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PREFACE 

A design equation to assess the limit state of combined tension and pull-over in 

screw connections is available in the 2007 edition of the North American Specification 

for the Design of Cold-Formed Steel Structural Members.  However, the behavior of 

screw connections subject to combined tension pull-out and shear forces is not well 

understood.  Therefore, an experimental study funded by the American Iron and Steel 

Institute was conducted at Missouri University of Science and Technology to better 

understand the relationship or interaction between these forces.    

The test program evaluated four parameters that have been shown to be the key 

parameters that influence the behavior of pure tension and pure shear in screw 

connections: the thickness of the sheet not in contact with the screw head, the ultimate 

tensile strength of the steel sheet, the ductility of the steel sheet, and the screw diameter.  

Based on the behavior observed and analysis of the test data, this work formulated new 

design recommendations for use in calculating the design capacity of screw connections 

subject to the limit state of combined shear and tension pull-out. Using an interaction 

equation, this investigation extends the application of the pure tension pull-out and pure 

shear design equations in the 2007 North American Specification for the Design of Cold-

Formed Steel Structural Members produced by the American Iron and Steel Institute.   

This report is based on a thesis presented to the Faculty of the Graduate School of the 

Missouri University of Science and Technology in partial fulfillment of the requirements 

for the degree Masters of Science in Civil Engineering. 

This investigation was sponsored by the American Iron and Steel Institute and 

their financial support is gratefully acknowledged.  The AISI Subcommittee on 
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Connections (P. S. Green, chairperson) is acknowledged for providing valuable technical 

guidance.  Special thanks is also extended to Dr. Helen Chen, Manager, Construction 

Standards Development, of the American Iron and Steel Institute and to Mr. John 

Mattingly of CMC Joist and Deck for their assistance and technical guidance throughout 

the duration of the research. 

The steel deck used for the test specimens was provided by John Mattingly of 

CMC Joist and Deck.  This generosity is gratefully acknowledged. 

Appreciation is also expressed to the technical staff of the Civil Engineering Department 

for their assistance in preparation, fabrication, and performance of the test program. 

 

 

 



iii 

TABLE OF CONTENTS 

  Page 

PREFACE ....................................................................................................................... i 

LIST OF FIGURES........................................................................................................ v 

LIST OF TABLES ........................................................................................................ vi 

SECTION 

1. INTRODUCTION...................................................................................................... 1 

1.1. GENERAL.......................................................................................................... 1 

1.2. APPLICATION .................................................................................................. 2 

2. LITERATURE REVIEW........................................................................................... 3 

2.1. GENERAL.......................................................................................................... 3 

2.2. PREVIOUS RESEARCH ................................................................................... 3 

2.2.1. Pekoz ........................................................................................................ 3 

 2.2.1.1. Design for pure shear .................................................................. 3 

 2.2.1.2. Design for pure tension............................................................... 4 

2.2.2. Ellifritt and Burnette................................................................................. 6 

2.2.3. Zwick and LaBoube ................................................................................. 6 

2.2.4. American Iron and Steel Institute............................................................. 8 

2.2.4.1 Pure shear......................................................................................9 

2.2.4.2 Pure tension pull-out ...................................................................10 

2.2.4.3 Pure tension pull-over .................................................................10 

2.2.4.4 Combined pull-over and shear ....................................................11 

2.2.4.5 Ductility ......................................................................................13 

3. EXPERIMENTAL INVESTIGATION ................................................................... 14 

3.1. INTRODUCTION ............................................................................................ 14 

3.2. SCOPE OF INVESTIGATION ........................................................................ 14 

3.2.1. Material Properties ................................................................................. 14 

3.2.2. Test Variables......................................................................................... 15 

3.3. TEST SPECIMEN AND TEST FIXTURE ...................................................... 17 

3.3.1. Test Specimen: Parameters .................................................................... 17 



iv 

3.3.2. Test Specimen: Fabrication .................................................................... 17 

3.3.3. Test Fixture............................................................................................. 19 

3.3.4. Test Setup ............................................................................................... 21 

3.3.5. Test Procedure........................................................................................ 21 

3.4. TEST RESULTS............................................................................................... 25 

3.4.1. Normal-Ductility Specimens.................................................................. 26 

3.4.2. Low-Ductility Specimens....................................................................... 28 

4. DATA ANALYSIS .................................................................................................. 29 

4.1. INTRODUCTION ............................................................................................ 29 

4.2. DATA ANALYSIS USING AISI EQUATIONS............................................. 29 

4.2.1. Data for Analysis.................................................................................... 29 

4.2.2. Evaluating Screw Diameter.................................................................... 29 

4.2.3. Shear versus Pull-out.............................................................................. 31 

4.3. DEVELOPMENT OF INTERACTION EQUATION ..................................... 32 

4.3.1. Tri-Linear Interaction Equation.............................................................. 32 

4.3.2. Nonlinear Interaction Equation .............................................................. 34 

5. SUMMARY AND DESIGN RECOMMENDATIONS .......................................... 35 

5.1. SUMMARY...................................................................................................... 35 

5.2. DESIGN RECOMMENDATIONS .................................................................. 35 

6. RECOMMENDATIONS FOR FUTURE RESEARCH .......................................... 38 

APPENDICES 

 A. RESULTS OF TEST DATA.............................................................................39 

 B. ANALYSIS OF TEST DATA ..........................................................................42 

 C. TRI-LINEAR EQUATION CORRELATION..................................................45 

 D. NONLINEAR EQUATION CORRELATION ................................................48 

BIBLIOGRAPHY ........................................................................................................ 52 

 

 

 



v 

LIST OF FIGURES 

Figure               Page 

1.1 Screw Connections Potentially Subjected to Pull-out and Shear Forces.................2 

3.1 Self-Drilling Screws...............................................................................................16 

3.2 Angles of Rotation .................................................................................................16 

3.3 Test Specimen Nominal Dimensions.....................................................................17 

3.4 Typical Test Specimen...........................................................................................18 

3.5 Normal- and Low-Ductility Flat Sheets.................................................................19 

3.6 Upper Fixture: Welded T-Sections 15°, 30°, and 60°............................................20 

3.7 Lower Fixture: Rotating Arm ................................................................................20 

3.8 Modification Plate..................................................................................................21 

3.9 MTS 880 Material Test System .............................................................................22 

3.10 Flat Sheet with Edge Stiffeners..............................................................................22 

3.11 Comparison of Stiffened versus Un-stiffened Failure Modes ...............................24 

3.12 Load versus Deflection of 30° Test Specimens .....................................................24 

3.13 Example Load versus Deformation Curve.............................................................26 

3.14 Typical Normal-Ductility Flat Sheet after Testing ................................................27 

3.15 Comparison of Normal- and Low-Ductility Flat Sheets........................................27 

3.16 Typical Low-Ductility Flat Sheet after Testing .....................................................28 

4.1 Evaluation of Screw Size at 30° – Normal Ductility .............................................30 

4.2 Evaluation of Screw Size at 30° – Low Ductility ..................................................31 

4.3 Pull-out and Shear Interaction using AISI Equations ............................................32 

4.4 Tri-Linear Equation Interaction Relationship........................................................33 

4.5 Nonlinear Equation Interaction Relationship.........................................................34 

 



vi 

 

LIST OF TABLES 

Table               Page 

3.1 Material Properties.................................................................................................15 

3.2 Comparison of Stiffened versus Un-stiffened Test Specimens .............................23 

3.3 Comparison of all Stiffened versus Un-stiffened Specimens at 15°......................25 



 

 

1. INTRODUCTION 

1.1. GENERAL 

In the 1940s, cold-formed steel started becoming popular in the United States for 

use in structural members.  Compared to other materials such as timber and concrete, 

cold-formed steel has many advantages.  It is light-weight, recyclable, termite-proof, and 

easy to erect and fabricate; it also has a high strength-to-weight ratio (Yu, 2000).   

Screws are a practical and economical means to connect cold-formed steel 

structural members.  They provide a rapid and effective way of connecting members 

subject to tension, shear, or combined tension and shear forces.  For example, common 

construction methods often use cross bracing between joists to carry lateral loads.  This 

bracing could be subject to simultaneous tension and shear forces. 

In 1946, the American Iron and Steel Institute (AISI) began leading the building 

industry with the release of its first edition of the Specification for the Design of Light 

Gage Steel Structural Members (AISI, 1946).  The AISI has since updated its 

specification many times to include new and safer design methods.  The most recent 

edition, the North American Specification for the Design of Cold-Formed Steel Structural 

Members (specification), was released in 2007.  Since 2001, the specification has been 

approved by the Canadian Standards Association for use in Canada and endorsed by 

CANACERO for use in Mexico. 

Currently, the specification includes provisions that assess the design strength of a 

screw connection subject to pure tension, pure shear, and combined pull-over and shear 

forces.  Additional guidance is required to determine the design capacity when screw 

connections are subject to both combined pull-out and shear forces. 
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1.2. APPLICATION 

When using screws in cold-formed steel connections subject to combined tension 

and shear forces, if the bottom sheet (i.e., the sheet not in contact with the screw head) is 

thinner than the top sheet, tension pull-out and shear may occur.  

Combined pull-out and shear occurs in many situations, such as connecting 

purlins to a spandrel beam using clip connectors or the connection of lateral bracing for 

wall studs.  Figure 1.1 shows two examples of situations in which this limit state might 

occur. 

The 2007 edition of the specification does not currently include provisions 

permitting consideration of the limit state of combined pull-out and shear.  The lack of 

these provisions leaves engineers to rely solely on experience and judgment, which may 

result in either under-designed (unsafe) or over-designed (uneconomical) screw 

connections. 

This study provides much-needed data that allows the formulation of a design 

methodology that provides engineers with a safe means to design screw connections 

subject to this limit state. 

 

 

 

Figure 1.1 Screw Connections Potentially Subject to Pull-out and Shear Forces 
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2. LITERATURE REVIEW 

2.1. GENERAL 

Several research studies provide a foundation for this work.  These have 

investigated pure tension pull-out and pure shear forces individually in screw 

connections.  They have also reviewed combined pull-over and shear loading, thus 

establishing a basis for the interaction relationship of tension and shear in screw 

connections. They have not, however, considered the limit state of combined pull-out and 

shear forces in screw connections. 

 
 
2.2. PREVIOUS RESEARCH 

2.2.1. Pekoz.  Working at Cornell University, Pekoz evaluated over 3500 tests  

from the United States, Canada, Sweden, Britain, and the Netherlands (Pekoz, 1990).  

The equations established by the European Convention for Constructional Steelwork 

(ECCS) took into consideration numerous parameters such as screw diameter, yield 

stress, and thickness of the connecting sheets.  Using these equations as a basis for his 

analysis, Pekoz made various modifications. 

2.2.1.1. Design for pure shear.  Pekoz’s study concluded that the design  

equations included among the ECCS recommendations were adequate for the design of 

pure shear, but could be modified to use ultimate tensile strength, Fu, instead of yield 

stress, Fy.  This modification provides better agreement between observed and calculated 

results (Pekoz, 1990).  Although these equations are based on empirical data, the 

modifications also provide uniformity with connection design in the United States.  

Tensile strength is typically used for connection design equations.  With the 
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recommended modifications, the design equations for shear strength, Pns, are given by 

Equations 2-1 through 2-3: 

for t2/t1 ≤ 1.0, the smaller of 

 

u
/

ns Fd)(t.P 213
124 =   and    (2-1) 

uns dFtP 17.2       (2-2) 

 
for t2/t1 ≥ 2.5 

 

uns dFtP 17.2       (2-3) 

 
for 1.0 < t2/t1 < 2.5, Pns is determined by linear interpolation 

where: 

  t1 = thickness of the sheet in contact with the screw head 

  t2 = thickness of the sheet not in contact with the screw head 

d = nominal screw diameter 

Fu = ultimate tensile strength 

Pekoz’s equations for pure shear were accepted by the AISI for the 1996 edition 

of the Cold-Formed Steel Design Manual and were retained in the 2007 edition of the 

specification.   

2.2.1.2. Design for pure tension.  As in the case of pure shear, Pekoz checked 

many tests against the ECCS recommendations.  Although the existing equations 

correlated satisfactorily with the data, Pekoz concluded that using ultimate tensile 

strength, Fu, enhanced the correlation (Pekoz, 1990).  For pull-out failure, he proposed 

the following design equation: 
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ucnot dFtP 85.0       (2-4) 

 
where: 

  tc = lesser of depth of penetration or thickness, t2 

For the case of pull-over, the ECCS recommendations included two equations.  

One did not consider washer diameter as a variable (Equation 2-5), while another did 

(Equation 2-6).  These equations were yet again adjusted to consider ultimate tensile 

strength and to use Customary units: 

 

unov tdFP 77.0      (2-5) 

uwnov FtdP 5.1       (2-6) 

 
where: 

t = thickness of the material 

dw = the larger of the diameter of the washer or the screw head, limited to  

½ in. 

The AISI selected Equation 2-4 for pull-out and Equation 2-6 for pull-over.   

They accepted Pekoz’s equations for pure tension for inclusion in the 1996 edition of the 

specification and they were retained in the 2007 edition.  For both pure shear and pure 

tension, Pekoz also computed a resistance factor,  , for Load and Resistance Factor 

Design (LRFD) and a safety factor, Ω, for Allowable Strength Design (ASD).  Values of 

0.5 and 3.0, respectively, appeared to be reasonable (Pekoz, 1990). 
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2.2.2. Ellifritt and Burnette.  Research conducted by Ellifritt and Burnette  

simulated pull-over of screw connections in actual field conditions.  When a roof panel is 

subject to an uplift force, the panel acts like a continuous beam, inducing forces that are 

not the same as a basic pull-over test (Ellifritt, 1990).  Fourteen static suction tests were 

performed to evaluate pull-over of sheathing subject to suction loads.  As a secondary 

objective, fifteen dynamic tests were carried out to evaluate fatigue loading similar to 

those imposed on older buildings.  Thirteen standard pull-over tests were also performed 

as a baseline for comparison of the static and dynamic test results.   

Ellifritt and Burnette concluded that the configurations of their static test were a 

better predictor of actual pull-over strength in a real building application.  The results of 

the standard pull-over tests were reduced by a factor of approximately 0.4 for the material 

and configurations they tested (Ellifritt, 1990).  This reduction factor is only valid for the 

static test setup Ellifritt and Burnette used.  If the test setup was varied using different 

material and configurations (e.g. girt spacing, etc.), the results could vary.   

Although the results of the dynamic tests were consistent, more tests were needed 

to draw firm conclusions.  Ellifritt and Burnette showed that actual conditions could 

influence and reduce the capacity of screw connections calculated by design equations. 

2.2.3. Zwick and LaBoube.  Zwick and LaBoube sought to derive a design  

equation that considered screw connections when exposed to combined tension and shear 

forces, specifically tension pull-over (Zwick, 2006).  They reviewed and analyzed the 

tests performed by Luttrell (1999) at the University of West Virginia. 

Luttrell performed a total of 61 tests. Each test varied the controlling parameters: 

screw size, washer size, and sheet thickness.  The angle, at which the force was applied, 
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was varied to induce several combinations of pull-over and shear.  The existing AISI 

equations provided a basis for the relationship (or interaction) between the pull-over and 

shear forces.  

Zwick and LaBoube used the nominal strength equations for pure shear 

(Equations 2-10 through 2-14) and pure pull-over (Equation 2-16) from the 1996 

Specification for the Design of Cold-Formed Steel Structural Members to normalize the 

experimental pull-over and shear strength values by creating T/Tn and Q/Qn ratios.  They 

then used these ratios to create Equation 2-7 based on a best fit using regression analysis.  

Their analysis relied on the actual washer or screw size, dw: 

 
 4389.0)/(5041.0/  nn TTQQ      (2-7) 

 
where: 

  Q = test shear strength 

  Qn = 2.7tdFu 

Qn = nominal shear strength 

T = test tensile strength 

Tn = 1.5tdwFu 

Tn = nominal tensile strength 

 Using the existing limitations of the AISI specification, they limited dw to ½ in. or 

less.  Based on a best-fit regression analysis with this limitation, they derived Equation  

2-8 much as they had Equation 2-7: 

  
5317.0)/(517.0/  nn TTQQ      (2-8) 
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 Following the same AISI limitations on dw, they derived another equation similar 

to Equation 2-8 but based on a linear relationship rather than a best-fit regression analysis 

(2006).  After simplifying and rewriting Equation 2-9 as the equation for calculating the 

strength of combined pull-over and shear forces, AISI adopted it for the 2007 

specification: 

 
 )/(706.0106.1/ nn TTQQ       (2-9) 

 
 Finally, based on statistical analysis, safety factors for LRFD, ASD, and Limit 

State Design (LSD), were calculated.  For Equation 2-9, the following limitations are 

applicable: 

  0.0285 in. ≤ t ≤ 0.0445 in. 

  No. 12 and No. 14 self-drilling screw with or without washers 

  dw ≤ 0.75 in. 

62 ksi ≤ Fu ≤ 70.7 ksi 

2.2.4. American Iron and Steel Institute.  AISI periodically updates the  

specification.  Since 1996, this specification, (referred to as the Specification for the 

Design of Cold-Formed Steel Structural Members prior to 2001), has provided design 

methods for screw connections for cold-formed steel structural members.  The provisions 

for pure shear and pure tension forces are based on Pekoz’s work (1990) as reviewed in 

Section 2.2.1.   The specification also provides provisions for screw connections subject 

to combined pull-over and shear forces based on the work of Zwick and LaBoube (2006) 

as reviewed in Section 2.2.3.  The provisions for pure shear, pure tension, and combined 

pull-over and shear forces were clarified by AISI as the organization deemed necessary.  
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The specification also includes provisions providing requirements for ductility of steel 

used for cold-formed applications.  The design methods and requirements are outlined in 

the following sections. 

2.2.4.1. Pure shear.  The nominal shear strength shall be calculated as follows: 

for t2/t1 ≤ 1.0, Pns shall be taken as the smaller of 

 

2
213

224 = u
/

ns Fd)(t.P       (2-10) 

117.2 uns dFtP        (2-11) 

227.2 uns dFtP        (2-12) 

 
for t2/t1 ≥ 2.5, Pns shall be taken as the smaller of  

 

117.2 uns dFtP        (2-13) 

227.2 uns dFtP       (2-14) 

 
for 1.0 < t2/t1 < 2.5, Pns shall be calculated by linear interpolation between the 

above two cases. 

where: 

 d = nominal screw diameter 

Pns = nominal shear strength per screw 

t1 = thickness of member in contact with screw head or washer 

t2 = thickness of member not in contact with screw head or washer 

Fu1 = tensile strength of member in contact with screw head or washer 

Fu2 = tensile strength of member not in contact with screw head or washer 



10 

 

2.2.4.2. Pure tension pull-out.  The nominal pull-out strength shall be calculated 

as follows: 

 

285.0 ucnot dFtP       (2-15) 

 
where: 

 d = nominal screw diameter 

tc = lesser of the depth of penetration and thickness t2 

Pnot = nominal pull-out strength per screw 

Fu2 = tensile strength of member not in contact with screw head or washer 

2.2.4.3. Pure tension pull-over.  The nominal pull-over strength shall be  

calculated as follows: 

 

11 '5.1 uwnov FdtP       (2-16) 

 
where: 

t1 = thickness of member in contact with screw head or washer 

Pnov = nominal pull-over strength per screw 

Fu1 = tensile strength of member in contact with screw head or washer 

dw’ = effective pull-over diameter determined in accordance with (a), (b), or (c) as 

follows: 

(a) for a round head, a hex head, or hex washer head screw with an independent 

and solid steel washer beneath the screw head 

dw’ = dh +2tw +t1 ≤ dw 

 where 
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 dh = screw head diameter or hex washer integral washer diameter 

 tw = steel washer thickness 

 dw = steel washer diameter 

(b) for a round head, a hex head, or hex washer head screw without an 

independent washer beneath the screw head: 

dw’ = dh but not larger than ½ in. 

(c) for a domed (non-solid and independent) washer beneath the screw head, it is 

permissible to use dw’ as calculated in (a), with dh as the washer diameter, tw 

as the thickness of the material of the washer, and t1 as previously defined.  In 

the equation in (a), dw’ cannot exceed 5/8 in.  Alternatively, pull-over design 

values for domed washers, including the safety factor, Ω, and the resistance 

factor, , shall be permitted to be determined by test in accordance with 

Chapter F. 

2.2.4.4. Combined pull-over and shear.  For screw connections subject to  

combined tension and shear the following requirements shall be met. 

 for ASD Method 

 




10.1
71.0

novns P

T

P

Q
     (2-17) 

 
for LRFD and LSD Methods 

 

10.171.0 
novns P

T

P

Q
    (2-18) 
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where: 

 Q = required allowable shear strength of connection 

 T = required allowable tension strength of connection 

Pns = nominal shear strength per screw 

117.2 uns dFtP   

Pnov = nominal pull-over strength of connection 

115.1 uwnov FdtP   

where dw  = larger of screw head diameter or washer diameter 

Ω = 2.35 

 Q = required allowable shear strength of connection 

 T = required allowable tension strength of connection 

Pns = nominal shear strength per screw 

117.2 uns dFtP   

connection ofstrength shear  requiredQ   

LRFDfor  VQ u  

LSDfor  VQ f  

connection  ofstrength  shear   requiredT   

LRFDfor  VT u  

LSDfor  VT f  

(LRFD)  0.65   

(LSD)  0.55   

Equations 2-16 and 2-17 shall be valid for connections that meet the following limits: 
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(1) 0.0285 in. ≤ t1≤0.0455 in., 

(2) No. 12 and No. 14 self-drilling screws with or without washers, 

(3) dw ≤ 0.75 in., 

(4) Fu1 ≤ 70 ksi, and 

(5) t2/t1 ≥ 2.5 

2.2.4.5. Ductility.  The specification requires that all steels used for structural 

applications and connections meet the requirements in Section A2.3.  For normal ductility 

steels Section A2.3.1 applies.  The ratio of tensile strength to yield stress, Fu/Fy, shall not 

be less than 1.08 and the total elongation shall not be less than 10 percent for a two-inch 

gage length (AISI 2007).  If these requirements cannot be met other criteria may be 

satisfied for restricted use in purlins, girts, and curtain wall studs (AISI 2007).   

For low ductility steels Section A2.3.2 applies.  Steels that do not meet the 

minimum 10 percent elongation requirement may be used for limited applications 

conforming to several exceptions provided that the steel meet certain requirements. First, 

the yield stress, Fy, used for determining nominal strength is taken as 75 percent of the 

specified minimum yield stress or 60 ksi, whichever is less (AISI 2007).  Second, the 

tensile strength, Fu, used for determining nominal strength in connections is taken as 75 

percent of the minimum tensile strength or 62 ksi, whichever is less (AISI 2007). 
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3. EXPERIMENTAL INVESTIGATION 

3.1. INTRODUCTION 

This study included a test program at Missouri S&T to examine the relationship 

between combined pull-out and shear loading of screw connections in cold-formed steel.  

Once the scope of the study was established based on previous research as reviewed in 

Section 2, specimens and a test fixture were designed. The test fixture was modified from 

previous research by Stirnemann and LaBoube that evaluated combined tension and shear 

forces on arc spot weld connections.  Finally, tests were conducted and the data was 

analyzed to ascertain design method recommendations.  A total of eighty-four tests were 

performed.  

 
 
3.2. SCOPE OF INVESTIGATION 

A review of the current AISI specification, determined that parameters 

influencing sheet steel screw connections may be the thickness of the sheet not in contact 

with the screw head or washer, the tensile strength of the material, the ductility of the 

material, and the screw diameter.  Once testing commenced, the specimens appeared to 

be influenced by the stiffness of the specimen’s elements. Nine specimens with edge 

stiffeners were fabricated, and specimen stiffness was evaluated before continuing the 

investigation. 

3.2.1. Material Properties. The mechanical properties of the sheet steel used in  

this investigation were determined by performing tension coupon tests.  Each coupon test 

was carried out in accordance with ASTM A 370 Standard Test Methods and Definitions 

for Mechanical Testing of Steel Products (ASTM 2007).  Two coupon tests were 
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completed for each steel grade and sheet thickness, and the results of the tests were 

averaged. 

The mechanical properties obtained were uncoated thickness, yield stress, and 

tensile strength.  The notations N and L were assigned to normal- and low-ductility steels, 

respectively.  Table 3.1 summarizes the results of the coupon tests. 

 

 

Table 3.1 Material Properties 

Uncoated 
Thickness

Yield 
Stress 

Tensile 
Strength

Elongation 

t Fy Fu 
Specimen 

(in) (ksi) (ksi) 

Fu/Fy 
% 

20N 0.0297 41.41 48.30 1.166 42.58 

18N 0.0394 29.25 47.32 1.618 38.38 

16N 0.0521 62.21 75.49 1.214 29.69 

14N 0.0724 68.39 74.32 1.087 34.38 

20L 0.0327 102.75 105.99 1.032 2.34 

18L 0.0375 91.18 91.18 1.000 1.17 

16L 0.0508 84.25 89.65 1.064 3.91 

14L 0.0675 117.00 120.57 1.030 2.73 

 

 

3.2.2. Test Variables.  The variables for the test specimens were the  

parameters listed in Section 3.2 above.  The self-drilling, self-tapping screws used for the 

test program included No. 8 (0.164 in.), No. 10 (0.190 in.), No.12 (0.216 in.), and No. 14 

(0.240 in.) sizes; they are pictured in Figure 3.1.  Table 3.1 lists the test variable data. 
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Figure 3.1 Self-Drilling Screws 

 

 

 An additional test variable that was not a test specimen parameter was the angle 

of rotation.  The load was applied vertically, and the angle of the test specimen was 

varied.  The majority of the tests used three angles; fifteen degrees, thirty degrees, and 

sixty degrees, but a few tests were also completed at seventy-five degrees. The variation 

in the angle of rotation induced various combinations of tension and shear forces, thus 

providing a better range of data and clarified the interaction of pull-out and shear.  Figure 

3.2 shows the angles of rotation. 

 

 

 

 (a) 15° (b) 30° (c) 60° (d) 75° 

Figure 3.2 Angles of Rotation 
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3.3. TEST SPECIMEN AND TEST FIXTURE 

3.3.1. Test Specimen: Parameters.  Each test specimen was fabricated and 

assembled at Missouri S&T.  All nominal dimensions are shown in Figure 3.3. 

   

 

 

Figure 3.3 Test Specimen Nominal Dimensions 

 

 

3.3.2. Test Specimen: Fabrication.  The test specimen consisted of a  

cold-formed steel deck section screwed to a flat sheet (Figures 3.3 and 3.4).  For pull-out, 

the critical component of the test specimen was the cold-formed steel flat sheet, which 

measured 3 in. x 36 in. for the normal-ductility steel and 2 in. x 36 in. for the low-

ductility steel. 

Using a metal cutting wheel on a miter saw, the steel sheets were cut to 6 in. long 

(Figure 3.3).  The dimensions of each flat sheet varied slightly; however, variations were 

negligible and did not affect the bolting pattern to the test fixture.  Two holes were then 

drilled at a 3 1/4 in. spacing to connect the specimen to the test fixture.  This drilling was 
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performed on a digital readout milling machine to ensure accuracy.  Prior to connecting a 

flat sheet to the deck, a mark was made 1 7/16 in. from the edge of either hole to ensure 

that the screw would be properly installed on center so the test specimen would be 

concentrically loaded. 

 

 

 

Figure 3.4 Typical Test Specimen 

 

 

Each test specimen was assigned a unique serial number so it could be cataloged 

and matched later with the appropriate photos and data.  Using 14L12-30-1 as an 

example, the first two digits of the serial number designate the gage (thickness) of the 

steel. The letter N or L indicates whether it is a normal- (N) or low- (L) ductility steel.  

The following digits indicate the screw size and the angle of rotation, separated by 

hyphens.  A final digit indicates whether the test specimen is the first or second for a 

specific arrangement of variables.  Figure 3.5 shows prepared normal- and low-ductility 

flat sheets. 

Cold-formed steel deck was incorporated in the test specimen as the top sheet for 

the connection.  The deck was 12 in. x 12 in., and four holes were drilled in it to connect 

it to the upper test fixture.  Since this study forced pull-out of the bottom sheet, the deck 
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was used only for the connection, and the thickness was recorded only to determine the 

t2/t1 range.  The t2/t1 range was 0.325 to 2.454. 

 

 

 

Figure 3.5 Normal- and Low-Ductility Flat Sheets 

 

 

3.3.3. Test Fixture.  Stirnemann’s basic test fixture consisted of a welded T- 

section and a rotating arm.  The welded T-section (Figure 3.6) was made of a flat plate 

welded to a stem plate (Stirnemann 2006).  Three welded T-sections were fabricated at 

30°, 60°, and 75°.  The angle was measured from the vertical of the welded T-section.  

Once the testing using the 75° T-section was complete, then it was modified to 15°.  The 

lower fixture was made of two 2-in.-square plates welded to a main base plate. The arm 

rotated on a ½ in. diameter bolt running through the 2-in. plates.  Figure 3.7 shows the 

rotating arm. 
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Figure 3.6 Upper Fixture: Welded T-Sections 15°, 30°, and 60° 

 

 

Stirnemann’s fixture was modified for the present study by bolting a specially 

fabricated plate to the lower fixture.  The plate had two threaded rods that permitted 

suspension of the flat sheet.  This arrangement allowed the screw to fall freely below the 

flat sheet while remaining securely bolted to the lower arm.  Figure 3.8 shows a test 

specimen bolted to the modified specimen plate and attached to the rotating arm. 

 

 

 

Figure 3.7 Lower Fixture: Rotating Arm 
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3.3.4. Test Setup.  For ease of assembly, the flat sheet was first bolted to the  

lower test fixture comprised of the rotating arm and the modification plate (Figures 3.7 

and 3.8).  A pre-drilled hole through the deck accommodated the angle of rotation for a 

given test.  This hole permitted the concentric alignment of the deck and the flat sheet 

with the test fixture and testing machine after the test specimen was mounted.  A screw 

was then inserted through the pre-drilled hole to connect the flat sheet to the deck.  Once 

the deck was attached to the flat sheet, the upper piece of the test fixture (Figure 3.6) was 

then bolted to the deck, and the entire prepared test setup and fixture was then mounted in 

the testing machine.  Figure 3.2 shows the test setup.   

 

 

 

Figure 3.8 Modification Plate 

 

 

3.3.5. Test Procedure.  Each prepared test specimen was mounted in an MTS 

880 Material Test System (Figure 3.9).  A computer data acquisition system recorded the 

load and displacement during each test.  The displacement rate was 1/16 in. per minute.  

Load and displacement were recorded for each test at eight intervals per second to ensure 

that the maximum load was recorded. 
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Figure 3.9 MTS 880 Material Test System 

 

 

During testing, distortion of the flat sheet was observed that indicated the stiffness 

of flat sheet in the test specimen (Figure 3.3) should be evaluated.  Normal-ductility test 

specimens (Figure 3.5) were stiffened using a brake press.  Each of the long sides was 

bent to form ½ in. edge stiffeners (Figure 3.10).  The specimen was setup and tested 

using the same methods described in Sections 3.3.4 and 3.3.5.  

 

 

 

Figure 3.10 Flat Sheet with Edge Stiffeners 
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 Six tests were initially performed to evaluate stiffness and determine whether it 

influenced the interaction of combined pull-out and shear loading.  The same tests were 

performed on the unstiffened counterparts of each specimen.  Table 3.2 compares the 

results of both tests for the three primary angles of rotation. 

 

 

Table 3.2 Comparison of Stiffened versus Un-stiffened Specimens 

  Ultimate Strength (lbf) 
  Un-stiffened Specimen Average Stiffened Specimen Average 

15° 468.8 494.3 481.6 374.3 452.4 413.4 

30° 352.7 353.6 353.2 321.1 365.3 343.2 

A
n

gl
e 

of
 

R
ot

at
io

n
 

60° 320.9 337.6 329.3 317.7 323.5 320.6 
 

 

Tilting of the screw and tearing were the failure modes observed in both 

specimens (Figure 3.11).  Based on Table 3.2 and a comparison of the load versus 

deflection curves (an example of which is given in Figure 3.12), the stiffness of the test 

specimens at 30° and 60° did not affect the overall strength of connections subject to 

combined pull-out and shear.  The test results for the stiffened flat sheet at 15° were 

inconclusive therefore more tests were performed. 

Three additional tests were performed to confirm that the test angle 15° was not 

affected by the stiffness of the specimen.  During testing of the three additional tests, it 

was observed that the first test resulting in an ultimate strength of 392.5 lbf was loose, or 

there was slack, between the connecting members.  This could be contributing to the 

lower ultimate strength.  It was also observed during the second and third tests that there 
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was no slack between the connecting sheets.  These values are more comparable to the 

unstiffened flat sheets and the stiffened flat sheet with an ultimate capacity of 452.4 lbf.  

After reviewing Table 3.3, it can be concluded that the low test values may not be 

representative of a proper screw connection and that the stiffness at 15° did not affect the 

test specimen’s results. 

 

 

 

Figure 3.11 Comparison of Stiffened versus Un-stiffened Failure Modes 

 

 

 

Figure 3.12 Load versus Deflection of 30° Test Specimens 
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Table 3.3 Comparison of all Stiffened versus Unstiffened Specimens at 15° 

Ultimate Strength (lbf) 
Un-stiffened 

Specimen 
Average Stiffened Specimen Average*

468.8 494.3 481.6 374.3 452.4 392.5 445.7 467.1 455.1 
*Stiffened Specimen Average is based on values excluding data less than 445.7 lbf. 

 

 

3.4. TEST RESULTS 

A total of eighty-four tests were performed.  Thirty-nine were normal-ductility 

test specimens, and thirty-six were low-ductility test specimens.  Nine additional tests 

were performed to evaluate specimen stiffness, as explained in Section 3.3.5.1. 

Each test specimen was tested until failure.  If the screw failed, the test was 

classified as inconclusive for purposes of this study and removed from the results.  Screw 

failures occurred only in angles introduced to larger shear components, specifically 15° 

and 30°.   

In most respects, the specimens behaved similarly for all tests.  The typical failure 

mode observed in all tests was a combination of screw pull-out (tension failure), tilting of 

the screw (shear failure), and bearing of the sheet (shear failure).  The normal- and low-

ductility specimens did perform differently with respect to deformation and strength.  

These results are described in Sections 3.4.1 and 3.4.2. 

For screw connections, the load versus displacement curve varied with each test.  

An example of such a curve is shown in Figure 3.13.  The peaks of the curve represent 

the points at which the threads of the screw were pulled through the hole.  As each layer 

of threads caught the sheet, the connection gained strength until it reached the peak 
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strength of those threads and so on and so forth.  The ultimate strength of the connection 

depended on the highest load carried during loading, regardless of deformation. 

 

 

 

Figure 3.13 Example Load versus Deformation Curve 

 

 

3.4.1. Normal-Ductility Specimens. All normal-ductility specimens experienced  

plastic deformation.  Figure 3.14 shows a typical normal-ductility specimen after testing.  

Given the same sheet thickness and screw diameter, the normal-ductility steel deformed 

more than the low-ductility steel, and tearing of the sheet was more prominent.  Figure 

3.15 shows a normal-ductility specimen above a low-ductility specimen.  The normal-

ductility specimens also had a higher ratio of ultimate strength to nominal strength given 

the same setup.  The distortion of the sheet was typical of all normal-ductility specimens.  

This distortion pattern was not an effect of eccentricity, but rather of the combination of 

the pull-out and shear forces. 
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 The ultimate strength, Pu, was determined from the recorded data. Based on the 

angle of the test, the ultimate tension and ultimate shear forces Put and Puv, respectively, 

were calculated using basic trigonometry.  Table A.1 in Appendix A shows the test 

results for the normal-ductility specimens. 

 

 

 

Figure 3.14 Typical Normal-Ductility Flat Sheet after Testing 

 

 

 

Figure 3.15 Comparison of Normal- and Low-Ductility Flat Sheets 
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3.4.2. Low-Ductility Specimens. Low-ductility specimens typically experienced 

less plastic deformation than the normal-ductility specimens.  Figure 3.15 shows a low-

ductility specimen (bottom) and a normal-ductility specimen (top).  The low-ductility 

specimens had less deformation, and tilting of the screw was more prominent due to the 

resistance of the steel to allow tearing to occur (Figure 3.16).  The low-ductility 

specimens overall had lower ratios of ultimate strength to nominal strength than the 

normal-ductility specimens.  The same distortion effects observed in the normal-ductility 

specimens were apparent in the low-ductility tests, but they were typically less 

prominent.  Many low-ductility specimens never reached inelasticity, and deformation 

was not permanent. 

 

 

 

Figure 3.16 Typical Low-Ductility Flat Sheet after Testing 

 

 

The ultimate strength, Pu, was determined as for normal-ductility specimens (see 

Section 3.4.1. above).  The tension and shear components were also determined as for 

normal-ductility specimens (see Section 3.4.1 above).  Table A.2 in Appendix A shows 

the test results for low-ductility specimens. 
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4. DATA ANALYSIS 

4.1. INTRODUCTION 

Test data was evaluated using the pull-out and shear design equations for screw 

connections from the 2007 specification (AISI S100, 2007).  Based on the relationship or 

interaction between the tension and shear forces, specifically pull-out tension forces two 

design equations were formulated.  

 
 
4.2. DATA ANALYSIS USING AISI EQUATIONS 

4.2.1. Data for Analysis.  Using design Equations 2-10 through 2-15, the nominal  

strengths were calculated for pull-out, Pnot, and shear, Pns. The ultimate load applied to 

each test specimen was evaluated for its tension and shear components, Put and Puv, 

respectively.  These ultimate strength components were then normalized using the 

nominal strength equations to form the ratios Put/Pnot and Puv/Pns.  Tables B.1 and B.2 

show the results for the normal- and low-ductility test data, respectively.  

4.2.2. Evaluating Screw Diameter. Based on previous research discussed in  

Section 2, one parameter thought to influence pull-out and shear interaction was the 

diameter of the screw.  All tests performed for the 30° angle configuration used the entire 

range of screw sizes (No. 8, 10, 12, and 14). Figures 4.1 and 4.2 show a graph of the 

normalized shear strength, Puv/Pns, versus the normalized pull-out strength, Put/Pnot, at 30° 

only for the normal-ductility and low-ductility specimens, respectively. 
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Figure 4.1 Evaluation of Screw Size at 30° - Normal Ductility 

 

 

Based on the distribution of the data for all screw diameters at 30° although screw 

diameter affected the overall strength of the connection, it did not influence the 

interaction of the combined loading.  These conclusions justified a reduction in the 

number of tests required for this study.  The other test angle configurations were tested 

using only one screw size.  At 60° No. 10 screws were used. At 15°, however, No. 14 

screws were used due to the large shear loads being induced.  The few tests performed at 

75° degrees used No. 8 and No. 10 screws. 
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Figure 4.2 Evaluation of Screw Size at 30° – Low Ductility 

 

 

4.2.3. Shear versus Pull-out.  To review the interaction between pull-out and 

shear of screw connections, Figure 4.3 shows the ratios of ultimate strength to nominal 

strength, Puv/Pns versus Put/Pnot.  A relationship is apparent between the interaction of pull-

out and shear.  The data approaches 1.0 on both axes where pure shear or pure tension 

would occur.  For normal-ductility specimens, this interaction seems acceptable, but it is 

overestimated for the low-ductility specimens.  Due to this overestimation an adjustment 

factor, L, was used to develop the interaction equations in Section 4.3. 
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Figure 4.3 Pull-out and Shear Interaction using AISI Equations 

 

 

4.3. DEVELOPMENT OF INTERACTION EQUATION 

Several nonlinear and linear interaction equations were investigated based on 

mean, standard deviation, and coefficient of variation. An adjustment factor, L, was used 

for low-ductility steel. The following proposes best-fit cases for a tri-linear and nonlinear 

interaction equation. 

4.3.1. Tri-Linear Interaction Equation. The proposed tri-linear interaction  

equation, Equation 4-1, was derived using the data shown in Figure 4.3.  The values can 

be found in Tables B.1 and B.2 of Appendix B.  The mean value and coefficient of 

variation were used to determine the resistance and safety factors ( for LRFD and LSD, 

and Ω for ASD).  These values can be found in Tables C.1 and C.2 of Appendix C.  

Equation 2-10 controlled for nominal shear strength in all but one case.  Thus Equation 2-
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10 is proposed as a means to calculate the interaction of pull-out and shear.  Figure 4.4 

shows the results of Equation 4-1, along with the normal- and low-ductility test data. 

when: Puv/Pns  ≥ 0.15 and Put/Pnot ≥ 0.15 

 

15.1
not

ut

ns

uv

LP

P

LP

P
      (4-1) 

 
where:  

L = 1.0, for Fu/Fy ≥ 1.087,   

L = 0.75, for Fu/Fy ≤ 1.064, 

2
213

224 = u
/

ns Fd)(t.P  (nominal shear strength of connection Equation 2-10) 

285.0 ucnot dFtP   (nominal pull-out strength of connection Equation 2-15) 

 

 

 

Figure 4.4 Tri-Linear Equation Interaction Relationship 
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4.3.2. Nonlinear Interaction Equation. The proposed nonlinear interaction  

equation is Equation 4-2 and is shown in Figure 4.5.  It was derived using the data shown 

in Figure 4.3 and from Tables B.1 and B.2 of Appendix B.  The mean value and 

coefficient of variation were used to determine the resistance and safety factors and can 

be found in Tables D.1 and D.2 of Appendix D. 

 

0.1
15.115.1



















not

ut

ns

uv

LP

P

LP

P
     ( 4-2) 

 
where:  

L = 1.0, for Fu/Fy ≥ 1.087,   

L = 0.80, for Fu/Fy ≤ 1.064, 

2
213

224 = u
/

ns Fd)(t.P  (nominal shear strength of connection Equation 2-10) 

285.0 ucnot dFtP   (nominal pull-out strength of connection Equation 2-15) 

 

 

 

Figure 4.5 Nonlinear Equation Interaction Relationship 
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5. SUMMARY AND DESIGN RECOMMENDATIONS 

5.1. SUMMARY 

This study assessed the interaction relationship between pull-out and shear forces 

in screw connections in cold-formed structural steel. A total of eighty-four tests were 

performed.  The test data was analyzed using AISI Equations 2-10 through 2-15; and two 

equations, 5-1 and 5-2, are proposed for use in designing screw connections subject to 

this limit state. 

 
 
5.2. DESIGN RECOMMENDATIONS 

For the design method recommended in this section, the adjustment factor L was 

removed because, in accordance with Section A.2.3.2 of the AISI specification a 25% 

reduction in tensile strength, Fu, is required for low-ductility steels (AISI 2007). Using 

the adjustment factor, therefore would account twice for the adjustment for low-ductility 

steel.  Section 4 demonstrates that this is accurate for the tri-linear equation where L 

equals 0.75, and slightly conservative for the nonlinear equation where L equals 0.80.  

Changes to the adjustment factor for the nonlinear equation were made to correlate with 

an L equal to 0.75.  Table D.3 in Appendix D shows the correlations and statistical 

analysis based on this adjustment.  While an L of 0.75 did not provide the best results for 

a statistical analysis of the nonlinear equation, it does provide acceptable values, and 

conservatively shifts the adjustment factor allowing for the removal of the adjustment 

factor.  The following interaction equations are proposed to calculate the design capacity 

of a screw connection subject to combined pull-out and shear forces. 

Tri-Linear Equation: 
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For ASD: 

 when: Puv/Pns > 0.15 and Put/Pnot > 0.15 

 




15.1

notns P

T

P

Q
      (5-1) 

For LRFD and LSD: 

when: Puv/Pns ≥ 0.15 and Put/Pno t≥ 0.15 

 

15.1
notns P
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Q
      (5-2) 

 
where:  2

213
224 = u

/
ns Fd)(t.P  (nominal shear strength of connection Equation 2-10) 

285.0 ucnot dFtP   (nominal pull-out strength of connection Equation 2-15) 

Ω = 2.54 for United States and Mexico 

  = 0.60 for United States and Mexico 

  = 0.51 for Canada 

 

Non-Linear Equation: 

For ASD: 
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For LRFD and LSD: 
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where: 2

213
224 = u

/
ns Fd)(t.P  (nominal shear strength of connection Equation 2-10) 

285.0 ucnot dFtP   (nominal pull-out strength of connection Equation 2-15) 

for Fu/Fy  ≥ 1.087, 

Ω = 2.65 for United States and Mexico 

  = 0.58 for United States and Mexico 

   = 0.48 for Canada 

for Fu/Fy ≤ 1.064, 

Ω = 2.51 for United States and Mexico 

  = 0.61 for United States and Mexico 

  = 0.51 for Canada 

Equation Limitations: 

0.0297 in. ≤ t2 ≤ 0.0724 in. 

Fu2 ≤ 121 ksi 

No. 8, 10, 12, or 14 screws, with or without washers 

1.0≤Fu/Fy≤1.618 

where: All test parameters for both the tri-linear and nonlinear equations are defined in 

Section 2.2.4. 
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6. RECOMMENDATIONS FOR FUTURE RESEARCH 

This study took into consideration only concentric loading.  However, eccentricity 

can drastically change the amount of tension or shear applied in screw connections.  

More research is required to validate the proposed equations for eccentric loading or to 

develop a new design methodology for eccentric connections subject to combined forces, 

such as clip angles. 

Previous research by Ellifritt and Burnette has also shown that real-world 

situations can reduce the capacity of screw connections subject to pull-over. Such 

situations should, therefore, be simulated and evaluated for combined pull-out and shear 

connections. 

Other considerations that could affect the design equations proposed here include 

multiple sheet connections, insulation between the sheets or gap tolerances in the 

connection, and screw connections outside the limitations of this research.



 

 

 
 

 

 

 

 

 

 

 

 

APPENDIX A 

 

RESULTS OF TEST DATA



 

 

Table A.1 Test Data for Normal-Ductility Specimens 

Specimen Pu Specimen 
No. Angle (lbf) 

20N08-30-1 30 284.2 

20N08-30-2 30 265.1 

20N10-30-1 30 297.9 

20N10-30-2 30 306.6 

20N12-30-1 30 447.4 

20N12-30-2 30 389.4 

20N14-30-1 30 352.7 

20N14-30-2 30 353.6 

20N10-60-1 60 260.1 

20N10-60-2 60 337.6 

20N14-15-1 15 468.6 

20N14-15-2 15 494.3 

18N12-30-1 30 500.3 

18N12-30-2 30 507.8 

18N14-30-1 30 588.5 

18N14-30-2 30 588.1 

18N10-60-1 60 394.2 

18N10-60-2 60 315.7 

18N14-15-1 15 683.4 

18N14-15-2 15 710.7 

 

 

 

Specimen Pu Specimen 
No. Angle (lbf) 

16N12-30-1 30 858.5 

16N12-30-2 30 825.0 

16N14-30-1 30 860.7 

16N14-30-2 30 986.6 

16N10-60-1 60 519.7 

16N10-60-2 60 691.1 

16N14-15-1 15 1229.9 

16N14-15-2 15 1314.0 

14N14-30-1 30 1255.0 

14N14-30-2 30 1360.8 

14N10-60-1 60 1081.3 

14N10-60-2 60 874.6 

14N14-15-1 15 1622.3 

14N14-15-2 15 1823.3 

20N08-75-1 75 199.6 

20N10-75-1 75 243.3 

14N08-75-1 75 718.3 

14N10-75-1 75 914.7 

14N10-75-2 75 906.4 
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Table A.2 Test Data for Low-Ductility Specimens 

 

Specimen Pu Specimen 
No. Angle (lbf) 

20L08‐30‐1  30  445.5 

20L08‐30‐2  30  437.1 

20L10‐30‐1  30  711.3 

20L10‐30‐2  30  465.5 

20L12‐30‐1  30  525.6 

20L12‐30‐2  30  547.3 

20L14‐30‐1  30  607.3 

20L14‐30‐2  30  612.1 

20L10‐60‐1  60  443.0 

20L10‐60‐2  60  438.8 

20L14‐15‐1  15  668.7 

20L14‐15‐2  15  651.6 

18L12‐30‐1  30  714.1 

18L12‐30‐2  30  736.7 

18L14‐30‐1  30  749.0 

18L14‐30‐2  30  771.4 

18L10‐60‐1  60  598.2 

18L10‐60‐2  60  581.5 

 

 

 

 

Specimen Pu Specimen 
No. Angle (lbf) 

18L14‐15‐1  15  911.2 

18L14‐15‐2  15  950.0 

16L12‐30‐1  30  821.4 

16L12‐30‐2  30  778.9 

16L14‐30‐1  30  1004.9 

16L14‐30‐2  30  919.1 

16L10‐60‐1  60  663.4 

16L10‐60‐2  60  640.2 

16L14‐15‐1  15  1081.5 

16L14‐15‐2  15  1092.0 

14L14‐30‐1  30  1597.4 

14L14‐30‐2  30  1845.0 

14L10‐60‐1  60  1159.5 

14L10‐60‐2  60  1278.4 

14L08-75-1 75  887.8 

14L08-75-2 75  940.4 

14L10-75-1 75  878.8 

14L10-75-2 75  987.4 
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APPENDIX B 

 

ANALYSIS OF TEST DATA 



 

 

Table B.1 Analyzed Test Data for Normal-Ductility Specimens 

Pu Put Puv Pnot Pns Specimen 
No. (lbf) (lbf) (lbf) (lbf) (lbf)   

20N08-30-1 284.2 142.1 246.1 199.9 420.4 0.711 0.585 

20N08-30-2 265.1 132.6 229.6 199.9 420.4 0.663 0.546 

20N10-30-1 297.9 149.0 258.0 231.6 452.5 0.643 0.570 

20N10-30-2 306.6 153.3 265.6 231.6 452.5 0.662 0.587 

20N12-30-1 447.4 223.7 387.4 263.3 482.5 0.849 0.803 

20N12-30-2 389.4 194.7 337.2 263.3 482.5 0.739 0.699 

20N14-30-1 352.7 176.4 305.5 304.8 519.1 0.579 0.588 

20N14-30-2 353.6 176.8 306.2 304.8 519.1 0.580 0.590 

20N10-60-1 260.1 225.3 130.1 231.6 452.5 0.972 0.287 

20N10-60-2 337.6 292.4 168.8 231.6 452.5 1.262 0.373 

20N14-15-1 468.6 121.3 452.6 404.3 793.2 0.300 0.571 

20N14-15-2 494.3 127.9 477.5 404.3 793.2 0.316 0.602 

18N12-30-1 500.3 250.1 433.2 342.3 722.3 0.731 0.600 

18N12-30-2 507.8 253.9 439.8 342.3 722.3 0.742 0.609 

18N14-30-1 588.5 294.2 509.6 396.1 777.1 0.743 0.656 

18N14-30-2 588.1 294.1 509.3 396.1 777.1 0.742 0.655 

18N10-60-1 394.2 341.4 197.1 301.1 677.4 1.134 0.291 

18N10-60-2 315.7 273.4 157.9 301.1 677.4 0.908 0.233 

18N14-15-1 683.4 176.9 660.1 396.1 777.1 0.447 0.849 

 

 

 

Pu Put Puv Pnot Pns Specimen 
No. (lbf) (lbf) (lbf) (lbf) (lbf)   

18N14-15-2 710.7 183.9 686.5 396.1 777.1 0.464 0.883 

16N12-30-1 858.5 429.2 743.5 722.1 1752.4 0.594 0.424 

16N14-30-1 860.7 430.3 745.3 835.8 1885.2 0.515 0.395 

16N14-30-2 986.6 493.3 854.4 835.8 1885.2 0.590 0.453 

16N10-60-1 519.7 450.1 259.9 635.2 1643.5 0.709 0.158 

16N10-60-2 691.1 598.5 345.5 635.2 1643.5 0.942 0.210 

16N14-15-1 1229.9 318.3 1188.0 835.8 1885.2 0.381 0.630 

16N14-15-2 1314.0 340.1 1269.2 835.8 1885.2 0.407 0.673 

14N14-30-1 1255.0 627.5 1086.9 1143.4 3040.4 0.549 0.357 

14N14-30-2 1360.8 680.4 1178.5 1143.4 3040.4 0.595 0.388 

14N10-60-1 1081.3 936.4 540.6 869.0 2650.6 1.078 0.204 

14N10-60-2 874.6 757.4 437.3 869.0 2650.6 0.872 0.165 

14N14-15-1 1622.3 419.9 1567.1 835.8 1885.2 0.502 0.831 

14N14-15-2 1823.3 471.9 1761.1 835.8 1885.2 0.565 0.934 

20N08-75-1 199.6 192.8 51.7 199.9 420.4 0.964 0.123 

20N10-75-1 243.3 235.0 63.0 231.6 452.5 1.014 0.139 

14N08-75-1 718.3 693.8 185.9 750.1 2462.5 0.925 0.075 

14N10-75-1 914.7 883.6 236.8 869.0 2650.6 1.017 0.089 

14N10-75-2 906.4 875.5 234.6 869.0 2650.6 1.008 0.089 
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Table B.2 Analyzed Test Data for Low-Ductility Specimens 

 

Pu Put Puv Pnot Pns Specimen 
No. (lbf) (lbf) (lbf) (lbf) (lbf)  

20L08-30-1 445.5 222.8 385.8 483.2 1066.1 0.461 0.362 

20L08-30-2 437.1 218.5 378.5 483.2 1066.1 0.452 0.355 

20L10-30-1 711.3 355.7 616.0 559.8 1147.5 0.635 0.537 

20L10-30-2 465.5 232.8 403.1 559.8 1147.5 0.416 0.351 

20L12-30-1 525.6 262.8 455.2 636.4 1223.5 0.413 0.372 

20L12-30-2 547.3 273.7 474.0 636.4 1223.5 0.430 0.387 

20L14-30-1 607.3 303.6 525.9 736.6 1316.3 0.412 0.400 

20L14-30-2 612.1 306.0 530.1 736.6 1316.3 0.415 0.403 

20L10-60-1 443.0 383.6 221.5 559.8 1147.5 0.685 0.193 

20L10-60-2 438.8 380.0 219.4 559.8 1147.5 0.679 0.191 

20L14-15-1 668.7 173.1 645.9 844.7 1616.5 0.205 0.400 

20L14-15-2 651.6 168.7 629.4 844.7 1616.5 0.200 0.389 

18L12-30-1 714.1 357.1 618.5 627.7 1292.4 0.569 0.479 

18L12-30-2 736.7 368.4 638.0 627.7 1292.4 0.587 0.494 

18L14-30-1 749.0 374.5 648.7 726.6 1390.4 0.515 0.467 

18L14-30-2 771.4 385.7 668.0 726.6 1390.4 0.531 0.480 

18L10-60-1 598.2 518.1 299.1 552.2 1212.1 0.938 0.247 

18L10-60-2 581.5 503.6 290.8 552.2 1212.1 0.912 0.240 
 

 

 

 

Pu Put Puv Pnot Pns Specimen 
No. (lbf) (lbf) (lbf) (lbf) (lbf)  

18L14-15-1 911.2 235.8 880.2 726.6 1390.4 0.325 0.633 

18L14-15-2 950.0 245.9 917.6 726.6 1390.4 0.338 0.660 

16L12-30-1 821.4 410.7 711.3 836.1 2003.5 0.491 0.355 

16L12-30-2 778.9 389.4 674.5 836.1 2003.5 0.466 0.337 

16L14-30-1 1004.9 502.4 870.3 967.7 2155.5 0.519 0.404 

16L14-30-2 919.1 459.6 796.0 967.7 2155.5 0.475 0.369 

16L10-60-1 663.4 574.5 331.7 735.5 1879.1 0.781 0.177 

16L10-60-2 640.2 554.5 320.1 735.5 1879.1 0.754 0.170 

16L14-15-1 1081.5 279.9 1044.6 967.7 2155.5 0.289 0.485 

16L14-15-2 1092.0 282.6 1054.8 967.7 2155.5 0.292 0.489 

14L14-30-1 1597.4 798.7 1383.4 1729.4 4440.1 0.462 0.312 

14L14-30-2 1845.0 922.5 1597.8 1729.4 4440.1 0.533 0.360 

14L10-60-1 1159.5 1004.1 579.7 1314.3 3870.8 0.764 0.150 

14L10-60-2 1278.4 1107.1 639.2 1314.3 3870.8 0.842 0.165 

14L08-75-1 887.8 857.6 229.8 1134.5 3596.2 0.756 0.064 

14L08-75-2 940.4 908.3 243.4 1134.5 3596.2 0.801 0.068 

14L10-75-1 878.8 848.8 227.4 1314.3 3870.8 0.646 0.059 

14L10-75-2 987.4 953.7 255.6 1314.3 3870.8 0.726 0.066 
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APPENDIX C 

 

TRI-LINEAR EQUATION CORRELATION



 

 

C.1 Normal-Ductility Tri-Linear Correlation (L = 1.0) 
 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 15.1

ns

uv

not

ut

LP

P

LP

P

20N14-15-1 0.261 0.496 0.757 
20N14-15-2 0.275 0.523 0.799 
18N14-15-1 0.388 0.739 1.127 
18N14-15-2 0.404 0.768 1.172 
16N14-15-1 0.331 0.548 0.879 
16N14-15-2 0.354 0.585 0.939 
14N14-30-1 0.477 0.311 0.788 
14N14-30-2 0.517 0.337 0.855 
14N14-15-1 0.437 0.723 1.160 
14N14-15-2 0.491 0.812 1.303 
20N08-30-1 0.618 0.509 1.127 
20N08-30-2 0.577 0.475 1.051 
20N10-30-1 0.559 0.496 1.055 
20N10-30-2 0.576 0.510 1.086 
20N12-30-1 0.739 0.698 1.437 
20N12-30-2 0.643 0.608 1.250 
20N14-30-1 0.503 0.512 1.015 
20N14-30-2 0.504 0.513 1.017 
18N12-30-1 0.635 0.522 1.157 
18N12-30-2 0.645 0.529 1.175 
18N14-30-1 0.646 0.570 1.216 
18N14-30-2 0.645 0.570 1.215 
 

 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 15.1

ns

uv

not

ut

LP

P

LP

P
 

16N12-30-1 0.517 0.369 0.886 
16N12-30-2 0.497 0.355 0.851 
16N14-30-1 0.448 0.344 0.792 
16N14-30-2 0.513 0.394 0.907 
20N10-60-1 0.846 0.250 1.095 
20N10-60-2 1.098 0.324 1.422 
18N10-60-1 0.986 0.253 1.239 
18N10-60-2 0.790 0.203 0.992 
16N10-60-1 0.616 0.137 0.754 
16N10-60-2 0.819 0.183 1.002 
14N10-60-1 0.937 0.177 1.114 
14N10-60-2 0.758 0.143 0.901 
20N08-75-1 0.838 0.107 0.964 
20N10-75-1 0.882 0.121 1.014 
14N08-75-1 0.804 0.066 0.925 
14N10-75-1 0.884 0.078 1.017 
14N10-75-2 0.876 0.077 1.008 
 

 

 

 

Mean Value = 1.038 

Standard Deviation =  0.174 

Coefficient of Variation = 0.167 

46 



 

 

C.2 Low-Ductility Tri-Linear Correlation (L = 0.75) 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 15.1

ns

uv

not

ut

LP

P

LP

P

20L14-15-1 0.241 0.470 0.954 
20L14-15-2 0.235 0.458 0.936 
18L14-15-1 0.382 0.745 1.359 
18L14-15-2 0.398 0.776 0.889 
16L14-15-1 0.340 0.570 0.910 
16L14-15-2 0.344 0.576 0.948 
20L08-30-1 0.542 0.426 0.941 
20L08-30-2 0.532 0.418 0.949 
20L10-30-1 0.747 0.632 1.018 
20L10-30-2 0.489 0.413 1.009 
20L12-30-1 0.486 0.438 0.701 
20L12-30-2 0.506 0.456 0.683 
20L14-30-1 0.485 0.470 1.214 
20L14-30-2 0.489 0.474 1.253 
18L12-30-1 0.669 0.563 1.139 
18L12-30-2 0.690 0.581 1.172 
18L14-30-1 0.606 0.549 1.374 
18L14-30-2 0.625 0.565 1.336 
16L12-30-1 0.578 0.418 1.110 
16L12-30-2 0.548 0.396 1.158 
16L14-30-1 0.611 0.475 0.981 
16L14-30-2 0.559 0.434 0.930 

 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 15.1

ns

uv

not

ut

LP

P

LP

P

14L14-30-1 0.543 0.367 0.910 
14L14-30-2 0.628 0.423 0.979 
20L10-60-1 0.806 0.227 1.110 
20L10-60-2 0.799 0.225 1.072 
18L10-60-1 1.104 0.290 0.897 
18L10-60-2 1.073 0.282 0.906 
16L10-60-1 0.919 0.208 0.897 
16L10-60-2 0.887 0.200 1.036 
14L10-60-1 0.899 0.176 1.019 
14L10-60-2 0.991 0.194 1.168 
14L08-75-1 0.829 0.070 0.940 
14L08-75-2 0.878 0.074 0.995 
14L10-75-1 0.708 0.062 0.803 
14L10-75-2 0.796 0.070 0.902 

Mean Value = 1.021 

Standard Deviation =  0.163 

Coefficient of Variation = 0.159 
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APPENDIX D 

 

NONLINEAR EQUATION CORRELATION



 

 

D.1 Normal-Ductility Nonlinear Correlation (L = 1.0) 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 0.1

15.115.1



















ns

uv

not

ut

LP

P

LP

P

20N14-15-1 0.300 0.571 0.775 
20N14-15-2 0.316 0.602 0.824 
18N14-15-1 0.447 0.849 1.225 
18N14-15-2 0.464 0.883 1.281 
16N14-15-1 0.381 0.630 0.918 
16N14-15-2 0.407 0.673 0.990 
14N14-30-1 0.549 0.357 0.808 
14N14-30-2 0.595 0.388 0.887 
14N14-15-1 0.502 0.831 1.262 
14N14-15-2 0.565 0.934 1.443 
20N08-30-1 0.711 0.585 1.215 
20N08-30-2 0.663 0.546 1.122 
20N10-30-1 0.643 0.570 1.126 
20N10-30-2 0.662 0.587 1.164 
20N12-30-1 0.849 0.803 1.606 
20N12-30-2 0.739 0.699 1.369 
20N14-30-1 0.579 0.588 1.077 
20N14-30-2 0.580 0.590 1.080 
18N12-30-1 0.731 0.600 1.253 
18N12-30-2 0.742 0.609 1.275 
18N14-30-1 0.743 0.656 1.326 
18N14-30-2 0.742 0.655 1.325 

 

 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 0.1

15.115.1



















ns

uv

not

ut

LP

P

LP

P

16N12-30-2 0.571 0.408 0.882 
16N14-30-1 0.515 0.395 0.810 
16N14-30-2 0.590 0.453 0.948 
20N10-60-1 0.972 0.287 1.207 
20N10-60-2 1.262 0.373 1.629 
18N10-60-1 1.134 0.291 1.397 
18N10-60-2 0.908 0.233 1.083 
16N10-60-1 0.709 0.158 0.793 
16N10-60-2 0.942 0.210 1.100 
14N10-60-1 1.078 0.204 1.250 
14N10-60-2 0.872 0.165 0.980 
20N08-75-1 0.964 0.123 1.049 
20N10-75-1 1.014 0.139 1.120 
14N08-75-1 0.925 0.075 0.965 
14N10-75-1 1.017 0.089 1.081 
14N10-75-2 1.008 0.089 1.070 

 

 

 

 

Mean Value = 1.119 

Standard Deviation =  0.215 

Coefficient of Variation = 0.192 
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D.2 Low-Ductility Nonlinear Correlation (L = 0.8) 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 0.1

15.115.1



















ns

uv

not

ut

LP

P

LP

P

20L14-15-1 0.256 0.499 0.659 
20L14-15-2 0.250 0.487 0.640 
18L14-15-1 0.406 0.791 1.118 
18L14-15-2 0.423 0.825 1.173 
16L14-15-1 0.362 0.606 0.872 
16L14-15-2 0.365 0.612 0.882 
20L08-30-1 0.576 0.452 0.932 
20L08-30-2 0.565 0.444 0.912 
20L10-30-1 0.794 0.671 1.399 
20L10-30-2 0.520 0.439 0.859 
20L12-30-1 0.516 0.465 0.882 
20L12-30-2 0.538 0.484 0.924 
20L14-30-1 0.515 0.499 0.917 
20L14-30-2 0.519 0.503 0.925 
18L12-30-1 0.711 0.598 1.229 
18L12-30-2 0.734 0.617 1.274 
18L14-30-1 0.644 0.583 1.141 
18L14-30-2 0.664 0.601 1.180 
16L12-30-1 0.614 0.444 0.964 
16L12-30-2 0.582 0.421 0.906 
16L14-30-1 0.649 0.505 1.064 
16L14-30-2 0.594 0.462 0.960 

 
 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 0.1

15.115.1



















ns

uv

not

ut

LP

P

LP

P

14L14-30-1 0.577 0.389 0.870 
14L14-30-2 0.667 0.450 1.026 
20L10-60-1 0.857 0.241 1.032 
20L10-60-2 0.849 0.239 1.021 
18L10-60-1 1.173 0.308 1.460 
18L10-60-2 1.140 0.300 1.413 
16L10-60-1 0.976 0.221 1.149 
16L10-60-2 0.942 0.213 1.103 
14L10-60-1 0.955 0.187 1.094 
14L10-60-2 1.053 0.206 1.224 
14L08-75-1 0.881 0.074 0.915 
14L08-75-2 0.933 0.079 0.977 
14L10-75-1 0.753 0.066 0.765 
14L10-75-2 0.846 0.074 0.875 

 

 

 

 

 

Mean Value = 1.020 

Standard Deviation =  0.192 

Coefficient of Variation = 0.189 
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D.3 Low-Ductility Nonlinear Correlation based on Chapter 5 
Recommendations (L = 0.75) 

 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 0.1

15.115.1



















ns

uv

not

ut

LP

P

LP

P

20L14-15-1 0.273 0.533 0.710 
20L14-15-2 0.266 0.519 0.689 
18L14-15-1 0.433 0.844 1.205 
18L14-15-2 0.451 0.880 1.264 
16L14-15-1 0.386 0.646 0.940 
16L14-15-2 0.389 0.652 0.950 
20L08-30-1 0.615 0.483 1.004 
20L08-30-2 0.603 0.473 0.982 
20L10-30-1 0.847 0.716 1.507 
20L10-30-2 0.554 0.468 0.925 
20L12-30-1 0.551 0.496 0.950 
20L12-30-2 0.573 0.517 0.995 
20L14-30-1 0.550 0.533 0.987 
20L14-30-2 0.554 0.537 0.996 
18L12-30-1 0.758 0.638 1.324 
18L12-30-2 0.782 0.658 1.372 
18L14-30-1 0.687 0.622 1.229 
18L14-30-2 0.708 0.641 1.271 
16L12-30-1 0.655 0.473 1.038 
16L12-30-2 0.621 0.449 0.976 
16L14-30-1 0.692 0.538 1.146 
16L14-30-2 0.633 0.492 1.034 

 
 
 

Specimen 
No. not

ut

LP

P
 

ns

uv

LP

P
 0.1

15.115.1



















ns

uv

not

ut

LP

P

LP

P

14L14-30-1 0.616 0.415 0.937 
14L14-30-2 0.711 0.480 1.106 
20L10-60-1 0.914 0.257 1.111 
20L10-60-2 0.905 0.255 1.099 
18L10-60-1 1.251 0.329 1.572 
18L10-60-2 1.216 0.320 1.522 
16L10-60-1 1.042 0.235 1.237 
16L10-60-2 1.005 0.227 1.188 
14L10-60-1 1.019 0.200 1.178 
14L10-60-2 1.123 0.220 1.318 
14L08-75-1 0.940 0.079 0.985 
14L08-75-2 0.995 0.084 1.053 
14L10-75-1 0.803 0.071 0.824 
14L10-75-2 0.902 0.079 0.942 

Mean Value = 1.099 

Standard Deviation =  0.207 

Coefficient of Variation = 0.189 
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