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ABSTRACT

In this paper, a new technique for ensuring run-time satisfaction of properties-specifically 
responsiveness property, a subset of liveness property, in responsive systems, is presented. Since 
whether the run-time behavior of a system is satisfied depends on the execution (operational) 
environment, we develop a translation which takes into account the constraints in the operational 
environment, and generates histories for each process in the system. Thus, every process can uti­
lize its history to operationally evaluate the system behavior and signal errors if its history is vio­
lated. Therefore, this technique provides software safety, handles error-detection, and ensures 
run-time satisfaction of responsiveness property in the operational environment. To illustrate 
this approach a train set example is presented.

1. INTRODUCTION

A responsive system [Male90] is one which responds to internal programs or external 
inputs in a timely, dependable and predictable manner. In such life-critical system, any failure 
can cause catastrophe, and ensuring run-time satisfaction of assertions-expected behavior, is a 
necessity. This motivates our work of developing a technique for ensuring run-time satisfaction 
of system behavior.

This technique of ensuring run-time satisfaction of expected behavior, characterized by 
assertions, is as follows. First, a sound mathematical basis-interval Temporal Logic(ITL) is pro­
vided to model responsiveness property, a subset of liveness property, of the system. Then, in 
order to apply responsiveness property in the operational environment, a transformation taking 
into account the constraints of the operational environment is developed. The transformation 
helps processes create histories, with a consistent view, for all the (local) operations in the sys­
tem. Therefore, processes can make use of their histories to operationally evaluate, at intermedi­
ary or observable stages, the behavior of other processes-this avoids self-evaluation. If a history 
is violated, which means the expected behavior is violated, then an error is signaled. Therefore, 
the operational evaluation of responsiveness property-expected behavior, provides not only error- 
detection but software safety.

This approach-operational evaluation of assertions provides software safety through 
implicit redundancy, since safety constraints or run-time satisfaction are examined upon the com­
munications. There are other approaches to cope with dependencies in the execution environ­
ment. In [Mok91], implementation dependencies, e.g., architecture or resource constraints, are 
explicitly identified and are brought in as need. In other words, the implementation dependencies 
are isolated first and then they check if system specification and the required implementation 
dependencies can be enforced by control structures that meet the required timing constraints.
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The proposed approach is based on Changeling [LuMc91b, LuSM92, LuSM92a], which 
chooses axiomatic proof system as the mathematical model and uses assertions generated from 
the proof outline to detect errors. However, this paper focuses on establishing run-time satisfac­
tion of system behavior-characterized by responsiveness property, for the life-critical system.

The responsiveness property shows progress of the system behavior, and can be established 
by applying the proof rules of ITL. At run time, the property is evaluated against a time-index 
computation history collected by processes of the system. If the history is not violated, then it is 
ensured run-time satisfaction of responsiveness property, i.e., the system does what it supposes to 
do.

This paper is organized as follows. Section 2 describes the logic ITL which can be used to 
model and reason about responsiveness property in life-critical systems. Then, a translation pro­
cedure allowing operational evaluation of responsiveness property is presented in Section 3. In 
Section 4, the complexity of the translation and operational evaluation of assertions is addressed 
in terms of computation cost and communication cost. Section 5 illustrates, on a train set exam­
ple, the technique-operationally ensuring run-time satisfaction, and analyizes the overhead 
incurred by this technique. Section 6 concludes this paper.

2. Interval Temporal Logic

In this section, we developed a logic for the design and analysis of safety-critical systems. 
In such systems, bounded response is crucial and one failure can cause a catastrophe. The logic 
is called Interval Temporal Logic(ITL), which supports the analysis of responsiveness properties- 
a subset of the liveness properties. This ITL is an extension of Interleaving Set Temporal 

Logic(ISTL*) [PePn90], which adopts a partial order semantics. Hence, the logic ITL captures 
the temporal and distributed aspects of responsive systems.

The interval formulas of ITL have the form [ : the formula a  holds on the interval [/]; if
the interval [/] can not be found then the interval formula is vacuously true. An interval [/] is 
bounded by assertions. For instance, let s, be the assertion which characterizes the state at posi­
tion i in a behavior cr; [st, s j] denotes the interval j. Interval formulas are used to spec­

ify properties within "bounded" intervals of time.

Definition 2.1: Any formula in the language ITL is a path formula, while a state formula is one 
containing no intervals or temporal operators, and is interpretable on a single state.

From the above definition, we know that interval formulas are path formulas. The follow­
ing definitions are needed before the satisfaction definitions.

Definition 2.2: If a state s satisfies a state formula </>, then we say that j is a state.
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Definition 2 3 : Let £ be a sequence of states and £(/) be the ith state of £. An interval [p, q], 
bounded by state formulas p  and q, is given by [p, = {£| £(0)t=p, £(I£I)N<?}. Here, l£l denotes
the length of the state sequence £, and t= denotes the satisfaction.

Definition 2.4: Let R(c) = {£| £ ^ cr}, where the state sequence £ = (£(0),. . . .  £(l£l)) refines 
a  = (cr(0),. . . ,  ct(IctI)). In symbols, £ < a ,iff (3 [0, Icxl]) ((tr(j'), er(j 1), • ■ • o(J + l£l)) = £). 
In other words, R(cr) is the collection of subsequences of the state sequence cr.

Definition 2.5: The following satisfaction definitions are to be added to the semantics of the 

logic ISTL*. Let 0 be any formula, and let p, q be state formulas.

(cr, i)\=y/ = a{i)\=y/, where yris a state formula.

(a,i)\=[p,q]<j> = for every £e/?(cr) such that (£ ,0 )h p , and (£, l£l)l=<?, if
(3^-e {0 , 1 , . . . ,  l£l })(£(£,) = cr(0), then (£, kt)

(j\=<p = V i e { 0 , . . . ,  Icrl}, (cr, i)\=0.

crKp]0 = (Vi) (if (cr, i)t= p  then (cr, i)l=0).

crHp. q]EP0 = For all £e R(cr) such that (£, 0)1=p, and (£, l£l)N<?, we have (£, l£l)b=0.

Definition 2.6: A responsiveness assertion is a path formula of the form tflEFyc),
where p, q, 0, and \p are state formulas.

A responsiveness assertion ([p]0—»[p, c/]EFyc) is true over a state sequence cr, iff the fol­
lowing holds: 0 holds at p. state of cr, then a \p. state will occur within the interval [p, q]. The 
assertion ensures the requirement of a timed response y/to 0 within the time interval [p, q]. The 
following Progress Rule can be applied to reason about responsiveness properties.

Let p, q, r, 00,0 X, 02 be state formulas.
Progress Rule:

[p]<Pô >[p, q]EF0i
W\h->[g. rJEX02________

[p]<t>ô >[p, r]E¥02

According to the premises, if 0Q holds at p. state, then there exists a path or state sequence 
such that 0iwill occur within the interval [p,q], and if 0X holds at then there exists a
path 0X will occur within the interval [q, r]. Therefore, we can conclude that if 0O holds at 
p. state, then there exists a state sequence such that will occur within the time interval [p, r\.

The following remark and definitions are needed for the proofs of soundness and complete­
ness of the Progress Rule.

Remark: A program Pcan be identified with any collection of formulas, such that a state 

sequence cr is generated by P iff crhXp.
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Definition 2.7: If Pis a program, then 'LP\=<t> (read "<p is a consequence of Up") means every state 
sequence cr generated by P satisfies <t>.

Definition 2.8: Given a program P and a formula(property) <f>, we say P satisfies the specification

Theorem 1 (Soundness): The Progress Rule is sound.

Proof: Assume that all the premises hold, i.e.,
( 1) Z/.l=[p]0o->[p> tf]EF0,, and

(2) ZpHq]</>i^>[q, r] EF02.

Let cr be an arbitrary state sequence generated by P,i.e., cri=X/». Then,
(3) For all i, (cr, i)Hp]^>o~^[p, <?]EF0,, and

(4) For all i, (cr, i)Hq]0i~>[q, r]EF^2.

The im plication^) of the equation (3) can be removed, and (3) is equivalent to "if 
(cr,f)l=[p]^o» then (cr,/)(=[/>> <7]EF0,." Thus, <px holds at where tq is a time index of any

q. state in state sequence cr. That is, (cr, tq)k=</>\, i.e.,

(5) <r\=[q]<t>i-

Likewise, the im plication^) of the equation (4) can be removed, and we can rewrite (4) as 
"if (cr, i)k=[q]</>i,then (cr, /)(=[<?, r]EF<z)2 " From (4) and (5), we can derive (cr,/)H<Z, r]EF02.
Symmetrically, we can conclude (cr, tr)̂ <j>2, and (cr, i)\=[p, r]EF<z>2.

Hence, for all /, (cr,/)t=[p]^0_ [̂p* r]EF^2. Thus <rt=[p]<t>o—>[p, r]EF02. So 
KP> r]EF^2, which means that every state sequence generated by P satisfies 

(l>]0o->[p> r] EF02).d

Theorem 2 (Relative Completeness): Suppose is a program, ([p]<Po^[p, tf]EF02) is a respon­
siveness assertion, and for each state sequence cr of P, if crH[p]0o“ HP> <?]EF02). Then 
Xp\-([p]<t>ô >[p, q]EF02).

Proof: From the assumption hpk=[p]</>o->[p, r]EF02, we need to show that there exists a proof 
for [p]</>o~>[p, r]EF02. Let cr be an arbitrary state sequence generated by P,i.e., crt=X/>. Then, 
from the assumption, we know that cr\=[p]<t>o—>[p, r]EF02. Now [p]<t>o—>[p, r]EF^2 holds on a 
sequence cr = (.yo^i, • • •), if whenever there exist indexes t0, t2, and j ,  such that (cr,tQ)\=p, 
(cr, t2)f=r, <fi0 holds on s,0, and t t2, </>2 holds on crl[;>,2] = (Sj, sJ+x, . . . , s t2).

Let t\ = max{th0 < t< t2 and crt=[t0, t]-><t>2}, i.e., tx is the last point where ~><t>2 holds. Let 
f, = min{tl/0 ^ t < t2and crt=[t, /2]^2},i.e„ t x is the first point where <j>2 holds.
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Let <j>x =at{tx)and let </>l = at(fx); let ) and let Then,

£ p H >]0o-H /M 1 e f 0i> £pHtf]0i->[<7,£lEF0i, and So,
XPH[p]<Pô >[P> qJEF fan

3. THE TRANSLATION SCHEME

In Section 2, we developed a formal tool ITL for modeling the behaviors of reactive sys­
tems within finite intervals of time. The behavior is represented by responsiveness assertions. 
To show that responsiveness is guaranteed in the execution environment, a translation procedure 
which takes into account the constraints in the operational environment is developed. This trans­
lation helps every process create a global scheduled history) for all the (local) operations of the 
responsive(distributed) system. Meanwhile, processes can utilize their histories to evaluate, at 
observable stages, the behavior of the system characterized by responsiveness assertions. If any 
of the assertions are violated, then an error has occurred. Thus, the incorporations of the transla­
tion and operational evaluation of responsiveness assertions define an error-detecting algorithm. 
The following steps outline the generation of error-detecting algorithms.

(1) obtain responsiveness assertions from ITL specifications: the logic ITL adopts partial 
order semantics and provides a more suitable representation of concurrency than inter­
leaving semantics does.

(2) develop a translation procedure: in the translation, every process maintains a history-a 
global view of the system through a set of auxiliary variables. These variables are used 
to keep track of the operations performed and observed in the system.

(3) derive error-detecting algorithms: run-time correctness is established by evaluating 
responsiveness assertions-obtained in the verification environment, against the history. 
This step is called operational evaluation of responsiveness assertion, which allows 
distributed processes to monitor, within finite intervals of time, whether their behavior 
is satisfied or not. Hence, an error-detecting algorithm is generated.

For a process P{, the evaluation of responsiveness on process Pj requires the information 

about Pj. Thus, auxiliary variables are used to communicate variables in the assertions, which 

allows processes to evaluate responsiveness assertions or the behaviors of other processes. 
Hence, we can avoid having a process test itself. Now, we formally describe the operations for 
the translation. The following definition describes the actions with respect to auxiliary variables 
in the translation.

Definition 3.1: Let tt and tj denote the local counters of processes Pt and Pj, respectively. The 

actions performed in the translation include updates of auxiliary variables, sending and receiving 
messages, which are described below.
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(P y ,U , v): ( P j\,v ,t() in CSP [Hoar69] notation, which denotes that a message
with content v is sent to process Py at time t{ with respect to the 

clock of process Pf.

(Pj, ?, th v): (P jlv, ti) in CSP notation, which denotes that a message with content
v is received from process at time with respect to the clock of 

process Pf.

(tj, Vi, . . . ,  v„): at time tj, the variables Vj,. . . ,  v„ are instantiated in process Pj.

The counter t(of a process P( is incremented by one after every execution of an operation and is 
updated after the receipt of a message. The incorporation of logical clocks into the translation is 
to obtain a total ordering of all causally related events of the system, which is based on the con­
cept of a “happened before” relation [Lamp78].

To keep track of operations, each process must maintain a history that records all the opera­
tions performed and observed so far, which is defined below.

Definition 3.2: Let Vh, be the collection of operations observed by process Pj, where the opera­

tions are described in Definition 3.1. Vh. is used to keep track of the operations involving state 

variables in the assertions to be evaluated. These state variables in assertions are referred to as 
auxiliary variables.

Each process keeps a collection of sets of auxiliary variables with respect to the other pro­
cesses in the system, so that every process has state information of other processes and can eval­
uate whether an assertion about the behavior of other processes is satisfied. The following defi­
nition describes the auxiliary variables maintained by process Pj with respect to n processes in 

the system.

Definition 3 3 : Let Gy be a collection of subsets g jo ,g j\,...,g  j(n-i)’ where each subset is a set of 

operations from Definition 3.1. The set gjiij^O  represents the changes made to the auxiliary 

variables in Pj since the last communication with P,; gjj describes the auxiliary variables 

updated by process P j since the last communication with any process.

Notice that each set gjiij^O  can be considered as a queue of process Pj to be sent on next 
communication with process P(. Before the communication with P,, Py updates its queues 

(gJQ, . . . ,g  g y(l+1), .. . ,g  with respect to the operations in gjj, which records all the
operations since last communication with any process. Also, the global view or the history Vh. is 

updated with respect to gjj.The following definition describes these operations to be performed 

before two processes communicate.
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Definition 3.4: The function u p d a t e bc( g jitgjj, V bj) describes the operations performed by Pj  
before the communication with P,.

update bc(gjitgjj,Vh.,tj

(1) apply each operation in

to (Gj\{gjj});

(2) Vhj^ V h.\\gjJ; I

(3)

(4) tj\ = tj + 1; 

The above equations are explained below.

(1) update (Gj\{gjj}) with respect to gjj,where "\" denotes set difference.

(2) record operations in gjj , where "II" denotes concatenation.

(3) gjj is set to empty, since (Gj\{ gjj}) are updated.

(4) increment the counter tj.

Before the communication, processes P, and Pj perform their respective updates of 
updatebc(gtj, gtt, Vhi, tt)and updatebc(gn, g}},Vhj, and are exchanged when P, and P}

communicate. The operations in updatebc are performed before the communication. The fol­
lowing definition formally defines the operations following the communication of non-auxiliary 
variables.

Definition 3.5: The function updateacdescribes the communications of auxiliary variables and 
the updates following the exchanges of auxiliary variables, let Vh. be the collection of opera­

tions observed by P, and let grecv denote the auxiliary variables received by P, from Pj. The 

following function describes the operations performed by P,-.__________

updateac(gijtgrecv, Vhrti)

(1) (Py, ?, t, grecv)',t,:=max(t<, 0 + 1;

(2)v„i<-vlli\KPj,‘?,t,grecv

(3) (Py, !,*„*<,); t,: = t, + 1;

( ^ V ^ V ^ K  Pj.U th g9)\

(5 )  V,i<-V/,ll grecv-,

(6) tj\ =?,-+!;_____



- 9 -

The above equations are explained as follows.

(1) receive auxiliary variables of Py in grecv, and increment the counter th

(2) record the operation of (1) in Vhj.

(3) send gy to process Py and increment the clock th

(4) record the operation of (3) in Vhj.

(5) record the operations of grecv in history Vhi.

(6) increment the counter tt.

Observe that, in (5), there is no need to consider duplicate tuples and we can append grecv 
to the history Vh. of process P, directly, since all the operations in grecv are instantiated by pro­
cess Pj. The function updateac(g]h grecv, Vhj,tj), which describes the operations performed by 

P j(j < i), has the same operations as in updateac(gij,grecv, V/,., tt) except that process Pj sends 

its queue gJ( before it waits to receive the auxiliary variables of P(, gtj. Notice that (j < ) is 

used to introduce an arbitrary order to the communications of auxiliary variables, which 
avoids the occurrence of deadlock. The interchange of auxiliary variables is described in Fig­
ure 3.1 for one matching communication pair between Pt and Py.

3.1 Soundness and Completeness of the Translation

This section shows that the assertions, derived from the verification proof or the verifica­
tion environment, can be preserved after the transformation. The transformation is a process 
which considers operational constraints and generates a consistent view for distributed pro­
cesses of the system. In [TsIM93], we have shown soundness and relative completeness of the 
translation with respect to all formulas(properties) except interval formulas of the form 
[p, q\(p. Now we have to show that the translation preserves soundness and relative complete­
ness with respect to interval formulas. Then, responsiveness assertions ([p]tp->[p, q]EFys) 
can be obtained from interval formulas and implication. Therefore, responsiveness assertions 
are preserved after the translation, i.e., they are preserved in the operational environment.

Let 1 P identify the collection of formulas for program P. Let TR(1P) identify the collec­
tion of formulas for the corresponding program of P after the translation. Then 
TR(1P) = Ip^jS, where S is the collection of formulas for the operations of update and the 
communications of auxiliary variables in the translation. lp<zTR(lP), since the translation 
helps processes to communicate their views of the system, and affects neither program vari­
ables nor the control of flow. Thus, TR(1P) includes 1 P, in addition to the formu- 
las(assertions) which describe update operations and the communications of auxiliary vari­
ables. Notice that if a formula <pe S, then $ can be derived from 1 P using the same proof rules
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For process P j’.
/* execute arbitrary set of statements excluding communication */
/*but including assignments to auxiliary variables */
s„; tj :=1
Si2> t| :=tj +1
* * * 7

Siki tj^tj + l
/* update the auxiliary variables */ 
updatebc(g1J,g 1„V hi,ti);

/* perform communications with process Pj */
(Pj?VAR, t); ti:=max(tl, t) + 1
/* and update the auxiliary variables */
updateac(gy, grecv, Vh(, tj),

For process Pj:
/* execute arbitrary set of statements excluding communication 
/*but including assignments to auxiliary variables */

Sji; t,:=1

Sj2; lj :=tJ + 1
• * * 9

sjk; tj :=tj + 1
/* update the auxiliary variables */ 
updatebc(gji, gjj, Vhj, tj);

/* perform communications with process Pj */
(Pi!VAR,t);tj:=tj + 1
/* and update the auxiliary variables */
updateac(g[j, greCv > Vbj, tj),

Figure 3.1. communications of auxiliary variables for one matching communication pair.

(i.e., Xph0), since both environments have the same proof rules and we can inductively show 

that the weakest predicate of <p is true in the verification environm ent^ N0).

The interval formula [p, q]</> describes a sequence of operations and contains no auxiliary 
variables, where p  and q are state formulas and is a path formula. The following two
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Verification Environment 
Soundness:

2 Pl-[p» => EpK p. q]<t>
Relative Completeness: 

SpNfp, q\<j> ̂  Epl—[p, q](j>

fianslatiqn

Operational Environment 
Soundness: 

77?(Zp)Kp, $]* => 77?(Zp)l=[p, 
Relative Completeness: 

R{Xp)N[p, 77?(Sp)l-[p,

theorems show that the translation preserves soundness and relative completeness in the opera­
tional environment.

Theorem 3 (Soundness): If TR(LP)\-[p, q]<p, then TR(LP)^[p, q]<p. That is, if there is a proof 
of [p> in the operational environment, then [p, q]<j> is true in the operational environment.

Proof: First we need to show that there is a proof of [p, q]<p in the verification environment. 
By assumption, we know that there is a proof of [p, in the operational 
environment(77?(Ep)l-[p, q]0). TR(ZP)\-[p, q\<t> says that there exists a sequence
TR(<f>0),TR{px\  . . . ,  TR(<j)n_x)o f formulas such that the consequence TR(t/>n_x) is [p, and 

each formula can be obtained from the previous formulas by the proof rules from the proof 
system.

For each formula TR(<j>k) (0 < k <n), if TR{<j>k) contains auxiliary variables (TR(</>k)e S) 
results from the execution of update or communication of auxiliary variables, then we can 
replace TR(</>k) by a sequence TR(<j>ko), TR(<pkt) , . . . ,  TR(0kJ  of formulas having no auxiliary 

variables, because l.P\=TR(</)k). Thus, we can construct a corresponding sequence 

<Pq, . . . ,  0n-\°f formulas, such that each TR(<pk) has a corresponding formula <t>k in the veri­
fication environment.

Since we have shown soundness in the verification environment, [p, q]<l> is true for all 
executions in the verification environment, i.e. SPl=[p> q\<p. Then [p, q]<p is true in the opera­
tional environment (TR(ZP)h[p, q\<t>), because 'LP<z1TR('LP) = (LPuS), and £ Pl=S.n

Theorem 4 (Relative Completeness): If TR(ZP) then TR(LP)\-[p, q]<p. That is, if 
[p, q]<p is true in the operational environment, then there is a proof of [p, q]</> in the opera­
tional environment.

Proof: If [p, q\0is true in the operational environment (TR(ZP)t=[p, q]fi), first we need to 
show that [p, q]<t> is true in the verification environment. TR(LP)\=[p, q)<p says that given an
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arbitrary computation cr, aKp> ie. ,  [p, q\<t> is true in the operational environment.

Let o ' be an arbitrary computation in the verification (<t'NZp). Let a  be the computation 
obtained from a  by introducting the transitions of update and communications of auxiliary 
variables. In other words, a 'is a projection of a  (cr' = n(cr)). Since is a computation in the 
operational environment (a\=TR(LP)), a ' = II(<r), and o\=[p, we have <r'l=[p, q]<P- Then 
EPh[p , q]<j), i.e., [p, q\<p is true in the verification environment. Thus, EPKp> q]̂ * since we 

have shown relative completeness in the verification environment. EPl-[p, q\<P says that there 
exists a seq u en ce^ , $x, . . <t>n-\) of formulas such that the consequence [p, q]<p is and 
each formula can be obtained from the previous formulas by proof rules in the proof system.

Now we need to show that there is a proof of [p, q](j> in the operational environment. 
That is, in the operational environment there exists a sequence TR(</>0), TR(<f>x) , . . . ,  
which correspond to the sequence • • ,</>n 1 of formulas in the verification environment.
Since both environments have the same proof rules, each </>t is TR(<px) in the operational envi­
ronment. Thus, we can construct a corresponding sequence TR(4>0), TR{<f>x) , . . . ,  TR(<pn̂ x) of 
formulas in the operational environment. This concludes that in the operational environment 
there is a proof of [p, q]<j>, i.e., TR(LP)\-[p, q\<pn

3.2. OPERATIONAL EVALUATION OF RESPONSIVENESS ASSERTIONS

We have shown that the translation process defines a global schedule (a history) for all 
the local operations of processes in the distributed system. This history is defined in terms of 
multiple clock readings through the incorporation of a "happened before" relation[Lamp78]. 
This section describes how processes can utilize their own histories to check the satisfaction of 
responsiveness assertions in the execution environment.

The idea is that the run-time satisfaction of responsiveness assertions is guaranteed if 
there exist no tuples in a history that violate the assertion to be evaluated. Notice that in the 
verification we check all possible behavior or execution sequences to conclude that a respon­
siveness assertion is satisfied. However, in the operational environment, we examine if a his­
tory is ever violated, i.e., if there exists a tuple in the history Vh which satisfies the negation of 
the assertion to be evaluated. If so, an error has occurred. The evaluation of responsiveness 
assertions is formally defined below.

Definition 3.6: Let V,, be the collection of tuples, which records the operations observed by a 
process in a distributed system. The tuples of Vh are o f the form (t, v1? v2, . . . ,  v„), which 
denotes the instances of Vj, v2, . . . ,  v„ at time t.

Definition 3.7: Point violation-a formula (j) is violated in a history Vn, iff there exists a tuple
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Q = {t, v1? v2, . . . ,  v„) such that In symbols, there exists a mapping II on the history Vh 
and a formula 0, n(V,„ <p) ={Q\ Qfr<t>}. In particular, [T]<j> is violated in the history iff the 

setn (V „ ,[T]<j>) ={Q = (t,vu ...,v„)l QM  and i s nonempty.

Definition 3.8: Interval violation-an interval formula [Tx,T 2]</> is violated in a history Vh iff 
the set IICV,,, [Tx, T2]</>) ={Q = (t,vx....v„)l Qfr and |T„ is nonempty.

Definition 3.9: An responsiveness formula GX)]^—>[7 ,̂ is satisfied for a history Vh
iff the set n(V/,, [T\\<t>\)is empty, and the set
nCV,,, [Tu T2]EF</>2) ={Q = (t,v, , . . . ,  v„)l Q\=<t>2 and T2]} is empty as well.

4. COMPLEXITY

This section examines the overhead of operational evaluations of assertions from two 
aspects-computation cost and communication cost. First, we consider the computation cost 
incurred by the translation and operational evaluations of assertions. Upon communications, 
assertions are examined against a history Vh. If there is a violation in the history Vh, then an 
error is signaled. The overhead of evaluating an assertion, i.e., II(V/(, assertion), is described 
below.

• For a process with m operations, there are at most m tuples created, one tuple for 
each operation involving the modifications of auxiliary variables. Notice that auxil­
iary variables are state variables in the assertions to be evaluated, and no tuples are 
generated for those operations involving no auxiliary variables. In other words, it is 
sufficient to maintain relevant state information for the evaluation of assertions.

• The overhead of maintaining a consistent view(V/() for a process is 0(mn)-every pro­
cess has to maintain a copy of auxiliary variables for n processes in the system. 
Thus, the length of Vh or the number of tuples in Vh is at most mn.

In summary, the cost of operationally evaluating an assertion is O(mn) which accounts for the 
examination of mn tuples in Vh after a communication. Since there are C communica- 
tions(i.e., C evaluations o f assertions), O(mnxC) is the computation cost induced by the trans­
lation and the operational evaluations of assertions. However, the length of history Vh is prob­
lem-dependent. The maximum length of Vh is mn, which can be reduced as follows. Let’s 
say, the evaluation Yl(Vtl, assertionx) is ahead of the evaluation Y[(Vh,assertion2), and there 
are no evaluations in between. If the time indexes of n(V/„ 2) are later or greater
than those o f n(V/,, assertion^), then the history Vh can be chopped off, i.e., the tuples in Vh 
can be removed up to the one with the largest time index in II(VA, assertion]). The reason is
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that the time indexes of tuples in Vh are generated according to a "happened before" [Lamp78] 
relation, and there are no overlapped time indexes between the sets FI(V,/i, assertion) and 
n(V ft, assertion2), so there is no need to keep the tuples for lt

Then, we consider the overhead of communication. In the translation, exchanges of aux­
iliary variables are needed to maintain a consistent view among processes in the system. The 
exchanges of auxiliary variables occur after each communication of non-auxiliary variables. 
For the sake of efficiency, auxiliary variables are piggybacked in the communication. There­
fore, the number of communications of auxiliary variables incurred by the translation is C, 
where C is the number of communications in the underlying algorithm.

Notice that the piggybacking of auxiliary variables does not incur much cost. This can 
be understood as follows. The time to transfer data between two processes is (5 + RL), where 
S is the setup time, R is the transfer rate(in secs/byte), and L is the length of the message. 
Typically numbers, for a Sun 4/20 using TCP/IP on an IEEE CSMA/CD, yield, S = 16msec, 

and R is (\0Mb/sec)~] . The additional message will affect the transfer time, when RL > S, 
this happens when L > 104, and for a lObytes message, mn > 1000.

To sum up, the communications introduced by the translation is linearly proportional to 
the communications in the underlying algorithm, while the computation cost can be greatly 
reduced when the time indexes in the assertins to be evaluated are not overlapped.

5. TRAIN SET EXAMPLE

Safety-critical systems usually involve the interactions between the controller and the 
physical process. In the train set example [LeSW92, LeSA92], the physical process consists 
of primary track circuit Cp and secondary track circuit Cs, and two types of train- and Ts. 
The circuits are divided into sections and there are two crossing sections where the two cir­
cuits intersect. Each section has a sensor, while for each train, there is an actuator that can 
stop the train within any section. To avoid accidents, a train has to get permission from Cir­
cuit to enter the next section, and get permission from DANGER_ZONE to enter the danger 
zone(crossing section). The circuit Cp, Cs, and the crossing section CC are illustrated below.
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Figure 5.1. The train set circuits and the crossing section

Behavior of Sensors and Actuators

In this example, we are concerned with those failures of sensor or actuator that can affect 
the safety of the system. For example, the sensor failure that misses a train or the actuator fail­
ure that fails to stop a train. The behavior and failure behavior of the sensors and actuators are 
defined after the following description of the variables to be used.

• c denotes type of circuit, ce L ={ p, s }.

• x, ydenote trains, x, ye Tr ={ 1 , . . . ,  Ntc}.

• i,j are sections, i, j e  Sc ={ 0 , . . . ,  Nsc}.

• Addition ® and subtraction © on section numbers are performed modulo the number 
of sections of the circuit.

Definition 5.1: Let Txl denote the time when train x enters section /, and let Txj denote the 
point of time immediately before Txi®\■

Definition 5.2: The behavior of a sensor is denoted by SS(x, i)-a sensor detects train x in sec­
tion i. The failure behavior of a sensor is denoted by FS(x, i)-a sensor fails to detect a train x 
in section i. Thus, SS(x, = on(x,
FS(x, 0  = on(x,c)A~>Sens(c, Ptrain(x)).

Definition 5.3: The behavior of an actuator is denoted by SS(x, j)-v/hen the actuator is set, 
train x cannot enter a new section. The failure behavior of an actuator is denoted by 
FA(x,j)-when the actuator of train x is set, train x enters a new section. Thus, 
SS(x, j)  = ([Txj](Act(x,j)APtrain(x) = j)) a ( [  = j);
FA(x, j)  = ([Txi](Act(x, i)APtrain(x) = i)A([Txi, TxM]Ptrain(x) > i).

Appendix A shows the algorithm of train, circuit and section, where Ptr, Pc, and Ps 
denote the processes train, ciruit, and sections, respectively. Process Ps informs processes Pc 
and Ptr upon a detection of a train entering a section. Process circuit- localizes sensor and
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Variable Comments

On(x, c) train x  is on circuit c

Ptrain(x) the position(section) contains 
the front of a train x

Rtrain(x) the set of sections that are re­
served by a train x on Circuit c

Sens(c, i) sensor of section i detects a 
train on circuit c.

Act(x, j) Act{x,j) is set to stop train x 
on section j.

Shut_Down Shut_Down holds when all 
trains must be stopped, i.e., all 
actuators are set.

Figure 5.2. The state variables
actuator failures. Pc signals minor failure if the number of consecutive sensor failures is less 
than or equal to a constant mcsf. Major failure occurs if an actuator fails to stop a train, or the 
number of consecutive sensor failures is greater than mcsf.

Figure 5.3 shows the safety constraints that must be guaranteed by the system. These 
safety constraints are represented by ITL formulas and can be operationally evaluated accord­
ing to the mapping defined in Section 3.1. The reservation constraint(SCl) states that for any 
train, the current occupied section and the following mcsf©l sections must always be 
reserved. The exclusion constraint(SC2) asserts that mutual exclusion must be achieved for 
reserved sections, i.e., no section can be reserved by more than one train. SC3 is a responsive­
ness property, which says that if the number of consecutive sensor failures is greater than 
mcsf, then the system must be shut down. SC3 can be formalized and proved by Progress 
Rule as follows.

Let Txl denote the time when train x enters section /. Let TXJ denote the point of time 
immediately before Tx m - The sensor failures on section ican be represented by the respon­
siveness assertion: [Txl, Txj] EF(On(c, x)A-'Sens(c, Ptrain(x))). Likewise, we can derive the 
corresponding formulas for the sensor failures of the following mcsf sections. By Progress 
Rule and the following premises, we can conclude [Txt, Txie,llcsj-] In other

words, if the following premises hold,
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Name Safety Constraints ITL formulas

SCI Reservation constraint: for any train, the 
current occupied section and the following 
mcsf©l sections must always be reserved. 
VceL,  Vxe7r:
{Ptrain(x)G(mcsf® 1) , . . . .  Ptrain(x) } 

^Rtrain(x)

SC\(Txh Txj) = (Vxe Tr)
([Txh Txj]Ptrain(x)i Rtr

SC2 Exclusion constraint: mutual exclusion must 
be achieved for reserved sections, i.e., no 
section can be reserved by more than one 
train: Vce L, Vx, ye => 
Rtrain{x)r\Rtrain{y) = 0

SC2(Txl, Txj, y) = (Vx, ye Tr)
(.[Txi, Txj](On(x, c)AOn(y, c)A(x*y)A 
Rtrain(x)nRtrain(y)*0)=$ Error.

SC3 If the number of consecutive sensor failures 
is greater than mcsf, then the system must be 
Shut_Down. Vce L, Vx, ye , 
[Txi](Ptrain(x) = i ) a  

\Txi®mesA(p train(x) > i® mcsf) a

[ Txi , P xi® mcsf ]
(~>Sens(c, i)a • • • a  -*Sens(cthen 
Shut_Down.

Let 5C3.1(7^, c) = (Vxe Tr)
([ Txl,Txj](On(c, x ) a  ~‘Sens(cPtrain(x))). 
Let
SC3. 2(Txt,Txl(Bmcsf, Shut_Down) = (Vxe Tr) 

[Txi, Txt®mcsf]EF(Shut_Down)).

SC3(Txh Txl&mcSf)  —

SC3. \(Txi, Txj, c)a 
SC3. 1 (Txi,̂ jc7®T’ C)A

a SC3. \(Txi, Txi<£,iicxj-, c 

~'SC3.2{Txh Txm„icsf,Shut_Down)
=$Error.

SC4 If an actuator ever fails, the system must be 
Shut_Down. [Txi](Act(x, =
and [Txi,T xim](Ptrain(x)> i) then 
Shut_Down.

SC4(Txi, Txm ) = (Vxe 7 » (3 ie  Sc) 
([Txi](Act(x,i)APtrain(x) =
[Txi, Txm ](Ptrain(x)> i ) a  

->([Txi, Txm ]EF(Shut_Down))) 
=>Error.

Figure 5.3. Safety constraints of the system
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[Txl, Txj]EF(On(c, x)A~>Sen Ptrain(x))) 
[TxM ,Txj^]EF(On(c, ac)a

[y'xi&tuc.sf ’ ^  x EF(On(c, Ptrci in(x)))

then [Txh Txm ,l(:sj-]EF(->Sens(c, Ptrain(x))A • • • A~>Sens(c, Since consecu­

tive sensor failures occur, we derive [Txh Txmmsf] EF(Shut _D own).

SC4 is also a responsiveness assertion. It asserts that if an actuator ever fails, the system 
must be shut down. Whenever an actuator is set and the position of train x is in section i (i.e. 
[Txi](Act(x, i)APtrain(x) = i), and the train moves (i.e., [Txi, > i) then the
system must be shut down within the interval Txi+l], i.e., [Tx„ TxM ] EF(Shut_Down).

The safety constraints of the controller involving sensors and actuators can be checked 
as follows. The translation process creates a history for each process, where the history con­
sists of a collection of tuples. In this example, each tuple contains the information of 
On(x, c), Ptrain(x), Rtrain(x), Sens(c, i), Act(x, j), Shut_Down, and so on. The operational 
evaluation of safety constraints against a history is performed at communication points. For 
example, process circuit- Pcchecks the satisfaction of safety constraint SCI by examining the 
tuples in its history Vh to see if the set n(V /(, SCI) is not empty. Appendix A shows opera­
tional evaluations of assertions for processes train, circuit, and section, denoted by Ptr, Pc, 
and Ps, respectively.

5.1 A Model of Performance

To describe the overhead of the proposed technique-operational evaluation, a theoretical 
model for the train set example is presented. For comparison purpose, the translated algo­
rithm or the algorithm after the translation can be rewritten in terms of the underlying algo­
rithm. Let torig denote the execution of the underlying algorithm, where torig consists of com­
putation time tcomp, and communication time tcomm, i.e.,

torig ~ tcomp tcomm •

Let tasser, be the overhead of operational evaluation of an assertion, i.e., tasser, denotes 
the time of finding tuples for assertion in Vh by performing n(V^, assertion). The overhead 
of the translated algorithm includes torig and the cost introduced by the translation and opera­
tional evaluation, described in Section 4. Then,

t trans = '^•tconip + 2,Xtconlm + CXt >
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where tcomp can be considered as the maximum time to create tuples for the history Vh, tcomm 
can also denote the exchanges of auxiliary variables, and Cxtasser, is the evaluation of asser­
tions on C communications. Notice that tasserl, the examination of tuples in history Vh, is less 
than or equal to tcomp, since only operations involving relevant information in assertions, e.g. 
the state variables in Figure 5.2 for the train set example, generate tuples. Moreover, the 
tuples for the previous evaluation can be removed, if we do not operationally evaluate over­
lapped intervals. Thus, tassert can be rather small when the time indexes in assertions are not 
overlapped. Therefore, textra-the cost introduced by the translation and operational evalua­
tion is

tcomp , + Cassert -  tgrig CXt, assert •

However, most of the assertions to be evaluated, in this example, have non-overlapped time 
indexes except the assertion SC3: if  the number of consecutive sensor failures is greater than 
mcsf, then the system must be shut down. Thus, the tuples in Vh start to accumulate only 
when consecutive sensor failures occur. Let’s say, the average length of the history Vh is 1 
of the maximum length of Vh, and it takes l/Stasserl to evaluate assertions on each communi­
cation. Then,

textra =  torig

For the train set example, the translation process and operational evaluation denoted by 
boxed statements are shown in Appendix, where C = 7. Therefore, in the worst case, there is 
(t0rig + 7/8tcomp) overhead than the underlying algorithm, since the parameters, tassen and

tcomp, ° f  textra denote the worst case scenario.

6. CONCLUSION

This paper extends the Changeling methodology to operationally ensure responsiveness- 
a crucial attribute of the responsive system. Since the correctness of system behavior estab­
lished from the verification usually depends on the operational environment, a transformation 
procedure is developed to cope with this dependency. Also, a history or a time-indexed com­
putation history is generated in the translation; this history can be applied to operational eval­
uation of responsiveness properties. If a history is violated, then a singal is raised. There­
fore, the operational evaluation of assertions checks run-time satisfaction of expected behav­
ior, and hence provides error detection-a step toward safeware safety.
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Appendix A

Ps\: /* Process Section IS */
Sn:Section_Number;
Cn :Circuit_Number;
Tn:Train_Number;
/^Distances from danger zones */
Dist_DZ: integer;
Sens'.boolean; /^Signal of the sensor.*/ 

begin
while(true) {

{updateidKm^SiXjuiL)!
/* Sensor detects a train entering a section */
[<Signal from sensor> —> Sens:=TRUE;]

| update,Ag xsinSreev YjUlAt) I 
/* evaluate state information of sensor */
/* no tuples satisfy the assertion: 7 ^ -train x on section */
| if n(V„, TxSJ  = 0  then Error 

[(Sens) -»
/*set the signal Sens to false after detection of train entering a section.*/ 
Sens:= false;
updatebc(gsr, g, y„,. /A.)

/*inform the process circuit- Pctrain jc in Section Sn.*/ 
(Pc\x,Sn);

1 u p d a t e K n . r v ,  Vi,., Q
/* evaluate state information about Pc-circuit */
/* SC 1-train jc is on section Sn which is not reserved, then error */
/* SC2-Section Sn are reserved by trains x and y, then error */ 
if n(Vft, SC \(Tr<;n, Tr̂ ;) v  SC2(TrSn, Tv\>r), y)) = 0  then Error 
/*inform the process danger zone.*/ 

updatehriRMX, X, V V . O l

(P DZ, x, Sn, Dist_DZ);]
| update ac(gsDz , g m-v < YjuiAsI
/* evaluate state information about PDZ-danger zone*/
jif n(Vft, 5Cl(7',.y,„ 7 \^ ) V SC2(Tr.<„, y)) ^  0  then Error|

}
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end while;
END.

Pc:: /^Process Circuit IS */
NOS: Set_of_Section_Numbers;
/♦max. # of consecutive sensors failure.*/ 
mcsf:integer;
/*NS:the set of sections that are reserved */
NS: Reservation_Flag_Table;
/*Bl:Record about NS */
/*B2 .’Record about failure sensors */
B1,B2: Reservation_Flag_Record;
No_Failure:boolean;
Cn: Circuit_Number;
Sn: Section_Number;
Tn:Train_Number; 
ti: integer; //Table index.
Curr:integer;
Current: B2_Tuple; 

begin
while(true) {

/*read sensor- Train Tn in Section Sn from process section- */ 
/*adds Sn to the set of section numbers-NOS.*/
| upda tc f!(. (/?f.A>, ? j'; V/, , /r)

(Pslx , Sn)->NOS := NOS + Sn;
| u p d a t e rxn, $rervi VV , tr)
/* evaluate state information of Ps, section */
/* no tuples satisfy the assertion: -train x occupies section Sn */
if n(V„, TrS ) = 0  then Error 
/* Localize_Sensor_Failure RSS 1,1,1 (rssc); */ 
ti :=0;
No_Failure := false;
Curr := NOS.Get;

while (ti^NS.NO_of_Entries) and -iNo_Failure {
/♦check if the section ti is reserved.*/
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ti := ti +1;
[Curr = NS[ti].sn —> No_Failure := true;

B 1 := B l+NewJEntry(NS[ti].Tn,Curr,true);
NS:= NS-NS[ti];]

}

end while;
[(ti=NS.NO_of_Entries) a  ->No„Failure —
B2 := B2+New_Entry(NS [ti] .T n,Curr,false);]

/*Minor_failure: section ti is not reserved and # of consecutive sensor failures is less 
than mcsf.*/
[-«No_Failure a  (B2.NO_of_Entries<mcsf) —> Minor_Failure 
□
[->No_Failure a  (B2.NO_of_Entries>mcsf) —> Major_Failure;]

Test_Reserve_Section;
NS := NS+Curr; /*section curr is reserved */
\updatehr(K,,r, g, Y iu iW l
(No_Failure) a  (Pln\Sn,Cn)—>true; 
updatenr(grlr, g rccv, Vh., if)!

/* evaluate process train -Ptr */
if !!(¥,„ SC\{TrSn, Fv-^) v  SC2(TvS„, T r~X  v)) = 0  then Error

}

end while;
END.

Plr\: /* Process Train IS */
Cn:Circuit_Number;
Sn, DZ:Section_Number;
/*AES:train is allowed to enter section */
/*AEDZ:train is allowed to enter danger zone(DZ) */
AES, AEDZ: CTS_Record; 

begin
while(true) {

/*get permission from Circuit, move to next section */
\updatehc{glrc,g, Vh„,tlr)
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(PcTSn,C n);____________

updateaXtttra Srecvi Yjlvl liL2 
/* evaluate process circuit- Pc*/
/* SC3: if the number of consecutive sensor failures > m csf and the system is not shut 
down, then error */
I if n(V„, SC3(Tiy„, 7,- r̂, c)) = 0  then Error 
AES := NEW_Entry(Cn,Sn);
[AES.Sn ±DZ -> AES := EMPTY;
□
AES.Sn = DZ —>

/*get permission from Danger Zone, move to next section-danger zone */
l»pdqfe/,r0?,fDZ, 1,^,1
[(PDZ?Sn, Cm)a (AEDZ=AES) -»

^  rt’cv ■> Y jk *2 h r ) \

/* evaluate process danger zone-PD2 */
if n(V,„ SC l(7\y„t r, v7i) v  SC2(TrX„, T̂ f), v)) = 0  then Error 

AEDZ := NEW_Entry(Cn,Sn);
AES := EMPTY;
AEDZ := EMPTY;]

]

}

end while;
END.
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