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M.D. Arnold A. Herbert Harvey
A TECHNIQUE FOR IMPROVING STABILITY OF 
PETROLEUM RESERVOIR SIMULATION MODELS 

T . C . Wi Ison
University of Missouri - Rolla

ABSTRACT
Computational instability may occur in 

the mathematical simulation of hydrocarbon 
reservoirs when small inaccuracies in the 
calculated pressures cause loss of diagonal 
dominance in the matrix of coefficients. The 
problem can be resolved by the use of a more 
precise technique for computation of pressures. 
However« this stability problem is still 
troublesome to users of certain types of res­
ervoir simulators. A  computational technique 
which has been found effective in resolving 
the problem is presented.

INTRODUCTION
The technology of petroleum reservoir 

engineering was initially based on empiricism 
and rule-of-thumb generalizations. Reservoir 
productivity was first predicted almost en­
tirely on the basis of performance of 
similar reservoirs. This approach was gener­
ally satisfactory for estimating the pro­
ductivity of n e w  oil fields which did not 
differ markedly from older reservoirs. How­
ever, the empirical approach was not adequate 
for solving any reservoir engineering prob­
lems which were substantially outside the 
realm of past experience. Thus it was soon 
recognized that new and more versatile 
techniques were needed for predicting the 
performance of hydrocarbon reservoirs.

The next significant development in 
petroleum reservoir engineering might be 
considered to be the concept of the material 
balance and the numerous prediction methods 
which were derived from this concept. De­
velopment of these prediction methods was 
significant, since they provided a means for 
solving reservoir engineering problems which 
could not be handled on the basis of past 
experience with similar reservoirs. How­
ever, since these techniques were devised 
before the advent of  the digital computer, 
it was necessary that certain assumptions be 
made in order to limit the amount of com­
putation required. Therefore, all of these 
early material balance methods were formu­
lated with the assumption that rock and 
fluid properties would not vary from point 
to point in the reservoir. Similarly, 
pressures and saturations were generally 
handled as average values throughout large 
segments of the hydrocarbon deposit.
Although the use of these simplifying 
assumptions may give realistic results for 
some hydrocarbon reservoirs, they can also 
lead to serious errors in the prediction of 
reservoir performance. Therefore, these 
early material balance methods have now been 
largely supplanted by more advanced techni­
ques.

The digital computer has now become the 
primary tool for modern reservoir engineering 
work. This type of computer has the capa­
bility not only of performing extremely rapid 
calculations but also of handling very large 
sets of data. Thus, it is now feasible to 
calculate the performance of a petroleum res­
ervoir with rock and fluid properties con­
sidered to vary with pressure and position, 
and with saturations and pressures described 
by gradients which are functions of position 
emd production history. The calculations 
are too complex to be performed by hand; 
therefore, they are incorporated in a computer 
program which is generally called a mathe­
matical simulation model.

The mathematical relationships which 
comprise the reservoir simulation model 
include both algebraic equations and partial 
differential equations (some of which may 
have variable coefficients). For most prob­
lems which are of practical interest, the 
set of equations is too complex for solution 
by any known analytical technique. There­
fore, the differential equations are con­
verted to finite difference equations so 
that numerical solution techniques can be 
employed. These differential equations are 
written for each element of a reference grid 
which is used to describe the system under 
study. This procedure yields a system of 
equations which can be solved simultaneously 
by a suitable numerical technique. The con­
vergence properties of some numerical 
solution techniques currently in use are 
such that stability problems can arise during 
a simulation study. One such problem, 
which leads to instability when the pressure 
is near the bubble point, is a reversal in 
algebraic sign of the total compressibility 
of the rock-fluid system. This is a com­
putational phenomenon and not an actual 
field occurrence. However, it should be 
corrected to prevent the generation of 
computational instabilities which may cause 
the model to yield erroneous results. The 
purpose o f  this paper is to present a method 
for correcting this compressibility problem.
PRESSURE EQUATION

The pressure equation is basic to 
any mathematical model of reservoir behavior. 
The complexity of this relationship, which 
describes pressure as a function of position 
and time, can vary considerably. For a one- 
dimensional, one-phase slightly compressible 
system the equation may be written*

a 2P _ $>uc 3P
ax 2 k at (1 )

* Symbols are defined in the Nomenclature.
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The solution of equation (1) causes no 
stability problems because the equation con­
tains constant coefficients of the pressure 
derivatives.

A more realistic pressure equation for a 
hydrocarbon reservoir is given by

(B, - B R ) V* T V<J> g s o o + B V •T R V$> g o s o

The authors customarily describe the 
fluid properties employed in these equations 
by means of polynomial expressions. Special 
attention must be given to maintenance of 
accuracy of these expressions near the 
bubble point pressure. Derivatives of the 
fluid properties are computed by differen­
tiation of the polynomials.
COMPRESSIBILITY REVERSAL PROBLEM

B V • T V4>
g  g  g + B V*T V$> = h<Mc + S c -w w w r w w

S dB S dB S B dR o o - g g + o g s, 3P + g '
B dP B dP B d P ' lito g o

( 2 )

This mathematical relationship accounts for 
variable rock and fluid properties for three 
mobile fluid phases, and for two- or three- 
dimensional flow. The nonlinearity of 
equation (2 ) requires that special solution 
techniques be employed in order to maintain 
stability of the computations. This equation 
is the basic component of the model in which 
the compressibility sign reversal problem was 
studied.

When equation (2) is written as a finite 
difference, the following result is obtained:

The compressibility sign reversal prob­
lem often arises in simulation models which 
do not use computational techniques which 
calculate pressures to a high degree of 
accuracy. Small errors in the pressure 
computations will be strongly reflected in 
the saturation calculations and in loss of 
material balance accuracy. Although these 
errors may be too small to be of practical 
importance in predicting reservoir pressure, 
they may still cause computational instabil­
ity at pressures near the bubble point.

The compressibility problem will occur 
when errors in the computation cause the 
overall compressibility term G^ j to be cal­
culated with an incorrect algebraic sign. 
This condition causes the loss of diagonal 
dominance in some rows of the matrix of 
coefficients which is derived from equation
(3) .

(A. .P.. . + B. -P. ^ , . + C. .P. . +i,] 1-1,3 i »3 i + 1/3 i/3 1/3

Di,jP i,j-l + Ei,jP i,j + l ) n + 1 = Fi j (3)

where the superscript denotes the n + 1 time 
level, and the subscripts i and j identify 
the x and y coordinate positions, respectively.

The coefficients A, B, D, and E which 
appear in equation (3) are composite terms 
containing transmissibilities and material 
balance terms. These are defined in the 
Appendix. The term F and the coefficient C 
are defined below since they contain the 
overall compressibility term emd must be ad­
justed in order to correct the compressibility 
problem.

F. . * - G. .. P? j  + H, . i/3

= 1 , 3  “ * T t  *

i , j i/j ' “i/j (4)

( cr + '“’w^w - °o ~~o(h$) t , c_ + S_c__ S_ dB
i/3

S„ dB S B dR
_ a  — 3.  + °  .9 S )B U p B U F i , j

b _ U po

(5)

and
C. . = - A. • - B. . - D .  . - E .  . - G .  .i/j i»j i/j i/j i/j i/j

(6)

The requirement for maintaining diagonal 
dominance in the matrix of coefficients is 
that for all i and j

(7)

This relationship is not a necessary criter­
ion for convergence. However, loss of di­
agonal dominance often requires a substantial 
reduction in time step size for maintenance 
of computational stability. Thus the reten­
tion of diagonal dominance is desirable from 
a practical standpoint.
COMPRESSIBILITY REVERSAL CORRECTION

In order to overccxne the compressibility 
reversal problem it is necessary to restore 
the loss of diagonal dominance which results 
fron a negative value of the compressibility 
term Gi,j. This negative term reduces Cj^j 
in accordance with equation (6 ), so that ' 
inequality (7) is not satisfied.

In order to illustrate how the com­
pressibility reversal problem can arise, it 
is useful to examine the algebraic sign of 
the various pressure coefficients. The 
coefficients Ai,j, Bi,j, D i,j/ and 
E^ • are always positive numbers. Normally, 
Gj/j is also positive and inequality (7) is 
satisfied. In particular, the quantity G^ . 
will not become negative above the bubble *•' 
point pressure since G ^ j  will contain no 
negative terms. However, at pressures 
below the bubble point, the quantity 
(-dB /dP) will always be negative since gas 
evolution causes the reservoir oil to shrink
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+when the pressure is reduced. This existence 
of a negative term in suggests that it
can become negative. In particular, G. . < 0

+ • J

when Sc dB0 >, =r + =w Su . s dB
Bg -A  +

So B<
B.

dRs
“ 3? (8)

This condition is especially likely to occur 
for reservoir fluids that have a high bubble 
point pressure. Since Bg is small at high 
pressures, the magnitude of Bo' may exceed the 
product Bg Rs' for these fluids. Then 
Sg B g '/Bg should offset the negative terms 
in the toted compressibility expression, since 
rock and water compressibilities are relativ­
ely insignificant below the bubble point. 
However, inaccuracy in the material balance 
may prevent computed gas saturation from in­
creasing as rapidly as it should, and thus 
allow the negative value of B ' to assume un­
due significance in the totalcampressibility 
term at pressures slightly below the bubble 
point.

Occurrence of the compressibility re­
versal phenomenon frequently coincides with 
the use of a time step which encompasses the 
transition from pressures above the bubble 
point to pressures below the bubble point.
The problem seldom persists for more than a 
few time steps. However, when the problem 
does occur it may cause the calculation to 
become unstable.

The problem can be resolved by writing 
equation (3) in.a manner which retains di­
agonal dominance by precluding the possibility 
of a negative system compressibility term.
Note that equation (3) may be written as

w i . j + ci.j ■ F i,j (9)

h<|> dB / o __o v
(2t B~ “ dP > o
h<|> S_ dB_ , o o
(Et B” “3po

3-/3

3-,3

P? + 1 * - g ! P?3-/3 3. , 3  I'D

P . + H .3-,3 3-/3 (12)

where

Gi , j  ‘  <Cr + s“c« '  r 1 t *  +

S B  dRo g s ,
dP 3-, 3 (13)

Rearranging equation (12)

n+1W. . + (-A. .-B. -D, -E - G ' ) P,1 , 3  1 , 3  1 , 3  1 , 3  1,3 3.,3 i.

-G! . P7 . + H.3-,3 3.,3 1 , 3

o % , dBo Pn + 1 - Pn )h<t>S
< - B ^  > <

° i/j
At (14)

i/j

Considering the final term enclosed in 
parentheses in equation (14) , we may note 
that

dBo pn+l _ pn H dBo 3p 
“ 3p ------At---  “3p  Tt

(15)

and that

^ o  3P
“3p T t

^ o
“at (16)

where
w  ■  1  p * 3 + l  . a  p n + 1  .
W i,j Ai,j * L -l,j + B i,j P i+l,j +
d  pn+1 ^ b  p®+l 
Di ,j Pi«j“l Ei#j Pi#j+1 ( 10)

Expanding  ̂ and ^ in equation (9) yields

w i . j +

-“i.j pi.i + "i.i (11)

This equation may be rearranged to obtain

V i + ( - A i . r B i . r D i . j - E i . r < . j ) p ? ! i ♦

Thus we may employ a conventional finite 
difference approximation of dB and write 
equation (14) as —

"i.j + (-A i.3-B i o - Di.j-E i,j-G i.j)pStj ’
h*S,

-G J  . pJ  . +  H . -  -  B? )i # j i » 3  1,3 ,B0 o o

/At) . .3.,3 (17)

In order to employ the above relationship 
when instability might occur, it is con­
venient to define revised matrix elements
F? . and G? as follows: 

l » j  3. ,  3

(h*) aS dBQ
GI , j  ’ --- It*2  (cr + sv cw - T F  "
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(18)
S dB . S B
B2 ^  T Tg o

dR s
~ 3 p i / 3

and

F ” . = - G'.’ . P. . + H. . + 
i » )  1 / 3  i / 3  i / 3

S ,
(a-1) (h<J>) . . ( =2. (B^ X - B*}) ) . ./At (19)

i /3 ** o  0 1 , 3

where a = 1 when G. . > 0i/3

a = 0 when G . < 0i/3 -

t = Time
T = Transmissibility
X = Directional coordinate

y = Directional coordinate
z = Depth below datum plane

u = Viscosity

p = Density

<p = Porosity
4> - Potential

S u b s c r i p t s ;
f J 1 / J c = Capillary

and G7 . replaces G. . i n  equation (5). i/3 i/3 g = G 3.S
The procedure described above introduces g f = Free gas

a time derivative which is less accurate than 
the conventional approach, since it requires i = Index number for x coordinate
that

j = Index number for y coordinate
B^+ ^ be extrapolated from Bn . However, o — Oil

i /j °i / j
P Phase

this approximation is employed only when the 
more conventional technique would become r Rock
inadequate because of loss of diagonal 
dominance. s = Solution
CONCLUSION w = Water

Tests have shown that the procedure 
presented here will allow a petroleum reser­
voir simulation to maintain stability 
through the bubble point pressure without 
substantial reduction in time step size emd 
without significant loss in accuracy. The 
technique is recommended for use with simu­
lation models which are sufficiently accurate 
for solving the problem under study, but 
which tend to be unstable at the bubble point,
NOMENCLATURE

B = Formation volume factor
c = Compressibility
g = Gravitational acceleration
h = Thickness
k = Permeability
n = Time level, superscript
P = Pressure
q = Production rate
R * Gas/oil ratio
S - Saturation

APPENDIX
Definition of M atrix Terms

i , j Axi (Axi + Ax i_ 1) <(Bo 1/3

B R + B R ) T +g . s . q. s . ,  o . . .^1/3 1 , 3 ^1/3 l-*5/3 i-J5/3
B T + B T , x

(<Bo

f. . g . t w. . w . .1/3 y i-*5,3 1/3 i-*5/3
R = _____ ,________2
i , j AxT (Axi + 1  + Ax± ) ' ~i,3

B R,, + B R_ ) T
gi,j Si , j 9 i/j Si+*5/j i+H/j

B T + B,, T x
g i/j gi+,5/j i/j i+*5/j

H i,j= (Bo - Bg V i , 3 ^ < V > o gz)i,j +

Bg, / A ' W o * 1 'i.j +Bg, .4x (Tg°g9 Z'i,j+
1  9 J  1  9 J
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1 »D
+

; A2 (T R p g z ) . . + B A 2 (T p g z ) . . +g . y v o sMoy #1,3 -1 y 9 9 *-#3

\ A 2 (T p g z ) . . + B A 2 (T P ). . +wi j y ' wpw* w±#j x' w co_w ;i ,d

B A2 (T P ). .+B A 2 (T P ). . +
* i , j  X ^  c o . g ; i , D  w . ^  y '  w  CQ_ W ' l r D

B A2 (T P ) . .g . . y g c x^x,j 1 ^ o-g q*

where a £ and Ay are finite difference opera­
tors whxch imply second derivatives with re­
spect to x and y, respectively.

The transmissibilities and potentials 
for each phase p, and the flow term, q * , are 
defined by

khk.
S EB U P P

*P (P Ppgz + P ) c,o-p

and

q*
q B + q  B +  q  ^o o ^ w  w M

AxAy g fBg

The matrix coefficients j and E*  ̂
are identical to A< j and C* j ,'respectively, 
except for the replacement o r  Ax by Ay emd 
the interchange of the i and j subscripts.
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