
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 May 1993

Parallel Genetic Algorithms for the DAG Vertex Splitting Problem Parallel Genetic Algorithms for the DAG Vertex Splitting Problem

Matthias Mayer

Fikret Erc ̧al
Missouri University of Science and Technology, ercal@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mayer, Matthias and Erc ̧al, Fikret, "Parallel Genetic Algorithms for the DAG Vertex Splitting Problem"
(1993). Computer Science Technical Reports. 32.
https://scholarsmine.mst.edu/comsci_techreports/32

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/32?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PARALLEL GENETIC ALGORITHMS FOR THE DAG
VERTEX SPLITTING PROBLEM

M. Mayer* and F. Ercal

CSc-93-10

Department of Computer Science

University of Missouri - Rolla

Rolla, MO 65401 (314)341-4491

*This report is substantially the M.S. thesis of the first author, completed May 1993.

© 1993

MATTHIAS MAYER

ALL RIGHTS RESERVED

i i i

ABSTRACT

Directed Acyclic Graphs are often used to model circuits and networks. The path

length in such Directed Acyclic Graphs represents circuit or network delays. In the vertex

splitting problem, the objective is to determine a minimum number of vertices from the

graph to split such that the resulting graph has no path of length greater than a given δ.

The problem has been proven to be NP-hard.

A Sequential Genetic Algorithm has been developed to solve the DAG Vertex

Splitting Problem. Unlike a standard Genetic Algorithm, this approach uses a variable

chromosome length to represent the vertices that split the graph and a dynamic population

size. Two String Length Reduction Methods to reduce the string length and two Stepping

Methods to explore the search space have been developed. Combinations of these four

methods have been studied and conclusions are drawn.

A parallel version of the sequential Genetic Algorithm has been developed. It uses

a fully distributed scheme to assign different string lengths to processors. A ring exchange

method is used in order to exchange "good" individuals between processors. Almost linear

speed-up and two cases of super linear speed-up are reported.

V

TABLE OF CONTENTS

Page

ABSTRACT... iii

ACKNOWLEDGEMENTS..................................... iv

LIST OF ILLUSTRATIONS... ix

LIST OF TABLES................ xii

SECTION

I. INTRODUCTION...................... 1

A. GENETIC ALGORITHMS AND RELATED A REA S..................... 1

B. THE DAG VERTEX SPLITTING PROBLEM 2

C. OUTLINE OF THESIS ... 3

II. BASICS OF A GENETIC ALGORITHM .. 4

A. DEFINITIONS ... 4

B. BASIC FUNCTIONS.. 5

1. The Select Function... 5

a. Roulette Wheel Selection ... 5

b. Tournament Selection.............................. 6

c. Ranking Selection ... 6

2. Crossover.. 7

a. One-Point Crossover.. 7

b. Two-Point Crossover .. 7

c. Uniform Crossover 8

Page

3. Mutation ... 8

4. Recombination .. 9

C. THE SCHEMA THEOREM.. 9

D. PARALLEL GENETIC ALGORITHMS ... 15

E. PROBLEMS WITH PROPORTIONAL ALLOCATION................... 17

1. Deceptive Problem 17

2. Premature Convergence .. 17

3. Genetic Drift .. 17

F. MODIFICATIONS TO GENETIC ALGORITHMS.......................... 18

1. Crowding.. 18

2. Elitism .. 18

G. SUMMARY.. 18

HI. THE DAG VERTEX SPLITTING PROBLEM.. 20

IV. THE GENETIC ALGORITHM FOR THE D V SP.................................... 23

A. OBJECTIVE AND CHROMOSOME ENCODING.......................... 23

B. GENERAL OUTLINE OF THE GENETIC ALGORITHM.............. 24

C. BINARY APPROXIMATION.. 25

D. SELECT FUNCTION ... 27

E. CROSSOVER FUNCTION.. 27

F. MUTATION FUNCTION... 29

G. RECOMBINATION FUNCTION ... 30

H. TAKE CARE OF ONES ... 30

v i

• >
V X 1

Page

I. SUMMARY.. 31

V. STRING LENGTH REDUCTION AND STEPPING............................... 32

A. STRING LENGTH REDUCTION M ETHODS................................. 32

1. Preserve Duplicates... 32

2. Random D elete... 33

B. STEPPING METHODS ... 33

1. Linear Stepping .. 33

2. Multiple Binary Stepping.. 34

C. SUMM ARY.. 35

VI. THE PARALLEL GENETIC ALGORITHM ... 37

A. OUTLINE OF THE PARALLEL GENETIC ALGORITHM............ 37

B. EXCHANGE INITIAL STRING LENGTH 40

C. DETERMINE NEW STRING LENGTH ... 40

D. REMOTE SOLUTION.. 41

E. ADJUST BOUNDARIES... 42

F. EXCHANGE INDIVIDUALS.. 43

G. SUMMARY... 45

VH. EXPERIMENTAL RESULTS.. 46

A. THE GRAPHS .. 46

B. THE SEARCH SPACE ... 47

C. BINARY APPROXIMATION.. 51

D. STRING LENGTH REDUCTION AND STEPPING___ 57

viii
Page

E. PARAMETER "ALONE” .. 59

F. SPEED-UP.. 69

G. SUMMARY.. 74

VIII. CONCLUSIONS.. 77

A .. 80

B .. 86

BIBLIOGRAPHY .. 88

V IT A ... 91

LIST OF ILLUSTRATIONS

Figure Page

1. Select individuals using a roulette wheel 6

2. Example of a One-Point Crossover 7

3. Example of a Two-Point Crossover.. 8

4. Example of a Uniform Crossover .. 8

5. Basic structure of a Genetic Algorithm.................. , 10

6. Effect of crossover on schemata ... 13

7. Outline of a Parallel Genetic A lgorithm ... 16

8. DAG with path length 3 ... 21

9. DAG with vertex 3 split into vertex 3' and vertex 3n 21

10. Outline of the GA for the D V SP... 25

11. Pseudo code of Binary Approximation.. 26

12. Example of a crossover with duplicated vertices... 28

13. Example of a crossover with separated duplicated vertices............................ 29

14. Illustration of the recombination function... 31

15. Example of a Multiple Binary Search ... 35

16. Outline of the Parallel Genetic Algorithm for the DVSP 38

17. Pseudo code of the function exchange initial string length 41

18. Pseudo code of the function determine new string len g th 41

19. Pseudo code of the function exchange individuals... 44

20. Shape of the search space for graph C432 ... 50

i x

Figure

x

Page

21. Initial string length reduction with Binary Approximation on graph
C432 ... 52

22. Initial string length reduction with Binary Approximation on graph
C880 ... 53

23. Initial string length reduction with Binary Approximation on graph
C1355 .. 54

24. Percentage of reduction in string length for graphs C432, C880, and
C1355 ... 55

25. Test run on PGA without full distribution and subpopulation size 50 62

26. Test run on PGA with full distribution on subpopulalion size 5 0 63

27. Test run on PGA without full distribution and subpopulation size 150 65

28. Test run on PGA with full distribution and subpopulation size 1 5 0 66

29. Total run time of P G A s.. 67

30. Solution quality with different P G A s.................. 68

31. Speed-up of the Parallel Genetic Algorithm with full distribution and total
population sizes of 160 and 320............ 71

32. Run time and solution quality with different number of processors and a
total population size of 160................. 73

33. Run time and solution quality with different number of processors and a
total population size of 320... 73

34. Initial string length reduction with Binary Approximation on graph
C2670 .. 81

35. Initial string length reduction with Binary Approximation on graph
C3540 ... 82

36. Initial string length reduction with Binary Approximation on graph
C5315 ... 83

37. Initial string length reduction with Binary Approximation on graph
C6288 84

Figure Page

38. Initial string length reduction with Binary Approximation on graph
C7552 ... 85

39. Percentage of reduction in string length for graphs C2670, C3540, C5315,
C6288, and C7552 .. 87

x i

x i i

LIST OF TABLES

Table Page

I. COMPARISON OF NATURAL GENETICS AND GENETIC
ALGORITHM TERMINOLOGY 5

II. CIRCUIT CHARACTERISTICS OF ISCAS-85 COMBINATIONAL
BENCHMARKS.. 47

III. POTENTIAL NUMBER OF VERTICES AND TOTAL SIZE OF THE
SEARCH SPACE FOR THE BENCHMARK GRAPHS............................... 48

IV. RANKING OF FOUR GENETIC ALGORITHMS USING DIFFERENT
STRING LENGTH REDUCTION AND STEPPING TECHNIQUES......... 59

I. INTRODUCTION

This chapter gives a short introduction to Genetic Algorithms and related areas

like Evolution Strategies and Genetic Programming. It introduces the DAG Vertex

Splitting Problem that is solved with sequential and Parallel Genetic Algorithms. The

outline of this thesis is also given in this chapter.

A. GENETIC ALGORITHMS AND RELATED AREAS

Genetic algorithms [1] (GAs) are adaptive search techniques that have been

shown to be robust optimization algorithms. In contrast to other optimization techniques,

genetic algorithms base their progress on the performance of a population of candidate

solutions, rather than on one candidate solution. GAs are loosely based upon Darwin’s

principle of natural selection and natural genetics. They have become increasingly popular

in recent years as a method for solving combinatorial optimization problems [2].

Besides Genetic Algorithms there exist other optimization techniques that use

natural mechanics. Evolution Strategies (ES) were first introduced by Reichenberg

[3][4], In [3], Back et. al. explains the main difference between Genetic Algorithms and

Evolution Strategies, the so called two-level learning process. This process allows ESs not

only to change the population according to given strategy parameters but also to change

the parameters itself. The strategy parameters make up an internal model of the objective

2

function, which are learned while seeking the optimum without any external controlling

instance or additional measure of fitness.

Genetic Programming [5] [6] is a fairly new paradigm that uses natural

mechanics to create computer programs. In the Genetic Programming paradigm, the

individuals in the population are compositions of functions and terminals appropriate to

the particular problem domain. The set of functions used typically includes arithmetic

operations, mathematical functions, conditional logical operations, and domain-specific

functions. The set of terminals used typically includes inputs appropriate to the problem

domain and various constants. The functions in the function set must be well defined for

any combination of elements from the range of every function and every terminal that it

may encounter. The search space is a hyperspace of all possible compositions of functions

that can be recursively composed of the available functions and terminals. Koza [5] lists

a variety of applications where Genetic Programming has been applied.

B. THE DAG VERTEX SPLITTING PROBLEM

Many applications involving computer networks and electrical circuits can be

modeled as a graph and path lengths in these graphs represent circuit or network delays.

If the path lengths in a Directed Acyclic Graph are too long and need to be reduced, the

reduction can be done by splitting certain vertices in the graph into two vertices which

results in a reduction of the path length. The DAG Vertex Splitting Problem is an

optimization problem in which the smallest number of vertices in the graph have to be

found such that the longest path in the splitted graph is less than or equal a pre-specified

3

maximum called 8. The DAG Vertex Splitting Problem addressed in this thesis has many

applications in the fields of computer science and electrical engineering. An application

would be to find the minimum number of placements of signal boosters in a network,

where the computers in the network are represented by the vertices of the graph. The

placement of flip-flops in partial scan designs [7] is another application. Heuristics [7]

have been used earlier to solve the DAG Vertex Splitting Problem. The DAG Vertex

Splitting Problem has been identified as NP-hard [7].

C. OUTLINE OF THESIS

This thesis is organized into 8 chapters. Chapter II defines Genetic Algorithms and

describes the standard functions used in a Genetic Algorithm. The Schemata , the

fundamental theorem in Genetic Algorithms, shows why and how Genetic Algorithms

work. Chapter II also mentions problems in Genetic Algorithms and how they can be

solved. Chapter III states and discusses the DAG Vertex Splitting Problem. The general

outline of the sequential Genetic Algorithm to solve the DAG Vertex Splitting Problem,

along with a discussion about the functions that perform reproduction, crossover, and

mutation are discussed in Chapter IV. Chapter V explains the string length reduction

techniques that delete vertices from the strings (chromosomes) as well as the stepping

methods to explore the search space. Chapter VI describes the parallel version of the

Genetic Algorithm implemented on the iPSC/2 Intel Hypercube. Experimental results are

reported in Chapter VII. Chapter VUI summarizes the results and points to some future

research directions.

4

II. BASICS OF A GENETIC ALGORITHM

A Genetic Algorithm is an adaptive search technique which employs selection of

fitter individuals in a population, similar to Darwin’s evolution theory [2], This chapter

defines a Genetic Algorithm and its basic outline. It also discusses the Schema Theorem,

the most fundamental theorem in Genetic Algorithms. Parallel Genetic Algorithms are a

special form of GAs. Genetic Algorithms are not free of problems. Some of these

problems are discussed in this chapter along with possible solutions.

A. DEFINITIONS

A Genetic Algorithm requires a population to operate. A population is a set of

individuals Pt, taken from a set of possible solutions. Every individual P; has one or

multiple chromosomes which have the genetic material encoded. Chromosomes consist

of genes and the positions of the genes in the chromosome are called loci or locus for a

single position. Genes may take on a number of values called alleles and the genes are

taken from an alphabet. The genetic material of an individual is usually encoded binary.

Thus, the alphabet consist only of two symbols, ’0’ and ’1’. An example of a binary

encoded chromosome with a length of 10 is 0010110001. Parents are selected from the

population in order to mate and to produce offspring. The offspring and the parents create

the next generation. Genetic Algorithms borrow their lingo from natural genetics but

there exist synonyms for all the terms used as listed in Table I.

Table I.

5

COMPARISON OF NATURAL GENETICS AND GENETIC
ALGORITHM TERMINOLOGY

Natural Genetics Genetic Algorithms

Chromosome String

Gene Character

Locus String Position

Allele Feature Value

Each individual has a fitness value which is determined by the fitness or

evaluation function. The objective of the Genetic Algorithm is to optimize the evaluation

function.

B. BASIC FUNCTIONS

This section talks about some of the basic functions used in Genetic Algorithms.

The functions are selection, crossover, mutation, and recombination.

1. The Select Function. The purpose of the select function is to select individuals

from the population for reproduction. Since Genetic Algorithms are based on Darwin’s

Evolution Theory, also known as survival of the fittest method, those individuals that

have a high fitness value also have to have a high probability of getting selected. Several

methods have been developed that perform the select.

a. Roulette Wheel Selection. The most commonly used selection method is the

so called roulette wheel selection [1]. Every individual in the population has a slot in the

roulette wheel sized in proportion of its fitness value over the cumulated fitness value of

6

the total population. Thus, every individual has a certain probability of getting selected

according to its fitness among the other individuals in the population. Figure 1 shows an

example of the roulette wheel selection with four individuals.

b. Tournament Selection. In the tournament selection [8][9][10], some

number of individuals (tournament size) are chosen randomly from the population and the

best individual from this group is selected for further genetic processing. Tournaments are

often held between pairs of individuals (tournament size of 2), although larger

tournaments can be used.

c. Ranking Selection. In the ranking selection [11] the population is sorted

from best to worst. A number is assigned to each individual according to a non-increasing

assignment function and then proportional selection is used according to the assigned

number.

Figure 1.Select individuals using a roulette wheel

7

2. Crossover. The crossover function is used to create the chromosomes for the

offspring from the chromosomes of the parents. There are several different methods of

doing the crossover.

a. One-Point Crossover. This method defines a so called crossover , a place

between loci where a chromosome can be split. This crossover point is chosen randomly.

Two new chromosomes are created by swapping every gene after or before the crossover

point between both parents. Figure 2 shows an example of a One-Point Crossover where

the crossover point has been marked by | .

b. Two-Point Crossover. The Two-Point Crossover defines two crossover points

and the genes are swapped between the two crossover points. Figure 3 gives an example

of a Two-Point Crossover. A generalization of this method is the N-Point Crossover

[12] which defines n crossover points.

8

c. Uniform Crossover. The Uniform Crossover [13] [14] became very

popular recently because it uses a more general approach. Instead of using crossover

poinls the uniform crossover defines a binary crossover mask with a length equal to the

length of the chromosomes. For each loci in the chromosomes of the parents, the genes

are swapped if the crossover mask has a one in the same position. Figure 4 illustrates an

example of a uniform crossover.

The crossover mask is chosen randomly with a probability of 50%. Recent

research by Spears and DeJong [15] suggests a new type of uniform crossover, the

Parameterized Uniform Crossover, where the crossover mask is chosen with a probability

other than 50%.

3. Mutation. The mutation function is another way of altering genes in

chromosomes and plays an important role both in natural and artificial genetics. Mutation

9

is needed because it prevents the loss of potentially useful genetic material. By itself,

mutation is a random walk through the chromosomes in the population which changes bits

in chromosomes at a very low rate. This rate is called the mutation rate and is part of

the parameter list of a GA.

4. Recombination. The recombination function defines how the new generation

is to be build from the parents and offspring. There are several ways of doing the

recombination. One way of doing it is to replace the parents by the offspring after every

crossover. Another way is to replace a certain percentage of the population by offspring

during each generation. The parameter, generation gab G, controls this percentage. That

is N * (1 - G) individuals of the population P(t) are chosen randomly to survive into

the next generation, where N is the population size. A 1.0 means that the entire

population is replaced by the offspring in each generation. A third way is used in this

thesis where the best individuals from the parents and the offspring are selected to form

the new generation [16].

The basic structure of a Genetic Algorithm can be seen in Figure 5.

C. THE SCHEMA THEOREM

The Schema Theorem [1] is one of the most fundamental theorems in Genetic

Algorithms. A schema (plural: schemata) is a similarity template describing a subset of

strings with similarities at certain string positions. The theorem enforces to extend the

definition of the alphabet by a so called don’t care symbol, # for the schemata. Thus, the

binary alphabet for schemata consist of three symbols {0, 1, #}. A schema can be

10

considered as a pattern matching device in the following sense: a schema matches a

particular string if at every location in the schema a 1 matches a 1 in the string, a 0

matches a 0, or a # matches either. For example, the schema #0000 matches two strings,

namely {10000, 00000} and the schema #01#0 describes a subset with four members

{00100, 00110, 10100, 10110}.

Schemata have two characteristics. The order of a schema H, denoted by o(H), is

the number of fixed (non #) symbols in the schema. The defining length of a schema H,

denoted by b(H), is the distance from the first to the last fixed position. For example, the

schema 10##0 has order 3 and defining length 4. Schemata and their properties are

interesting to study for classifying string similarities.

Suppose at a given time step t, there are m examples of a particular schema H

contained in the population P(t) where mis a function of H and t, i.e. m = m(H, t).

During reproduction, a string is copied according to its fitness, or more precisely, a string

11

f
Pj gets selected with probability p 1 = ---- — where is the fitness value of P,. After

£ f i

picking a nonoverlapping population of size n with replacement from the population P(t),

it is expected to have m{H,r+1) representatives of the schema H in the population P at

f(H)time t+1 as given by the equation m(H, t+1) = m(H, t) • • ■ v ■, where is
H f i

the average fitness of the strings representing schema H at time t. The average fitness of

the entire population can be written as f -* Ihen the schema growth equation

can be rewritten as follows:

m(H, r+1) = m(H, t) . m (1)

In other words, a particular schema grows in proportion with the ratio of the

average fitness of the schema over the average fitness of the population. Therefore,

schemata with fitness values above the population average will receive an increasing

number of samples in the next generation, while schemata with fitness values below the

population average will receive a decreasing number of samples. It is interesting to note

that this behavior is carried out with every schema H contained in a particular population

P in parallel.

12

Suppose there exists a particular schema H whose fitness value is above the

population average by an amount c f with c being a constant. Under this assumption the

schemata growth equation can be rewritten as follows:

m(H, t+1) = m(H, t) • £ +_c-̂ = (1 + • m(H, t) (2)
/

Starting at t = 0and assuming a stationary value of c, the following equation can be

obtained:

m(H, t) = m(H, 0) • (1 + c)f

The effect of reproduction is now quantitatively clear. Reproduction allocates

exponentially increasing (decreasing) numbers of trials to above- (below-) average

schemata.

Equation (1) considers reproduction as the only operator in a GA. But reproduction

alone does not explore new regions in the search space. Only in combination with

crossover, new individuals are created. Therefore crossover must be taken into

consideration. To see which schemata are affected by crossover, consider the following

example of a string of length / = 7 and a randomly chosen crossover point shown in

Figure 6.

Unless string P ’s mate is identical to P; at the fixed positions of the schema Hv

schema Hl will be destroyed because the 1 at position 2 and the 0 at position 7 will be

placed in different offspring (they are on opposite sides of the crossover point). Schema

H2 will survive because all fixed positions in H2 will be copied into a single offspring.

13

S t r i n g PA: O i l 1 0 0 0

Schema H i: # 1 #
Schema H2: # # #

0
1 0 # #

Figure 6. Effect of crossover on schemata

In general, schema H1 is less likely to survive crossover than schema H2 because a

crossover point is more likely to fall between the two extreme fixed positions of Schema

Hx. Since the crossover point is selected randomly, schema Hx is destroyed with

probability = 6 0 ^)
1 - 1 ’

where 5() is the defining length of schema Hv The

probability of survival is p e - 1 - p d. Considering crossover performed randomly with

a probability pc at a particular mating, the survival probability is given by:

Ps * 1 - Pc 1 - 1
(4)

Considering reproduction and crossover together, the schema growth equation can

be estimated as follows:

AH) ri • • [i - pe i- r
(5)

A simple interpretation of the above equation is that a schema is more likely to

survive if it has an above average performance and a short defining length.

14

The last operator that affects the schema growth is mutation. Mutation is the

random alteration of a single position with probability pm. In order for a schema H to

survive, all of the fixed positions must themselves survive. Thus, since a single position

survives with probability (1 - pm), and since each mutation is statistically independent, a

particular schema survives when each of the o(H) fixed positions within the schema

survive. Thus, the probability of surviving mutation is (1 - ° (w). For small values

of pm ipm « 1), the schema survival probability may be approximated by the expression

l - o (if) • p m. Therefore, the schema growth equation considering reproduction,

crossover, and mutation can be expressed by the following equation:

m(E, t+1) * m(H, t) - M l ■[1 - p - - • p j (6)
/ 1

In other words, schemata with a low-orde, an above average fitness, and a short

defining length are more likely to survive than others. Equation (6) is called the Schema

Theorem, or the Fundamental Theorem of Genetic Algorithms. Since these short, highly-

fit, low order schema are important, they have a special name. They are called Building

Blocks.

15

D. PARALLEL GENETIC ALGORITHMS

Genetic Algorithms tend to be slow algorithms, when implemented on a sequential

machine. But, they also have a big advantage: they are easier to parallelize than other

optimization techniques, like Simulated Annealing. Parallel Genetic Algorithms (PGAs)

are GAs that run on a parallel machine and use the available processors to solve the

problem. PGAs have been described in many papers [17][18][19][20] and they

become increasingly popular as parallel machines become more available.

Jog, et.al. [17] point out some weaknesses in the design of genetic algorithms as

originally proposed by Holland [1]:

• In accordance with nature, it is more natural to view a population as consisting of

a set of independent structures, each with its own local behavior, i.e., each has the

opportunity to initiate or undergo recombination operators, without the control of

a global agent.

• Selection in standard GAs is a global process, i.e., selection of an individual

depends on its performance relative to the average performance of the entire

population. This is quite different from natural selection and inefficient to

parallelize [21]. Parallel Genetic Algorithms therefore introduce local selection

without affecting the performance of the algorithm.

• PGAs allow for asynchronous behavior. This is not possible in standard GAs. This

allows different structures to evolve at different speeds which may result in the

16

global speed-up of the algorithm as well as the maintenance of diversity, which

is a critical component for the success of a GA.

A PGA operates on a large population that is distributed into several

subpopulations of individuals [19]. Every processor in the multiprocessor system runs a

sequential Genetic Algorithm on one of the subpopulations. In order to increase the power

of PGAs, processors exchange information via message-passing. This communication

consists of exchanging one or many individuals among the processors. At each

communication point a certain number of the best individuals of each processor are sent

to one of its neighbors. After the individuals have been received, they have to be inserted

into the population by either replacing old individuals randomly or by replacing the worst

individuals. The modified code for the Parallel Genetic Algorithm is given in Figure 7.

17

E. PROBLEMS WITH PROPORTIONAL ALLOCATION

Although assigning probabilities to individuals for selection based on each

individual’s fitness value relative to the accumulated fitness of the total population

increases superior schemata in successive generations, there are several problems

associated with this selection system as explained below [22]:

1. Deceptive Problem. The deceptive problem occurs, when superior individuals

in the population do not represent characteristics represented in the optimal value. Thus,

the Genetic Algorithm will be led away from the optimal solution.

2. Premature Convergence. A Genetic Algorithm converges prematurely, when

the population creates individuals that have already been created and evaluated. Thus,

little further exploration can be done. This problem can be reduced by introducing some

randomness into the Genetic Algorithm. This is done by mutation. The randomness

introduced by mutation will be kept in future generations if it contributes to higher fitness

values and it is discarded otherwise.

3. Genetic Drift. Genetic Drift is a problem that occurs when the ratio between

superior and average schemata is low. If genetic drift occurs, the population starts to

converge to an arbitrary individual. An attempt of re-introducing lost alleles with a higher

mutation rate usually does not work [12].

18

F. MODIFICATIONS TO GENETIC ALGORITHMS

As these problems with Genetic Algorithms were explored, modifications were

designed to correct the problems. This section discusses some of the methods that are

used to correct the GA problems associated with GAs [22]:

1. Crowding. One way of slowing down the convergence rate is to use crowding

suggested by DeJong [12]. The population is not a set of offspring generated from the

previous population. Instead, each offspring replaces one individual in the population. An

individual is replaced with a higher probability if the chromosomes of the individual and

of the offspring are similar. This prevents the population from having duplicated genetic

material. Therefore the population has a high diversity.

2. Elitism. If the best individual of any population is not represented in the new

population, then this best individual is included into the new population as a new

member. This method was also suggested by DeJong [12],

G. SUMMARY

This chapter defined a Genetic Algorithm and the terminology used. Based upon

simple functions like select, crossover, and mutation, Genetic Algorithms have been

shown to be robust optimization algorithms. They differ from other optimization and

search techniques in the following ways:

1) GAs work with a coding of the parameter set, not with the parameters themselves.

2) GAs search from a population of points, not a single point.

19

3) GAs use payoff (objective function) information, not derivatives or other

knowledge.

4) GAs use probabilistic transition rules, not deterministic rules.

The Schemata Theorem lays the foundation for the GA theory and shows that

short, low order, above average schemata receive exponential trials in following

generations. Parallel Genetic Algorithms are a way to use Genetic Algorithms in a more

natural way than sequential Genetic Algorithms. But, Genetic Algorithms also have

problems. Deception, Premature Convergence and Genetic Drift are only some of the

problems that have emerged. Modifications were made to Genetic Algorithms in order to

correct the problems.

20

III. THE DAG VERTEX SPLITTING PROBLEM

This chapter defines the DAG Vertex Splitting Problem and its terminology.

Solutions to the problem have a wide application in Computer Science and Electrical

Engineering.

The DAG vertex splitting problem (DVSP) can be stated as follows [7]: Let G =

(V, E, w) be a weighted directed acyclic graph (WDAG) with vertex set edge set E,

and edge function w. w(i, j)is the weight of the edge <i, j> e E. w(i, is a positive real

number for <i,j> e E and is undefined if <i,j> «? E. The delay, d(P), on the path P, is

the sum of the weights of all the edges on that path P, which can be expressed as follows:

< W - £ Mi, j), V <i, j> e P

The delay, d(G), of the graph G is the maximum path delay in the graph, which is

expressed in the following equation:

d(G) = max d(P), V e (8>

Figure 8 shows a DAG with a maximum path length of 3.

Let G/X be the WDAG that results when each vertex v in is split into two

vertices V and v° such that all outgoing edges <v, j> e are replaced by edges of the

form <v°, j> and all incoming edges <i, v> e Eare replaced by edges of the form </, v'>.

Outbound edges of v now leave v°, while inbound edges of v now enter v‘. Figure 9 shows

the result, G/X, when splitting vertex 3 of the DAG of Figure 8 into vertex 3‘ and vertex

21

3°.

A source vertex is a vertex with no edge coming into the vertex and a sink vertex

is a vertex with no edge leaving the vertex. Note that splitting either source or sink

vertices does not reduce the path length.

22

The DAG vertex splitting problem is to find the least cardinality vertex set X

d(G/X) < 8, where 5 is a pre-specified maximum delay. For the DAG of Figure 8 and 8

= 2, X = {3} is a solution to the DVSP.

Lemma 1: Let G = (V, E, w) be a weighted directed acyclic graph and let 8 be

a prespecified delay value. Let MaxEdgeDelay = max { w(i, j) } V <i, j> e E. Then the

DVSP has a solution iff 8 > MaxEdgeDelay.

Proof: Vertex splitting does not eliminate any edges. So, there is no X 3 d(G/X)

< MaxEdgeDelay. Further, d(G/V) = MaxEdgeDelay. So, for every 8 > MaxEdgeDelay,

there is a least cardinality set X 3 d(G/X) < 8.D

If w(i, j) = 1 V <i,j> € E then the graph has unit weights. It has been proven by

Sahni et.al. in [7] that finding a solution for DVSP is NP-hard for graphs with unit

weights and with a 8 > 2. Since unit weight directed acyclic graphs are just a special case

of weighted directed acyclic graphs these results also apply to the WDAG.

23

IV. THE GENETIC ALGORITHM FOR THE DVSP

This chapter describes the Genetic Algorithm that has been developed to solve the

DAG Vertex Splitting Problem. It talks about the data structures that are used by the

algorithm and gives a basic outline of the algorithm. This chapter also discusses how the

crossover and mutation function have to be adapted in order to work on the algorithm.

A. OBJECTIVE AND CHROMOSOME ENCODING

The objective for the GA is to find a minimal set of vertices that split the graph

such that the resulting graph has no path of length > 8.

The strings (chromosomes) in each individual of the population represent the set

o f splitting vertices (or split set for short) that are used to split the graph. Thus, the

smaller the split set the better the solution. The term split set or string is used from here

on instead of chromosome. Theoretically every vertex in the graph, excluding source and

sink vertices, can be split and a vertex can only occur once in the split set. But some of

these vertices might not be on a path whose length is greater than 8. Thus, it would be

worthless to consider them as potential vertices to split. A new set is introduced, called

potential vertices, which contains only those vertices that are on paths whose length is

greater than 8.

24

Lemma 2: After all the potential vertices are split, there cannot be any path in the

graph whose length is > S.

Proof: Assume that there is such a path. Then, all the vertices on that path must

be members of the potential vertex set. On the other hand, all the potential vertices are

split and no potential vertex can be on a path £ 8. Therefore, this is a contradiction.^

B. GF.NF.R A1.01 ITT .INF OF THE GENETIC ALGORITHM

The genetic algorithm starts the search with an initial string length and continues

with multiple rounds of optimization. Each optimization round tries to find a feasible

solution with a fixed size split set (string length), i.e. the vertices in the split set of at

least one individual can split the graph in such a way that the resulting graph has a

maximum path length which is less than or equal to 8. If a solution is found in a

particular round, the next round attempts to shorten the string length and find a new

solution with fewer number of vertices. Therefore the string length varies over time.

Variable string length has been used before in GAs [23][24][25][26]. The

genetic algorithm works only on one certain string length at a time. Different string

lengths within a given population are not allowed simultaneously because it makes the

GA more complex when applying the select and crossover functions. Basically, the

algorithm works as follows:

1) try to find a suboptimal solution by splitting x vertices

2) if a suboptimal solution is found, reduce the number of vertices and try again

25

3) if no solution has been found within a certain number of generations, expand the

number of vertices and try again.

The outline of the Genetic Algorithms for the DVSP is given in Figure 10.

Binary Approximation;
C r e a te i n i t i a l p o p u la t io n ;

w h i l e (l s to p)
{

Determine new s t r i n g le n g t h ;
Reduce o r Expand th e s t r i n g le n g t h ;
Evaluate p o p u la t io n ;

f o r (# o f g e n e r a tio n s)
{

Select in d i v i d u a l s f o r r e p r o d u c t io n ;
Crossover t o c r e a t e new o f f s p r i n g ;
Mutate o f f s p r i n g ;
Evaluate o f f s p r i n g ;
Recombine p a r e n ts and o f f s p r i n g t o c r e a t e

new g e n e r a t io n ;
>

>

Figure 10. Outline of the GA for the DVSP

C. BINARY APPROXIMATION

The Genetic Algorithm has to start the search for an optimal solution with an

initial string length for the initial population. As discussed earlier, a solution to the

DVSP exists, if all vertices in the potential vertex set are split. Thus, the initial string

length to start the GA would be the cardinality of the set of potential vertices. Since this

number might be far away from the global optimum, a method called Binary

26

Approximation (BA) was developed, to narrow down the area around the global optimum

in order to quickly find a better initial string length. The function works as follows:

B in a r y A p p r o x im a tio n ()
{

w h i l e (upper > low er)
{

mid = (upper + lo w er) 1 2 ;
found = r a n d o m _ s p lit (mid) ;
i f (fou n d)

upper = b e s t _ s o _ f a r = m id;
e l s e

low er = m id;
>
r e t u r n (b e s t _ s o _ f a r) ;

>

r a n d o m _ s p lit (mid)
{

f o r (# o f t r i e s f o r BA)
{

s e l e c t mid u n iq u e v e r t i c e s from th e
p o t e n t i a l v e r t e x s e t ;

s p l i t th e grap h w ith th e s e l e c t e d v e r t i c e s ;
d e te rm in e th e lo n g e s t p a th o f th e s p l i t

g ra p h ;
i f (lo n g e s t p a th < = d e l t a)

r e t u r n (TRUE) ;
>

}

Figure 11. Pseudo code of Binary Approximation

The solution to the DVSP has to lay somewhere between splitting one vertex and

splitting all potential vertices. Thus, a binary search is started midway between these two

boundaries. A certain number of split sets (strings), determined by the parameter number

of tries for BA, are created randomly with a string length halfway between the lower and

the upper bound. If a solution is found among these split sets, it is marked as a new upper

bound for the BA. If no solution can be found then this is assumed to be a lower bound.

27

This process is repeated until the difference between the lower and the upper bound is

less than one. After termination, the upper bound is assigned to the initial string length.

Figure 11 shows the pseudo code for the Binary Approximation.

Experiments1 have shown that the BA does an extremely good job in narrowing

down the area around the global optimum, considering that it is a purely random

algorithm. The initial string length returned by the BA is then used to create the initial

population.

D. SELECT FUNCTION

The select function is a standard select using the roulette wheel. Instead of a linear

search through the population, a binary search has been implemented which returns the

index of the selected individual. Since the goal of optimization is to minimize the longest

path in the graph by splitting vertices, the fitness function is defined to be

______ 1______
L o n g e s t P a th '

E. CROSSOVER FUNCTION

The uniform crossover [13][14] function is used to generate offspring from the

parents. The uniform crossover was shown to outperform the one-point and two-point

crossover in most cases [13][14]. While applying the uniform crossover, generation of

'More information about the experiments in Chapter 7.

28

multiple copies of the same vertex in a split set of the offspring must be avoided.

Consider the following example illustrated in Figure 12 with two parents, a string length

of 5, and a randomly generated crossover mask of OHIO.

P a re n t 1: 15 7 8 19 2
P a re n t 2 : 20 5 15 3 7

C r o s s o v e r M ask: 0 1 1 1 0

O f f s p r i n g 1: 15 5 15 3 2
O f f s p r i n g 2 : 20 7 8 19 7

Figure 12. Example of a crossover with duplicated vertices

After the crossover, offspring 1 ends up getting vertex 15 twice and Offspring 2

ends up getting vertex 7 twice. These vertices are called duplicated vertices. Since this

is not allowed to happen, as discussed earlier, this situation must be avoided. Thus, all

the vertices that appear in both parents are not allowed to undergo crossover. To do this,

the duplicated vertices have to be determined in both parents and separated from the

remaining vertices by moving them to the end of the split set. This can be done because

the order of the vertices in the split set does not change the outcome of the graph after

splitting. After the duplicated vertices have been moved to the end of the split set, the

uniform crossover can be performed without further changes among the remaining

vertices. If these ideas are applied to the previous example, the result would be as shown

in Figure 13:

The last two bits in the uniform mask are not really necessary because they do not

have any effect on the offspring.

29

P a re n t 1: 8 19 2 15 7
P a re n t 2 : 20 5 3 15 7

C r o s s o v e r M ask: 0 1 1 1 0

O f f s p r i n g 1: 8 5 3 15 7
O f f s p r i n g 2: 20 19 2 15 7

Figure 13. Example of a crossover with separated duplicated vertices

Every applied crossover results in two or more offspring, depending on the

parameter offspring per parents. For more than two offspring per parents, different

crossover mask have to be created, in order to avoid that parents create the same offspring

over and over again. The offspring is placed into the population together with its parents

which results in a temporary increase in the population. This population is reduced later

by the recombination function. This way of creating a new generation was chosen to

ensure that less fit offspring do not overwrite a more fit parent.

F. MUTATION FUNCTION

The mutation function operates only on the newly created offspring. Once a vertex

has been chosen for mutation it is replaced by a new vertex picked from the potential

vertex set that is not in the split set of the mutated individual. The parameter mutation

rate determines the probability of mutating a certain vertex in the split set of all offspring.

30

G. RECOMBINATION FUNCTION

The recombination function takes the old population and the new offspring and

reduces it down to the previous population size. The reduction is based upon the select

function which ensures that fit individuals have a higher probability of survival into the

new generation. This means that individuals of the old population can survive into the

new population while new offspring may die depending on their fitness values. This

method ensures that a highly fit parent does not get eliminated by a lower fit offspring.

The recombination function also takes care of a certain variety in the new generation by

making sure that no individual (parents and offspring) gets selected more than once for

the new population. Figure Figure 14 illustrates the recombination function.

H. TAKE CARE OF ONES

It is possible that the DVSP has a solution by splitting only one vertex. This

means that the string length is only one. If the crossover function is performed on

individuals with a string length of one, no new individuals are introduced into the

population. Only mutation can introduce new individuals. Since the mutation rate is very

low, there exists a high probability of missing a solution with one vertex. A function

called Take care of ones is used to eliminate this possibility. This function tries every

vertex in the potential vertex set one at a time to check if there exists a solution. This

function is used before the GA is started. If this function finds a solution by spitting only

one vertex, then there is no need to start the GA.

31

Parents

Offspring

New
Generation

Figure 14. Illustration of the recombination function

I. SUMMARY

This chapter describes the Genetic Algorithm that has been developed to solve the

DAG Vertex Splitting Problem. The strings (chromosomes) of each individual represent

the vertices that are used to split the graph. This leads to a variable string length since

the objective of the Genetic Algorithm is to find a minimal set of vertices that split the

graph. Binary Approximation is a method to narrow down the search space around the

global optimum. Some problems had to be solved in order to use the crossover and

mutation function.

32

V. STRING LENGTH REDUCTION AND

STEPPING

Why is a string length reduction necessary? The strings represent the vertices that

are used to split the graph. The objective is to find a minimal set of vertices that split the

graph. Thus, if the GA finds a suboptimal solution with splitting X vertices, it has to try

to find a solution with splitting Y vertices, where Y < X.

Any string length reduction method must address the following two problems:

A) How to reduce the size of the split set?

B) What should be the next size of the split set?

Two strategies have been devised for each of the problems stated in A) and B) that

are explained below.

A. STRING LENGTH REDUCTION METHODS

To address A), two different reduction methods were developed.

1. Preserve Duplicates. The first method is called Preserve Duplicates. This

method makes sure that the duplicated vertices in every individual do not get lost when

the number of vertices is reduced. The intuition behind this strategy is that the duplicated

vertices are important for getting a better fitness value since they have survived in

multiple individuals throughout the evolution process. Recall that the duplicate vertices

33

are located at the end of the split set. Thus, to implement this strategy, the last vertices

are moved to the beginning of the split set and the string length is reduced from the end

of the split set leaving the duplicate vertices undeleted.

2. Random Delete. The second method deletes a number of vertices randomly

out of the split set and is therefore called Random Delete.

B. STEPPING METHODS

After a suboptimal solution has been found, the number of vertices in the split set

has to be reduced. Thus, the question that emerges is "How many vertices have to be

taken out of the strings for the next round of optimization?" In other words, how does the

GA step through the search space? Two different, so called stepping methods were

developed, to determine the string size that ought to be tried next by the GA.

1. Linear Stepping. The first method is called Unear , which means that

the string length is reduced by a positive integer every time a suboptimal solution is

found. This integer is part of the parameter list and is called strlen decrement. If no

solution can be found with the reduced number of vertices the string length is

incremented by one. The one new vertex that has to be introduced is taken from the set

of potential vertices. The string length increment is performed until a new solution is

found or until the string length exceeds the string length of the best solution found so far.

34

2. Multiple Binary Stepping. The second method is called Multiple Binary

Stepping. This method starts out with a lower bound of two (note that the one vertex case

has already been tested) and an upper bound obtained from the BA. The new string length

is always determined by the formula VPP?*— g very tjme a

solution is found, the population that yielded this solution is saved and the upper bound

is set to the current string length. If no solution has been found the lower bound is set to

the current string length. It is important to note that the split set is always reduced from

the latest saved population. This process repeats as long as a new solution with a smaller

string length can be found.

Figure 15 gives an example of how the Multiple Binary Search works. The search

space is visualized as an array where the indices represent the string length. Assume that

the BA has returned an initial string length of seven. Thus, the upper bound is set to

seven. The new string length is set to four and the GA is started. In the example, the GA

cannot find a solution within a certain number of generations. Thus, the lower bound is

set to current string length, which is four. The new string length is then set to five and

the GA is started again. This time, a solution is found and the upper bound is set to five.

The difference between the lower and the upper bound is only one and therefore the

Multiple Binary Stepping is stopped. Since the best solution was reduced from seven to

five, a second round is started. The lower bound is reset to two while the upper bound

remains. A string length of three is tried by the GA which does not yield a solution. Then

a string length of four is tried again, but again no solution can be found. Lower and upper

35

lower____________i_____ upper
_____ __ _ NS ! I j

2 3 4 5 6 7
________ lower ______upper

S
2 3 4

lower

5
upper

6 7

2 3 4 5 6 7
lower upper

NS
2 3 4 5 6 7

lower upper
NS

2 3 4 5 6 7
lower upper

2 3 4 5 6 7

Figure 15. Example of a Multiple Binary Search

bound differ only by one and the Multiple Binary Stepping terminates. Since this round

could not reduce the best solution, no new attempt is started to find better solutions.

C. SUMMARY

String length needs to be reduced in order to find better solutions. Two methods

of how to reduce the string length are introduced. One method simply picks vertices out

of the strings randomly, while the other method tries to prevent duplicated vertices from

being deleted which might be of value for better solutions to the DAG Vertex Splitting

S: Solution found
NS: No Solution found

36

Problem in the future. The second question that is addressed in this chapter is how many

vertices have to be deleted for the next optimization round. Two techniques were

developed that "step" through the search space. One technique reduces the string length

by a positive integer. The other technique uses a Multiple Binary Stepping method to

explore the search space.

37

VL THE PARALLEL GENETIC ALGORITHM

This chapter describes the Parallel Genetic Algorithm (PGA) derived from the

sequential Genetic Algorithm to solve the DAG Vertex Splitting Problem. It has been

implemented on an iPSC/2 Intel Hypercube with a maximum of 16 processors. The PGA

has been developed such that it can run on any number of processors. Section A gives an

outline of how the algorithm works. Additional functions are used to exchange

information about the state of the progress. The functions are exchange initial string

l e n g t h , determine new string length, remote solution, adjust boundaries, and exchange

individuals and are described in the Sections B through F respectively. Section G

summarizes the Parallel Genetic Algorithm.

A. OUTLINE OF THE PARALLEL GENETIC ALGORITHM

The Parallel Genetic Algorithm has been developed such that it can run on any

number of processors > 2. The basic idea behind the Parallel Genetic Algorithm is to

distribute the available processors over the search space and let each processor operate

on a subpopulation of the total population. In other words, every processor operates on

a different string length. The outline of the Parallel Genetic Algorithm is given in

Figure 16. Every processor starts out by computing the initial string length for the initial

population using the Binary Approximation described in Chapter IV. Then each processor

tries to find a solution with just splitting one vertex using the Take care of ones function.

After these two initial steps the processors synchronize and exchange information to find

out the minimal initial string length. This function is described in the next section. With

38

Binary Approximation;
Take care of ones;
Exchange initial string length;
c r e a t e i n i t i a l p o p u la t io n ;
save population as b e s t p o p u la t io n ;

w h i l e (up per >= low er)
{

determine new string length;
shrink s t r i n g le n g t h from b e s t p o p u la t io n t o new

s t r i n g le n g t h ;
evaluate p o p u la t io n ;

f o r (# o f g e n e r a tio n s)
{

i f ((g e n e r a tio n % a lo n e) == a lo n e -1)
{

i f (rem ote solution)
b r e a k ;

exchange individuals;
}

Select in d i v i d u a l s from s u b p o p u la tio n ;
Crossover to c r e a t e new o f f s p r i n g ;
Mutate o f f s p r i n g ;
Evaluate o f f s p r i n g ;
i f (l o c a l s o l u t i o n in o f f s p r i n g)
{

save population a s b e s t p o p u la t io n ;
b r e a k ;

}

}

Recombine p a r e n ts and o f f s p r i n g t o c r e a t e
new g e n e r a t io n ;

i f (! rem ote s o l u t i o n)
exist remote solution;

)
adjust boundaries;

Figure 16. Outline of the Parallel Genetic Algorithm for the DVSP

the minimal initial string length, the processors create their initial subpopulation and save

it as the currently best population. The lower bound is set to two and the upper bound of

39

the search space is set to the initial string length. The termination condition for the while

loop is determined by the virtual boundaries of the search space. These boundaries are

adjusted by the function adjust boundaries which is discussed in Section G. After

entering the while loop every processor uses a new string length. This assignment of the

new string length to each processor is fully distributed without any master processor being

involved and in a way such that the processors are equally distributed over the search

space. Section C describes this algorithm. Every processor reduces the string length in the

current population from the best population to the new assigned string length. With the

experience gained from the experiments [16] performed on the sequential GA, the

Random Delete reduction method is used to delete vertices out of the split set in the

Parallel Genetic Algorithm. The generation loop is similar to the generation loop in the

sequential Genetic Algorithm. The only difference is the added communication. The

communication is twofold: (1) involves finding out about solutions on other processors.

(2) involves exchanging "good" individuals with another processor by replacing "bad"

individuals with "good" individuals. The processors spend a certain number of generations

evolving the population, determined by the parameter alone. Then the processors

synchronize in order to find out, whether another processor has already found a solution.

This takes place in the function remote solution which is explained in Section D. If a

remote solution exists, the generation loop is terminated and the upper bound of the

search space is adapted to the string length of the processor that found the solution. If

more than one processor has found a solution then the minimum of their string lengths

is taken for the new upper bound of the search space. In case of no solution, the

processors exchange a number of their best individuals. The number of individuals chosen

40

for exchange is determined by the parameter exchange. A closer look at this function is

taken in Section F. If no solution has been found within a certain number of generations,

determined by the parameter number of generations, the search space is virtually reduced

by increasing the lower bound. This takes place in the function adjust boundaries which

is described in Section G.

B. EXCHANGE INITIAL STRING LENGTH

This function is used to determine the smallest initial string length obtained in all

the processors after applying Binary Approximation and Take care of ones. One of the

processors is assigned to be the root processor. The root processor has to receive the

initial string length from all the other processors, determine the smallest string length

among the received string lengths, and send the smallest initial string length back to all

the processors. All the other processors simply send their initial string length to the root

processor and wait for the root to reply back with the smallest initial string length. The

pseudo code for this function is given in Figure 17.

C. DETERMINE NEW STRING LENGTH

This functions determines the string length of each processor such that all

processors are equally distributed over the search space. The search space can again be

viewed as an array with a lower and an upper bound. The pseudo code for this function

can be seen in Figure 18.

41

i f (ROOT)
{

f o r a l l p r o c e s s o r s
{

r e c e iv e i n i t i a l s t r i n g le n g t h ;
i f (r e c e iv e d v a lu e < minimum)

minimum = r e c e iv e d v a lu e ;
>
send minimum t o a l l p r o c e s s o r s ;

}
e l s e
{

send i n i t i a l s t r i n g le n g t h t o ROOT;
r e c e iv e s m a lle s t s t r i n g le n g t h ;

>

figure 17. Pseudo code of the function exchange initial string length

If the difference between the upper and lower bound of the search space is less

than the number of processors, then multiple processors are assigned the same string

length.

D. REMOTE SOLUTION

This function is used by the processors to determine whether one of the processors

has found a solution or not. The function basically works like the exchange initial string

42

length. One processor is assigned to be the root processor which receives all the data

from the other processors. If one processor has found a solution it sends a TRUE value

to the root along with the string length with which the solution has been found. The root

determines the smallest string length, considering the results received from all the

processors and returns this back to the other processors.

E. ADJUST BOUNDARIES

This function sets the upper and lower bounds of the search space depending on

whether solutions have been found within a certain number of generations or not. If a

solution has been found, the upper limit of the search space is set to the smallest string

length that has found the solution. If none of the tested string lengths yielded a solution,

the upper limit remains the same, while the lower limit is increased according to the

following equation: lo w e r = lowei£ + u pper + ^ .This virtually reduces the search
2

space in order to group the processors more around an area where a solution is more

likely to exist. This also allows some processors to work on the same string length when

the difference between the upper and lower bound is less than the number of processors.

The lower limit is continued to be increased if no solution is found in the following

optimization rounds. Once the lower limit is higher than the upper limit the PGA is

stopped. The lower limit is reset to two if a solution is found.

43

F. EXCHANGE INDIVIDUALS

This function is used to exchange a number of individuals, determined by the

parameter exchange. A different exchange strategy than described in Tanese [19] is used.

In a ^-dimensional Hypercube architecture every processor has d neighbors. In Tanese’s

model, every processor exchanges its best individuals with one of its neighbors. The

communication partner changes with every exchange. This exchange scheme does not

work in this model because every processor operates on a different string length. Only

when the difference between the upper and lower bound of the search space is smaller

than the number of available processors, multiple processors are assigned to the same

string length. In that case an exchange can take place. Tanese’s exchange model uses

pairs of neighbors to exchange individuals. This also does not work in this model because

there might be an odd number of processors working on one string length which does not

allow to create pairs. Therefore a ring exchange model is used. For example, assume that

processor 0, 6, and 12 are assigned to work on the same string length. When the

processors exchange individuals, processor 0 sends its individuals to processor 6,

processor 6 sends its individuals to processor 12 and processor 12 sends its individuals

to processor 0. The ring exchange model has one disadvantage: it does not use nearest

neighbor communication which should be a goal for programs that run on hypercube

architectures. Nearest neighbor communication only involves sending messages between

processors that are one distance away from each other. In order to achieve nearest

neighbor communication between processors that are assigned the same string length, a

more complicated distribution strategy has to be used.

44

The "good" individuals in each subpopulation are selected probabilistically using

the select function. In order to avoid communication overhead by sending every individual

in a separate send command, the split sets of every selected individual is copied into a

single array which is then send. The fitness values of the selected individuals are also

copied into an array and send separately from the split set array. After the data has been

exchanged, the "bad" individuals in the subpopulation have to be determined in order to

replace them by the received individuals. To select the "bad" individuals in the

subpopulation the inverse select function has to be used. The inverse select function uses

the inverse of the fitness value which gives individuals with a bad fitness value a higher

probability of getting selected. Figure 19 lists the pseudo code for the function exchange

individual.

d e te rm in e w h eth er o th e r p r o c e s s o r s work on th e same
s t r i n g le n g t h ;

i f s o , d e te rm in e p r o c e s s o r to w h ich t o send d a t a ;
f o r (# o f i n d i v i d u a l s t o exchange)
{

s e l e c t "good" i n d i v i d u a l s ;
c o m p ile s p l i t s e t and f i t n e s s v a lu e o f s e l e c t e d

i n d i v i d u a l i n t o send a r r a y s ;
>
send c o m p ile d a r r a y s ;
r e c e iv e co m p ile d a r r a y s ;
f o r (# o f in d i v i d u a l s t o exchange)
{

s e l e c t "bad" i n d i v i d u a l s ;
r e p la c e s p l i t s e t and f i t n e s s v a lu e o f s e l e c t e d

i n d i v i d u a l from r e c e iv e d a r r a y s ;
}

! figure 19. Pseudo code of the function exchange individuals

45

G. SUMMARY

This section summarizes the Parallel Genetic Algorithm described in this chapter.

The PGA to solve the DAG Vertex Splitting Problem uses a somewhat different approach

to parallelize the Genetic Algorithm. It uses subpopulations for the processors as

described in [19][18][20], The main difference is that the processors are evenly distributed

over the search space, by assigning each processor a different string length. Processors

usually exchange their best individuals with other processors in order to simulate a bigger

total population. This approach cannot easily be used in the described PGA. An exchange

of individuals can only occur if processors are assigned to the same string length. But

even then a pairwise exchange of individuals is not possible because an odd number of

processors might be assigned to the same string length. Thus, a so called exchange

is used where all the processors working on the same string length exchange individuals

in a ring fashion. The fact that the ring exchange does not take advantage of nearest

neighbor communication has minor affect on the global run time of the PGA because

nearest neighbor communication is only slightly faster than the logical ring. Also, the ring

exchange does not occur very often.

46

VII. EXPERIMENTAL RESULTS

This chapter describes the experiments that were conducted to test the behavior

of the parallel and sequential Genetic Algorithms. Section A describes the graphs that

were used to run the experiments. The size and shape of the search space is discussed

in Section B. Experiments were run to see how the parameter number of tries for BA

influences the initial string length and the run time. The results of these experiments are

reported in Section C. Another set of experiments, reported in Section D, was run to find

out which combination of siring length reduction method and stepping technique works

best. Two sets of experiments were run for the Parallel Genetic Algorithm. One

experiment was set up to find out the influence of the parameter , which defines the

frequency of synchronization between the processors. The results of this experiment are

described in Section E. Section F discusses the speed-up experiment which helps to find

out whether more processors reduce the run time of the program. A summary and general

observations are given in Section G.

A. THE GRAPHS

The graphs used in the experiments for testing the Genetic Algorithms (parallel

and sequential) were derived from the ISCAS-85 benchmark combinational circuits

[27]. The vertices in the DAG model represent the gates in the circuit and the edges

correspond to connections between gates. The delay (weight) for all the edges was set to

one. Some characteristics of these circuits (DAGs) are given in Table n.

47

Table II. CIRCUIT CHARACTERISTICS OF ISCAS-85 COMBINATIONAL
BENCHMARKS

Name of
Graphs

of vertices # of edges maximal
degree

longest path

C17 11 1 12 2 3

C432 196 336 9 17

C880 443 729 8 24

1 C1355 587 1064 12 24

C2670 1502 2076 11 32

C3540 1719 2939 16 47

C5315 2485 4386 15 49

C6288 2448 4800 16 124

C7552 3720 6144 15 43

B. THE SEARCH SPACE

Assume that the number of vertices in the potential vertex set is n. Thus, there are

n!
x\ ‘ (n - x)l

(9)

possible combinations for picking x vertices from n potential vertices. Thus, the total size

of the search space is

TSS(n) = £ (n> (10)

According to the Binomial Theorem

48

y : [* I • X J . y* - i = (x + y)M (11)
j “ o \ j J

the total search space for a graph with n potential vertices is

Every graph was tested with a certain maximum delay 5. Table HI summarizes

some statistics for the graphs for different 8, the resulting potential number of vertices and

the total size of the search space.

Table III. POTENTIAL NUMBER OF VERTICES AND TOTAL SIZE OF
THE SEARCH SPACE FOR THE BENCHMARK GRAPHS

Graph delta # of potential
vertices

total search
space

C432 5 153 1.142T046

C880 10 308 5.215T092

C1355 15 514 5.363-10154

C2670 20 636 2.852T0191

C3540 30 966 6.237-10290

C5315 35 522 1.373-10157

C6288 49 2252 8.309-10677

C7552 22 1196 1.076-lO360

Figure 20 shows the shape of the search space for graph C432. The thin line in Figure 20

represents the number of possible combinations of selecting X vertices out of the total

49

number of possible vertices without replacement, which is 153 vertices for the graph

C432 and 8 = 5. The tick line represents the cumulated number of possible solutions with

less than or equal to X vertices. All the other graphs behave in the same way.

S e a rch space for C4 3 2

§ of com binations Rcum # com binations

Figure 20. Shape of the search space for graph C432

51

C. BINARY APPROXIMATION

The purpose of the function Binary Approximation is to determine the initial

string length for the initial population. The function has one parameter number tries

for BA. Experiments were conducted to see how the initial string length changes when

the parameter number of tries for BA changes. The following parameter settings were

used:

number of tries for BA = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500.

Each run was repeated 20 times to get a good average. The tests were run on all graphs

with the 8 listed in Table HI. All the experiments exhibited a similar behavior: a fast

jump down to a small initial string length, when the number of tries for = 10 and only

smaller reductions in the initial string length when the number of tries for BA is higher.

The run time for the Binary Approximation increases linear with a linear increase in the

number of tries for BA. Figure 21, Figure 22, and Figure 23 show the results for the

graphs C432, C880, and C1355 respectively. The five remaining graphs, C2670, C3540,

C5315, C6288, and C7552 are listed in Appendix A. Figure 24 shows the percentage of

the initial string length reduction for the first three graphs. The percentage of reduction

can be computed according to the following formula:

100 - (__ ■"*»“* S'™? UnFh **___) • 100 (13)
total number of potential vertices

Appendix B shows the reduction plot for the remaining five graphs.

Figure 21.

G rap h c 4 3 2
d e lta = 5 a n a lo n g e s t p a t h = 1 7

Init. string length. — ■— Run tim e

Initial string length reduction with Binary Approximation on graph C432

in

Run ti
me in

 secon
ds

Graph c880
d e lta = 1 0 a n d lon g est p a t h = 2 4

num ber of tries for BA

■a

.a
QJ

P5

~i
* Tniv» sin n g 1 Run tim e |

Figure 22. Initial string length reduction with Binary Approximation on graph C880
Ol

Figure 23.

5 5 0
5 0 0
4 5 0

$ 4 0 0
ts 3 5 0
£r. 3 0 0
o

=«= 250
200

150
100

0 20 40 6 0 80 100 3 0 0 5 0 0
10 30 50 70 9 0 2 0 0 4 0 0

number of tries for BA

Graph, cl 355
d e lta = 1 5 a n d lo n g e s t p a t h = 2 4

Initial string length reduction with Binary Approximation on graph C1355

in4̂

Percen
t

8 0 .0 0

7 0 .0 0

6 0 .0 0

5 0 .0 0

4 0 .0 0

3 0 .0 0

20.00
10.00

0.00
0 2 0 40 60 BO 10 0 3 0 0 5 0 0

10 30 5 0 70 90 2 0 0 400
of tries for BA

C 432 — '— C880 Cl 3 5 5 1

P e rce n ta ge of R e d u ctio n
b a s e d o n s t r i n g l e n g t h

Figure 24. Percentage of reduction in string length for graphs C432, C880, and C1355

inm

56

How big is the remaining search space after applying the Binary Approximation?

The remaining search space (RSS) for a graph with n potential vertices and an initial

string length of k is

RSS(k, n) = (14)

Tables, listing the Binomial Cumulative Distribution Function [28] can be used to

calculate the remaining search space. The Binomial Cumulative Distribution Function is

defined as follows:

B(k, n, p) = J } • p {• (1 - ' (15>

Using a probability p = 0.5 Equation (15) can be rewritten as follows:

0.5) - £ [" I -(0.5)'•(0.5)"', = £ [" I -(0.5)"
i - O V 1 / i-0\lJ

(16)

Thus, the remaining search space can be computed using the following equation:

E (") - E(" | - 1 - B 2* - 1 O’)

Since 2“ - 1 is the total search space, the percentage of reduction of the search

space is equal to (1 - B[k, n, 0 . 5)) • 100 for an initial string length k and

potential vertices.

57

But there exists one problem when these distribution tables are used to calculate

the remaining search space. They are only accurate until the 5th or 6th position after the

decimal point. This accuracy is not enough. For example,

.8(35, 153, 0 .5) = 0 [28]. Therefore, the remaining search space would be 0

according to Equation (17). This is not true. The remaining search space is 5.836396-1034

using Equation (14). The distribution table for 8 (3 5 , 153, 0 .5) should have listed

a value of

RSSQ 5, 153) = 5.836396 ♦ 1034
755(153) 2153

= 5.111583 • lO'12 (18)

but an accuracy of 5 or 6 digits after the decimal point truncates the important digits. A

fast way to approximate the remaining search space is to simply calculate

I f k 4-|, where k is the initial string length and n is the number of potential

vertices.

Summarizing the results, it can be concluded that a small number of tries for

result in the best ratio of reduction verses run time and that the reduction in the string

length can be up to 90%. It is also true that the remaining search space, even after

applying Binary Approximation, is still very large.

D. STRING LENGTH REDUCTION AND STEPPING

The intention behind this experiment was to find out which string length reduction

method/stepping technique performs better. Therefore combinations of the four methods

58

described in Chapter V were implemented on a NeXTstation using C. The experiments

were divided into four Test Beds (TBs):

- TB 1: Preserve Duplicates and Linear Stepping

- TB 2: Preserve Duplicates and Multiple Binary Stepping

- TB 3: Random Delete and Linear Stepping

- TB 4: Random Delete and Multiple Binary Stepping

Three graphs, C432, C880, and C1355 were selected for the tests. The following

parameter settings were used in various combinations [29]:

crossover rate:

mutation rate:

of generations:

population size:

offspring per parents:

strlen decrement:

0.5, 0.6, 0.9

0.001, 0.005

100, 200 , 1000

50, 100, 200, 400, 800

2, 4, 8

3

The tests showed that Test Bed 4 and 2 yielded the best solutions on the average.

This is due to the fact that both Test Beds use the Multiple Binary Stepping which does

a more extensive search than Linear Stepping. Because of this more extensive search it

also needs more computation time than Linear Stepping. Table IV shows a ranking of all

four Test Beds with respect to solution quality and run time. The solutions and run times

were averaged over multiple runs.

59

The results also indicate that the method Preserve Duplicates (TB 1 and TB 3)

does not help much in finding better solutions. It mostly gets trapped in a local optima.

Table IV. RANKING OF FOUR GENETIC ALGORITHMS USING
DIFFERENT STRING LENGTH REDUCTION AND STEPPING
TECHNIQUES

Test Beds Solution Quality Run Time

Test Bed 1 4 1

Test Bed 2 2 3

Test Bed 3 3 2

Test Bed 4 1 3

E. PARAMETER "ALONE”

This experiment was conducted to find out how the parameter alone influences

solution quality and run time for the Parallel Genetic Algorithm. The PGA was

implemented on an Intel iPSC/2 Hypercube, which is a distributed memory MIMD

(Multiple Instruction Multiple Data) machine. The parameter alone determines the

frequency of synchronization and exchange of individuals between the processors. Two

Parallel Genetic Algorithms were used for this experiment.

1) The Parallel Genetic Algorithm as described in Chapter VI, but with an included

full distribution of the best population after the generation loop. The processor

which found the best solution distributes its local subpopulation to the other

processors. This strategy is called as PGA with best distribution (PGA-with).

60

2) The Parallel Genetic Algorithm as described in Chapter VI, without the full

distribution of the best population. This is called PGA without best distribution

(PGA-without).

The two PGA’s were run using two different subpopulation sizes, 50 and 150 on

16 processors. The parameter alone was set to 10, 20, 50, and 100. Crossover rate and

mutation rate were set to 0.6 and 0.005 respectively. The number of individuals that are

exchanged between the processors was always set to be 10% of the subpopulation size.

The run time and the best found solution so far were recorded in each round and the

average of six runs was taken. The experiment was run on graph C432 and the initial

string length was set to 80, in order to have a unique starting point for the Genetic

Algorithm. Eighty for the initial string length was chosen because the Binary

Approximation would have returned this value on the average if the parameter number

of tries for BA is set to 102. Figure 25 and Figure 26 show the results of the experiments

with the PGA -withoutand PGA-with on a subpopulation size 50. Both graphs behave

about the same: in the beginning of the run better solutions with fewer number of vertices

are found very fast. A break or disruption in the graph means that a solution was not

found within one generation loop. Therefore, the search space is virtually reduced, as

described in the previous chapter, and a new generation loop is started. A disruption can

be seen in both graphs with alone = 10. Looking at just the best solutions found, both

PGAs and an alone of 10 results in solutions which are worse than the other alone

settings. This is due to the fact that both graphs with alone = 10 have a disruption earlier

2See experiment with Binary Approximation in this chaper.

61

in the test run. Thus, it can be concluded that a disruption is not good for finding good

solutions. Another reason, why alone = 10 finds worse solutions than the others, is the

frequent test among the processors for checking if a solution has been found. Therefore

less time is given to the processors to evolve the population which can result in a

premature convergence.

Figure 25.

Solution

Run Time in Seconds

Test hin on PGA without full distribution and subpopulation size 50

Oss*

Figure 26.

Solution

Run Time in Seconds

Test run on PGA with full distribution on subpopulation size 50

64

Figure 27 and Figure 28 show the plots with 150 individuals in each subpopulation for

the PGA -withoutand PGA-with. Again it can be observed that better solutions are found

very fast in the beginning. If alone is set to 10, the solutions found are again worse than

the other alone settings in the PGA-without.However, the PGA-with and 150 individuals

in each processors subpopulation finds the best solutions with alone set to 10. The

explanation for this results is again the disruption in the without PGA. The with PGA also

shows a disruption with alone being 10, but this disruption is not as strong as the one for

the PGA-without. Therefore, the PGA-with finds better solutions with alone being set to

10. Thus, it can be concluded that disruption is not necessarily bad for finding good

solutions but it certainly reduces the probability of finding good solutions. It must be

distinguished between weak disruptions and strong disruptions because it appears that a

strong disruption influences the PGA more than a weak disruption.

Figure 27.

Solution

80

75

7 0 -

6 5 -

6 0 -

55

5 0 -

4 5 -

4 0 -

3 5 -

Without full disribulion

200 400 600
—1~
800 1000 1200 1400 1600

Run Time in Seconds
Test run on PGA without full distribution and subpopulation size 150

OS

Figure 28.

Solution

80 - |

75

70

65

6 0 -

5 5 -

5 0 -

4 5 -

4 0 -

35-1

With full distribution
alone=10
alone=20
alone=50
alone=l 00

X X

T ---------- 1----------- i----------- 1 I I i i I I I
0 300 600 900 1200 1500 1500 2100 2400 2700 3000

Run Time in Seconds

Test run on PGA with full distribution and subpopulation size 150

Os

67

Other important observations can be made if only the total run time is considered.

Figure 29 shows the total run time according to the PGA used, represents the PGA

without full distribution, while w represents the PGAs with full distribution of the

population. The number after the / represents the number of individuals in the

subpopulations.

3500

3000

I
j 2500

■S 2000

? 1500
£

1000

500

SSSt alane=10 ■ ■ b1odc=20 S S alane=50 akme=10Q

Figure 29. Total run time of PGAs

Run Time

It can be seen that the average run time for both PGAs with distribution is higher than

the run time for the PGA without full distribution. This is not surprising, because of the

added communication overhead caused by the distribution of the best population. The

overhead is higher for a subpopulation size of 150 because more individuals need to be

distributed. It also can be seen that on the average the best run time is obtained when

68

alone is set to either 20 or 50. This can be explained as follows: a small alone has more

communication overhead than a large alone because it has more frequent synchronization

which requires messages to be send back and forth. But on the other hand, if a solution

is found, a small alone can act much faster to this new situation and reassign the

processors according to the reduced search space. If alone is set to a high number, good

individuals are not exchanged very often among the processors which causes the

subpopulations to be isolated and therefore it is a disadvantage for the PGA.

Figure 30 plots the solutions obtained verses the used PGA.

Figure 30. Solution quality with different PGAs

69

On the average, the best solutions were found by the PGA-with. The reason for this

behavior can be explained by the fact that the PGA-with shares the best solutions among

the processors while the PGA-without does not. On the other hand, the sharing of

solutions by distributing the full populations may be risky, because if the population that

has found a solution does not contain the genetic material for better solutions, the PGA

might get trapped in a local optima. It is also interesting to note that subpopulations with

50 individuals yield better solutions than 150 individuals. This is due to the fact that a

smaller population size allows to select superior individuals easier than in the bigger

populations. However, a smaller population size might not have the diversity in the

population that is needed to obtain good solutions. The best solutions were found with the

following combination of parameters: PGA-with, 50 individuals in each subpopulation and

alone set to be 100.

F. SPEED-UP

The Speed-Up is on of the most important performance measures for the parallel

algorithm. It is computed according to the following equation:

speed-up = _____ Run timeo/ the best sequential algorithm____
Run time of the parallel algorithm using X processors

(19)

Thus, the better the speed-up, the better the parallel algorithm. Linear Speed-Up occurs

if speed-up = # processors. However, there exists one problem with Equation (19). The

best sequential Genetic Algorithm is not known. Therefore the equation needs to be

70

modified in order to calculate the speed-up. Usually the run time of the sequential

algorithm is measured on one processor. Therefore the speed-up is

speed-up = Run time of one processor
Run time of parallel algorithm on P processors

(20)

Since the described PGA is designed to work on multiple processors, the run time

comparison between the PGA with just one processor and the PGA with more than one

processor is not possible. Therefore, linear speed-up is assumed between one processor

and two processors and the speed-up is calculated using the formula below:

speed-up = Run time o/ two processors • 2
Run time of parallel algorithm using P processors

(21)

The experiment to measure the speed-up for the PGA was run on a PGA with full

distribution of the population. The parameter alone was set to 100 because it got the best

results for small population sizes3. The total population size was set to 160 and 320.

Crossover and mutation rate were set to 0.6 and 0.005 respectively. The number of

individuals to be exchanged between the processors was constantly set to be 10 and each

test was run 10 times to get an average. It can be seen from Figure 31 that the PGA with

a total population size of 320 yields almost linear speedup. The reason why it is below

the linear speed-up line is because of the communication overhead. The PGA with 160

individuals in the total population shows what is called super linear speed-up for four and

eight processors. This is due to the fact that Genetic Algorithms are probabilistic

algorithms and therefore they can sometimes find better solutions faster.

3See previous section.

14

12

16

6

4

2

S p e e d -u p

of processors

popsize 160 popsize 3 2 0 —**— Tin. Speedup

Figure 31. Speed-up of the Parallel Genetic Algorithm with full distribution and total population sizes of 160 and 320.

72

Figure 32 and Figure 33 show the graphs for total population sizes of 160 and 320

respectively with respect to the number of processors. In most cases better solutions were

found with a higher number of processors. The reason for this behavior can be explained

as follows: Dividing the total population among more processors means that every

processor has fewer number of individuals in its local subpopulation. With fewer

individuals in the subpopulation it is easier to select superior individuals. On the other

hand, if the subpopulation size gets too small, it is harder to create offspring with new

genes because of the fewer amount of genetic material in the subpopulation. This result

is even more important than achieving a linear speed-up for the Parallel Genetic

Algorithm. Therefore, the usage of the PGA has two big advantages:

1) less run time with more processors

2) better solutions with more processors

73

Run time and solution quality
Total population size 160

Run time — Solutions found

Figure 32. Run time and solution quality with different number of
processors and a total population size of 160.

Run time and solution quality
Total population size 330

K

5

J

&
j(of processors

■ Run tim e ■ Solutions found

Figure 33. Run time and solution quality with different number of
processors and a total population size of 320.

74

G. SUMMARY

Several experiments were run to study the behavior of the parallel and sequential

Genetic Algorithm. The analysis of the search space determined that the search space for

the DAG Vertex Splitting Problem is 2" - 1, where n is the number of vertices in the

potential vertex set. The results obtained from the experiments with the Binary

Approximation are summarized as follows:

1) the initial string length can be reduced by up to 90% when compared to the

potential number of vertices.

2) a small number o f tries fo r BA results in the best ratio of reduction versus run

time.

3) even with a high percentage of reduction in the string length, the remaining search

space is still very high.

Experiments with the sequential Genetic Algorithm using different string length reduction

methods and different stepping techniques showed that the deletion of vertices in the

strings using the Preserve Duplicates method biases the GA too much which leads to

premature convergence.

All the experiments exhibited one interesting behavior. The Genetic Algorithms

had a difficult time finding good solutions if the solutions are obtained fast. This suggests

that GAs need time to evolve in order to obtain better solutions. Two short experiments

were run to find out how much evolvement is good for the GA. One experiment started

the GA with a maximal initial string length without using Binary Approximation. The GA

75

spent too much time evolving in areas which were usually excluded by the Binary

Approximation and therefore converged prematurely yielding too poor solutions. In the

second experiment, the initial string length was set close to the best solution and the GA

was run evolving for many generations. The GA was not able to find any better solutions.

These two experiments lead to the conclusion that neither too much nor too few

evolvement is good for the GA in order to find good solutions. This makes the Binary

Approximation even more valuable, because it helps to skip over areas in the search space

where solutions are easy to find. It also aborts early enough in order not to get too close

to the best solution.

Two experiments were run to measure the performance of the Parallel Genetic

Algorithm. The first experiment was set up to find out how the frequency of

synchronization among the processors influences the total run time and solution quality.

The result of the experiment turns out that neither a high nor a low frequency of

synchronization are good for the total run time of the Parallel Genetic Algorithm. The

total run time for the PGA with full distribution of the best population has a longer run

time because of communication overhead. However, PGA-with found the best solutions

compared with the PGA -without.An analysis of how the subpopulation size influences

the solutions yields to the conclusion that a smaller subpopulation size finds better

solutions than a bigger subpopulation size. This experiment also showed that disruption

during the execution of the PGA, caused by a generation loop that did not find a solution,

is disadvantageous for the PGA in most cases.

76

The PGA showed an almost linear speed-up for a total population of 320 and a

super linear speed-up for four and eight processors for a total population of 160. The

super linear speed-up can be explained with the probabilistic behavior of the Genetic

Algorithms. This similar behavior has also been reported in [18] [30]. Not only the PGA

exhibits linear speed-up, it is also capable of finding better solutions with more

processors.

77

VIII. CONCLUSIONS

Adaptive search algorithms are capable of adjusting efficiently to their

environments. Nature has proven that it is a very good adaptive system. Therefore, search

algorithms can be enhanced if natural behavior can be included into them. Genetic

Algorithms are such adaptive search algorithms that are based on natural behavior. Nature

is represented by a population of individuals and these individuals mate and produce

offspring. The reproduction is based on the relative fitness of each individual in the

population. Every individual has its genetic material encoded in its chromosomes and with

each reproduction, the chromosomes of both parents are crossed to generate the

chromosomes for the offspring. The Schema Theorem states that, as the process evolves,

the number of individuals with superior characteristics increases exponentially while the

number of individuals with inferior characteristics decrease exponentially. Superiority

(Inferiority) is based on schemas. Schemas describe similarities in the chromosomes at

certain positions. A number of problems can occur when Genetic Algorithms are used,

including deception, premature convergence and genetic drift. Solutions such as crowding

and elitism have been proposed by other researchers to correct these problems.

This thesis introduced the DAG Vertex Splitting Problem (DVSP) and described

a Genetic Algorithm to solve the DVSP. The described GA differs from a standard GA.

It uses a variable string length and a variable population size. The chromosomes in each

individual represent the vertices that are used to split the graph. The objective of the

Genetic Algorithm is to find a minimal set of split vertices (minimal string length) such

that the longest path in the splitted graph is less than or equal to a prespecified value.

78

Therefore the string length must be reduced in order to find better solutions. Two

different deletion methods are used to determine the vertices that are to be deleted in

conjunction with two different stepping methods to determine the new string length.

Experiments on official benchmark graphs have shown that the Multiple Binary Stepping

outperforms Linear Stepping in obtaining better solutions. On the other hand,

Stepping has a better run time performance than Multiple Binary Stepping. The

experiments have also shown that the method Preserve Duplicates does not help the GA

in finding better solutions.

Another set of experiments was run to determine the behavior of the Binary

Approximation. It is used to determine the initial string length for the initial population.

It tries to find solutions by randomly picking vertices. The experiments turn out that just

a small number of random tries can reduce the initial string length by up to 90%.

A Parallel Genetic Algorithm is a GA where the total population is subdivided into

equal pieces and distributed over the processors. Every processor in the multi-processor

system runs a sequential Genetic Algorithm. In addition to the sequential GA, the

processors exchange the best individuals from their subpopulation and replace the worst

individuals by them. This has two effects: 1) a global population is simulated instead of

having many isolated subpopulations. 2) superior individuals are injected to the other

processors. A Parallel Genetic Algorithm to solve the DVSP was derived from the

sequential GA and implemented on an iPSC/2 Intel Hypercube. The described approach

distributes the available processors equally over the search space, meaning that every

79

processor works on a different string length. The exchange of individuals among

processors can only take place if the processors work on the same string length. Usually

pairs of processors exchange individuals. This approach uses a exchange where the

processors exchange the individuals in a logical ring. The frequency of exchange is

determined by the parameter alone. An experiment was set up to see how the PGA

behaves with different alone values. The best run time has been achieved with a medium

size alone. The best solutions were found with a smaller subpopulation size and a full

distribution of the best population. A second experiment was run on the PGA to

determine the speed-up of the PGA. A super linear speed-up is reported for four and eight

processors for a total population size of 160. An almost linear speed-up is obtained for

runs with a population size of 320. Analysis is made to explain both results.

Some heuristics have been proposed to solve the DVSP [7]. Future research will

incorporate some of these heuristics into various functions of the GA, like select,

crossover and mutate [31]. Different select strategies as suggested by Baker in [11]

should also help to solve the problem better.

80

APPENDIX A

Test results from the experiment on Binary Approximation for the graphs C2670,

C3540, C5315, C6288, and C7552.

G ra p h c 2 6 7 0
d e l t a = 2 0 a n d l o n g e s t p a t h = 3 2

number of tries for BA

■a

.a

I

Init. string length Run tim e

Figure 34. Initial string length reduction with Binary Approximation on graph C2670

Figure 35.

Graph c3540
d e lta = 3 0 a n d lon g est p a t h = 4 7

number of tries for BA

Init. string length — ■— Run tim e]

180
160
140
1 2 0
100
80
60
40
20
0

1
.9

I
I

Initial string length reduction with Binary Approximation on graph C3540

oo

Figure 36.

Graph. c 5 3 1 5
d e lta = 3 5 and. lo n g e s t p a th = 4 9

Init. string length — *— Run tim e j

Initial string length reduction with Binary Approximation on graph C5315

oo

Ru
n

tim
e

in
 s

ec
on

ds

of

 v
er

tic
es

Figure 37.

2 4 0 0
2200
2000
1 8 0 0
1 6 0 0
1 4 0 0
1200
1 0 0 0

8 0 0
6 0 0
4 0 0

Graph c6288
d e lta = 3 5 a n d lo n g e s t p a th = 4 9

250

0 20 40 60 80 10 0 3 0 0 5 0 0
10 30 50 70 9 0 2 0 0 400

number of tries for BA

Init. string length Run tim e

Initial string length reduction with Binary Approximation on graph C6288

oc

Ru
n

tim
e

in
 s

ec
on

ds

§
of

 v
er

tic
es

Figure 38.

Graph c7552
d e lta = 3 0 a n d lo n g e s t p a th = 4 7

num ber of tries for BA

Init. string length. Run tim e]

Initial string length reduction with Binary Approximation on graph C7552

0001

Ru
n

tim
e

in
 s

ec
on

ds

86

APPENDIX B

Percentage of reduction in the initial string length for the graphs C2670, C3540,

C5315, C6288, and C7552.

Pe
rc

en
t

P e rce n ta ge o f R e d u ctio n
b a s e d o n s t r i n g l e n g t h

of tries for BA

— C 2670
■s— C628B

C 3540 C5315
x — C 7552

Figure 39. Percentage of reduction in string length for graphs C2670, C3540, C5315, C6288, and C7552

x
- j

88

BIBLIOGRAPHY

1. Holland, J.H. (1975). Adaption in natural and artificial systems. Ann Arbor: The
University of Michigan Press.

2. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, 1989.

3. Back, T., Hoffmeister, F., Schwefel, H-P. (1991). A Survey of Evolution Strategies.
Proceedings of the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers, pp. 2*9.

4. Reichenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Prommann-Holzboog Verlag, Stuttgart.

5. Koza, J.R. (1991). Evolving a Computer Program to Generate Random Numbers
Using the Genetic Programming Paradigm. Proceedings of the Fourth
International Conference on Genetic Algorithms, Morgan Kaufmann
Publishers, pp. 37-44.

6. Koza, J.R. (1992). Genetic Programming: on the programming of computers by
means of natural selection. The MIT Press (1992).

7. Paik, D., Reddy, S., Sahni, S. (1990). Vertex Splitting in Dags and Applications to
Partial Scan Designs and Lossy Circuits. Technical Report TR90-034,
University of Florida.

8. Goldberg, D.E. and Deb, K. (1990). A Comparitative Study of Selection Schemes
Used in Genetic Algorithms. TCGA Report No. 90007, University of Alabama.

9. Brindle, A. (1981). Genetic Algorithms for function optimization. Unpublished
doctoral dissertation, University of Alberta, Edmonton.

10. Wetzel, A. (1983). Evaluation of the effectiveness of genetic algorithms
combinatorial optimization. Unpublished manuscript, University of Pittsburgh,
Pittsburgh.

11. Baker, J.E. (1985). Adaptive selection methods for genetic algorithms. Proceedings
of an International Conference on Genetic Algorithms and Their
Applications, pp. 101-111.

89

12. De Jong, K.A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. (Doctoral dissertation, University of Michigan). Dissertation Abstracts
International 36(10), 514B. (University Microfilms No. 76-9381) Applications,
pp. 100-100.

13. Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. Proceedings of the
Third International Conference on Genetic Algorithms. Morgan Kaufmann
Publishers, pp. 2-9.

14. Spears, W.M. and Anand, V. (1991). A Study of Crossover Operators in Genetic
Programming. Sixth International Symposium on Methodologies for Intelligent
Systems, Charlotte, NC, pp. 409-418.

15. Spears, W.M., De Jong, K.A. (1991). On the Virtues of Parameterized Uniform
Crossover. Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann Publishers, pp. 230-326.

16. Mayer, M., Ercal, F. (1993). Genetic Algorithms for Vertex Splitting in DAGs. To
appear in Proceedings of the 5th International Conference on Genetic
Algorithms. Also, Technical Report TR93-02. University of Missouri-Rolla.

17. Jog, P., Suh, J.Y., and Van Gucht, D. (1990). Parallel Genetic Algorithms Applied
to the Traveling Salesman Problem. Technical Report NO. 314, Indiana
University, Bloomington.

18. Miihlenbein, H., Schomisch, M., and Born, J. (1991). The parallel genetic
algorithm as function optimizer. Parallel Computing, vol. 17, pp. 619-632.

19. Tanese, R. (1987). Parallel Genetic Algorithm for a Hypercube. Proceedings of the
Second International Conference on Genetic Algorithms, pp. 177-183.

20. Petty, C.B., Leuze, M.R., and Grefenstette, J.J. (1987). A Parallel Genetic
Algorithm. Proceedings of the Second International Conference on Genetic
Algorithms, pp. 155-161.

21. Jog, P. (1989). Parallelization of probabilistic sequential search algorithms. Ph.D.
Thesis, Indiana University, Bloomington.

22. Lewchuk, MJ. (1992). Genetic Invariance: A New Type of Genetic Algorithms.
Master’s Thesis, University of Alberta, Canada.

23. Cramer, N.L. (1985). A representation for the adaptive generation of simple
sequential programs. Proceedings of an International Conference on Genetic
Algorithms and Their Applications, pp. 183-187.

24. Goldberg, D.E., Korb, B., Deb, K. (1989). Messy Genetic Algorithms: Motivation,
Analysis, and First Results. Complex Systems, vol. 3, pp. 493-530.

90

25. Goldberg, D.E., Deb, K., Korb, B. (1990). Messy Genetic Algorithms Revisited:
Studies in Mixed Size and Scale. Complex Systems, vol. 4, pp. 415-444.

26. Jujiko, C., Dickinson, J. (1987). Using the genetic algorithm to generate LISP
source code to solve the prisoner’s dilemma. Proceedings of the Second
International Conference on Genetic Algorithms, pp. 236-240.

27. Brglez F. and Fujiwara, H. (1985). A Neutral Netlist of Ten Combinational
Benchmark Circuits and a Target Translator in FORTRAN. Proceedings IEEE
Symposium on Circuits & Systems, pp. 663-666.

28. Aiken, H.H. (1955). Tables of the cumulative Binomial Probability Distribution.
Harvard University Press.

29. Grefenstette, J.J. (1986). Optimization of Control Parameters for Genetic
Algorithms. Transactions on Systems, Man, and Cybernetics, vol. SMC-16, no.
1, pp. 122-128.

30. Talbi, E-G. and Bessiere, P. (1991). A Parallel Genetic Algorithm for the Graph
Partitioning Problem. ACM International conference on Supercomputing,
Cologne, Germany, July 1991. pp. 663-666.

31. Grefenstette, J.J. (1987). Incorporating Problem Specific Knowledge into Genetic
Algorithms. Genetic Algorithms and Simulated Annealing, L. Davis, ed.
(Pitman, London, 1987), pp. 42-60.

	Parallel Genetic Algorithms for the DAG Vertex Splitting Problem
	Recommended Citation

	tmp.1634067422.pdf.cU80u

