
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

23 Jun 1993

A General Method for Maximizing the Error-Detecting Ability of A General Method for Maximizing the Error-Detecting Ability of

Distributd Algorithms Distributd Algorithms

Martina Schollmeyer

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Schollmeyer, Martina and McMillin, Bruce M., "A General Method for Maximizing the Error-Detecting Ability
of Distributd Algorithms" (1993). Computer Science Technical Reports. 38.
https://scholarsmine.mst.edu/comsci_techreports/38

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/38?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A GENERAL METHOD FOR MAXIMIZING THE ERROR­
DETECTING ABILITY OF DISTRIBUTD ALGORITHMS*

M artina Schollmeyer and Bruce McMillin

CSC-93-16

June 23 ,1993

Department o f Computer Science

University of Missouri at Rolla

Rolla, Missouri 65401

* This work was supported in part by the National Science Foundation under Grant Num­
bers MSS-9216479 and CDA-9222827, and, in part, from the Air Force Office of Scien­
tific Research under contract numbers F49620-92-J-0546 and F49620-93-I-0409.

- 2 -

Abstract
Error-detecting algorithms can determine when, at run time, a program deviates from

its expected behavior due to a hardware, software or communication error. In a fixed

interconnect multiprocessor system, the error detecting ability heavily depends on the

number o f faults, which is bounded, and their spatial distribution. Otherwise multiple

fault occurrences can mask each other. This paper provides a general method for com ­

puting the overall system failure bound, the maximal fault index, from the system topol­

ogy and local communication patterns. The result o f the computation is used to design a

mapping o f processes to processor groups such that multiple processor failures preserve

the error-detecting ability o f the algorithm. We show the problem o f finding the maximal

fault index to be NP-Hard and show, for certain regular topologies, that the problem

yields polynomially computable embeddings. Finally, w e give an example o f mapping an

error detecting matrix relaxation algorithm derived from program verification using

Changeling.

I. introduction

Error-detecting algorithms work by checking assertions, at run time, to detect hard­

ware, communication [JoAb87], and software errors [M cNi88]. A properly chosen set o f

assertions, such as those generated from program verification, guarantees that, when

operationally evaluated, as in Changeling [LuSM92], the program meets its specifica­

tions. However, there exist bounds on the spatial locality o f faults which, if exceeded in a

fixed topology, nullify the error detecting ability o f the algorithm. This paper provides a

formal assessment technique on the error-detecting abilities o f an algorithm which can be

used in mapping the algorithm to the computational processors such that its error-

detecting abilities are preserved.

A communication environment o f a specific processor is the set o f processors

induced by the local interprocess communication dependencies o f the algorithm (Figure

1.1.a shows the star pattern). Given, as a design parameter, the maximum number of

faults that can be permitted in each communication environment such that all errors can

still be detected, the local fault measure tg, and the topology o f the entire system, w e can

compute the global fault measure ts which maxim izes the number o f permitted faults in

- 3 -

the system while maintaining the local fault measure condition.

o o o o o o
O o o
o <6 o c>o o
o cX q / q o o
o o o o o o
o o o o o o

o o o o o o
O Q / & h ^ d \ Q

O ^ Q ^ < n x Q ^ >
O G n Q / 0 \ Q / 6
o o 6 o o o

o o o o o o
o o/Qx^Kp o
o < n x 6 > O x ^ > o
o M 4 4 o
o dsj>%y6o
o o 6 o o o

a) A communication
environment (Star Pattern)

b) Overlapping communication
environments with non­
interfering faults

c) Overlapping communication
environments with interfering
faults

Figure 1.1: Communication environments.

Figure 1.1.b shows a scenario where two faulty components in the system will not

violate the local fault measure condition. Continuing this analysis over the entire multi­

processor system, for all possible fault patterns, yields ts. By contrast, Figure 1.1.c

shows a syndrome o f faults which violates the local fault measure for at least one case.

An optimal fault distribution yields a partitioning o f processes into groups. Every

process within a particular group can be simultaneously faulty without affecting the error­

detecting capability o f the algorithm. These groups are mapped disjointly onto the actual

processor topology. An example for this is given in Figure 1 . 2 . The communication

environment used (the square) is described in Figure 1.2.a, the conventional process-to-

processor mapping is shown in 1.2.b, and a mapping where processes that may be simul­

taneously faulty are mapped into the same processor group can be seen in 1.2.c. Details

of the mapping algorithm are given in Section IV.

In Section II, w e provide definitions for different collections o f processors based on

their faulty or non-faulty status. Section III gives a graph coloring algorithm for deter­

mining the distribution o f faulty processors within the topology and Section IV shows

that the characterization o f an optimal fault distribution is NP-complete and that o f find­

ing the maximal fault index is NP-hard for arbitrary topologies and communication pat­

terns. Section IV also gives an algorithm for determining a process to processor group

- 4 -

0,0 ... 0,3

c) processes that may be
simultaneously faulty are
mapped to the same group

Figure 1.2: Logical adjacency in the algorithm and physical mapping.

O O O O
O O O O

partitioning based on the optimal fault distribution. In Section V we show that the m axi­

mal fault index for several specific communication patterns and regular topologies can be

found in polynomial time, and w e also give partitionings based on their optimal fault dis­

tributions. Section VI provides an example o f how this form o f assessment can be used

in an error-detecting matrix relaxation algorithm.

II. Terminology for MPS Topologies

In this paper w e use fixed-topology multiprocessor systems as discussed in [FoRa85,

Haye76, LeLe85, Rose83]. In contrast to [GuRR93] w e do not examine whether an algo­

rithm can detect all combinations o f up to k faults where is a specified bound, but w e

assume that the algorithm has been designed with a certain local fault tolerance, tg, for

each communication environment [McMi88]. The analysis in [GuRR93] can determine

- 5 -

whether every combination of up to tg faults can be detected, and it provides the mini­

mum number o f simultaneous faults for which this condition does not hold any more.

Instead, we want to determine the maximum number o f faults, and their distribution in

the topology for which all errors can still be detected. However, w e do not claim that all

combinations o f up to ts faults can be tolerated.

The underlying topology o f a multiprocessor system (MPS) is described by a graph

G(V,E), where the set o f vertices V represents the processors in the network and the set of

edges E determines the direct communication links between pairs o f processors. The net­

work topology o f an MPS does not have to be regular, such as a hypercube or mesh, but

can be an arbitrary connected graph.

For simplification, we will focus only on processor failures, since a processor failure

can be described by the failure o f all its links, and a link failure can be described by indi­

cating a processor failure [M cNi92]. We will also assume that messages can always be

forwarded reliably through intermediate processors, using techniques such as wormhole

routing or circuit switching, where messages are passed through designated routers at

each processor.

In an MPS interconnection network, the interactions between processors are

described by communication patterns. Frequently, algorithms restrict interprocessor

communication to adjacent processors to improve efficiency. However, new routing tech­

nologies, such as wormhole routing, make the delivery o f messages to processors that are

a distance of more than one away almost as efficient as direct communication [DaSe86].

We allow for both types o f interactions in the communication environment.

Definition: The communication environment (CE) o f a processor P, is the set o f pro­

cessors from which P,- will request information during the execution o f a program,

including P,-. The communication environment o f a specific processor is a subset o f the

set o f all n processors in the network, i.e., C £(P ,) £ {P i , • • •, P „ } . 1

Definition: A fault group o f a processor P/ o f fault measure tg, denoted by FG (P ,), is

the collection o f faulty processors in C £(P ,). To guarantee error detection for all errors

1: Communication environments usually intersect since requests data from other pro­
cessors and other processors request data from Pt. We need to relate independent failures
in different CEs such that the local fault measure, tg, in each environment is not violated.

- 6 -

caused by these faults, w e require that

(Vi, 1 < / < n)(FG(P[) £ CE(Pi) a IFG(P,)I £ tg).

Definition: A collection of processors that must be non-faulty to guarantee detection

of all errors induced by the set o f faulty processors P is called the non-fault group o f P,

denoted by NFG(P). It is the set that contains all elements in the CEs in which the ele­

ments o f P are members and in which tg has been reached.

NFG(P) = U Pj where P ,e CE(Pk)APj£ Pa Pfe P a IFG(Pk)\ = tg

For the algorithm to detect all errors, the following must invariantly hold

(Vy)(P are faulty aP}e NFP) ->IFG(Py)l <

Depending on the value o f tg,many different non-fault groups exist. The NFG for a set

of faulty processors P determines on which processors Pj, outside NFG(P), the failure of

P will have no effect. Failures o f these components can be tolerated. For an error-

detecting algorithm w e need to ensure that there will be no conflicts between the faulty

processors and their respective NFGs. This means that if a processor fails, it must not be

in the NFG of any other failed processor so that detection o f all errors induced by the set

o f faulty processors can be guaranteed.

Ill Coloring Faulty MPS Topologies

In this section w e discuss how we can find and evaluate the non-fault groups in an

interconnection network, based on the individual communication environments.

An augmentation o f the problem graph represented in the MPS interconnection net­

work adds additional sym bolic edges (no augmentation is made to the actual topology) so

that the elements located in each CE are adjacent to each other in the augmented problem

graph. Thus, each CE forms a completely connected subgraph. The augmented edges

correspond to fault dependencies between processors in a CE. Since, at any time, there

must be no more than tg faulty components in each CE, there can be at most tg faulty ver­

tices adjacent to each non-faulty vertex in the augmented graph, and at most tg - 1 faulty

components adjacent to a faulty component. For example, if CE(1)={1,2,3,4} and

- 7 -

CE(7)={ 2,6,7} then the sets CE(1) and CE(7) will form completely connected subgraphs

after the augmentation, and since 2 is a member in CE(1) and also a member in CE(7), it

will be adjacent to all processors in CE(1) and CE(7).

Algorithmically, to determine the NFG o f an individual processor Ph we can mark

P{ faulty and determine all adjacent nodes in the augmented graph and permit at most

tg - 1 of them to be faulty. For tg = 1 and Pt faulty, all other elements in CE(Pt) must be

non-faulty, together with all processors Pk where CE{Pj)/\Pke CE(Pj)Ai & k, i.e.,

all processors that are in a CE with P{. With 1 there will be many different possibili­

ties to place up to tg faulty components into each CE.

We use a coloring algorithm to color the graph, indicating faultiness or non-

faultiness o f components when determining the NFG of an individually faulty processor.

We first describe how the coloring will be done for one fault in each CE, i.e. tg = 1, and

then extend the algorithm for tg > 1 to multi-coloring, where each vertex has a chro-

maticity o f tg, to obtain the NFGs. Finally, this algorithm can be used to obtain a possi­

ble distribution o f component failures for the whole MPS.

The algorithm given in Figure 3.1 describes how to find the NFG for tg = 1 using a

coloring algorithm which colors the faulty components in one color and the components

that must be non-faulty in a different color. This coloring scheme works for arbitrary

communication patterns as long as the CEs of all processors are known.

for i:=l to n/* n is the total # of processors */
color Pi faulty;
color all processors which are in a CE with Pj as non-faulty;
save NFG(Pj); reset colors;

Figure 3.1: An algorithm to determine the NFGs for individually faulty processors (tg = 1).

Theorem 3.1: The time complexity of the coloring algorithm is 0 (n 3).

Proof: Step 2 in the algorithm evaluates at most 1) processors and their CEs, taking 0(n2)
steps; the process will be performed a total of n times in the loop. Hence we have a time com­

plexity of 0(n3). □

- 8 -

To extend the algorithm to obtain the NFGs for a larger number of faults per CE, we per­

form a multi-coloring where each vertex has a chromaticity of The coloring for a processor

Pj is stored in the array color(j, l..f?). If at least one of the colors indicates faultiness then Pj is

considered faulty. If all colors show "non-faulty" then Pj must be non-faulty. In any other case

we have a "don’t care" state since there still exist possibilities to change the fault status of the

component. The multi-color algorithm is given in Figure 3.2.

for i:=l to IPI /* examine the set of faulty processors P */
I* Pj is the ith element in P */

color Pj as faulty in color(j,i);
/* all processors which are in a CE with Pj are adjacent in the augmented graph */
(V Pk adjacent to Pj in augmented graph)(color Pk as non-faulty in color(k,i));

/* determine the fault status of each processor */
for j:=l to n

Pj := non-faulty;
for i:=l to tg

if color(j,i) = faulty then Pj := faulty; exit i-loop;
if color(j,i) = don’t care then Pj := don’t care;

save(NFG(P));

Figure 3.2: An algorithm to determine the NFG of a set P of faulty processors and arbitrary

Theorem 3.2: The time complexity of the multi-coloring algorithm for finding one NFG for

an arbitrary P is 0(n2).

Proof: The loop in the first part of the algorithm examines at most n processors in P. Coloring

all adjacent vertices in the augmented graph takes at most n steps, giving 0(n 2) as complexity

for the first part of the algorithm, not considering the time it takes to set up the augmented graph.

The second part takes at most n • tg steps for determining the fault status. Thus, the overall com­

plexity of the algorithm is 0(n2 + n• tg) = 0(n2), not considering the time to generate the aug­

mented graph. □

To determine a permissible fault distribution for the entire network, we can use the first part

of the algorithm given in Figure 3.2; we select an arbitrary processor to become faulty, and keep

labeling the NFGs, selecting new faulty components, until there are no undefined color(j,i),

1 < i < tg, labels for any processor Pj. The fault distribution is obtained by determining faulty

- 9 -

and non-faulty processors according to the second part of the algorithm in 3.2.

Figure 3.3 shows an example for a 2-coloring, i.e., tg = 2. The dashed lines show the aug­

mentation of each CE. The other edges are the actual links in the network and are not of impor­

tance at this stage. The CEs for the processors are as follows: CE(1)={ 1,2,3}, CE(2)={1,2},

CE(3)={ 1,2,3}, CE(4)={3,4,5}, CE(5)={3,5,7}, CE(6)={3,4,5,6}, and CE(7)={3,5,7}. Selecting

1 to be faulty in the first pass will cause 2 and 3 to be labeled non-faulty since they are adjacent

to 1 in the augmented graph (dashed lines). Then arbitrarily node 5 is chosen to be faulty, forc­

ing 4, 6 and 7 to become non-faulty. This is important to note because although 5 is adjacent to

1, which is faulty, in the original graph, it is not adjacent in the augmented graph. Now all

color(j,l) labels for all processors jhave been filled. In the second pass an arbitrary node is con­

sidered faulty, this time 3 is selected. Because all vertices are adjacent to 3 in the augmented

graph all of them must be colored non-faulty in color(j,2). This provides a total of three faulty

processors, 1, 3 and 5 with at most 2 faulty components in each CE. Components 2, 4, 6 and 7

most be non-faulty.

N/N

Figure 3.3: A multi-coloring for tg = 2 in an augmented graph.

Theorem 3.3: The time complexity for finding a possible fault distribution using the multi-

coloring algorithm is 0 (tg • n3).

- 10 -

Proof: From Theorem 3.1 we can see that it takes 0(n2) steps to find the NFG of one faulty pro­

cessor. When determining a fault distribution for the whole topology, the vertices are colored

until all variables color(j,i) have values assigned to them. In the first round, one node is arbitrar­

ily selected to be faulty and its NFG is colored. Next we color one of the unmarked processors

as faulty, find its NFG and color it correspondingly. This process is repeated until all variables

have values assigned to them. This takes 0 (n 3) steps to fill one set of variables color(j,i), where

1 ^ i£ tg. The coloring process is performed tg times until all color(j,l.. tg) are colored. The

determination of the fault status of each processor is done according to the second part of the

multi-coloring algorithm with complexity 0(n • tg). Thus, the complexity of finding a possible

fault distribution is 0(tg • n3). □

We now present the NFGs of the processors in a structured way which is useful for deter­

mining the maximal fault index of an MPS. There are only three different processor states for

each processor with respect to a specific NFG: faulty, non-faulty, or don’t care, and will therefore

use a matrix representation.

Definition: A fault matrix of an MPS gives, for all sets of faulty processors P, all processors

that must be non-faulty (indicated by the logical value F in the matrix) if the elements in P are

faulty. The faulty processors are marked by T, the processors outside the non-fault group are

marked by A fault matrix corresponds to a collection of NFGs for a specific tg.

For tg = 1 there exists only one NFG per processor. For tg > 1 several different NFGs may

be found since up to tg processors can be faulty in each CE. The representation in Figure 3.4

shows the setup of the fault matrix for a 5x5 torus-connected mesh, where all adjacent processors

communicate, i.e., the star pattern introduced in Section I. The mesh is labeled row by row from

left to right, starting with node 1 at the top left comer, ending at node 25 at the bottom right.

- 11 -

FM(tj = 1) =

T F F F F F F — F F -------- F --------- F F — F -
F T F F F F F F ------F --------- F -------F F F —
F F T F F - F F F ------F --------- F -------F F F -

L F — F F -------- F --------- F F - F F F F F F F T J

’ r T T F - F F F ----------
T F T ------F -----------
T — T F -------- F —

F F ------
- F ------
- - - - F

L T — FF — — F ---------- F -------- F F — T J
F T T F — F F ----------------------------- F F — -
- T F T ------F ---------------------------------F —
FT — T F --------------------------------F ---------

FM(t, = 2) = - T — F — — F F — T J

- F T T F — FF —

[F — F F ----------------------------- F F — F T T]

Figure 3.4; Fault matrices for a 5x5 torus-connected mesh and the star communication pattern.

IV. Providing Maximal Fault Tolerance

Determining the CEs and NFGs of the different processors finds the largest collection of

component failures within a topology such that the algorithm can still detect all errors induced by

these failures. We stated originally that we will consider algorithms that can tolerate up to

faults in each CE. We now define the minimum and maximum number of faults that can be tol­

erated simultaneously in an arbitrary topology using an error-detecting algorithm.

Trivially, the minimal fault index of a topology with respect to an algorithm that is able to

tolerate tg local faults is tg, the local fault measure.

Definition: The maximal fault index (MFI) of a topology with respect to an algorithm that is

able to tolerate tg local faults is the number of failures ts that can occur such that

(Vz, 1 < i < n)(\FG(Pt)\ < tga \kjFG(P()\ = ts is maximal).

- 12 -

Definition: The fault tolerance decision problem (FTD) determines if a total of ts faults can

be tolerated. It specifically checks the assignments for the different processors to give an answer

to the following question:

For a given tg and ts, does there exist an assignment of FGs such that

(Vi, 1 < i < n)(\FG(P()\ a > ts).

The solution of the FTD will depend on the topology as well as the communication pattern

used in the algorithm. As in the matrix representation, we use a logical representation for faulty

and non-faulty processors. Each row in the fault matrix represents a logical expression where

"faulty" has the value T, "non-faulty" has the value F, and the "don’t care" terms are not men­

tioned in the term. Thus, for example, the first row in Figure 3.4, which provides NFG(Pi) in a

5x5 lorus-connected mesh for tg = 1, corresponds to

P \ / \ P ^ a P 4A P aF joAjPi] A |^A/>21ŷ F 22

This statement must be true if we know that P\ is faulty and we can only tolerate one fault per

CE, to guarantee that the algorithm can detect all errors caused by the faulty processor.

To solve the FTD of an arbitrary topology for a fixed tg and ts, we essentially want to deter­

mine if there exists a set of tg terms represented by the rows of the fault matrix that can be true

simultaneously. In the example given above for the 5x5 mesh and = 1, if is faulty, another

possibly faulty processor could for example be P6, since the entry in the row that indicates

NFG(Pi) is a "don’t care". In the next step we then evaluate how the faultiness of Pg influences

where other faulty processors may be located.

To determine if the assignments of truth values to the processor states permits the detection

of all errors, we need to show that the NFGs of all faulty processors match, i.e., the conjunction

of all processor states as indicated in the corresponding rows of the fault matrix must be true for

the rows of all sets of faulty processors P. We therefore need to check the rows in the appropri­

ate fault matrix where

(V ^ € P)(P , = T-KV./)(a pjeNFG(P)P J = F))

The time needed to determine if this is possible, for a specific assignment of logical values, is

0(n2), i.e. polynomial. To then solve the FTD we check all possible 2n assignments and evaluate

each one of them to select the one(s) which permit the number of simultaneously faulty proces­

sors to be ts.

- 13 -

A non-determinisdc algorithm could now simply guess a correct assignment if we want to

determine whether the FTD of a certain topology is equal to ts for a fixed Because such a

non-deterministic algorithm exists, we know that determining the FTD of an arbitrary topology is

in NP.

Lemma 4.1: The FTD problem is in NP.

Proof: Using a non-deterministic algorithm we can find an assignment to the processors in poly­

nomial time (see Theorem 3.3) that can tell if the FTD provides a result such that the MFT is

equal to some value ts.Thus FTD is in NP. □

Lemma 4.2: A variant of the 0,1 integer programming problem in which all components of y
are required to be in {0,1}, called 0,1-integer programming, which is NP-complete, even if all

components of each 3c, b and all components of c are required to be in {0,1} [GaJo79], can be

reduced to the FTD problem in polynomial time.

Proof: The integer programming problem consists of a finite set X of pairs (3c, b), where x is an

m-tuple of integers and b is an integer. We also have an m-tuple c of integers and an integer B.

Integer programming solves the question whether there exists an m-tuple y of integers such that

3c • y < b for all (3c, b)e X and such that c• y > B.2 A variant in which all components of y are

required to be in {0,1}, called 0,1-integer programming, is still NP-complete, even if all compo­

nents of each 3c, b and all components of c are required to be in {0,1} [GaJo79]. In our particu­

lar case, b is only required to be non-negative since it will be used to indicate the number of

faults which can be tolerated in each communication environment.

In the FTD, we have a set of n vectors, where processors in), 1 < have 1-coef­

ficients in the vector. Others in the vector have 0-coefficients since they correspond to the ele­

ments outside the CE. This now makes up the finite set X of pairs (3c, b) that is described above,

where b corresponds to tg, the maximal number of faults that can be tolerated in a CE and 3c

marks the set of processors in the CE of the specific P, we are considering. The value B

described above gives the maximal number of faults that a topology can tolerate with respect to a

certain communication pattern. This is the result of the FTD, and B corresponds to the value that

we described so far by the variable ts.

2: The dot-product u• v of two m-tuples u = (iq , w2, .. •,) and v = (V], v2, . . . , vm)
m

is given by
i=i

- 14 -

We would now like to determine whether there exists a tuple ^ such that 3c • £ for all

CEs. This means that by determining y we assign a value of 0 or 1 to the processors to indicate

whether they are non-faulty or faulty. y thus corresponds to the status of the processors and is

therefore also an n-tuple. To translate the value of y into a processor status of faulty or non-

faulty, we know that y can only be 0 or 1. Define the indicator IA as

Ia
1 if A is true
0 otherwise

The following expression describes the bound on the number of local faulty components

for each Pt
n
'LlP je CE(Pj)AP/ s faulty < tg

The vector c now shows which of the values in y we would like to select to compute the

value of B. Since y gives the status of all processors, to find the maximal number of possible

faulty processors, we need to consider all elements in y, and thus the entries in c will all be 1.

By transforming each of the n CEs into {0,1}-vectors with n elements each, one for each of

the n processors, and by expressing the maximal number of faults that can be tolerated by each

CE as the pair (3?, tg), we obtain a 0,1-integer programming problem.

On the other hand, every 0,1-integer programming problem with the constraints listed as

before, is also an FTD of an arbitrary topology with arbitrary communication patterns.

From the discussion we can see that the 0,1-integer programming problem can be reduced

to the FTD problem in polynomial time. □

Lemma 4.3: Every 0,1-integer programming problem with 3c in {0,1} and non-negative b

describes an FTD.

Proof: Each vector x of the 0,1-integer programming problem represents a communication

environment where all Is indicate processors within the CE, and all 0 entries are processors out­

side the CE. Then the ordered pair (3c, b) indicates how many processors can be faulty in the par­

ticular CE. The value b thus corresponds to the local fault tolerance which may vary for each

CE. Solving a set of ordered pairs (3c, b) for the {0,1} vector y will provide the assignments of

0s and Is to the different processors which indicate faulty (1) or non-faulty (0) status of the pro­

cessors, with each communication environment having at most tg> = b faults in each CE. □

- 15 -

As can be seen from the discussion above, 0,1-integer programming can be used to solve

every FTD, and from Lemma 4.3, FTDs can be used to solve every 0,1-integer programming

problem. Thus the two problems are equivalent, and therefore, since 0,1-integer programming is

NP-complete, so must be the FTD.

Theorem 4.1: The FTD problem is NP-complete.

Proof: The proof follows directly from Lemmas 4.1 and 4.2. □

Corollary 4.1: The MFI problem is NP-hard.

Proof: To determine the maximal possible value of faulty components, we need to solve the

0,1-integer programming problem which is described by the FTD. This determines whether

there exists a number o f faulty processors t ts, where ts is an arbitrary integer <, n, i.e., whether

there are ts 1-entries in the solution vector c. We can thus solve the FTD at most (n-r?) times to

find the maximal value since tg is the minimal fault index, and n is the theoretical maximum.

Thus, MFI can be obtained from the FTD through a polynomial number of steps and is therefore

NP-hard. □

Definition: A processor group, K, describes a collection of processes whose simultaneous

failure still permits all errors caused by their failure to be detected. Processor groups can be

mapped disjointly onto the actual processor topology.

Corollary 4.2: Partitioning of the individual processes onto processor groups based on an

optimal fault distribution can be obtained in polynomial time from the solution of the MFI.

Proof: Instead of equating each process with its own processor, we now consider each process

individually and try to partition all n processes onto a smaller number of m processor groups.

We use the solution of the MFI which provides an optimal distribution of processor faults by pro­

viding the solution vector c for the fault matrix, indicating which processes may simultaneously

be faulty. The NFG of each process indicates which other processes may not be located together

on the same processor. The algorithm of Figure 4.1 provides a partitioning of the processes P(to

the processor groups K j. This process is clearly polynomial. □

An example for the mapping is given in Section 5.1.2 for the star pattern.

- 16 -

/* All K(are processor groups to which the individual processes are mapped.
The 1-entries in the solution vector c of the MFI are mapped to
all remaining processes are mapped onto the other K(, 0 */

*(>: = {};
for 1 < i < tt do

if c[i]=l then
Kq: — Kq̂jv,

Pi: = mapped;

/* Now distribute the remaining processes onto other processor groups: We cannot
map a process into a group where it would be in the NFG of one of the other elements
that are already mapped there. If no such group exists, a new one is created. */

/:= 1:
*/:={};
for all ie Kq

for all PjSCE{P{)a Pj * mapped
if (3Km, 1 < m <l)(VPke K m)(PNFG(Pk) then

Km' ~ K mu j;
else

/: = / + 1;
Kf. = {j);

end if
P j‘= mapped;

Figure 4.1: An algorithm to provide a mapping from the results of the FTD.

V. Finding The Maximal Fault index For Fixed Topologies

Although determining an optimal distribution of faults is NP-hard for arbitrary graphs, this

is not necessarily true for certain regular topologies and regular communication patterns. For

example, in nearest neighbor algorithms, each processor and its neighbors form a communication

environment. In these cases, it is easy to determine the maximal NFG overlap by inspection.

The topologies to be evaluated in this section are 2-dimensional torus-connected meshes

and binary hypercubes. They provide the underlying interconnection network for error-detecting

algorithms using regular communication patterns and tg = \. We will use compass coordinates

to describe adjacency of processes.

5.1 MFI for Meshes

Because of the symmetry of the topology, we will focus our attention on torus-connected

meshes only. The distribution of faulty components for meshes without wrap-around

- 17 -

connections is similar but less restrictive since the wrap-around connections that guarantee the

same number of adjacent processors to each node in the topology don’t have to be considered.

5.1.1 Square Pattern
The first communication pattern evaluated here is communication in a "square". The com­

munication environment for P is the set of processors PE, P$, and This is shown in the left

part of Figure 5.1.

Figure 5.1: The "square" communication pattern, its NFG, and an optimal fault distribution

in a torus-connected mesh (wrap-around not shown).

It can easily be seen from the augmented graph that P is also part of CE(PNW), CE(PW)
and CE{Pn) due to adjacency. The pattern containing all processors in these CEs is, thus, a 3x3

processor group in which P is located at the center (see Figure 5.1, center). For = 1 and P

faulty, this is determined by the coloring algorithm of Section III as NFG(P).

The maximal fault index places as many faulty processors as possible into the mesh. It is

apparent, that for meshes smaller than 3x3 the MFI will be For an arbitrary nxm torus-

connected mesh, with tg = 1, the MFI can be determined by

MFI = div(m, 2) * div(n, 2)

which indicates the maximal possible number of faulty processors dependent on the number of

rows and columns in the mesh. From Figure 5.1 one can see that all faulty processors must be at

least a distance of two away from a known faulty processor. Since P is, optimally, exactly two

away from the closest faulty neighbor, we can place up to div(m, 2) into every other row and up

to div(n, 2) into every other column, which will give the result indicated above. A particular dis­

tribution is given in Figure 5.1 (right). Of course, if a larger number of processors is available,

- 18 -

the processes on the 4 processors can be divided and placed onto the additional processors.

Partitioning the individual processes onto a smaller set of processors for the square pattern

has already been shown as an example in Section I, Figure 1.2. The minimum number of proces­

sors required is 4, and the partitioning is obtained by placing non-overlapping CEs over the set of

all processes, as described in Figure 1.2.c.

5.1.2 Star Pattern
Communication with all neighbors is also a common pattern for many algorithms. In this

case, a processor P will communicate with PE, Pw, PN, and Ps. The augmented CE is shown in

Figure 5.2 (top left). We will discuss this pattern again in Section VI for the evaluation of a

relaxation algorithm.

NFG(P)

0,1 1,3 2,1
3,2 4,4

Figure 5.2: The "star" communication pattern, its NFG, an optimal fault distribution,

in a torus-connected mesh (wrap-around not shown), and the fault-tolerant mapping.

- 19 -

As before, the goal is to permit as many faulty components as possible in the mesh but

guaranteeing at the same time that each communication environment contains at most faulty

processors. To determine the NFG for each individually faulty processor we will again use the

augmented graph and the coloring algorithm for finding the MFI.

We examine the case tg = 1, where at most one fault can be tolerated in each CE. In this

case the NFG for a faulty P as provided by the coloring algorithm on the augmented graph will

result in a "star" pattern (Figure 5.2, top right). For P faulty and 1, none of these processors

must be faulty.

In the ideal case we obtain a distribution of faulty processors that is identical to the perfect
1-adjacency placement of resources, where each non-resource node is adjacent to exactly one

resource [RaC‘h92], which in our case is a faulty component. [RaCh92] show that the number of

resource nodes in a k-ary n-cube for perfect 1-adjacency is

X = kn/(2n +1) , fc > 2

which must be an integer. From this expression one can see that perfect 1-adjacency does not

always exist, but it will nevertheless provide a bound on the number of faulty processors that can

be permitted. A torus-connected mesh is a k-ary 2-cube, if we can guarantee that we have only

kxk meshes. In this case the expression above becomes

X =

which allows for up to 5 faulty components in a 5x5 torus-connected mesh. A possible distribu

tion for this example is shown in Figure 5.2 (bottom left).

A fault-tolerant mapping for this particular communication pattern is given in Figure 5.2

(bottom right). Based on an optimal distribution of faults obtained earlier, the processes are

placed such that only non-interfering processes are placed onto the same processor. The solution

vector, c ,that was obtained from solving for the optimal fault distribution for this particular

problem is [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0], i.e., vertices (0,0), (1,2), (2,4), (3,1),

and (4,3) in the problem graph can be simultaneously faulty.

5.2 MFI for Binary Hypercubes

For binary hypercubes we are also frequently interested in communication patterns that

communicate with adjacent processors only, i.e., into all dimensions of the hypercube. To deter­

mine the maximal fault index for this topology we use a similar approach as in Section 5.1. The

- 20 -

problem becomes harder since the patterns formed by the NFGs are multi-dimensional and are

therefore difficult to place by inspection, especially for high-dimensional hypercubes.

To obtain a star-like pattern, as described in Section 5.1.2, the faulty processors in the mesh

as well as in the hypercube have to be at least a distance of three away from each other. In order

to find a set of processors in the hypercube which all have this property, we can label the vertices

of an n-dimensional hypercube in a binary gray code and then use Hamming codes to find the

number of processors B(n, d) which are a distance of d apart from each other. Specifically, for

d = 3,

B(n, 3) = 2W £ ~~~r
n + 1

according to [Hamm50]. This provides an upper bound for the maximal fault index. An exam­

ple for a 3-cube where a set of two faulty nodes which do not interfere with each others’ compu­

tations and communications are marked is given in Figure 5.3 (left). A fault-tolerant mapping of

the nodes onto a smaller set of processors is given in Figure 5.3 (right).

001
n o

000
111

100
Oil

010
101

a) optimal fault distribution b) fault-tolerant mapping
based on the distribution

Figure 5.3: MFI and fault-tolerant mapping for nearest neighbor communication in a 3-cube.

-21 -

VI. A Specific Example of an Error-Detecting Algorithm

Fault-tolerant algorithms can be generated using executable assertions for error detection

[LuSM92, Andr79]. Executable assertions form logical tests which can be embedded into the

program to verify, during the program execution, that the program meets its specifications. In

general, we add executable assertions after each statement, which then verify that the previous

statement was executed correctly, or which flag an error if the actual values of the variables do

not match the range of the expected values. In case of an error, the assertions will force the pro­

gram to halt execution.

For a specific problem and interconnection network, an error-detecting algorithm is able to

handle a bounded number and particular distribution of failures. If this bound is exceeded or the

distribution of faults is violated, the executable assertions may not be able to correctly detect all

errors since multiple faults can mask each other.

In this section we discuss how the concepts described in the previous sections can be used

to assess the fault tolerance of an error-detecting algorithm for matrix relaxation.

6.1 iterative Relaxation

Iterative relaxation is one of the fundamental computation methods. Relaxation can be used

in such diverse problem ranging from relaxation labeling [HuZu83] in distributed scene analysis

to computational partial differential equation solvers [McNi88]. We present the general problem

as approximating a solution to a large sparse system of linear equations Au = v, where A = (a^)

is a nonsingular Q x Q complex matrix, v = (Vj) is a complex vector, and u = (Uj) is the solution

vector for i ,je { 1 ,2 , . . . » Q} and Q a perfect square. The method of Gauss-Seidel Relaxation is

an iterative technique used to obtain an approximate solution, u(K) = (u[K)), where K is the final

iteration, to this system. The desired topology of the interconnection network for this computa­

tion is a two-dimensional mesh. The data exchange pattern for this algorithm corresponds to a

communication with all adjacent processors in the mesh, which we described in Section 5.1.2 as

the star pattern.

6.2 Error-Detecting Matrix Relaxation

Using Changeling [LuSm92], a program verification proof outline based on axiomatic

semantics is used to construct an error-detecting matrix relaxation. For the purposes of this

3: Axiomatic semantics provide formal statements about the effect of executing a pro­

- 2 2 -

paper, we choose to concentrate on only one assertion from the matrix relaxation algorithm,

which shows that at some final iteration step K, we have actually solved the original problem

and found a solution. Simply put, this (post)assertion appears as

(Au(k) = v - e)a (V/XIui*0 - u<*-2)l < e)

which ensures that the result obtained has converged on all nodes to within the desired tolerance

e. If the problem was solved correctly then the post assertion must hold; otherwise an error

occurred which must be flagged.

The distributed program runs in two phases: in the first phase an iterative algorithm con­

verges to a possible solution. Then a second phase, the verification of the solution, is used to

check whether the post assertion is satisfied for all processes, i.e., whether the solution meets the

desired specifications. If it does not, then we know that a fault must have occurred during the

computation or during the verification process, indicating that the result cannot be trusted.

At the end of the final iteration K of the relaxation algorithm, the final result u\K) must sat­

isfy the following relation:

For ie {1 ,2 , . . .
1

W f ' - v , -uf>
ai,i

To verify the post assertion, each process will send its last computed value of to the other

members of its CE using message diffusion 4 [CrAS85]. By checking the different versions that

arrive on these paths [LuSM92], each processor in the CE must receive identical versions of a

sent message or will detect an error if inconsistencies between messages from the same sender

are discovered.

The system of equations to be solved by the relaxation algorithm has a unique solution. If

two faulty processors in the same CE cooperate to fool the other processors then a spurious solu­

tion may be introduced which does not provide a correct solution to the problem but which can-

du2 du2
not be detected. For example, consider solving the Laplace equation zrr- + tt— = 0. A solution

a2x d2y

gram. Assertions are made about program variables before, during and after program ex­
ecution.
4: Message diffusion uses node-disjoint paths for sending at least two messages to the
same destination, which can then be compared for consistency.

- 2 3 -

for this can be obtained by solving uitJ = - iui+\j + + utj +l + which corresponds to

the rows in a sparse matrix. What we actually verify in the postcondition is that for each CE the

following relation between the local values of its components will be satisfied:

lMi+l,y + ul-l,J + ut,J+ 1, + 1 - 4UijI £

For example, ultj = 2, utj +l = 2, w(j_i = 1, uMiJ = 4 and = 1 with 0.1 satisfies this con­

dition when locally tested in the CE. It is easy to see that a single component with a faulty value

that violates the bound can always be detected. However, two faulty components can be faulty

such that their errors add up without violating the bound (for example, = 0.5 and

ui,j+i = 2.5), or they could cooperate by switching their values. If the components are not forced

to use the same value in the verification round for all CEs in which they participate, then they

could provide a correct value for the CEs in which they are the only faulty component and coop­

erate with another faulty component in the ones in which more than one is faulty. The CE for

this example is shown in Figure 6.1. Thus, the verification round of the algorithm allows for

tg = 1, i.e. every single error in a CE can be detected.

o o o o o
O G / § \ 0 O
o <6 o c>o
O Ck^/6 o
o o o o o

Figure 6.1: The Star Pattern with 2 cooperating errors in the same CE.

The actual communication pattern used in this matrix relaxation is an extended form of the

star pattern to allow for message diffusion by providing node-disjoint paths from P to the com­

ponents in the comers (Figure 6.2). Since the assertions can reliably detect up to one fault in

each CE (tg =1) , the upper bound on the number of faults that are permitted, the MFI, in a QxQ

mesh can be calculated as Q2/9. Note that many different distributions of the faulty components

are possible, as long as the condition of at most one faulty component per CE is not violated.

A possible fault-tolerant mapping is very similar to the one described in Section I as an

example. We have 9 processor groups and map the individual processes according to (using an

- 2 4 -

N
P NW0 V ’ Q p NE

Pw 0 — <>------o Pt

p Sw O— 6 — o p SE

Figure 6.2: The communication pattern for message diffusion and a possible fault distribution.

x-y coordinate system): Process t j maps into group Kt<m if i mod 3 = / a j mod 3 = assuming

that we have no wrap-around connections.

VIE. Conclusion

In this paper, the maximal fault index was introduced to demonstrate how a maximal num­

ber of simultaneous component failures can be tolerated by an error-detecting algorithm, based

on specific distributions of the faults within the interconnection network. Depending on individ­

ual or sets of component failures, the non-fault groups of these components indicate where non-

faulty components have to be located for the system to be able to detect all errors.

Although solving the maximal fault index problem for an arbitrary network topology and

communication pattern is NP-hard, bounds are given in this paper for specific, frequently used

communication patterns and topologies.

Based on the "optimal" distribution of faults, a partitioning technique can be used to assign

processes to the processor groups in the system such that processes that may become faulty

simultaneously, without their errors being able to mask one another, are located in the same pro­

cessor group. These groups can then be mapped, disjointly, into the actual processor topology.

Thus, the failure of a single processor will still allow for the detection of all errors.

The assessment of an error-detecting algorithm based on the concept of its minimal and

maximal fault index can be used for safety critical systems, especially with respect to the fault-

tolerant process-to-processor mapping that can be obtained from it. It will ensure that the failure

of a single component does not go undetected, which increases the dependability of the system.

- 2 5 -

BIBLIOGRAPHY
[Andr79] Andrews, D.M. “Using executable assertions for testing and fault tolerance/' Proc. of the 9th

FTCS, 1979, pp. 102-105.
[CrAS85] Cristian, R, Aghili, H., and Strong, R. “Atomic Broadcast: From Simple Message Diffusion to

Byzantine Agreement,” Proc. of the 15th FTCS, 1985, pp. 200-206.
[DaSe86] Dally, W. and Seitz, C. “The Torus Routing Chip,” Journal of Distributed Computing, Vol. 1, No.

3,pp. 187-196,1986.
[FoRa85] Fortes, J. and Raghavendra, C. “Graceful Degradable Processor Arrays,” IEEE Trans. On Com­

puters, Vol. C-34, Nov. 1985, pp. 1033-1044.
[GaJo79] Garey, M., and Johnson D. Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman, San Francisco, 1979.
[GuRR93] Gu, D., Rosenkrantz, D.J., and Ravi, S.S, “Determining Performance Measures of Algorithm-

Based Fault-Tolerant Systems,” J. of Parallel and Distributed Comp., Volume 18, No. 1, pp.
56-70,1993.

[Hamm50] Hamming, R.W. “Error Detecting and Error Correcting Codes,” Bell Syst. Tech. Vol. 29, Apr.
1950, pp. 147-160.

[Haye76] Hayes, J. “A graph model for fault-tolerant computing systems,” IEEE Trans. On Computers,
Vol. C-25, Sept. 1976, pp. 875-883.

[HuZu83] Hummel, R. and Zucker, S., “On the Foundations of Relaxation Labeling Processes,” PAMI, Vol.
PAMI-5, No. 3, May 1984, pp. 267-287.

[JoAb87] Jou, J. and Abraham, J. “Fault-Tolerance Matrix Arithmetic and Signal Processing on Highly
Computing Structures” Proc. IEEE, Vol. 74, No. 5, May 1986, pp. 732-741.

[LeLe85] Leighton, T. and Leierson, C. “Wafer-scale Integration of Systolic Arrays,” IEEE Trans. On
Computers, Vol. C-34, May 1985, pp. 448-461.

[LuSM92] Lutfiyya, H., Schollmeyer, M., and McMillin, B. “Fault-Tolerant Distributed Sort Generated from
a Verification Proof Outline,” 2nd Responsive Systems Symposium, Springer-Verlag.

[McMi88] McMillin, B. “Reliable Parallel Processing: The Application-Oriented Paradigm,” Ph.D, Disser­
tation, Michigan State University, 1988.

[McNi88] McMillin, B. and Ni, L., “Executable Assertion Development for the Distributed Parallel Environ­
ment,” Proc. of the 12th Int. COMPSAC, October 1988, pp. 284-291.

[McNi92] McMillin, B. and Ni, L., “Reliable Distributed Sorting Through The Application-oriented Fault
Tolerance Paradigm,” IEEE Trans. On Parallel and Distributed Comp., 1992, Vol. 3, No. 4, July
1992, pp. 411-420.

[RaCh92] Ramanathan, P. and Chalasani, S. “Resource Placement in k-Ary n-Cubes,” Proc. Intern. Conf.
on Parallel Processing, 1992, pp. 11-133-140.

[Rose83] Rosenberg, A. “The Diogenes Approach to testable Fault-Tolerant Arrays of Processors,” IEEE
Trans. On Computers, Vol. C-32, Oct. 1983, pp. 902-910.

[ScMc93] Schollmeyer, M., and McMillin, B. “A General Method for Maximizing the Error-Detecting
Ability of Distributed Algorithms,” UMR Technical Report, Dept of Comp. Science, CSC-93-16.

	A General Method for Maximizing the Error-Detecting Ability of Distributd Algorithms
	Recommended Citation

	tmp.1600974007.pdf.4zvjK

