some special cases of this topology are the k —2 case of the hypercube or boolean n-cube. For n = 2
a superset of a a k dimensional mesh is generated and n = 1 specifies a ring.

Boolean n-cube Various supercomputer architectures interconnecting hundreds or thousands of pro-
cessors have been proposed for many years. The Hypercube is used on both SIMD and MIMD parallel
processors. Some commercial examples are the NCUBE/2, the Intel iPSG/860, and the CM-2.

An n-cube system has N=2n nodes (processors) indexed from 0 to 2n—21and there is a link between
any two nodes if and only if the binary representations of their indices differ by exactly one bit. An
n-cube can be recursively constructed by combining two (2 —I)-cubes. Let (an_2...a0) be an index
in (n —I]-cube. Then in 71-cube, there is a link between two corresponding nodes in (n — I)-c.ube,
(0Oan_2 .. .a0) and (lan_2eee«0)- A 2-ary 3-cube is shown in Figure 8.

Fig. 8. A 2-ary 3-cube

16 ISIPCIALA'93
3.3 Pattern Embedding in a Hypercube

The hypercube is a powerful topology because it is a superset of many other topologies, such as ring,
mesh, and tree. Commonly, each of these nodes in these topologies is given a binary representation.
However, the binary representation chosen needs to preserve the nearest neighbor adjacencies present in
the fc-ary ?}-cube representation. Fortunately, the Gray-code provides just such a representation.

Definition 15. A Binary Reflected Gray Code (BRGC) Ch is a code of length k such that
is the k—1-bit Gray code representation of digit i\ of the radix k—L1number i and Gk-\{ii)R
is its reversal.

'{0,1} ififc = 1
G =J{06",._i(0), 0ck._i(D), ..., ocric_;(2fe2- 1),
"t 16t i(2f 1- 1), 167 i(2*-1- 2),...116t_1(0)}

. = {OCrjfc-i, > 1

Ring Embedding Rings are of interest, and are of increasing interest, due to the computational
problems that arize in genetics. One of the central questions of molecular biology is the discovery of the
semantics of DNA. Just knowing the syntax, that is, the sequence, tells the biologist little. The biologist
must understand the biochemical functions of the DNA. To understand the semantics, one needs to know
the relationship between DNA and proteins. The essence of the problem is that given a set of protein
sequences, efficient alignment-matching algorithms are needed that can deal elegantly with insertion,
deletion, substitution, and even gaps in the series of sequence elements. One way of measuring the
optimality of an alignment is by computing a score based on a matrix of weights reflecting the similarity
between pairs of sequences. In some situations a penalty is subtracted for each gap introduced. Such a
score can be computed by a dynamic programming algorithm in time proportional to the product of the
lengths of the sequences.

The subsequence matching problem can be formulated as follows:

Given two sequences A) B, of symbols chosen from a same domain

A = (ai, a2, a M) B = (& &,..»6m),

find the subsequences
A —(ii> B —{p» - bjx)
where 1< G< < .. <ix<n l<ji<jo< ..<jx<m

which maximizes the comparison function C{A\ B'). C can depend on the symbols ain bjk in Al and B’
and on the numbers of symbols in A and B which are omitted between successive symbols in A* and B(
(9aps).

For such comparison functions, one can use a dynamic programming algorithm to determine the best
subsequence match for a given pair of sequences A, B in serial time O(mn) where n and m are the length
of the sequences A and B. This dynamic programming algorithm can best be understood by considering

the matrix
0

GV-i,s-i + D(ar,bs)

GV-15 + (}

(-rs-i+ 4

where the gap constant g < 0, and D is a correlation function between single elements [19].

A parallel version of the dynamic programming algorithm is quite straightforward to derive [8]. Since
computing the value of Crt$ only depends on knowing the values of GV -i, CV5-i, and GV-1,5- 1, we see
that all of the elements on one anti-diagonal of the matrix can be computed simultaneously if the values
along the two previous anti-diagonals are known. That is, for a fixed value of G the matrix elements

Crs max

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 17

Ct-Ss can be computed simultaneously for all s provided that they are known for t —1 and t —2. Thus,
one can parallelize the above algorithm by computing successive anti-diagonals of the matrix Cr,s on
successive time steps. This is represented schematically in Figure 9. The algorithm requires n + m —1
time steps and m processors to compare proteins of length m and n.

Processor #
0 | 2 3 ml m

Fig. 9. Diagram indicating activity of processor i at time step t. If 1 < t—p < n, then processor i computes
Ct~p,pH at step t. Otlierwise, the processor is inactive.

Since each communication in the above algorithm is nearest neighbor, mapping the ring computa-
tional structure to directly connected processors is important.

Theorem 16. A k-ary 1-cube is a subgraph of a 2-ary n-cube when n = log2k and k —2J for some
integer j.

Proof. The idea is to number the nodes of the fc-ary 1-cube using a BRGC. For each node i of the k-ary
1-cube, re-number that node by Gfc(t) = gk~i9k-2*""g\ * '90- The predecessor and successor nodes of
the k-ary 1-cube are numbered (from Definition 14 with n —1)

i~ and

where
i+=(+2)modk and i = (i—1) mod k

which, using the definition of G& are the nodes

9k -19k-2 " «*9}** *Po

18 ISIPCALA93

and
9k-i9k-2 «*'91+191 '" 90

Corollary IT. A ring of length of 2m ca? 6c mapped into the 2-ary n-cube when 2 < m < n.
Proof Since a 2-ary 4 —1 cube is a subgraph of a 2-ary n-cube, the result is immediate.

If we notice that a ring of length 2n exists within a Gn because a path of length of 2n~1 exists within
the first half of Gn(—O0Gn_i) and is connected to a path of length of 2n_1 within the second half of
G,,(= 1G”-i)) then we can also construct rings of any even length by starting with shorter paths.

Corollary 18. A ring of length p —2q can ke mapped into the 2-ary n-cube when 4 < p < 2n.
Proof Find a path of length q as follows
{0Gn_i(i), 0Gn_i(f + 1),..., 0Gn-i(i + 9—1),
IGn_i(i -bq—21), IGn_i(i + y—2),. .., IGn-{(i)}
For example, of a ring of length

p= 12:{0011,0010,0110,01 11,0101,0100,1100,1101, 1111,1110,1010,1011}

Mesli Embedding Of great interest in Computational Science and Engineering is programs whose
structure is the mesh. Consider the mode fluids problem [32] of cavity-driven flow whose physical domain
chosen is shown in Figure 10. The pair of non-linear coupled differential equations 1,2 that describe this
flow are easily solved sequentially using a standard second-order central differencing scheme. Central
differencing calculates the new values at a particular point by taking a weighted average of the values
of the nearest neighbors, as shown in Figure 11, where the weights are dependent on the flow patterns.

C=-VV (1)

f + + £«> = (2)

where u = N and v — —4N,

These two equations represent the flow conditions in the physical domain. Lines of constant stream
function, \b value are parallel to the local flow, while the vortic.ity, £, is a measure of the local shearing
rate, or swirl, in the flow.

These equations were solved using successive over-relaxation with the resulting discrete equations as
follows:

+ 2(1 + fp) + 7' (VAj+ + _ CijAar ©))
+ A oIy _u]%n 1S —'JEK P/l'f;—H —*?jj— it~ i
’ 2Zia: 2yl

. Lb'VL+ciku -20,/t chj+l+ c™-1- 2;i. 4
Re \ Ax2 Air
where to is the over-relaxation factor and fi —

Superscript k indicates the current iteration value and n is the value at the current time. The
boundary values for £ are calculated by using first-order accurate, away-from-the-wall equations:

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis

y =1, z=dpldy +du/dy

* >

Fig. 10. Cavity Driven Flow

Fig. 11. Localized Computational-Molecule

20 ISIPCALA’33

2 uttw
aw ——£y2 =Vl g ©)
Qvj — pyp (VW) Vio+i)) (6)

In equations 5and 6, is the location of the boundary, and the bracketed term is only used a. the
top of the cavity, where the external flow affects the values.

The standard solution method is to take an initial guess of the values of u, and along with a
At appropriate for the fineness of the grid, and iterate equation 4 once. These values are then used to
iterate equation 3 to convergence, update the values of u and calculate the boundary values for £,
then repeat the process until the values of £ and have both met desired convergence criteria.

Optimal Matrix Multiplication (in the abstract sense) As another mesh problem, consider Gentleman’s
Algorithm [11] which is an explicit parallel solution using a 2D mesh of processors to multiply two
matrices.

Assume we have N 2 processors arranged in an N x N mesh. Each processor pij holds ctij and b{j
and we have a toroidal mesh (an easily implemented subgiaph of an n-uibe).

Optimal OMEGA(71) Algorithm:
foreach pij SEND and RECEIVE to
left circular shift all a®js by i —1
up circular shift all 6-js by j - 1
foreach pij
ciJ ai,jbiJ
do n —1 times
left circular shift aij; up circular shift
cij cij+
Example Consider the example of matrix multiplication shown in Figure 12. The result 02,3 is calcu-
lated as follows, @@ <—a2)\biyz + 222823 + 22333 + «2,0003

Fig. 12. Toroidal Shift

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 2
Embedding Results for Meshes

Theorem 19. A k-ary 2-cube is a subgraph of a 2-ary n-cube iuhen n = 2 log2k and k = 2J for some
integer j .

Proof As in the proof of Theorem 16, we number the digits of the k-ary graph using Gj. Specifically, for
each node i = iGo of the k-ary 2-cube, re-number that node by Gj(i\)Gj(io). Consider the 4 neighbors
of

hid <<o
i"io i\ io
where
i+=(z4)mod j
and
i~=(—2)mod j
and their Gray code ordering
G{ii)G(4))
G(it)G(i0)

Since we change only one dimension of i at a time for each neighbor, we can consider each mapping
individually, as in the ring case. Using the definition of Gj, a particular im, G(im),s neighbors are the
nodes

9 —g—=2*9\ "(Jo
and
J-19j-2 " “9iH 9 0

Thus, each Gj(im) enumerates a 2-ary j-cube. Taking the cross product of Gj(h) x Gj(io) yields a

2-ary n-cube.

A d-dimensional mesh is an mo x m2 x ...m” 1 mesh in the d dimensional space, A1 example of d = 3
is shown in Figure 13

Fig. 13. 3D Mesli Interconnection

Corollary 20. An mo X mi X sem 1 mesh in d-dimensional space, where n* = 2ki and XTf=u hi = n
can be mapped into a 2-ary n-cube where the mapping is Gi@ 1(id-1) x esmx Gj~ih) x GhO(io)>

22 ISIPCALA’93

Pyramid Embedding Tree computations occur more infrequently than either the mesh or ring, how-
ever, an extension of the tree, the pyramid, occurs frequently in multigrid algorithms.

The Multigrid Method The initial idea behind multi-grid is that convergence time decreases dramatically
with an improved initial guess. From this idea, it seems reasonable to use a coarse grid to get a rough
solution, and then interpolate this answer to finer and finer arrays as shown in Figure 14. Although this
does work, multi-grid methods are much more powerful than this simple concept. Given the system of

Fig. 14. Multgrid structure for N=16 Processors at the Finest Level

equations

AU = F, 7

the usual procedure is to guess a solution, V, to U, then calculate AV and correct the guess by
comparison to F. The estimate V is known to be some amount E away from the exact solution, giving

U=V+E
and by substituting into equation 7,
A(V +E)=F
Initially, this doesn’t help since neither U nor E is known. However, after rearranging,

AE = F- AV

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 23
and finally,

AE - R, ®)

where R denotes the residual, R = F —AV. This resulting equation can be solved exactly as the
first equation, since all of the variables except E are known.

The reason why equation 8 is solved instead of equation-7 has to do with the size and frequency of
the error. If the error in the value is small, but not yet small enough to satisfy convergence criteria, and
the absolute value of the result is large, the small error will be hard to distinguish from the result. If
instead, the values are subtracted out, the magnitude of the error will then be centered around zero, so
the relative size of the error will be magnified.

The observed frequency of the error is dependent on the coarseness of the array, as shown in Figure 15.
What may be seen as a relatively smooth change at the finest level appears as rapid changes when
restricted to a coarser level. Thus, solving the errors at a coarser level increases the speedup of the
solution by damping out the errors faster, along with increasing convergence rate due to better guesses.

Fig. 15. Error Frequency Reduction Using Multgrid

As illustrated in Figure 16 and as described by [4], there are many ways to implement the multi-grid
idea. In the figure, level O represents the finest array of points, while level 3 is the coarsest.

In the V-cycle, level 0 does a set number of iterations of equation 7, then passes its residuals to
level 1L Level 1then iterates equation 8 and passes its residuals to level 2, where the process is repeated
until the coarsest level is reached. When the coarsest level finishes its computations, it passes the error
corrections back down through the levels, until level O is reached.

24 ISIPCALA’93

Fig. 16. V and W Cycles of the Multigrid Method

The W-cycle takes additional advantage of the speed of the coarser grids by having them also do
some improvement of the errors before the errors get passed back down the levels. This helps speed up
the damping out of the smooth changes since the coarser levels converge faster.

Finally, the full multi-grid (FMV) cycle takes advantage of both the error correction and improved
initial guesses. Instead of starting at the finest level, FMV-cycles start at the coarsest arrays and compute
an initial guess that is passed down to the next level. That level then does a few iterations and does
a single V-cycle to improve its guesses before passing them down. Once the lowest level is reached, the
process continues as a regular V-cycle.

Embedding of Pyramid into n-cube

In observing Figure 14, it is clear that embedding the pyramid into the n-cube is not going to be
possible with Dj = 1 since between each pair of levels of the pyramid, there are odd length cycles.
However, Df = 2 mappings exist. The mapping makes use of the following Gray code.

Definition21. A Hierarchical Binary Reflected Gray Code (HBRGC) is a BRGC such that
h(Gn(i), Gn(i+ 2j)) =2 when i+ 27< 2n—1j >0
Definition22. The Hierarchical Binary Reflected Gray Code HGk is a code of length k such that

{0,1} ifk=1
{HGk-WO.HGk-M"HCn-iMUHGk-iWO,

HGk= <™ "HGk-i{2k-}+ 2)0, HGb-i(2 - 2)1,
k HGkg*"1- 1)1,i/C?k_i(2fc-1 - 1)0} k> 1
If we define R,(HGk) = { i(010™1,i/<74_i()10'-1, ..., HG,. 12t 1-2)10,-\ "G Tt .i(2°"1-
1) 10i—1}, which is just HGKI,then RkHGkdefines level k + 1«

the pyramid is created by Rk + 1(HGk —Rk{HGf>)) which yields HGkO}or the subset of HGk whose
nodes are at least a power of 2 distance away from the nodes of Rk(HGKk)- The process recurses until
the entire pyramid is constructed. In general, at level / + 1, of the pyramid, each node at that level is
labeled HGk-i(i)10}, thus reflecting that each node at level /+ 1is, at most, a distance of 2 away from
child nodes at level /-f 2,

B, McMillin et al: Parallel Algorithm Fundamentals and Analysis 25
Example 3. HG Zenerates the following pyramid depicted in Figure 17.

HG2= {000,001,011,010,110,111,101,100}
R2(HG?2) ={001,011, 111, 101}

- Ri(HG2 R2AHG2) = {010,110}

RO(Ri ((HG2 R2{HG2)))) = {100}

Fig. 17. 2D Pyramid Generated by HBRGG HB

4 Models of Embedding, Partitioning and Mapping

The goal of pardoning and mapping of a parallel program onto an architecture is to provide a balanced
node utilization by allocating processes to processors maximizing parallelism while, simultaneously re-
ducing communication overhead. These two goals are contradictory. The number of processes assigned
to each node is application dependent and is dependent on the ratio between computation and commu-
nication time.

Optimal load balancing under perfect information is possible. In this case, you are given a set of
processes pQ,p\ly *>Pn —1 with execution time requirements of tv(po)iw(p\)ieee, w(pN —1) and a set of
communication costs; C = C{i)j) which is the length of a message sent in communicating from process
pi to process pj.

Classically [10], the goal of load balancing, given a process/communication digraph Cr(P,C), where
P is the set of processes and C is the set of directed arcs C(iyj), is to find a partition

G —GgUGiU..UGt —1

of G and a mapping of processes to processors n(p) subject to the following constraints,

Wn — " w(p) = constant 9
PEGN

(10)

26 ISIPCALA'93

The problem with this metric is that, in modern multicomputers, such as the NCUBE/2, Intel
Paragon, and CM-5, the time to traverse multiple hops in the k-ary ?i-c.ube is roughly equivalent to the
time to perform nearest neighbor communication. Thus, we can simply rewrite Equation 10 as

e = is minimized (1)

Intuitively, however, this model is also inadequate for it does not take into account congestion from
Definition 12. Consider an example of the effects of congestion from a ring embedding of the protein
sequence comparison from Section 3.

For simplicity, if we model the communication in a hyperc.ube as circuit switching, then a hardware
communication circuit between two communicating nodes must be established before communication
begins, ancl a link of the circuit is released at a time after the last bit of the message is transmitted.
We, therefore, define the communication time needed for two communicating nodes in a hypercube as
follows,

tcomm —tcong "F]I0pS
= teong + [t, + TC(p, p'))

where t@nm is the time needed to send a (7-byt.e message from one node to another. For the circuit
switching model, if a circuit cannot be established because a desired link is being used by other packets,
the circuit is said to be blocked. Here we assume that when a circuit is blocked, the partial circuit
may be torn down, with establishment to be attempted later. t@Ly here denotes the waiting time for
reestablishment. Note that, if the mapping of the linear array in a hyperc.ube is dilation-1, then it will
be congestion-1 also and no edges of a hyperc.ube will be contained in more than one mapping linear
array edge. That is, if the mapping is dilation-1, tcong, the communication delay due to congestion, will
be zero, thops is the ideal communication time between two communicating nodes such that the edge,
congestions of the desired circuit between these two nodes are all one. The value of tjl0])s is determined
by the three terms: rS rt} and C\ where rs is the communication latency ancl ©6is the time needed to
transmit one byte of data. In the parallel protein sequence, comparison, each processor in the linear a.rray
will send messages to its right neighbor twice, therefore, Tcvmm = 2 elromm —2 {tcong + lhop$)>

Suppose that, during the course of the computation, some processor fails. If in the beginning we
select one designated spare node and let the rest of nodes all do the computation. If a node, becomes
faulty during processing, just replace this faulty node with this designated spare node. For this approach,
it is very possible that the length (or hops) of the desired path from the left or right neighbor of the
faulty node to the designated spare node is equal to the dimension of the embedding hyperc.ube, and,
moreover, the desired path has c.ongestion-2. These factors (number of hops and congestion) have to
be taken into account for calculating the communication time. From the algorithm of parallel protein
sequence comparison, we can derive that t@yg is equal to rs-frtC. For simplicity, we also assume that the
path from the faulty node’s left neighbor to the designated spare node and the path from the designated
spare node to the faulty node’s right neighbor are edge-disjoint. The total running time for this approach
is about,

toong — BT <
thops — 7$T 7*0
Tcomm —2 *{trong T
Fp—T@@mM T Wp)

which, by comparison with an embedding with no congestion, essentially, doubles the communication
time of the entire problem.

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 27
5 A Mathematical Model of Distributed Systems Behavior

A formal model (or mathematical model) is a model of the system using well-understood mathematical
entities such as sets and functions. Formal methods used in developing computer systems are math-
ematically based techniques for describing systems. A formal method consists of a formal model and
associated mathematical techniques which provides the user with a framework for specifying and ana-
lyzing the system.

The problem of specifying an abstract system is that of specifying a particular mathematical object,
for which good mathematical techniques may have already been developed over the years. The existence
of a formal model of an abstract system implies that a formal statement of the problem is needed that
is in terms of the the formal model being used. Separating the problem from its solution is an important
contribution of having a theoretical foundation in that it opens the door to alternative solutions [9].

There are numerous examples of the use of mathematical models in the computer science literature.
One example from the study of network topology is being able to compute the information carrying
capacity of a network. This Graphs can be used as the model of network topology, while the concept
of the cut is useful for modeling the carrying capacity of the network. Other examples include queuing
models for analyzing the performance of a system, Markov chains for reliability analysis, and axiomatic
and denotational specifications for formally describing programming languages.

In general, theoretical foundations can provide (1) criteria for evaluation, (2) means of comparison,
(3) theoretical limits and capabilities (4) means of prediction, and (5) underlying rules, principles, and
structure. The power of a mathematical model is that it forces one to think clearly about the problem
one is trying to solve. The process of stating the question leads one to identify relevant variables, state
explicitly any assumption being made, and so forth. These very factors are often instrumental in leading
one to a solution. Models ignore irrelevant details. This focuses attention on the essential feature; thus,
a model produces generality, for results that depend on fewer assumptions are more widely applicable.

5.1 The Axiomatic Approach to Program Verification

The axiomatic approach to program verification is based on making assertions about program variables
before, during and after program execution. These assertions characterize properties of program variables
and relationships between them at various stages of program execution. Program verification requires
proofs of theorems of the following type:

<P>S<Q>

where P and Q are assertions, and S is a statement of the language. The interpretation of the theorem
is as follows: if P is true before the execution of S and if the execution of S terminates, then Q is true
after the execution of 5\ P is said to be the precondition and Q the postcondition [13]. A statement, S,
is partially correct with respect to the precondition P and a postcondition Q, if, whenever, P is true
of S prior to execution, and if S terminates then Q is true of 8 after the execution of S terminates. A
program, S, is totally correct if it is partially correct and it can be shown that this program terminates.

CSP programs are composed of a set of communicating sequential processes. In many programs, it
is desirable to save part of the communication sequence between processes. This is done with use of
“dummy” or auxiliary variables that relate program variables of one process to program variables of
another. The need for such variables has been independently recognized by many. The first reference
that shows the usefulness of auxiliary variables is found in [5].

Overall Proof Approach . As discussed before a CSP program is made up of component sequential
processes executing in parallel. In general, to prove properties about the program, first properties of
each component process are derived in isolation. These properties are combined to obtain the properties
of the whole program.

28 ISIPOALA’93
Example &. Assume that we want to prove the following:

<true > [P\ 1R2pa] < x =u >

where
Pi ::p2'x
P2 :mpi?y\py
Ps ::p2

The following properties can be proven about each of the component processes:

< X—Z>Pi< X=12z>
<true> p2<y—z>
<true > pz<u-z>

We can use the properties that x —z and u —z and transitivity to show that x = u.

There are two approaches to proving the correctness of communicating processes. The first approach
is to divide the correctness proof into two parts. The first is the sequential proofs of each individual
process that makes assumptions about the effects of the communication commands. The second part is
to ensure that the assumptions are “legitimate”. This will be discussed later. This approach is taken
in [2] and [21]. The second approach allows us to prove properties of the individual processes using the
axioms and rules of inference applicable to the statements in the individual processes. The axioms and
rules of inference are designed in such a way that it is not necessary in a sequential proof of a process
to make assumptions about the behavior of other processes. These properties are then used to prove
properties of the entire program. This is the approach of [35].

It has been shown [22] that it is irrelevant as to which axiomatic proof systems of program verification
is chosen. This was done by showing that the axiomatic systems are equivalent in the sense that they
allow us to prove the same properties. No system is more powerful than the other. However, there are
very different approaches to thinking about the verification of the program and the applicability in a
practical environment. The proof system presented in [21] is presented here for its relative ease of use.

Axioms and Inference Rules Used For Sequential Reasoning . In addition to the axioms and inference
rules of predicate logic, there is one axiom or inference rule for each type of statement, as well as some
statement-independent inference rules. The following are common to all the axiomatic systems and apply
to reasoning about sequential programs. The basis of the axiomatic approach to sequential programming
can be found in [13].

The skip axiom is simple, since execution of the skip statement has no effect on any program or
auxiliary variables.

<P >skip<P >

The axiom states that anything about the program and logical variables that holds before executing
skip also holds after it has terminated.

To understand the assignment axiom, consider a multiple assignment statement, x e, where x is a
list of xi,#2, ..., % of identifiers and e is a list of ei, "2, of expressions. If execution of this statement
does not terminate, then the axiom is valid for any choice of postcondition P. If execution terminates,
then its only effect is to change the value denoted by each target ;r? to that of the value denoted by
the corresponding expression € before execution was begun. Thus, to be able to conclude that P is
true when the multiple assignment terminates, execution must begin in a state in which the assertion
obtained by replacing each occurrence of X in P by ¢ holds. This means that if P fl is true before
the multiple assignment is executed and execution terminates, then P will be true after the assignment.
Thus we have the following:

1 This stands for predicate P with each xxreplaced with ct

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 29

<Pi>x:=e<P>

It may seem strange at first that the precondition should be derived from the postcondition rather
than vice versa, but it turns out that this assignment rule, as well as being simple, is very convenient to
apply in constructing proofs about programs.

There are also a number of rules of inference, which enable the truth of certain assertions to be
deduced from the truth of certain other assertions.

A proof outline for the composition of two statements can be derived from proofs for each of its
components.

<P>ffl<Q><Q>%$2<R>
<P>8\;$2 <R >

When executing ; $2, if Q is true when Si terminates it will hold when Sz starts. From the second
hypothesis, if Q is true just before Sn executes and Sn terminates, then R will hold. Thus if Si and Sn
are executed one after the other and P holds before the execution, then R holds after the execution.

Execution of an alternate command ensures that a statement Si is executed only if its guard bt is
true. Thus, if an assertion P is true before execution of the alternate command, then P AG: will hold
just before %is executed. The second part of the hypothesis assumes that none of the guards are true.
If the hypothesis is true and if the alternate statement terminates, then this is sufficient to prove that
Q will hold should the alternate statement terminate.

\fi <PA{>ci;Si<Q><PASi: >—><Q>
<P >ifbi]a —» fi<Q>

The consequence rule allows the precondition of a program or part of a program to be strengthened
and the postcondition to be weakened, based on deductions possible in the predicate logic.

P»P\<P'>5$<Q‘>Q- Q
<P>S§ <Q>

The need for auxiliary variables was discussed earlier. Two of the proof systems use auxiliary variables.
The auxiliary variables must not affect program control during execution. The following rule allows us
to draw conclusions from proof outlines of programs annotated with auxiliary variables.

<P>8 <Q>
<P>S<Q>

where S is obtained from S' by deleting all references to auxiliary variables and P and Q do not
contain any free variables which are auxiliary variables.

The inference rule for the repetition command is based on a loop invariant i.e. an assertion that holds
both before and after every iteration of a loop.

Si <PAQ > c\Sj<P>
< P > *nbiCi =39 < P ASi :-16">

The hypotheses of the rule require that if execution of Si is begun when the assertion P and 6
is true, and if execution terminates, then P will again be true. Hence, if an assertion P is true just
before the execution of a repetition command, then P is true at the beginning and end of each iteration.
Thus, P will hold if the repetition terminates. The repetition ends when no boolean guard is true, so
161 A-«&2 A... A~in will also hold at that time.

[21] does not have distributed termination which is contrary to Hoare’s original version of CSP [14].
Distributed termination provides the means for automatic termination of a loop in one process because
another process has terminated. It is assumed that termination of all loops occurs when all boolean
guards are false.

30 ISIPCALA’93
Example 5. Let us examine how these rules are applied to the following sample program.

var t,i,b[0...n-1]:integer;
t =
i:=
d

=0
=0
ofi®”n—>t=thb[i];i:=i+ Jod

This program sums up the elements of an array b. The result is put into the variable t. Now to prove
the partial correctness of this program, we will prove that if the program is started in a state where
n > 0 holds and execution terminates, then t will contain the sum of the values in b[0] through b[n-i].
The composition rule implies that in order to prove the above program correct, it is sufficient to prove
that

<n>0>t:=0<t =0> (12)
<t- 0>i:=0<t=0Ai=0> (13)
i-[
<£ = 0A2=0>do[z" A—»t =t+ D[i];i:=i41Jlod <t="2b[j] > (14)

j=o
Outline 12 and 13 are easy to prove using the assignment axiom. Not-e Llial. using normal predicate
logic inference rules, it can be shown /= 0Ai = 0 —»t = b[j]. Remember that since i is equal to

0, that there are no values of j between 0 and i —1 Hence, t —Yi]"zODb[j] Is vacuously true. Therefore,
by applying the Rule of Consequence, we can prove Outline 14 by showing the following:

i— i—
<t=72D[f] >do[z" 7—=t :=t+Hi\i\—z+ IJod < t="2 bfj] > (15)
i=o j=o

To prove Outline 15, it will be sufficient to prove that

i-1 i—4
<t=72bii]AiN n>t:=t+b[i\]i:=i+ 1<t=" b > (16)
3-0 j=o
i— n—
<t=Yl A n>*1=57Z > 17
j=o j-o

In order to prove 16, it is sufficient to prove

* P
<t—"2bifJAIN n>t:= tFHi\<t=~ b[j] > (18)
j-o j-o
i i—1
< i) t:E*:: + 1< =
J=0 j=0

Outlines 18, 19 can each be proven by applying the assignment axiom. Outline 17 can be shown by
substituting i for n and using the consequence rule.

Axioms and Inference Rules Dealing With Communication . Each of the three proof systems deal with
assertions on communications in different manners. Two of the approaches make the explicit use of aux-
iliary variables to relate the different communication sequences. The third proof system makes assertions
on communication sequences.

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 31
Communication and Parallel Decomposition rules . The communication axiom is as follows:

<P>p<Q>

where [3is a communication command.

Remember that < P > S < Q > means total correctness if S terminates. S terminates in the
absence of deadlock. The parallel rule implies that a proof for a parallel program is based on the isolated
sequential proofs of the processes it comprises. Take any such program S. A sequential proof for it only
proves facts about it running in isolation. With only one process running, communication commands
deadlock. Thus, any predicate Q may be assumed to be true upon termination of a communication
command because termination never occurs.

The Law of the Excluded Miracle [7] states that the statement false should never be derived. This is
the requirement to ensure a sound logic. The communication axiom does violate the Law of the Excluded
Miracle. This allows us to deduce that the following is true:

< true >Alx < x=5Ax=6>

The postcondition, however, is obviously false. Thus, one might come to the conclusion that the proof
system is not sound. This is the result of allowing the communication axiom to make assumptions about
the behavior of other processes in order to prove properties of an individual process. In order to justify
those assumptions a “satisfaction proof” must be done. This ensures that the proof system is sound.
Hence, the parallel inference rule is as follows:

(Si :< Pi > 9. < Qi >)satisfied and interference —free
< (Vi :Pi) > \\i=i,nPi :Si] < (M : Qi) > '

The parallel rule implies that we can construct the proof of a parallel program from the partial
correctness properties of the sequential programs it comprises.

It has been mentioned that a “satisfaction proof” is needed to ensure soundness of the proof system.
Let us examine the proof outline of the matching communication pair:

o\ [.<P>frppx< Q>

pz :[m <R >plly <S>

The effect of these two communication commands is to assign y to x. This implies that Q AS is true
after communication if and only if

(p Ar)- (QAS3E

A “satisfaction proof” is such that the above is proven for every matching communication pair. This
is called the rule of satisfaction.

Earlier we discussed the need for auxiliary variables. An auxiliary variable may affect neither the
flow of control nor the value of any non-auxiliary variables. Otherwise, this unrestricted use of auxiliary
variables would destroy the soundness of the proof system. Hence, auxiliary variables are not necessary
to the computation, but they are necessary for verification. The proof system in [21] allows for auxiliary
variables to be global i.e. variables that can be shared between distinct processes. Global auxiliary vari-
ables (GAVs) are used to record part of the history of the communication sequence. Shared reference to
auxiliary variables allow for assertions relating the different communication sequences. This necessitates
the need for a Proof of Non-interference. This consists of showing that for each assertion T in process pi,
it must be shown that T is invariant over any parallel execution. This is the non-interference property
of [30].

32 ISIPOALA’93

Asynchronous Message Passing Systems The proof systems that have been discussed up to this point
are designed for synchronous programming primitives. Our work uses an extension of work discussed in
[33]. The work of [33] describes how to extend the notion of a “satisfaction proof” and *“non-interference
proof” for asynchronous message-passing primitives. The extension is based on introducing for each pair
of processors pi and pj, two auxiliary variables Sij, jij, where 6{j is the set of all messages sent from
process i to process j and jij is the set of all messages j actually receives from i. This extension involves
assuming that actual sending and receipt of a message implies that Sij and jjj are immediately updated.
It is also assumed that 7jj C Sij is invariantly true throughout program execution.

6 Operational Evaluation

It is important for both life-critical, and non-life-c.ritica.l distributed systems to meet their specification
at run time [20]. Large, complex, distributed systems, are subject to individual component failures
which can cause system failure. Fault tolerance is an important technique to improve system reliability.
The fault detection aspect identifies individual faulty components (processors) before they can affect,
negatively, overall system reliability.

A failure occurs when the user observes that a resource does not perform as expected. The failure
is the result of some part of the resource entering a state which is contrary to the specification of the
part. The cause of the resource entering such a state is referred to as a fault. When a system can recover
from a fault without exhibiting a failure, then the system has fault tolerance. Reliability is a measure of
the probability that a specific resource will perform a required function for a specified period of time,
usually the item’s life time, even in the presence of faults. The higher the probability the higher the
reliability of the system is considered to be.

Many methodologies for improving system reliability have been developed throughout the years.
These different methodologies fall into two basic groups: fault masking techniques and concurrent tech-
niques. Early attempts at improving system reliability used fault-masking methods; these methods make
the hardware tolerant of faults through the multiplicity of processing resources. In contrast, concurrent
fault detection methods attempt to locate component errors which can lead to system failure. Once the
faults are identified, reconfiguration and recovery [37] are used to deal with the fault. This paper focuses
on detecting the occurrence of errors. Recovery and reconfiguration are different issues. Work in concur-
rent detection methods includes self-checking software [38] and recovery blocks [31], which instrument the
software with assertions on the program’s state, watchdog processor [28], which monitors intermediate
data of a computation, and algorithm-based fault tolerance [16] which imposes an additional structure
on the data to detect errors. These methods define structure for fault tolerance, but do not, generally,
give a methodology for instantiating the structure.

Application-oriented fault tolerance [29], by contrast, provides a heuristic approach, based on the
“Natural Constraints,” to choosing executable assertions from the software specification. These exe-
cutable assertions [38], in the form of source language statements, are inserted into a program for
monitoring the run-time execution behavior of the program. The general form is as follows:

if - ASSERTION then ERROR

Executable assertions are used to ensure that the program state, in the actual run-time environment,
is consistent with the logical state specified in the assertion; if not, then an error has occurred and a
reliable communication of this diagnostic information is provided to the system such that reconfiguration
and recovery can take place. The heuristics for selection of the actual executable assertions are based on
three metrics of progress, feasibility, and consistency.

What our earlier work lacks is a theoretical foundation built upon mathematical models and theories.
In general, theoretical foundations can provide (1) criteria for evaluation, (2) means of comparison, (3)
theoretical limits and capabilities, (4) means of prediction, and (5) underlying rules, principles, and struc-
ture. This paper describes Changeling as a formal method using the mathematical model of axiomatic

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 33

program verification to construct executable assertions for error checking in distributed systems. Appli-
cation of the Changeling system is a two step process. First, from a verification proof outline, Changeling
converts a shared memory proof outline into a distributed memory proof outline, which closely matches
the distributed operational environment. Second, Changeling transforms the assertions from the proof
outline into executable assertions.

6.1 Changeling and Application-oriented Fault Tolerance

Application-oriented fault tolerance works on the principle of testing at run time the intermediate log-
ical assertions from the verification proof outline i.e. application-oriented fault tolerance works on the
following principle:

If we test and ensure intermediate results of a program’s computation meet its specification,
the end solution meets its specification if the intermediate results meet their specification. If
processor errors occur that do not affect the solution, then they are not errors of interest. Program
verification provides these tests.

The above principle yields a formal statement of application-oriented fault tolerance; we generate the
executable assertions from the logical assertions used in the verification proof outlineof < P > S < Q >.
The executable assertion generated corresponding to any logical assertion Qi from the verification proof
outline is the following:

if Qi then ERROR

Formally, this ensures that if P is true before the concurrent program S begins execution, S tests at run
time that S satisfies the specification as defined by P and Q, by using the embedded executable assertions
generated from the assertions of the verification proof. Conversely, the assertions of the verification
proof represent the properties that must be satisfied by the run-time environment; an error that causes
the execution of the program not to satisfy the specified assertions will be flagged as an error by the
executable assertions.

The reader may be suspicious that some program S may be changed into a program S' by an error
that satisfies the specification as defined by P and Q. Consider, as an example, a program S computing
some value x with postassertion <Q > = <a:>0>. Suppose that S should compute x = 3. A
program S' may actually compute x —4. The postcondition is still satisfied, although, the value is not
what was intended. This is not a problem with the validity of the postassertion, it is a weakness of the
specification. If x = 3 was what was really intended, then the proper postassertion should have been
<Q>=<x=3> If<Q>=<x>0> is asufficient specification for the application at hand,
then there is no problem.

To eliminate confusion between the testing of intermediate results (via logical assertions) for cor-
rectness with respect to the algorithm and the evaluation of the executable assertions derived from the
verification proof in the run-time environment, we will refer to the former as the verification environment
and the latter as the (distributed) operational environment.

To summarize, the transformation of an algorithm to an error-detecting algorithm involves using the
assertions of the verification proof as executable assertions that are to be embedded into the algorithm.

Taking an application from the verification environment to the distributed operational environment
is not a straightforward task. It is this difficulty that inspired the development of Changeling. Changeling
consists of four distinct components:

1 The GAA Proof System described in Section 5

2. An HAA proof system which mimics closely the distributed operational environment

3. Formal conversion from GAA to IIAA

4. Formal translation of assertions in the HAA proof system to executable assertions and reducing state
information to improve run-time efficiency

These components are described in the following paragraphs.

34 ISIPCALA’93

History of Auxiliary Variable (HAA) Verification System The logical assertions from the GAA
verification environment cannot be directly used as executable assertions in the distributed environment;
in the distributed environment, there are no global variables. Thus, to evaluate, at run time, logical
assertions containing global auxiliary variables, an explicit updating mechanism must be created. Here we
develop the verification proof system (HAA) in which updates of global auxiliary variables are exchanged
at communication time. This matches, more closely, the operational environment. We show that every
verification proof outline in the GAA proof system has the same properties in the HAA proof system,
i.e., satisfaction and non-interference; thus, implying that the HAA proof system has the soundness and
completeness properties of the original GAA proof system. The existence of the HAA proof system allows
for proofs that can be directly transformed to executable assertions in the run-time environment.

Developing the HAA system requires us to keep track of which processes communicate with which
other processes. Each process needs to record its global auxiliary variable updates with respect to all
other processes. When communication occurs between two processes, they need to exchange the updates
and locally apply them (the updates). This is formalized in the following definitions.

Definition23. For a process pi, hi denotes the sequence of all communications that process pi has so
far participated in as the receiving process, Thus, /¢ is a list consisting of tuples (these are different from
the [35] tuples; all future reference to tuples will refer to the following tuples) representing matching
communication pairs of the form

[p,(Var, V«/),T, C]

where p is a process from which pi receives from, Var is the variable that p is transmitting to pi with
formal parameter Val. T denotes the time at which the value Val was assigned to variable Var and C
denotes the communication path.

Since we have several processes running in parallel and there exists no concept of a global time, the
time T is a local time represented by an instantiation counter that is incremented by one after every
execution of a statement. This permits an ordering (time-stamping) for all updates of the GAVs within
each process.

To be able to account for the different operations performed on the auxiliary variables, each process
has to keep a history of variable updates with respect to the last communication with the other processes.
These variable sets are described using the subscript of the corresponding process.

Definition24. Let (pj depict the GAV set in process px with respect to process p}, i.e., (pj contains the
changes that were made to the GAVs in pi since the last communication with pj. Gj is the set of sets
I/io) (Ji(N-i) m process pj. Thus, when two processes pj and pj communicate, the values of their
respective subsets, jjj E Gj and 4jj E Gj, are exchanged.

When two processes pj and pj communicate, where pj is the sender, pj will augment the communica-
tion by sending the values of global auxiliary variables that pj updated, or received updates of, between
the last and current communications between pi and pj. We batch the changes made to the local copies
of the global auxiliary variables by pj since the last communication (with any other processor) in (jjj.
Before a communication, the function i>applies changes to all jjk s and (jjj is reset to null to collect fu-
ture changes. Definition 26 formally describes the communication of rjj*. Definition 27 formally describes
how process pi updates Gj based on the communicated (jjj after communication has taken place.

Definition25. The actual set of GAVs to be sent during a communication between pi and pj, where
pj is the sender, is determined based on the variables in (jjj, i.e., all the variables that were updated
in pj since the last communication with any process. The set (jjj is updated every time an assignment
to a GAV takes place in pj and reset at communication time to the empty set. The following function
if(Gj,gjj) describes the update of all variable histories before a communication.

Pj : (Vic,0< fe< AT-I)(VFljic eGj)
[if k~ j then <> (jf. Ujjj else if k —j then jjj o]

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 35
The following definition formally defines the semantics of global auxiliary variable communication*

Definition26. The 'primary communication is a matching communication pair for the exchange of
variables between processes which are not GAVs. It can be described by a tuple [pj*Var*Val)*]
where t = Tj is the current value of the local time. It is easy to see that all communications in the
GAA system are primary since GAVs are updated globally. An augmented communication permits the
exchange of the GAVs after a primary communication occurs. In an augmented communication, the
values of gji are marshalled into a message sent to process pi.

For each process pi after an augmented exchange with pj, pi updates its set of GAVs in Gi with the new
values received. This interchange is described in Figure 18 for two processes p*3pj and one matching
communication pair within the execution sequence of the two processes.

For process jP.:

[* execute arbitrary set of statements excluding communication but
including assignments tn auxiliary variables */

Sn;<Ti=1>

SA<Ti:=Ti+1>

SK, <Ti:=Tt§j >

/* update the auxiliary variables */

G <-\M@Q*ga), <Ti=Ti+1>

* perform communication with process Pj\

the first communication represents the actual communication */
/* the next two communications represent the exchange augment of the auxiliary variables */
Pj 1V ;<Ti =k>

Tj?29i j<{:=kf1>

Pj 19ij J<Ti=k+2>

/* update the auxiliary variables */

G < dq{Fgji\ Ti\=kf-3>

For process Pj:

/* execute arbitrary set of statements excluding communication
but including assignments to auxiliary variables */
Sjis<Tj:=1>

SA<T)=Tj+1>

Skj<Tj:=Tj+1>

[* update the auxiliary variables */

G iXGjgjj) <Tj=Tj+1>

/* perform communication with process P,;

the first communication represents the actual communication */
/* the next two communications represent the exchange augment of the auxiliary variables */
PilV;<Tj=k>

Pi 1gji j<Tj ;=k41 >

Pi 29 ;<Tj:=k-f2>

/* update the auxiliary variables */

G < ™Gj,0ij); <Tj:=k-f3>

Fig. 18. An HAA proof outline for one matching communication pair.

36 ISIPCALA93

Definition27. The updates performed in the different processes are described by a function
on the set of the GAV history and the variables to be updated. The actual update function () is now
defined on all the subsets within Gi on tuples of the form [pji(gji)gvarj)iTij].

Pi: Mc0<k<N- I)(Vgik E Cn)
[if k/ j then go* <—git Ugvavj
else if k =j then apply(guarj)] (o 0]

When processes pi and pj communicate, all old values in the set gij will be replaced by the new variables.
Additionally, these new values (from gvarj) are unmarshailed and applied to update the local values of
process pi. In this way, communication propagates GAV updates throughout the concurrent program.

It can be seen that the so-called “global auxiliary variables” in the HAA system are not really global
in the sense that all processes have, the same values of the variables at all times. Indeed, it is likely that
at the end of the process execution some processes that ran in parallel will have different values within
their set of GAVs. We show that because of non-interference, this is not a problem with respect to the
proof system.

Within a process execution, two communicating processes can have arbitrary interleavings of their
statements up to the communication, but are conceptually synchronized at the communication point.
The assertions will not interfere with each other due to the non-interference property of the GAA system
which provides for arbitrary execution orders. Since two (or more) processes will only change (write onto)
the same global auxiliary variable if they have to communicate with each other, they will also exchange
other variables/data in that process and the values of the auxiliary variables will be available for the
other process at the critical point: right after a communication takes place. Thus, sending only the
history of the global variable updates instead of immediately providing the other process(es) with the
latest information will not cause any problems, since the values of the variables will be available at the
communication points, where they are in fact provided.

An example of three possible process execution sequences that are subject to non-interference is
shown in Figure 19. For any two processes, non-interference will guarantee that the execution order of
the two processes or any arbitrary interleaving of them will not invalidate the assertions made on the
respective process statements.

Non-interference and the rule of satisfaction can be used to show that the soundness and completeness
properties of the original GAA system will hold in the new HAA proof system.

Theorem 28. [26] The history of auxiliary variables approach (HAA) retains the properties of the global
auxiliary variables approach (GAA).

Reliable Communication of State Information The HAA proof system provides for direct trans-
formation of assertions from the verification environment into executable assertions for the non-faulty
distributed operational environment. However, we are concerned with the distributed faulty environ-
ment. Thus, it is necessary to ensure that faulty processors cannot fool executable assertions by incorrect
augmented communication of g*s through sending inconsistent messages to different, processors. It is nec-
essary for this to be detected. This is the purpose of consistency executable assertions. Mathematically,
this can be described as follows:

Definition29. For a non-faulty process pi, if there exist any two tuples /j, G E hi such that
h =j, (Var,

h = [j,(Var\Ci]

then if Val\ oVaU the system is said to be inconsistent otherwise the system is said to be consistent.

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 37

ProcessO Processl ProcessO Processl ProcessO Processl
| t) {
! | il Ii
' 1 1

{A} {A} {A} {A}
So Si % %
{Qo} {0i} {1 {Q)
] I o
i ! : |
1 1
i i
I 1
1 i
i 1
m i {A}
Si S
{Qi} {Qo}

|
|
1
1
I
I

1
1

Fig. 19. Some possible process execution sequences before communication takes place.

0 is defined as a set of functions such that each o' E o is of functionality dt —=* T, F where dt is an
abstract data type. Examples of o' are 7, C, -"prefix, or some other operator appropriate to the choice
of the data type of Var. Where no ambiguity results, we will refer to a particular o' simply as o.

The strongest motivation for the consistency condition is to supplement the power of the executable
assertions derived from the HAA system. When the value of a variable computed in time T is com-
municated to a set of processors on more than one path, there will be two or more tuples in hi that
satisfy the precondition. Under a bounded number of faults, the consistency definition of 29 ensures
that a non-faulty processor receives a consistent set of input values for its executable assertions, other-
wise, Val\ 0 Valzi and an inconsistent system can be detected. The degree of fault tolerance is based
on standard network flow arguments and is not repeated here. It should be noted that all faults in
communication links are mapped to a processor, thus it is enough to assume only faulty processors.

Consistency does not have to be explicit. In other words, an error-detecting program may have to
explicitly add code to implement consistency. This can be done in many ways. There are classes of
problems that have the property of natural redundancy in the problem variables. This implies that there
are types of errors, which if they occur at stage i, eventually, at some stage j (where j > i), we have that
stage j satisfies the properties as defined by the intermediate assertions of a verification proof, despite
the fact that the error had occurred in stage i. If a program variable is naturally redundant then this
means that this program variable can be constructed from other variables.

38 ISIPCALA’93

Run-Time Efficiency Considerations The transformation from the HAA verification environment
to the operational environment described above is optimal in the sense that all violations of the program’s
specification (in terms of the postconditions on each statement and within the limits of consistency) are
caught under a bounded number of faults. However, when run-time efficiency is considered, not all
of these assertions, nor all of the communicated GAVs are necessary. These two aspects of reducing
complexity are treated as follows:

—Assertions involving local variables to a particular process which are necessary in the verification
environment are useless in the distributed operational environment. Since the unit of failure and
reconfiguration is at the processor level, a processor cannot be trusted to diagnose itself as faulty or
fault-free. Thus, assertions using only local variables incur a run-time, overhead that is not necessary
and all such assertions can be deleted.

- The fault coverage of certain assertions using the GAVs may be subsumed. Thus, many of the
remaining assertions may be removed as well. Likewise, removing some of the assertions may result
in certain GAVs no longer being required. Furthermore, certain assertions may be too expensive to
evaluate in the operational environment and may be deleted for that reason.

We applied this transformation to several concurrent applications including concurrent database
transactions schedules [24], bitonic sorting [25], and concurrent branch and bound [27] and obtained
performance and error coverage data on each.

7 Summary

This paper has covered a broad expanse of topics in an effort to provide both an informal basis for
constructing parallel applications and a formal basis for reasoning about these parallel applications and
how they are mapped onto a popular existing architecture.

References

1 G.M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities.
AFIPS Conference Proceedings, 30:483-485, 1967.

2. R. Apt and W. Roever. A proof system for communicating sequential processes. ACM Transactions on
Programming Languages and Systems, 2(3):359-385, 1981.

3. J. Backus. Can programming be liberated from the von Neumann style? a functional style and its algebra
of programs. Communications of the ACM, 21(8):613-641, 1979.

4. W. Briggs. Multigrid Tutorial Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania,
1987.

5. M. Clint. Program proving: coroutines,. Acta Information, 2:50-63, 1973.

6. G. Cybenko, D. W. Krumme, and K N. Venkataranian. Fixed hypercube embedding. Information Process-
ing Letters, 25:35-39, 1987.

7. E. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc,., 1976.

8. E. Edmiston and R. A. Wagner. Parallelization of the dynamic programming algorithm for comparison of
sequences. In Proceedings of Int’l Conf. on Parallel Processing, pages 78-80, 1987.

9. M. Fischer. A theoretician’s view of fault tolerant distributed computing. Fault-Tolerant Distributed Com-
puting} Lecture Notes in computer Science 4 4 pages 1-9, 1990.

10. G. C. Fox and W. Furmaski. Load balancing loosely synchronous problems with a neural network. Technical
report, California Institute of Technology, Pasedena, CA, February 1988.

11. W. M. Gentleman. Some complexity results for matrix computations on parallel computers. Journal of the
ACM, 25(1): 112415, January 1978.

12. J. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31 (5):532-533, 1988.

13. C, Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576-583,
1969.

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 39

14.
15.
16.
17.
18.
19.
20.
21.
22,
23.

24,

25.

26.

21.

28.

29.

30.

3L

32

33.

36.

37.

C. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666—677, 1978.

J. Hong. Computationt Computability, Similarity and Duality. Pittman, London, 1986.

K Huang and J. Abraham. Fault-tolerant algorithms and their applications to solving Laplace equations.
Proceedings of the 1984 International Conference on Parallel Processing, pages 117-122, August, 1984.

K. Hwang and Briggs F. Computer Architecture and Parallel Processing. McGraw-Hill, New York, 1984.
IBM. IBM Scalable PowerParallel System 9076-SP1, 1993.

E. Lander and J. P. Mesirov. Protein sequence comparison on a data parallel computer, In Proceeding of
the International Gonf, on Parallel Processing, pages 257-263, 1988.

J Laprie and B. Littlewood. Probabilistic assessment of safety-critical software: Why and how? Communi-
cations of the ACM, 35(2):13-21, 1992.

G.M. Levin and D. Gries. A proof technique for communicating sequential processes. Acta Information,
15:281-302, 1981.

H, Lutfiyya and B. McMillin. Comparison of three axiomatic proof systems. UMR Department of Computer
Science Technical Report CSC91-13, 1991.

H. Lutfiyya, B. McMillin, P. Poshyanonda, and G. Dagli. Composite stock cutting through simulated an-
nealing. Journal of Mathematical and Computer Modeling, 16(1):57—4, 1992.

H. Lutfiyya, B. McMillin, and Alan Su. Formal derivation of an error-detecting distributed data scheduler
using CHANGELING. In Formal Methods in Programming, Novosibirsk, Russia, July 1993, Also as UMR
Department of Computer Science Technical Report Number CSC 92-14.

H. Lutfiyya, M. Schollmeyer, and B. McMillin. Fault-tolerant distributed sort generated from a verification
proof outline. In H. Kopetz and Y. Kakuda, editors, Responsive Computer Systems - Dependable Computing
and Fault-Tolerance, volume 7. Springer-Verlag, 1992. Also as a Short Talk in the 14th ICSE, Melbourne,
Australia and UMR Department of Computer Science Technical Report C.Sc. 91-12.

H. Lutfiyya, M. Schollmeyer, and B. McMillin. Formal generation of executable assertions for application-
oriented fault tolerance. UMR Department of Computer Science Technical Report Number CSC 92-15, 1992,
H. Lutfiyya, A. Sun, and B. McMillin. A fault tolerant branch and bound algorithm derived from program
verification. IEEE Computers Software and Applications Conference (COMPSA C), pages 182-187, 1992.

A. Mahmood, E, McCluskey, and D. Lu. Concurrent fault detection using a watchdog processor and asser-
tions. IEEE 1983 International Test Conference, pages 622-628, 1983.

B. McMillin and L Ni. Reliable distributed sorting through the application-oriented fault tolerance
paradigm. IEEE Trans, of Parallel and Distributed Computing, 3(4):411-42U, 1992.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Information, 6:319-340,
1976.

B. Randall. System structure for software fault tolerance. IEEE Transactions of Software Engineering,
SE-1(2):220-232, 1975.

D, Riggins, B. McMillin, M. Underwood, L Reeves, and E. Lu. Modeling oi supersonic combustor flows
using parallel computing. Computer Systems in Engineering, 3:217-219, 1992.

R. Schlichting and F. Schneider. Using message passing for distributed programming: Proof rules and disci-
plines, ACM Transactions on Programming Languages and Systems, 6(3):402-431, July 1984.

H.J. Siegel et al, PASM: A partionable SIMD/MIMD system for image processing and pattern recognition.
IEEE Transactions on Computers, (4-30:934-947, December 1981.

N. Soundararahan. Axiomatic semantics of communicating sequential processes. ACM Transactions on
Programming Languages and Systems, 6(6):647-662, 1984.

Q. F. Stout. Hypercubes and pyramids. In V. Cantoni and S. Levialdi, editors, Pyramidal Systems for
Computer Vision. Springer-Verlag, New York, 1986.

R, Yanney and J. Hayes. Distributed recovery in fault tolerance multiprocessor networks. .jth International
Conference on Distributed Computing Systems, pages 514-525, 1984.

S. Yau and R. Cheung. Design of self-checking software. Proc.. Jut7 Conf. on Reliability Software, pages
450-457, April 1975.

	Parallel Algorithm Fundamentals and Analysis
	Recommended Citation

	tmp.1600974007.pdf.D6PWb

