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Abstract. This session explores, through the use of formal methods, 
the “intuition” used in creating a parallel algorithm design and realizing 
this design on distributed memory hardware. The algorithm class NC 
and the LSTM machine are used to show why some algorithms realize 
their promise of speedup better than others and the algorithm class NP is 
used to show why other algorithms will never be good for parallelization. 
Performance and correctness through cooperative axiomatic reasoning 
and temporal reasoning provide an additional basis for understanding 
parallel algorithm design and specification. Finally, the realities of algo­
rithm design are presented through partitioning and mapping issues and 
models,
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1 Parallel A lgorithm s and P arallelization  of A lgorithm s - 
In tu itive  D esign

Parallel processing can really only make sense if we understand how to program 
the parallel hardware that the technology is capable of producing. For exam­
ple, 10,000 personal computers, each capable of 1 MFLOPS, has an enormous 
aggregate processing power of 10 GFLOPS, however, there is really no way to 
exploit this processing power for a realistic single job. Organizing these 10,000 
PCs together, using a high-speed interconnection, such as in a multicomputer,, 
helps, but the task remains to make the job run well. This is the study of parallel 
programming and parallel algorithms.

The goal of parallel programming and parallel algorithm study is to find a 
way to break a job into N  units that can execute concurrently on N  or fewer 
processors. Given the complexity of programming, in general, trying to program 
in parallel seems an insurmountable task. Indeed, a parallelizing compiler which 
transforms a sequential program into a parallel program would be very attractive. 
This idea, also coined the “Dusty Deck Syndrome” has received much research 
attention.

Parallelizing compilers work, for the most part, on identifying certain con­
structs within the sequential language. Execution profiles of c.omputationally- 
intensive programs can show that often, only a few percent of code (by volume) 
accounts for 50% of the run time of the program. It’s not hard to see where this 
lies. DO loops and computational kernels account for a great deal of a program’s 
run time. Loops typically appear in program code as follows.

DO i =  1, 100 
100 a(i)=b(i)+c(i)

This loop parallelizes easily, and is easy for the compiler to detect and produce 
the following parallel (vector) code which executes all 100 assignments indepen­
dently, in parallel.

a(l) =  b(l) +  c(l) 
a(2) =  b(2)+ c(2)

a(100) =  b(100) +  c(100)

or a( 1 : 100) = b( 1 : 100) + c(l : 100) Now, of course, not all loops are easily 
decomposed. Sometimes there are loop dependencies. These can be solved by 
the introduction of temporary storage. Other times, there are dependencies that 
cannot be removed, such as in the case of linear recurrences of the form a* =  
a;_ ibi +  Cj,i > 1. FORTRAN code appears as follows,

DO 100 i =  2, N
100 a(i) =  a(i-l)*b(i) +  c(i)

Notice that the data dependency between a(i) and a(i-l) cannot be parallelized 
completely. The (rather complex) solution
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a(l:N) =  c(l:N)
DO i =  1, log2 N

DO in parallel for all Pj where 21 < j  < N 
a(j) =  a(j) +  b(j)*a(j-‘2!- J)
HO =  bG)*G-2<-')

200 continue

builds up partial results in parallel, i.e. at i=2, at the end of the parallel state­
ment, we have (for j > 4):

a(j) =  b(j)*b(j-l)*[b(j-2)*c(j-3)H-c(j-2)]+b(j)*c(j-l)+c.(j) 

b(j) =  b(j)*b(j-l)*b(j-2)

Now while the above construction is complex, once derived, a compiler can 
identify this looping structure and perform the appropriate parallel code substi­
tution.

The problem with relying too much on compilers to do our work is twofold:

1. A compiler can only detect loop parallelism. Thus, there is still 50% of the 
run time unaccounted for that a compiler cannot easily detect. In terms 
of parallel program performance, this will limit the Speedup or increase in 
performance obtained by parallelism.

2. The sequential algorithm may actually obscure parallelism inherent in the 
problem such that even an ideal compiler can’t extract it. Indeed, a sequential 
algorithm may not be the best parallel algorithm, at all.

In the next section we will examine the first issue, more closely, when we 
discuss the metrics of Speedup. The second issue is really one of language.

1,1 Language as an Im pedim ent to Parallelism

The choice of language really can inhibit the expression of parallelism that may 
be inherent in an application. Consider the model of Imperative Language Pro­
gramming which is the basis for FORTRAN, C, PASCAL, etc. An imperative 
language, consists of statements which are a sequence of predicate transforma­
tions on a program’s state. For example, an imperative matrix multiplication 
d xn — a/xm6mxn is expressed as follows.

for i from  1 to  /
for j from  1 to m 

for k from  1 to n
Ci,k = C'i,k +

This is the way that matrix multiplication is usually presented. However, it 
is not clear, at all, how to perform the operations in parallel. Certainly, since 
this is loop parallelism, we can create / • m • n processes, as above. However, a 
better way is to re-examine the specification of matrix multiplication rather than 
its implementation in a particular (here imperative) language.



Matrix multiplication is, fundamentally, a collection of inner products of the 
elements of the multiplier and multiplicand matrices. This is expressed below, 
in a version of matrix multiplication expressed in FP [3].

Given a pair of matrices stored as a sequence of rows,
< a, b > , with a = <  a \ ,..., a\ > and a* = <  , . . . ,  a^m >

c <— Inner-Product • Distribute-Left • Distribute-Right • [a, /nnispase(b)] 
Whose evaluation results in:
c <— Inner-Product ■ Distribute-Left • Distribute-Right < a , b / > 
c <■— Inner-Product • Distribute-Left «  «i, b / > , . . . , <  a/, b' > >  
c *— Inner-Product <  p i , p2, • • •, Pi > where pi —«  a*, 6'x a*, b'm »

By the Church-Rosser property, the Inner-Products may be applied in par­
allel in any order. Thus, we note that the execution order is neither constrained 
nor specified as in imperative languages. The maximum amount of parallelism 
is expressed by the functional program.

Now the FP example is rather extreme. No one is suggesting that everyone 
switch to functional languages simply to use parallel computing. Note, however, 
that by analyzing the specification of the problem, the observation that matrix 
multiplication is nothing more than a collection of inner products, yields not 
only the functional program above, but the imperative program, below.

do in  parallel for Pij , i — 1 j  =  1
for k from  1 to n

Citk =  citk T ai,jbj,k

Thus, rather than express or constrain the computation of these inner prod­
ucts, as in the imperative algorithm, we just write an imperative program which 
is expressed in the fundamental parallel units of the problem. We then feed 
the inner product computations, in any order, to the processors of the system. 
Thus, rather than a parallel version of a sequential algorithm, this is a parallel 
algorithm.

Successful parallel programming consists of (1) specifying the problem, (2) 
identifying the fundamental units and their interaction, and (3) mapping these 
fundamental units to processes with their interactions specified by communica­
tion primitives.

Given that the only control we have in parallel programming, at the system 
level, is process creation and send/receive communication, all examples can be 
constructed using this primitive set of operations. Later we will present a more 
formal model of this in Hoare’s CSP [17].

1.2 PA RA LLEL SO R TIN G

Consider the problem of sorting an array a into ascending order using the a 
(very simple) Sequential Sorting Algorithm (Exchange Sort).
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Sort N  numbers a(l), a(2), 
for i from  1 to  N  

for j from  1 to  N  
i f  (a(i) > a(j)) 

temp=a(i) 
a(i)=a(j) 
a(j)=temp

a (TV) into ascending order

This algorithm runs in N 2 comparisons. If we identify the fundamental units 
and operations in sorting, the compare/exchange is the basic function which 
operates on the array elements. If we have N  processors available we should be 
able to make it run in N  time by using the N  processors to do N  comparisons 
in parallel.

ODD-EVEN Transposition Sort If we arrange the N processors in a linear array 
and let processor Pi hold value a(i), then processors alternately exchange their 
values based on whether their index is even or odd.

0  ( 0  0  0  0  ( • ;
7 fi 6 2 2 5

odd-even

5

max even-odd

5

odd-even 

5

max even-odd

8
odd-even

8

max even-odd 

8

F ig .l. Odd-Even Transposition Sort 

Code for each processor Pi

for j =  0, Ar — 1
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do in parallel for all P{, i =  0, N — 1
i f  j is even and i is even or j is odd and i is odd 

send a(i) to Pi — 1 
receive a(i) from  Pi — 1

else
receive a (i+ l) from  P{ +  1 
ifa ( i-f l)  < a(i) 

temp=a(i)
a(i)—a(i+ l)
a(i-|-l)=teinp 

send a(i+ l) to P{ +  1
end

This achieves the desired result, a parallel algorithm which runs in N time 
on N  processors.

1.3 R elaxation

Perhaps the most important use of parallel computing is the relaxation methods 
for solving, iteratively, Partial Differential Equations of the form

d2u d2u _
dx2 dy2

A numerical approximation U  to the solution u yields the matrix form

A U  =  0

where the matrix A is a sparse, tridiagonal, system of linear equations.
The problem of parallelizing a solution to this seems insurmountable. How­

ever, this problem is amenable to Domain Decomposition which splits the physi­
cal model’s domain over the processors as in the point discretization of Figure 2. 

Let U  =  (U i j ) be the approximation of the solution u

US +1) =  7 ( ^ + 1  +  +  u £ \ tj)

Each point (element) is iteratively solved as a function of its neighbors as in 
Figure 3.

1.4 N U M E R IC A L  IN T E G R A T IO N

As another example of domain decomposition, consider the problem of an ap­
proximation to calculating 7r using numerical integration.

1
* * f W  =  4 J0 T ^ dx

The natural numerical decomposition is to break the problem domain into 
strips and calculate the numeric function value at each strip to approximate the 
solution to the problem,



8

o o o o o o o o o o

0 0 0 0 0 0 0 o o 0

0 0 0 0 0 0 0 o 0 0

0 0 0 o o o o o o o

o o 0 o o o o 0 0 0

o 0 0 0 0 0 0 0 0 6

a o o o o o o o o o

o 0 o o o o o 0 0 o

o 0 o o o 0 o 0 o o

0 o 0 o o o o o o D

Fig. 2. Discretization of Physical Domain - Domain Decomposition

o  o  o  o  o

o

f ' oI i-IJI___

o

i oj u+i

I
o

■J

I
tII

o

T ll+lj I____ I

o

o

o

o

o

o

o

o  o  o  o  o

F ig .3. Localized Computational Molecule



9

Pi-
return  Jff(Xi)

In parallel, each P{ gets l/jV ’th of the integration to perform, as in Figure 4. 
A tree reduction summation is used to sum up all the slices in logarithmic time.

0

Fig. 4* Domain Decomposition

1.5 Sum m ary

In creating a parallel algorithm, one must start with the specification of the 
problem to be solved. From this specification, identifiable units can be extracted 
that can be solved in parallel. Attempting to “engineer” a parallel solution from 
an existing sequential code, written in an imperative language, will not yield 
the best parallel algorithm since the imperative language imposes a computa­
tional order that does not always express the maximal parallelism present in the 
problem.

The remainder of this paper will explore metrics for measuring parallel per­
formance, algorithmic classes of parallel algorithms, and a formal methods of 
reasoning about parallel programs.

2 A n alysis  o f Parallel A lgorith m s

In the previous section, we presented a vague idea of how to measure the ef­
fectiveness of a parallel algorithm. In this section, we refine these concepts and 
present a theoretical basis for parallel algorithm performance.
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2.1 Speedup

From a hardware standpoint, it’s easy to build parallel hardware with enormous 
speed ratings. What the user desires is a machine to make his/her job run fast. 
If we assume that we can decompose the job into N  parts, then sptedwp is just 
how much faster the decomposed job runs on N processors. Speedup measures 
address both the optimal and expected performance.

Fig. 5. Speedup Models

Figure 5 characterizes the best case, pessimistic case, and average case for 
possible speedups.

Minsky’s conjecture [19] forms a lower bound on what we can reasonably 
expect from a parallel program. The key observation is that as N  grows, the per­
formance becomes dominated by system bottlenecks and communication. Thus, 
perhaps the best speedup, S is 0( log2N). This is a disappointing result, if true, 
as it says there is not much benefit from parallelism beyond only a few processors.

In sharp contrast to Minsky’s conjecture is the notion of ideal speedup. For 
ideal speedup to be realized, the problem must be perfectly decomposed in 
N  parts and no communication or system bottlenecks must occur. Then the 
speedup is linear, as N grows, the speedup S = N .

Between these two extremes, are two measures of what occurs when system 
bottlenecks, overhead, imperfect parallel decomposition occur.
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Amdahl’s law [1] treats every program as consisting of a sequential compo­
nent s and a parallel component p =  1 — s. The crucial observation is that a 
program’s speedup will be limited, severely, by the amount of non-parallelizable 
code. Simply put, if there are N  processors, then the speedup S  is bounded as 
follows:

S <
s +  p

-  s  _L J L
s  ' N

For example, if N  =  1024 and s =  0, then

1
S < 0 -|__ L_u ^  1024

or S <  1024, which is, essentially, the ideal speedup case. However, if even a 
small sequential component is present, such as if N  =  1024 and s =  0.01, then

0-01 +  $j§|;

or S  <  91.18.
Under the Amdahl’s law speedup model, the limitations of parallelizing com­

pilers become apparent. If we believe that 50% of the code is recognizable as 
parallel (p =  0.5), then 50% is not parallelizable (s =  1 -  p =  0.50). Thus the 
maximum speedup is

lirn S  <
N —+oq Nh"L 0.50 +  ^

or S  < 2 no matter how many processors are used!
These results seern disappointing. However, [14] in 1988 observed that pro­

grams are made parallel, for the most part, as they are have run times which 
grow as the problem scales. This scaling can be a finer grid resolution or an 
increase in the number of time steps proportional to the number of processors in 
the system. However, the sequential time, which is the time to load the program, 
collect the results, and perform overhead calculations remains relatively constant 
over varying computational problem sizes. This Scaled Size model assumes that, 
by contrast to Amdahl’s law, p is not independent of N.  Thus, we can calculate 
a scaled speedup as

O  _  S +  p -  N
“  ”7 "*s +  p

Experimental results using this speedup measure report scaled speedups of 
1020 on a 1024 processor machine [14]. There is still much debate, however, on 
the usefulness of this model.
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2.2 T heoretica l Basis for Speedup

Given the two speedup models for .S' and Ss given above, it is easy to calculate 
the speedup for a particular application. However, if the actual ratios p and s 
are not known, then experimentation is necessary. However, given that the best 
tools available are parallelizing compilers, determining p may be difficult since 
the p obtained is only an estimate of the amount of parallelism inherent in the 
problem. What is necessary is a way of classifying algorithms by their parallel 
complexity. The class AfC is one such class. To explore the class MC, we need to 
first examine the fundamental nature of parallel processes,

2.3 CSP

Hoare’s model of concurrent programming, Communicating Sequential Processes 
(CSP) [17], is a model reflecting properties that should be in all concurrent pro­
gramming languages. It was not intended to be used as a programming language 
per se, but it does reflect Ho are’s concerns of proving the correctness of programs. 
However, CSP has provided a medium of discussion of synchronous systems and 
has inspired a great deal of development. One result is the multitasking and ren­
dezvous properties of Ada. Ho are has suggested the following three properties 
that every concurrent language should have: the ability to express parallelism, 
communication primitives and non-determinism. This section provides an infor­
mal brief description of the syntax and meaning of CSP commands. Full details 
of CSP are contained in [17].

Communicating Sequential Processes (CSP) was proposed as a preliminary 
solution to the problem of defining a synchronous message-based language.

A CSP program consists of a static collection of processes. The basic com­
mand of CSP is [pi\\...\\pn] expressing concurrent execution of sequential pro­
cesses pij.-^pn- Each individual process pi has a distinct address space and 
consists of statements Si. We can also express parallelism between program 
statements as well as between processes.

Coordination between processes is implemented by message exchange be­
tween pairs of processes. It involves the synchronized execution of send(output) 
and recewe(input) operations by both processes. The send and receive operations 
in processes pj and pi take the following forms: pi\y and pj ?a:, respectively.

Input command pj ?x expresses a request to pj to assign a value to the (local) 
variable x of pi . Output command p(\y expresses a request to pi to receive a value 
from pj. Execution of pj lx  and pj\y is synchronized and results in assigning the 
value of y to x. pj*?x and p{\y are said to be a matching pair of communication 
statements. We define a communication sequence of process pi as the sequence 
of all communications that pi has so far participated in.

The alteration command allows for a path to be non-deterministically chosen 
from a set of paths. The repetition rule allows for repeated non-deterministic. 
choosing of a path from a set of paths.

The alteration and repetition commands are as follows:

if  b[ ; ci Si c„ Sn fi
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do&ijCj —► S\O...C\bn]cn —► Sn od
Alteration and repetition are formed from sets of guarded commands. A guarded 
command b; c —► S consists of a guard b;c, and a command S. In the guard, b is a 
boolean expression and c. is either skip or one of the communication primitives. 
The symbol is used as a delimiter for separating different program statements. 
If b is false, the guard is failed. If b is true and c.=skip, the guard is ready. If b 
is true and c is one of the communication primitives, then the guard is prepared 
to communicate with the process named in the communication primitive. It is 
ready when the other process is prepared to communicate and blocked at other 
times.

Execution of an alteration command selects a guarded command with a ready 
guard and executes the sequence c.;S. If c. is skip, execution is independent of other 
processes. If c, is a communication command, then a matching communication 
command must be executed simultaneously. When some guards are blocked and 
none are ready, the process is blocked and must wait. If all guards are failed, the 
process aborts.

Execution of the repetitive command is the same except that, whereas execu­
tion of alternation selects one guarded command and is completed, for repetition 
the selection is repeated until all guards are failed, at which time execution of 
the repetition is repeated until all guards are failed, at which time execution of 
the repetition is completed.

2.4 C om plexity

The questions of complexity and computability that exist for sequential com­
puter programs, are also interesting questions for concurrent/parallel computer 
programs. If the Turing Machine is the abstract computational model for a se­
quential program, what is the corresponding model for a concurrent program 
and how does this model relate to the sequential Turing Machine model?

From [18], the fundamental measures of complexity are parallel time, space, 
and sequential time. If we have an abstract model which provides these three 
measures, then we can succinctly define speedup and characterize classes of al­
gorithms which are amenable to parallelism.

If the model of concurrent computation is represented by CSP, concurrent 
programs are really expressed by sequential programs that communicate with 
each other. Since the Turing Machine is the model of sequential programs, it 
is natural to express a concurrent program as a set of communicating Turing 
machines. Specifically, a concurrent program is represented by a Multitape Tur­
ing machine which has a read-only input tape, k work tapes (k > 1), and a 
write-only output tape. Roughly, the input tape and output tape correspond to 
the message passing that occurs in CSP ?,! barrier rendezvous and each work 
tape corresponds to the internal storage of one of the k processes of the CSP 
program.

D efin ition  1* Formally, a Turing Machine (TM) is described by

M  =  (Q, /, 17, <$, b, </o, F)
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where Q is the finite set of states, E  is the tape alphabet, I C E  is the input, 6 
is the move function, b is a special blank symbol, qo E Q is the start state, and 
F C Q is the set of final states.

D efin ition  2. For a TM M  and input w y £(ty) is the total number of steps taken 
for input w and

£(71) =  maa:{<(iy) | |u>| < 71} 
is the time complexity of M .

D efin itio n s . For a TM M  and input w, s(w) is the total maximum length of 
any work tape used for input w and

s(n) =  maic{s(w) | |iu| < 71}

is the space consumption of of M.

D e fin itio n ^  Let ID  be the instantaneous description of M,

ID  =  E*QE* =  xqy

where xy are tape contents and the tape head is scanning the leftmost symbol 
of y in state q and h represents a move of M.

D efin itio n s . Let ID q h ID\  h I D 2 h * - • be a computation of M  for input 
w. If, in two successive steps, ID \~ ID* h ID n a work tape moves in different 
directions, we say a head changes its movement during ID  h ID* \~ ID” , Define 

< j  as a phase of this computation if no work tape head changes its 
movement direction during ID{ h ID{ +  1 h /D i +  2 h • ■ ■ h IDj  where in ID  h 
I D f, every tape head moves R i L ) or S where R  and L are different directions 
and S  is no movement.

Next we define a machine which will help relate the phases to the concept of 
data dependencies between sequential processes through message passing.

D e fin itio n 6. Let a Transform Machine be a TM constructed from M  adding 
a special state qf. Upon entering </', it removes all the contents from the input 
tape, copies the output tape to the input tape, changes the work tape and output 
tape to blanks, and works normally starting in state qo.

D efin ition ? . The width complexity w(n) is the maximum total length of the 
input and output tape contents during the computation for all input of length 
<  n.

Remark. What these definitions show is that if we can use n work tapes in a sin­
gle phase, independently, this implies there are no data dependencies between the 
work tapes. The end of a phase (entering state qf) implies that a communication 
or synchronization is necessary. Thus, in the Turing Machine formulation, the 
width complexity corresponds to the total amount computational space (com­
plexity) and the space complexity corresponds to the longest space complexity 
of an individual work tape (process).
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A special type of transform machine is of interest, since it describes a com­
putation which is amenable to parallelism in logarithmic time.

D efin itio n s. If a transform machine satisfies

,s(n) =  0{log(iu(n)),

it is a Log-Space Transform Machine (LSTM).

For example, there is a LSTM that satisfies the computation of a tree- 
reduction summation.

Example 1. An LSTM which satisfies the computation of ^  for if • • •
where the X ks are binary numbers as input as follows.

In Phase 1, M  gets y i^ y 2#J/3# * * ■ on its output tape where y7; = 2*2?:+  a'2?:+i • 
In Phase 2, M  • • • becomes the input and M gets • on its

output tape where Zi — Z2i +  zoi+i-
This continues until the output is This clearly takes log k phases. The

width complexity w(n) =  0 ( n ), k < n and the phase complexity is log k.

The problems that can be solved by a LSTM form a complexity class, AfC,

D e fin itio n 9. A problem is in AfC if there exists an LSTM solving it in poly- 
nomially related phase 0(log*n) and width 0(??*) where g(n) =  f*(n)  if g(n) — 
P{f(n)) some polynomial, p.

Thus, the class AfC represents the class of nicely parallelizable problems with 
time polynomial in the logarithm of the size of the problem (poly-log) using 
only a polynomial number of processors. Clearly any problem in V  is in AfCy 
since any problem in AfC when solved serially, is in V. However, the reverse is 
not necessarily true since, for example, the best-known parallel algorithm for 
maximum flow is 0 ( n 2logn) steps using 0(n)  processors.

2.5 A CP-Com pleteness and Parallel C om puting

While the results above show that the class AfC contains problems amenable to 
parallel computing, there are algorithm classes in which parallel computing is 
ineffective.

The class of AfV~Complete problems, or those solvable in nondeterministic. 
polynomial time form just such a class. Since it is not known if any AfV  problems 
can be solved in deterministic polynomial time, attempting to solve an AfV- 
complete problem requires exponential time on a sequential computer.

Since, by the above discussion, that our notion of a parallel computer is re­
ally expressed by a multitape Turing Machine, and, since multitape and single 
tape Turing Machine computations are related, then, by the Church-1Turing hy­
pothesis, any J\fV-Complete problem can be expressed as a parallel algorithm 
on the multitape Turing machine. However, by our notion of speedup, ,S', using
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N  processors, the best speedup is AT, a linear factor. However, an exponential 
problem, E) grows in some exponential power of N } E — C)(cN). Thus, since a 
parallel machine grows in power, only linearly, it cannot effectively reduce the 
exponential complexity of the problem. Put more succinctly, parallel computers 
only reduce the complexity of an exponential problem by a polynomial factor S\ 
thus, leaving the complexity exponential since E / S  =  C N/ N  is still exponential.

However, parallel computers are useful in evaluating expensive hueristics for 
approximation to the solution of N T - Complete problems. Techniques such as 
simulated annealing [27] provide good results, but are computationally complex. 
Parallel computing can help speed their evaluation.

3 In tercon nection  N etw orks and E m beddings

In the presentation so far, we have assumed that all processors are connected to 
each other (a completely connected network). The crossbar switch [19] attempts 
to connect each processor to each other processor. However, the number of switch 
elements grows as the square of the number of processors, making this technology 
infeasible for large multicomputer networks. The bus interconnection [19], by 
contrast, is inexpensive, but exhibits a performance bottleneck as interprocessor 
communication grows.

Multistage interconnection networks attempt to minimize the cost of inter­
connecting processors by providing a subset of possible interconnection patterns 
between the processors, at any one time. Examples of multistage interconnection 
networks are shown in Figure 6. Each network is arranged in n stages where each 
stage has N/k k x k switches, each with N =  k11 ports. Thus, each processor can 
communicate with each other processor using n hops in the switch, however, as 
mentioned above, only a subset of simultaneous connections are possible.

The multistage interconnect is the basis for many commercial and research 
parallel processors such as PASM [38] and the IBM RS/6000-based POWER- 
PARALLEL Systern[20]. However, if we examine the examples of Section 1 the 
communication patterns between processors are all nearest neighbor. Indeed, the 
most natural parallel algorithms result from domain decomposition into spatially 
local communication patterns such as mesh, ring, or tree. Thus, a fixed archi­
tecture which can be a host to these guest graphs is all that is really necessary.

A fixed interconnection topology is the usual choice in constructing multicom­
puters. The topology is based on a graph theoretical model in which processors 
are represented by nodes or vertices and links are represented by edges so that 
all links are bidirectional.

A path is a sequence of links from the source node to a destination node. The 
path length (distance) between two nodes is the minimum number of links be­
tween these two nodes. The degree of a node is the number of links (bidirectional) 
connecting to a node.
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A 16 nodeBBN Butterfly Interconnection singe

F ig . 6, Sample Multistage Interconnection Networks

3.1 G raph E m bedding

The need for the embedding arises from at least two different directions. First, 
with the widespread availability of distributed memory architectures based on 
the hypercube interconnection scheme, there is an ever-growing interest in the 
portability of algorithms developed for architectures based on other topologies, 
such as linear arrays, rings, two-dimensional meshes, and complete binary trees, 
into the hypercube. Clearly, this question of portability reduces to one of embed­
ding the above interconnection schemes into the hypercube. Second, the problem 
of mapping parallel algorithms onto parallel architectures naturally gives rise to 
graph embedding problems. Graph embedding problems have applications in a 
wide variety of computational situations. For example, the flow of information 
in a parallel algorithm defines a program graph and embedding this into a net­
work tell us how to organize the computation on the network. Other problems 
that can be formulated as graph embedding problems are laying out circuits on 
chips, representing data structures in computing memory, and finding efficient 
program control structures.

The problem of mapping a graph representing the computation and commu­
nication needs of the program onto the underlying physical interconnection of 
a multiprocessor so as to minimize the communication overhead and maximize
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(d) chordal ring (e) ring (f) fully connected
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(k) 3-D cube (1) 3-D cube connected cycle

Fig. 7. Some Interconnection Topologies

the parallelism is called the mapping problem. The mapping problem is the as­
signment of processes to processors so as to maximize the number of pairs of 
communicating processes that fall on pairs of directly connected processors.

In mapping problems, the guest graph G is the network topology that we are 
interested in simulating using a host graph H . Let Vq and Vh denote the vertex 
sets of the graph G and H , respectively, and E q and Eh denote the edge sets of 
the graph G and H , respectively. An embedding f  of a graph G into a graph H 
is a mapping of the vertices of G into the vertices of H ) together with a mapping 
of the edges of G into the simple paths of H such that if e =  (u, v) E E q , then 
/(e )  is a simple path of H with endpoints f(u)  and f(v).  If /(e )  has length 
greater than one, then it has one or more intermediate nodes which are all nodes 
on the path other than the two endpoints. An embedding /  is isomorphic if it 
is injective and for each (u, v) E Eq , ( f (u )yf(v))  E Eh • Throughout this paper, 
unless indicated otherwise the term “embeddings” will always means isomorphic 
embeddings, and the terms “embedding” and “mapping” will mean the same
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and used interchangeably.
It has been known for a long time that the general graph embedding prob­

lem (i.e., subgraph isomorphism problem) is NP-complete. It was shown that the 
embedding of general graphs into the binary hypercube is also NP-complete [8]. 
However, with rich interconnection structure the hypercube contains as a sub­
graph many the regular structures (i.e,, rings, two-dimensional meshes, higher­
dimensional meshes, and almost complete binary trees). Most of the mapping 
research in these years has dealt with effectively simulating these regular struc­
tures in the hypercubes, (for example, [40]).

Let /  be an embedding function which maps a guest graph G into a host 
graph H. \Vg \ denotes the cardinality of the set Vg - Terminology related to the 
mapping problem are formally defined as follows.

D efin ition  10. The expansion of the mapping is the ratio of the size (in number 
of nodes) of the host graph to that of the guest graph, that is, Ej  =  If the 
embedding is injective, then the expansion is a measure of processor utilization.

D e f in it io n l l ,  The edge dilation of edge (i,j)  E Eg is dist (f( i )J( j) ).  The dila- 
tion of the mapping is Dj — inax(dist(f(i)y / ( j ) ) ,  V(/, j )  E Eg . The average edge 
dilation is j)eEc f̂ 's^(/(0>/(.?))• The dilation of a mapping represents
the communication delay between the communication nodes.

D efin ition  12. The congestion of an edge ef E Eh is the cardinality of e E 
E(G): ef is in path /(e ). That is, le/ ^ ^7(e)l* The congestion of the
mapping is m a x \ c' ^ Ef{e) D’ ^ £ Eh - The average congestion of the 
mapping is similarly defined.

D efin ition  13. The max-load is the maximum number of nodes in G that are 
mapped to a node in H , Max-load = I if the mapping is one-to-one.

It should be noted that unit dilation implies unit congestion. Thus the class 
of dilation-1 embeddable graphs in a hypercube is a proper set of the class of 
congestion-1 embeddable graphs. If each node of the guest graph is mapping to a 
distinct node of the host, the slow down due to nearest neighbor communication 
in the original graph being extended to communication along paths is a function 
of the length of the path (i.e., edge dilation) and the congestion of the edges on 
the path.

3.2 T he k -ary n -cu b e Inter connect ion T opology

One of the most general type of interconnection network is the fc-ary ?).-c.ube 
which has kn nodes organized as a cube with dimension n and k nodes in each 
dimension. Each node i is identified by an 7i-digit radix k number, the 6-th digit 
of the number represents the node’s position in the 6-th dimension. The nodes are 
interconnected to their nearest neighbors in a radix k representation as follows.
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D efin ition  14. If in- \  •••i0 is the radix k representation for node i, then its 
neighbors in the interconnection are

- l * n - 2  *'  -*6+i*& * 6 - i  ■ ■ -*o

and

where

and

in-i'tn- 2\m*n+iib ij_i *::ttiofor eachO < b < n -  1 

ij[" = (h +  l)morf k

ib =  (ii — l)mod k

An example of a 3-ary 2-cube is shown in Figure 7 g.
Some special cases of this topology are the k = 2 case of the hypercube or 

boolean ?z-cube. For n =  2 a superset of a a k dimensional mesh is generated 
and n = 1 specifies a ring.

B oolean  ?i-cube Various supercomputer architectures interconnecting hundreds 
or thousands of processors have been proposed for many years. The Hypercube is 
used on both SIMD and MIMD parallel processors. Some commercial examples 
are the NCUBE/2, the Intel iPSC/860, and the CM-2.

An 7i-cube system has 7V=2n nodes (processors) indexed from 0 to 2n — 1 and 
there is a link between any two nodes if and only if the binary representations of 
their indices differ by exactly one bit. An n-cube can be recursively constructed 
by combining two (n — l)-c.ubes. Let (an_2 . - .ao) be an index in (n — l)-c.ube. 
Then in ?i-cube, there is a link between two corresponding nodes in ( n — l)-c.ube, 
(0an_2 . . .  «o) and ( l «n-2  • -. flo)- A 2-ary 3-c.ube is shown in Figure. 8.

3.3 P attern  E m bedding in a H ypercube

The hypercube is a powerful topology because it is a superset of many other 
topologies, such as ring, mesh, and tree. Commonly, each of these nodes in these 
topologies is given a binary representation. However, the binary representation 
chosen needs to preserve the nearest neighbor adjacencies present in the fc-ary 
n-cube representation. Fortunately, the Gray-code provides just such a represen­
tation.

D efin ition  15. A Binary Reflected Gray Code (BRGC) Gk is a code of length 
k such that

Gk-i{i i)  is the k — 1-bit Gray code representation of digit i( of the radix k — 1 
number i and G*_i (h )R is its reversal.

( { 0, 1 } if Jb= 1

{OGWtO), OGfc-i(l), . . . .  0Gt _ i(2 * -1 -  1), 
lGjb_i(2fc-1 -  1), lG fc_ i(2 * -1 -  2 ) , ,  lGft_i(0)}  

l =  {0Gfc_i, lG f . , }  k >  1

Gk =
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Fig. 8. A 2-ary 3-cube

R in g E m bedding Rings are of interest, and are of increasing interest, due to 
the computational problems that arize in genetics. One of the central questions 
of molecular biology is the discovery of the semantics of DNA. Just knowing the 
syntax, that is, the sequence, tells the biologist little. The biologist must under­
stand the biochemical functions of the DNA. To understand the semantics, one 
needs to know the relationship between DNA and proteins. The essence of the 
problem is that given a set of protein sequences, efficient alignment-matching 
algorithms are needed that can deal elegantly with insertion, deletion, substitu­
tion, and even gaps in the series of sequence elements. One way of measuring 
the optimality of an alignment is by computing a score based on a matrix of 
weights reflecting the similarity between pairs of sequences. In some situations a 
penalty is subtracted for each gap introduced. Such a score can be computed by 
a dynamic programming algorithm in time proportional to the product of the 
lengths of the sequences.

The subsequence matching problem can be formulated as follows:
Given two sequences A, B ) of symbols chosen from a same domain

A =  (rti, <i2, an),B =  62,.... ,»), 

find the subsequences

A! = (a*,, a,-,), = (bjlt

where 1 < t’i < %2 < ... < i* < n, 1 < j \  < j i  < ... < j x < m
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which maximizes the comparison function G(A*, Bf). C can depend on the sym­
bols a>in bjk in A* and B f and on the numbers of symbols in A and B which are 
omitted between successive symbols in A! and B f (gaps).

For such comparison functions, one can use a dynamic programming algo­
rithm to determine the best subsequence match for a given pair of sequences A, 
B in serial time O(mn) where n and m are the length of the sequences A and 
B.  This dynamic programming algorithm can best be understood by considering 
the matrix

a — max

0
C r - i ^ - i  +  D(ar , bs) 
Cr- \ ts H- 9 
CVts - i  +  g

where the gap constant g < 0, and D is a correlation function between single 
elements [24].

A parallel version of the dynamic programming algorithm is quite straightfor­
ward to derive [10]. Since computing the value of CVyS only depends on knowing 
the values of CV_i,*, CV)S- 1 , and Cr- 1 ,5- 1 , we see that all of the elements on 
one anti-diagonal of the matrix can be computed simultaneously if the values 
along the two previous anti-diagonals are known. That is, for a fixed value of t, 
the matrix elements C t - S,$ can be computed simultaneously for all s provided 
that they are known for t — 1 and t — 2. Thus, one can parallelize the above al­
gorithm by computing successive anti-diagonals of the matrix CV,j on successive 
time steps. This is represented schematically in Figure 9. The algorithm requires 
n +  m — 1 time steps and m processors to compare proteins of length m  and 11.

Since each communication in the above algorithm is nearest neighbor, map­
ping the ring computational structure to directly connected processors is impor­
tant.

T heorem  16. A k-ary 1-cube is a subgraph of a 2-ary n-cube when n =  log2k 
and k =  2̂  for some integer j .

Proof. The idea is to number the nodes of the k-ary 1-cube using a BRGC. For 
each node i of the fc-ary 1-cube, re-number that node by 
Gfc(i) =  9k—\Qk—2 -' '9\ * * ’<7o- The predecessor and successor nodes of the &-ary 
1-cube are numbered (from Definition 14 with n = 1)

i~ andi+

where
= (i +  1) mod k and i =  (i — 1) mod k

which, using the definition of Gk are the nodes

9 k - \ 9 h - 2  ■ * •V\ " 9 0

and
9 k - i 9 k - 2  * • ' H i + i O i  ‘ * m9o
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P rocessor  #

0 1 %. 3 HT*1: fly

F ig. 9. Diagram indicating activity of processor i at time step t. If 1 < t — p < n, then 
processor i computes Ct-PtP+i at step t. Other wise,..the processor is inactive.

C orollary 17. A ring of length of 2m can be mapped into the 2-ary n-cube when 
2 <C m <  n.

Proof Since a 2-ary n — 1 cube is a subgraph of a 2-ary n-cube, the result is 
immediate.

If we notice that a ring of length 2n exists within a Gn because a path of 
length of 2n_1 exists within the first half of Gn{— 0Gn- i )  ancl is connected to a 
path of length of 2n_1 within the second half of Gn(=  1 G^_1) i then we can also 
construct rings of any even length by starting with shorter paths.

C orollary 18. A ring of length p =  2q can be mapped into the 2-ary n-cube 
when 4 <  p < 2n.

Proof Find a path of length q as follows

{0Gn-rW, 0Gn- i ( i  +  1 ) , . . . ,  0Gn- i ( i  +  9 - 1 ) ,  

lG n -!(i +  9 - 1 ) ,  lG n-l(* +  9 -  2), . . .  , lG n-! ( i)}
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For example, of a ring of length

p  =  12 : {0 0 1 1 ,0 0 1 0 ,0 1 1 0 ,0 1 1 1 ,0 1 0 1 ,0 1 0 0 ,1 1 0 0 ,1 1 0 1 ,1 1 1 1 ,1 1 1 0 ,1 0 1 0 ,1 0 1 1 }

M esh E m bedding Of great interest in Computational Science and Engineer­
ing is programs whose structure is the mesh. Consider the mode fluids problem 
[36] of cavity-driven flow whose physical domain chosen is shown in Figure 10. 
The pair of non-linear coupled differential equations 1,2 that describe this flow 
are easily solved sequentially using a standard second-order central differencing 
scheme. Central differencing calculates the new values at a particular point by 
taking a weighted average of the values of the nearest neighbors, as shown in 
Figure 11, where the weights are dependent on the flow patterns.

y  = 1, z = dpldy + du/dy 

■> -------------------> -------------------> ------------ >

F ig . 10. Cavity Driven Flow

c =  - v 2v> ( i )
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Fig. 11. Localized Computational Molecule

0C d
Tt  +  T x { < )  + ( 2 )

where u =  and i; =  — J||.
These two equations represent the flow conditions in the physical domain. 

Lines of constant stream function, Vb value are parallel to the local flow, while 
the vorticity, is a measure of the local shearing rate, or swirl, in the flow.

These equations were solved using successive over-relaxation with the result­
ing discrete equations as follows:

^ i j 1 ~  +  2(1 +  /?2) [V’i + l.J +  +  P2 + l +  ~  Ct
(3)

— fV’ . A t %  t  J  Ci +'J , J 1 U i  -  I'j j f - ^ + 1 ^ + 1  -
l
J  ~  1

' 2 A x 1 2

1
Re V A * *  '

where oj is the over-relaxation fectur and, fi =
Superscript k indicates the cnfreiil,. iteration Value and n is the value at 

the current time. The boundary values for (  are calculated by using first-order 
accurate, away-from-the-wall equations:

2
Ci,w —  — ~A\p' ^ i,w  ~  + +  ■A y _ ( 5 )
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Cw,j — “ ^ 2  WW — V'tu+l.i) (6)

In equations 5 and 6, w is the location of the boundary, and the bracketed 
term is only used at the top of the cavity, where the external flow affects the 
values.

The standard solution method is to take an initial guess of the values of u} 
v, and C> along with a At  appropriate for the fineness of the grid, and iterate 
equation 4 once. These values are then used to iterate equation 3 to convergence, 
update the values of u and v> calculate the boundary values for £, then repeat the 
process until the values of C and 0  have both met desired convergence criteria.

Optimal Matrix Multiplication (in the abstract sense)  As another mesh problem, 
consider Gentleman's Algorithm [13] which is an explicit parallel solution using 
a 2D mesh of processors to multiply two matrices.

Assume we have N 2 processors arranged in an N  x N  mesh, Each processor 
pitj  holds ai j  and bij and we have a toroidal mesh (an easily implemented 
subgraph of an n-cube).

Optimal OMEGA(n)  Algorithm 
foreach pi j  SEND and RECEIVE to 

left circular shift all a\ j s  by i — 1 
up circular shift all b̂  jS  by j  — 1 

foreacli pi j
ci,j aU bi,j
do n-1 times

left circular shift a2J;up circular shift bij
ci,j *- Cij +  ctijbij

Example 2, Consider the example of matrix multiplication shown in Figure 12. 
The result 02,3 is calculated as follows, 02,3 rt2>i^i,3+ « 2)2 2̂l3+ « 2l3&3,3+ « 2,o&ot3

Embedding Results for Meshes

T heorem  19. A k-ary 2-cube is a subgraph of a 2-ary n-cube when n =  2log2k 
and k =  for some integer j.

Proof As in the proof of Theorem 16, we number the digits of the fc-ary graph 
using Gj. Specifically, for each node i =  i\io of the fc-ary 2-cube, re-number that 
node by G j( i i )G j (io)- Consider the 4 neighbors of i }

h i t  h i o
i f  io ij” io

where
= (i -1- 1 )modj

and
i =  (i — l )mod j
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F ig . 12. Toroidal Shift

and their Gray code ordering

G (*i)G (tf) G (ti)G (*n  
G(*f )G (i0) G(*T)G(i0)

Since we change only one dimension of i at a time for each neighbor, we can 
consider each mapping individually, as in the ring case. Using the definition of 
G j } a particular imt G(imy s neighbors are the nodes

9j—19j—2 • • -5/ * * • go

and
■ ■ ‘Vi+idl *-9 o

Thus, each Gj(im) enumerates a 2-ary j-cube. Taking the cross product of 
Gj(i \)  x Gj(io)  yields a 2-ary n-cube.

A d-dimensional mesh is an mo x m2 x 1 mesh in the d dimensional space.
An example is shown in Figure 13

C orollary 2 0 . An mo x mi x ■ ■ * x m^-i mesh in d-dimensional space, where 
rrii =  2hi and Y î~o — n can &€ mapped into a 2-ary n-cube where the mapping 
is <3*d_i ) x • ■ • x Gfcl(n) x GjbD(i0).

Tree and P yram id  E m bedding The final topology to be considered is the 
tree. Tree computations occur more infrequently than either the mesh or ring, 
however, an extension of the tree, the pyramid, occurs frequently in multigrid 
algorithms.

The first, rather surprising, result is an impossibility proof on tree embedding.
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F ig. 13. 3D Mesh Interconnection

D efin ition  2 1 . Tn denotes a complete binary tree of 2n — 1 nodes.

T heorem  2 2 . A binary tree Tn with 2n — 1 nodes cannot be embedded into an 
n-cube for n >  3 .

Proof. It is enough to show that by adding an additional node and all relevant 
edges to Tn that we cannot reconstruct a 2-ary n-cube (of 2n nodes).

Observe that for the leaf nodes of the tree, there are no cross edges such as in 
Figure 14a, since that would form an odd-length cycle, which, in a 2-ary n-cube, 
cannot exist. Similarly, there can be no edges, as in Figure 14b.

Given these constraints, we can add edges to the tree at each leaf node. Since 
n — 1 neighbors of each leaf need to be found, a total of (n — l ) 2n_1 edges and 
one node need to be added. Since whether the tree has an even or an odd depth 
influences the assignment of edges, there are two cases. Notationally, we put the 
root at level 1 of the tree.

Case 1 If n is odd, then the number of nodes which can receive edges from the leaf 
nodes is

n — _1 i

i = 1
which is simply a count of the nodes at levels at an ocld distance from the 
leaves of the tree. Each of these nodes already has 3 edges, so they absorb
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Fig. 14. There can be no cross edges (a), nor edges between the leaf nodes and a node 
at a level an even height away from the leaf

n — 3 more edges (since each node in a ‘2-ary n-cube has a total of n edges). 
The extra node can absorb n edges. Thus,

-71 — 1

(n -  3) £  22i- 1 +  n ( » ~  l)2n_1 > 3
i=1

Thus, since the inequality is strict, there are not enough vertices to absorb 
all the edges necessary to reconstruct the 2-ary n-cube.

Case 2 If n is even, then the number of nodes which can receive edges from the leaf 
nodes is

n —2 

2=0

Here each node has 3 edges except for the root which has 2. The extra node 
can absorb n edges. Thus,

-n —2

(n -  3) ^  221 +  n <  (n — l)2n-1 forn  > 3 
2 — 0

Again, since the inequality is strict, there are not enough vertices to absorb 
all the edges necessary to reconstruct the 2-ary ?i-cube.
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We can, however, embed Tn_i in a 2-ary n-cube (left as an exercise), but the 
node utilization is poor,

which is about a 50% waste of nodes.
We can do better if we allow for a dilation, D f =  2.

T heorem  23. An n-cube contains a binary tree of height n with (2n — 1 nodes) 
with a dilation D f =  2.

Proof. Define Sn as the graph obtained by taking 2 disjoint Tn_i and connecting 
their roots by a path of length 3 as in the construction of 64 shown in Figure 15

r s t u

Fig. 15. Tree £4

Now, we need to show that for 71 > 3, roots r and u of Tn_ 1 can be labeled 
such that dist^) u) =  3.

By induction, assume that Sn- i  is a subgraph of a 2-ary ?i — 1-cube with

Gn_i(r) =001 — 11 
Gn—i(s) =011 •■•11 

Gn—i ( 0  = m ‘ •■I*
Gn-i(i i ) =  111 • • • 10

Now find two disjoint subgraphs S*n~\ and Snn~ 1 in a 2-ary n — cube. In the 
construction, S'n- 1 is obtained by prefixing every label of Sn- \  with a 0. Thus,

0Gn_i(r;) =  0001 • • * 11 
0G„_1(fi/) =  0011---ll 
OGn-i(O) =  0111 “’ll 

0Gn- 1(ti') =  0111--'10

and for every node i in 5n- i  Gn-i ( i )  — 0n - 20n - 3 -v</o relabel i in SNn- i  by 
=  Igogi■ •■</„-2- Thus,

lG „_i(r") =  11 •■•100
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1G„_i(s") =  11-110

1 Gn-i(<") =  11 •••111
lG n-i(« " ) =  1 0 1 - 1 1

These two trees are depicted in Figure 16.

Fig. 16. Two subtrees created by relabeling their node numbers

We can now form Sn =  ,S"n_iU,$"/n_ i+ { ( .sV /), (t't"), (uV ')} — (t"u")} 
yielding the construction of Figure 17.

An example is shown in Figure 18.
While trees, themselves, do not hold a great deal of interest, practically, an 

extension of the tree, the pyramid, is computationally interesting.

The Multi grid Method The initial idea behind multi-grid is that convergence 
time decreases dramatically with an improved initial guess. From this idea, it 
seems reasonable to use a coarse grid to get a rough solution, and then interpolate
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Fig. 17* Tree Constructed from S* and S". The new root node is represented by 
andi".

this answer to finer and finer arrays as shown in Figure 19. Although this does 
work, multi-grid methods are much more powerful than this simple concept. 
Given the system of equations

AU = F, (7)

the usual procedure is to guess a solution, V, to U, then calculate AV and 
correct the guess by comparison to F. The estimate V  is known to be some 
amount E away from the exact solution, giving

U =  V  +  E

and by substituting into equation 7,

A (V  +  E) =  F.

Initially, this doesn’t help since neither U nor E is known. However, after 
rearranging,
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Fig. 18. An Example of Tree Embedding with Df = 2

AE =  F -  AV

and finally,

AE = R, (8)

where R  denotes the residual, R  = F - AV. This resulting equation can be 
solved exactly as tl̂ e first equation, since all of the variables except E are known.

The reason why equation 8 is solved instead of equation-7 has to do with the 
size and frequency of the error. If the error in the value is small, but not yet 
small enough to satisfy convergence criteria, and the absolute value of the result 
is large, the small error will be hard to distinguish from the result. If instead, 
the values are subtracted out, the magnitude of the error will then be centered 
around zero, so the relative size of the error will be magnified.

The observed frequency of the error is dependent on the coarseness of the 
array, as shown in Figure 20. What may be seen as a relatively smooth change 
at the finest level appears as rapid changes when restricted to a coarser level.
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i*o

1*2

Fig. 19. Multgrid structure for N=16 Processors at the Finest Level

Thus, solving the errors at a coarser level increases the speedup of the solution 
by damping out the errors faster, along with increasing convergence rate due to 
better guesses.

As illustrated in Figure 21 and as described by [4], there are many ways to 
implement the multi-grid idea. In the figure, level 0 represents the finest array 
of points, while level 3 is the coarsest.

In the V-cycle, level 0 does a set number of iterations of equation 7, then 
passes its residuals to level 1 . Level 1 then iterates equation 8 and passes its 
residuals to level 2 , where the process is repeated until the coarsest level is 
reached. When the coarsest level finishes its computations, it passes the error 
corrections back down through the levels, until level 0 is reached.

The W-cycle takes additional advantage of the speed of the coarser grids 
by having them also do some improvement of the errors before the errors get 
passed back down the levels. This helps speed up the damping out of the smooth 
changes since the coarser levels converge faster.

Finally, the full multi-grid (FMV) cycle takes advantage of both the error 
correction and improved initial guesses. Instead of starting at the finest level,
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Fig. 20. Error Frequency Reduction Using Multgrid

FMV-cycles start at the coarsest arrays and compute an initial guess that is 
passed down to the next level. That level then does a few iterations and does a 
single V-cycle to improve its guesses before passing them down. Once the lowest 
level is reached, the process continues as a regular V-cycle.
E m bedding o f P yram id  in to  n-cube

In observing Figure 19, it is clear that embedding the pyramid into the ?i- 
cube is not going to be possible with D f =  1 since between each pair of levels 
of the pyramid, there are odd length cycles. However, D j  — 2 mappings exist. 
The mapping makes use of the following Gray code.

D efin ition  24. A Hierarchical Binary Reflected Gray Code (HBRGC) is a BRGC 
such that

h(Gn(i)s Gn(i +  2J)) = 2 when i +  2j < 2n -  1, j  > 0

D e fin itio n 25. The Hierarchial Binary Reflected Gray Code HGk is a code of 
length k such that
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Fig. 21. V and W Cycles of the Multigrid Method

H G k =

{ 0 , 1}

{ H G k- i(0)0, H <7*_i(0)l, H G k - i { l ) l ,  i ( l ) 0,
H G k - i V * - 1 ~  2)0, HGk- i(2 fc- 1 -  2) 1 , 

HGk-i{2*"1 -  1 ) 1 , i?Gfc_i(24 -1  -  1 )0}

if k =  1

k > 1

If we define R,(HGk) = { H G k- i {0 ) l 0  l~l, / /G fc_ i ( l )10 ' - 1, . . . ,  f /G 4_i(2*"1-  
2) 10' - 1 ,ffG * _ i(2fe- 1 -  1 ) 10' - 1>, which is just tfG’t l ,  then defines level
fc +  1 of a two-dimensional pyramid. Level fc of the pyramid is created by 
Rk +  1 (HGk — Rk{HGk)) which yields HCh0, or the subset of HGk whose 
nodes are at least a power of 2 distance away from the nodes of Rk(HGk). The 
process recurses until the entire pyramid is constructed. In general, at level / + 1 , 
of the pyramid, each node at that level is labeled HGk-i(i )  10?, thus reflecting 
that each node at level / +  1 is, at most, a distance of 2 away from child nodes 
at level / +  2 .

Examples. H G 2 generates the following pyramid depicted in Figure 22.

-  H G 2 =  {000,001,011,010,110,111,101,100}
-  R 2(H G 2) =  {001,011,111,101}
-  R i ( H G 2 -  R 2(HG2)) = {010,110}
-  R0(R i ((H G 2 -  R2(HG2)))) =  {100}
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Fig. 22. 2D Pyramid Generated by HBRGG HB

4 M odels of E m bedd ing, P artition in g  and M apping

The goal of portioning and mapping of a parallel program onto an architecture 
is to provide a balanced node utilization by allocating processes to processors 
maximizing parallelism while, simultaneously reducing communication overhead. 
These two goals are contradictory. The number of processes assigned to each node 
is application dependent and is dependent on the ratio between computation and 
communication time.

Optimal load balancing under perfect information is possible. In this case, you 
are given a set of processes po> pi , P n  1 with execution time requirements of 
tu(po), w (pi)i * * * i w(pN — I) and a set of communication costs: C = G(i, j)  which 
is the length of a message sent in communicating from process pi to process p j .

Classically [12], the goal of load balancing, given a process/communication 
digraph G (P ,C ), where P is the set of processes and C is the set of directed 
arcs C { i ) j)> is to find a partition

G =  Go U Gi U ... U G71 — 1

of G and a mapping of processes to processors n(p) subject to the following 
constraints,

Wn =  ^  w(p) =  constant (9)
PtGn

G{p,p') • dist(n(p)) n(p'))i$ minimized ( 10)

The problem with this metric is that, in modern multicomputers, such as 
the NCUBE/2, Intel Paragon, and CM-5, the time to traverse multiple hops in
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the k-ary ?z-cube is roughly equivalent to the time to perform nearest neighbor 
communication. Thus, we can simply rewrite Equation 10 as

C ~  ^ m inimized ( u )

Intuitively, however, this model is also inadequate for it does not take into 
account congestion from Definition 12. Consider an example of the effects of 
congestion from a ring embedding of the protein sequence comparison from Sec­
tion 3.

For simplicity, if we model the communication in a hyper cube as circuit 
switching, then a hardware communication circuit between two communicating 
nodes must be established before communication begins, and a link of the cir­
cuit is released at a time after the last bit of the message is transmitted. We, 
therefore, define the communication time needed for two communicating nodes 
in a hypercube as follows,

t c o m m  —  t'C o n y  “b  ^ lio p s

— t c o n g  T [Ts T )]

where t comm is the time needed to send an C'-byte message from one node to 
another. For the circuit switching model, if a circuit cannot be established be­
cause a desired link is being used by other packets, the circuit is said to be 
blocked. Here we assume that when a circuit is blocked, the partial circuit may 
be torn down, with establishment to be attempted later. tcong here denotes the 
waiting time for reestablishment. Note that, if the mapping of the linear array in 
a hypercube is dilation-1, then it will be congestion-1 also and no edges of a hy­
percube will be contained in more than one mapping linear array edge. That is, 
if the mapping is dilation-1, t con(J) the communication delay due to congestion, 
will be zero. thops is the ideal communication time between two communicat­
ing nodes such that the edge congestions of the desired circuit between these 
two nodes are all one. The value of thops is determined by the three terms: rs, 
Tt, and C\ where rs is the communication latency and r% is the time needed to 
transmit one byte of data,. In the parallel protein sequence comparison, each pro­
cessor in the linear array will send messages to its right neighbor twice, therefore, 

— 2 ■ Gomm — 2 ■ {tcong T thops)-
Suppose that, during the course of the computation, some processor fails. If 

in the beginning we select one designated spare node and let the rest of nodes 
all do the computation. If a node becomes faulty during processing, just replace 
this faulty node with this designated spare node. For this approach, it is very 
possible that the length (or hops) of the desired path from the left or right neigh­
bor of the faulty node to the designated spare node is equal to the dimension 
of the embedding hypercube, and, moreover, the desired path has c.ongestion-2. 
These factors (number of hops and congestion) have to be taken into account 
for calculating the communication time. From the algorithm of parallel protein 
sequence comparison, we can derive that t C(mg is equal to rs + r t C . For simplicity,
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we also assume that the path from the faulty node’s left neighbor to the des­
ignated spare node and the path from the designated spare node to the faulty 
node’s right neighbor are edge-disjoint. The total running time for this approach 
is about,

tc o n g  =  Ts T~t 0  

thops -= Ts H- TfC 
Tcomm = 2 • (tcong H"

Tp — Tcomm +  P)

which, by comparison with an embedding with no congestion, essentially, doubles 
the communication time of the entire problem.

5 A M ath em atica l M odel of D istr ib u ted  S ystem s  
B ehavior

A formal model (or mathematical model) is a model of the system using well- 
understood mathematical entities such as sets and functions. Formal methods 
used in developing computer systems are mathematically based techniques for 
describing systems. A formal method consists of a formal model and associated 
mathematical techniques which provides the user with a framework for specifying 
and analyzing the system.

The problem of specifying an abstract system is that of specifying a particular 
mathematical object, for which good mathematical techniques may have already 
been developed over the years. The existence of a formal model of an abstract 
system implies that a formal statement of the problem is needed that is in terms 
of the the formal model being used. Separating the problem from its solution 
is an important contribution of having a theoretical foundation in that it opens 
the door to alternative solutions [11].

There are numerous examples of the use of mathematical models in the com­
puter science, literature. One example from the study of network topology is being 
able to compute the information carrying capacity of a network. This Graphs 
can be used as the model of network topology, while the concept of the cut is 
useful for modeling the carrying capacity of the network. Other examples include 
queuing models for analyzing the performance of a system, Markov chains for 
reliability analysis, and axiomatic and denotational specifications for formally 
describing programming languages.

In general, theoretical foundations can provide (1) criteria for evaluation, 
(2) means of comparison, (3) theoretical limits and capabilities (4) means of 
prediction, and (5) underlying rules, principles, and structure. The power of a 
mathematical model is that it forces one to think clearly about the problem 
one is trying to solve. The process of stating the question leads one to identify 
relevant variables, state explicitly any assumption being made, and so forth. 
These very factors are often instrumental in leading one to a solution. Models 
ignore irrelevant details. This focuses attention on the essential feature; thus,
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a model produces generality, for results that depend on fewer assumptions are 
more widely applicable.

5.1 T he A xiom atic A pproach to  Program  V erification

The axiomatic approach to program verification is based on making assertions 
about program variables before, during and after program execution. These as­
sertions characterize properties of program variables and relationships between 
them at various stages of program execution. Program verification requires proofs 
of theorems of the following type:

< P >  S < Q >

where P  and Q are assertions, and S  is a statement of the language. The inter­
pretation of the theorem is as follows: if P is true before the execution of S and 
if the execution of S terminates, then Q is true after the execution of S. P is said 
to be the precondition and Q the postcondition[ 16]. A statement, S, is partially 
correct with respect to the precondition P  and a postcondition Q, if, whenever, 
P  is true of S  prior to execution, and if S  terminates then Q is true of S  after 
the execution of S  terminates. A program, S, is totally correct if it is partially 
correct and it can be shown that this program terminates.

CSP programs are composed of a set of communicating sequential processes. 
In many programs, it is desirable to save part of the communication sequence 
between processes. This is done with use of “dummy” or auxiliary variables that 
relate program variables of one process to program variables of another. The 
need for such variables has been independently recognized by many. The first 
reference that shows the usefulness of auxiliary variables is found in [7].

Overall Proof Approach . As discussed before a CSP program is rnacle up of com­
ponent sequential processes executing in parallel. In general, to prove properties 
about the program, first properties of each component process are derived in 
isolation. These properties are combined to obtain the properties of the whole 
program.

Example 4- Assume that we want to prove the following:

< true > [pi||^2||p3] < x  =  u >

where
p i  :: P 2 ]- x  

P 2  :: P i ^ y \ P ^ V  

pz :: p2
The following properties can be proven about each of the component pro­

cesses:
< x =  z > pi < x =  z >
< true > p2 < y =  z >
< true > pz < u  — z >

We can use the properties that x =  z and u =  z and transitivity to show 
that x =  u.
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There are two approaches to proving the correctness of communicating pro­
cesses. The first approach is to divide the correctness proof into two parts. The 
first is the sequential proofs of each individual process that makes assumptions 
about the effects of the communication commands. The second part is to ensure 
that the assumptions are “legitimate”. This will be discussed later. This ap­
proach is taken in [2] and [25]. The second approach allows us to prove properties 
of the individual processes using the axioms and rules of inference applicable to 
the statements in the individual processes. The axioms and rules of inference are 
designed in such a way that it is not necessary in a sequential proof of a process 
to make assumptions about the behavior of other processes. These properties 
are then used to prove properties of the entire program. This is the approach of 

[39]-It has been shown [26] that it is irrelevant as to which axiomatic proof sys­
tems of program verification is chosen. This was done by showing that the ax­
iomatic systems are equivalent in the sense that, they allow us to prove the same 
properties. No system is more powerful than the other. However, there are very 
different approaches to thinking about the verification of the program and the 
applicability in a practical environment. The proof system presented in [25] is 
presented here for its relative ease of use.

Axioms and Inference Rules Used For Sequential Reasoning . In addition to the 
axioms and inference rules of predicate logic, there is one axiom or inference 
rule for each type of statement, as well as some statement-independent inference 
rules. The following are common to all the axiomatic systems and apply to 
reasoning about sequential programs. The basis of the axiomatic approach to 
sequential programming can be found in [16].

The skip axiom is simple, since execution of the skip statement has no effect 
on any program or auxiliary variables.

< P > skip < P >

The axiom states that anything about the program and logical variables that 
holds before executing skip also holds after it has terminated.

To understand the assignment axiom, consider a multiple assignment state­
ment, x := e, where x is a list of x \ )X2) of identifiers and e is a list of
e i ,e 2, . . . ,e n of expressions. If execution of this statement does not terminate, 
then the axiom is valid for any choice of postcondition P. If execution termi­
nates, then its only effect is to change the value denoted by each target to 
that of the value denoted by the corresponding expression e* before execution 
was begun. Thus, to be able to conclude that P  is true when the multiple assign­
ment terminates, execution must begin in a state in which the assertion obtained 
by replacing each occurrence of Xi in P  by e.i holds. This means that if P f :i is 
true before the multiple assignment is executed and execution terminates, then 
P will be true after the assignment. Thus we have the following:

This stands for predicate P with each Xi replaced with a3
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< P? > x := e < P >

It may seem strange at first that the precondition should be derived from 
the postcondition rather than vice versa, but it turns out that this assignment 
rule, as well as being simple, is very convenient to apply in constructing proofs 
about programs.

There are also a number of rules of inference, which enable the truth of 
certain assertions to be deduced from the truth of certain other assertions.

A proof outline for the composition of two statements can be derived from 
proofs for each of its components.

< P > Si < Q >, <  Q > S2 < R >
< P > S i \ S 2 < R >

When executing Si; S2) if Q is true when &\ terminates it will hold when S2 
starts. From the second hypothesis, if Q is true just before S2 executes and S2 
terminates, then R will hold. Thus if Si and S2 are executed one after the other 
and P holds before the execution, then R holds after the execution.

Execution of an alternate command ensures that a statement Si is executed 
only if its guard b{ is true. Thus, if an assertion P is true before execution of the 
alternate command, then P  A b{ will hold just before Si is executed. The second 
part of the hypothesis assumes that none of the guards are true. If the hypothesis 
is true and if the alternate statement terminates, then this is sufficient to prove 
that Q will hold should the alternate statement terminate.

Vi :< P  A bj > a \S j  < Q > , < P A Vi : -»6t- > -> <  Q >
~~< P  > i f Obi; Cj —► S'ifi < Q >

The consequence rule allows the precondition of a program or part of a pro­
gram to be strengthened and the postcondition to be weakened, based on de­
ductions possible in the predicate logic.

P - > P \ < P ‘ > S < Qf > ,Q / -» Q
< P > S < Q >

The need for auxiliary variables was discussed earlier. Two of the proof sys­
tems use auxiliary variables. The auxiliary variables must not affect program 
control during execution. The following rule allows us to draw conclusions from 
proof outlines of programs annotated with auxiliary variables.

< P > S' <  Q >
< P > S < Q >

where S is obtained from S' by deleting all references to auxiliary variables 
and P and Q do not contain any free variables which are auxiliary variables.
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The inference rule for the repetition command is based on a loop invariant 
i.e. an assertion that holds both before and after every iteration of a loop.

\/i :< P Abj >  Cj\Sj <  P >
< P >  *[D6jC* —► Si] < P A Vi : -ifcj >

The hypotheses of the rule require that if execution of Si is begun when the 
assertion P  and bi is true, and if execution terminates, then P  will again be 
true. Hence, if an assertion P  is true just before the execution of a repetition 
command, then P  is true at the beginning and end of each iteration. Thus, P  will 
hold if the repetition terminates. The repetition ends when no boolean guard is 
true, so -i&i A - 1&2 A ... A -«6n will also hold at that time.

[25] does not have distributed termination which is contrary to Ho are’s orig­
inal version of CSP [17]. Distributed termination provides the means for auto­
matic termination of a loop in one process because another process has termi­
nated. It is assumed that termination of all loops occurs when all boolean guards 
are false.

Example 5. Let us examine how these rules are applied to the following sample 
program.

var t,i,b[0...n-l]:mteger; 
t := 0;
i : =  0;
do [i ^  n —> t:=t+b[i]; i := i +  1] od

This program sums up the elements of an array b. The result is put into 
the variable t. Now to prove the partial correctness of this program, we will 
prove that if the program is started in a state where n > 0 holds and execution 
terminates, then t will contain the sum of the values in b[0] through b[n-l]. The 
composition rule implies that in order to prove the above program correct, it is 
sufficient to prove that

< n >  0 > t := 0 < t =  0 > (12)

< t  =  0 > i : = 0 < l  =  OAi  =  0 >  (13)

i — 1
< i = 0 A i = 0 >  do[« ^  n —► t := t +  b[i]\i := i +  l]od  < t =  ^  b[j] >  (14)

j= 0

Outline 12 and 13 are easy to prove using the assignment axiom. Note that 
using iioifeLdl predicate logic mfetence rules, it can be shown J =  0 A i  =  0 —► 
t =  • J&member that:Since i is equal to 0, that-there are no values
of j  between 0 and i — 1. t =  is va.cnOh$ly true. Therefore,
by a^pljfiftg the Rule of Consequence, we can prove Outline 14 by showing llie  
following:
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i—1 i—\
< t =  ^ 2  6[j] > clo[i ^  n —► t := t +  6[*]; i := i +  l]od < =  ^  (15)

j =0 j = 0

To prove Outline 15, it will be sufficient to prove that

i — l t — i
< t =  ^ 2  b\j] A i n > t := t -f 6[i]; i ;= i +  1 < t = ^  &[j] > 

i=o j=o
i-1

< t =  ^ 2  [̂i] A i =  n > —*<
j=o

n — 1

J = 0

>

In order to prove 16, it is sufficient to prove
i — I i

<  * =  a * #  n >  t ■=t +  &[*];< t =  Mil >
i = o  j —o

(16)

(17)

(18)

i i — l
< t  =  ^ 2 b [ j ] > i  : = i + l < t  =  Y ^ bij] >

3=0 3=0

(19)

Outlines 18, 19 can each be proven by applying the assignment axiom. Out­
line 17 can be shown by substituting i for n and using the consequence rule.

Axioms and Inference Rules Dealing With Communication . Each of the three 
proof systems deal with assertions on communications in different manners. Two 
of the approaches make the explicit use of auxiliary variables to relate the dif­
ferent communication sequences. The third proof system makes assertions on 
communication sequences.

Communication and Parallel Decomposition rules . The communication axiom 
is as follows:

< P  > p < Q >
where (3 is a communication command.

Remember that < P > S < Q >  means total correctness if S  terminates. .S' 
terminates in the absence of deadlock. The parallel rule implies that a proof for 
a parallel program is based on the isolated sequential proofs of the processes it 
comprises. Take any such program S. A sequential proof for it only proves facts 
about it running in isolation. With only one process running, communication 
commands deadlock. Thus, any predicate Q may be assumed to be true upon 
termination of a communication command because termination never occurs.

The Law of the Excluded Miracle [9] states that the statement false should 
never be derived. This is the requirement to ensure a sound logic. The commu­
nication axiom does violate the Law of the Excluded Miracle. This allows us to 
deduce that the following is true:

< true > A?x < x =  5 A x =  6 >
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The postcondition, however, is obviously false. Thus, one might come to the 
conclusion that the proof system is not sound. This is the result of allowing 
the communication axiom to make assumptions about the behavior of other 
processes in order to prove properties of an individual process. In order to justify 
those assumptions a “satisfaction proof” must be done. This ensures that the 
proof system is sound. Hence, the parallel inference rule is as follows:

(Vi :< Pi > Si < Qi >, ^satisfied and interference — free 
< (Vi : P~) > [|U=i:„, ~Pi" Si] <(Vi : >

The parallel rule implies that we can construct the proof of a parallel program 
from the partial correctness properties of the sequential programs it comprises.

It has been mentioned that a “satisfaction proof” is needed to ensure sound­
ness of the proof system. Let us examine the proof outline of the matching 
communication pair:

Pi : [■•• < P >  P2*!x < Q > ]  

p2 : [... < R  > p]\iy < S >]

The effect of these two communication commands is to assign y to x. This 
implies that Q A S  is true after communication if and only if

(P A P )-> (Q A S )J

A “satisfaction proof” is such that the above is proven for every matching 
communication pair. This is called the rule of satisfaction.

Earlier we discussed the need for auxiliary variables. An auxiliary variable 
may affect neither the flow of control nor the value of any non-auxiliary vari­
ables. Otherwise, this unrestricted use of auxiliary variables would destroy the 
soundness of the proof system. Hence, auxiliary variables are not necessary to the 
computation, but they are necessary for verification. The proof system in [25] al­
lows for auxiliary variables to be global i.e. variables that can be shared between 
distinct processes. Global auxiliary variables (GAVs) are used to record part of 
the history of the communication sequence. Shared reference to auxiliary vari­
ables allow for assertions relating the different communication sequences. This 
necessitates the need for a Proof of Non-interference. This consists of showing 
that for each assertion T  in process pi , it must be shown that T  is invariant over 
any parallel execution. This is the non-interference property of [32].

Asynchronous Message Passing Systems The proof systems that have been dis­
cussed up to this point are designed for synchronous programming primitives. 
Our work uses an extension of work discussed in [37]. The work of [37] describes 
how to extend the notion of a “satisfaction proof” and “non-interference proof” 
for asynchronous message-passing primitives. The extension is based on intro­
ducing for each pair of processors pi and p j , two auxiliary variables S{j, j i j , 
where Sij is the set of all messages sent from process i to process j and j i j  is the 
set of all messages j actually receives from i. This extension involves assuming
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that actual sending and receipt of a message implies that Sij and j i j  are imme­
diately updated. It is also assumed that j i j  C 6  ̂ is invariantly true throughout 
program execution.

5.2 Branch and B ound E xam ple

Branch and bound algorithms have been used in the past to search optimal 
solutions for many well-known problems such as the Traveling Salesman and the 
N  Puzzle Problem. These problems typically correspond to trees or graphs with 
exponential search space. There exists many search strategies that can find the 
optimal solution such as breadth-first, depth-first search, and best-first, search. 
We assume that the Branch and Bound uses a best-first search strategy, in 
that a function is used for estimating the node that is most promising. When a 
solution is obtained, the value of the function acts as an upper/lower bound to 
the problem where all other intermediary bounds can be pruned if it exceeds this 
bound. The algorithm described in this paper is the N Puzzle Problem where 
W +  1 is a perfect square. The description of the problem is described below.

Most people are familiar with the N  Puzzle Problem. The game begins with 
a given board configuration where the tiles are out of order. The objective is 
to find a solution that takes the minimal moves to go from the initial board 
configuration to a known final configuration. Figure 23 shows this.

2 0 6

5 4 7

8 3 1

[ 2 3

8 0 4

7 6 5

Fig. 23. Objective of the N Puzzle Problem (N =  8)

The initial board configuration for the N  Puzzle Problem consists of TV +  1
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tile positions with N  tiles distinctly numbered ranging from 1 to N  and one 
blank space denoted by a zero.

I 7 1

co6t = 16 cost = 14 cost= 14 cost = 16

1 J

L b

II 1 :

G H S

4 b 3

1 7 *

JL °l_l
4 t» J 

\ 7 7

• I N ?  
I 0 3
7 0 2

cost * 14 cost B 15

F ig . 24. An abstraction of the N Puzzle Problem (N =  8)

The number of ways of reaching the objective is described best by means of a 
tree structure. The initial configuration corresponds to the root of a search tree 
(see Figure 24), where its children are the result of moving an adjacent tile into 
the blank position. A move which is legal is defined below.

D efin itio n 26. A legal move is described by swapping the blank tile with a tile 
to its left, right, top or bottom. For each configuration, the following moves are 
legal if the conditions hold. There exists at most 4 possible moves per configu­
ration. If bUtV is the position of the blank tile then at least two of the following 
conditions will hold.

mo «-*■ 6«+i,„ ifu ^  +  1
mi : bUiV <-► i iV ifu ^  1_____
m2 : b<-► 6u>v+i ifv ^  +  1
m3 : bUiV<-*• &u,v-i ift> #  1

We will let M  be the set { m o ,m i, m 3 }.
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Each node in the tree is referred to as a state, s*, of the puzzle where i is a 
unique integer. We will assume that so denotes the state corresponding to the 
initial configuration. The state Si will be represented by the path taken from the 
initial configuration, s0 to the node represented by s*. A path is the sequence of 
moves from so to the node S{. This can be formally defined as follows.

D e fin itio n 27. Let s* of the N Puzzle Problem, be represented by the path 
that exists when a set of moves from the initial configuration, so, evolves into 
the node to be denoted by s*, where the number of moves taken is k.

Si =  (pf0jP*l,P*2 * * *Pifc~l) 

where pij is a move of type m, where m 6 M.

D efin itio n 28. A node denoted by S{ is a reachable configuration from a node 
denoted by Sj if Sj is a path prefix of S{.

If Si is a reachable configuration from sj then Si and Sj are on the same path 
in the search tree.

D efin itio n 2 9 . Let the search space for the N  Puzzle problem be described as 
follows:

Sj =  {sz|si is a reachable configuration of so}

D e fin itio n 30. If sz- E Si  then s,* is a solution if S( corresponds to a node which 
denotes the final configuration.

D efin itio n 3 1 , If a solution exists, then the solution space, A /, is the set con­
taining all solutions for the N Puzzle Problem.

A\ — {sz|s; E Si  A Si isasolution}

To search an entire tree for the optimal solution is exponential, therefore 
an optimization function is used to reduce the search space. This optimization 
function is applied to each path in the tree until the path containing the final 
configuration of the puzzle is found. The value of this function acts as a bound 
for that particular path down the tree and aids in selecting the next path to 
expand.

D efin itio n 3 2 . The optimization function, / ,  determines the cost for a partic­
ular state, Si, at level k.

f(si ) =  mdi + k

where mdi is the manhattan distance of the configuration denoted by
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The optimization function for the N  Puzzle Problem is defined as the sum 
of the manhattan distance of each tile plus the height of the tree. This function 
represents the distance each tile is out of place and the number of moves taken 
thus far.

Theorem 33 states that if the branch and bound algorithm finds the mini­
mal cost node as defined by the minimum cost function, which satisfies certain 
properties, then the minimal cost node is also the optimal node.

T heorem  33. [23] Let s denote any node representing a minimal cost node} 
according to the cost function f } where f  is monotonically nondecreasing. Then 
s is an optimal node, in the search space.

T heorem  34. [28] The optimization function, f ,  is a monotonic nondecreasing 
function as i increases.

By Definition 32 and Theorem 34, once a solution is found, the manhattan 
distance decreases to zero resulting in k for some f($i)  evaluated at level k. 
This value corresponds to the number of moves it took to solve the puzzle. The 
function value then acts as an upper bound to the problem such that all branches 
which possess a bound higher than the upper bound need not be considered. The 
non decreasing nature of the function signifies that any path being considered 
with a higher bound, will take at least that many moves to solve the puzzle. 
Since a solution has already been found which can solve the puzzle in fewer 
moves, that path will not lead to a better solution. However, the remaining 
paths with lower bounds must continue expanding, generating new states until 
it reaches a solution or until it exceeds the current upper bound. When all the 
nodes of the tree have been explored, the solution having the lowest bound is 
the one with the minimum number of moves. The parallel algorithm described 
in this paper is based on this concept.

The parallel algorithm involves dividing the work in terms of subtrees and 
has many processors working on the problem simultaneously. Two approaches 
are described in this section.

The approach commonly taken in implementing Branch and Bound is the 
“worker/controller” method. The initial board configuration of the problem, s0) 
is given to a designated processor called the “controller” who distributes the 
work to all idle processors known as “workers”. The controller manages the 
tasks which are to be completed and is responsible for assigning tasks to the 
workers. A task refers to transforming some S{ to sj by a legal move of type, , 
where m*. E M.  A worker, on the other hand, is oblivious to the other workers 
and does only the task which is assigned to him by the controller. When a worker 
completes his task, he reports back to the controller by sending the controller 
the new Sj’s each with a bound accordingly to the f ( s j ) .  The controller receives 
these new Sj’s from the workers and inserts them into a prioritized queue which 
is in increasing order by the value of the bound, f(sj ) .  When the controller 
recognizes that a particular worker is idle, he assigns the configuration with the 
lowest bound from his queue to that worker. As soon as a solution is found,
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the controller modifies his queue, disregarding all configurations with higher 
bounds. This process continues until the controller no longer has any tasks left 
to distribute and all workers are idle. The current solution, Scurren*,- which has 
the lowest bound then contains the optimal moves for the puzzle.

Host:
Begin

Distribute initial board configuration;
Terminate workers;

End;
Worker:
Begin

Wait for a task to work on;
Loop

While ( \taski\ > 0 )
Work on expanding lowest costing paths; 
If (first solution found)

a s k j )  >  / (  {•cu rren t, )
Discard task.

If a solution $i is found
Notify other workers of st;

If (|<asfci| > 1) and (worken = idle) 
Distribute task to idle workeri\

If a solution is reported
If /(-Srecvi) < f(Scurrenti)

ĉurrent, = 5T-ect/!
End While;
Wait for a task to work on;
If a solution is reported

If /(^recv,) < / (̂ current,*)
•Scurrentj = Srecvi >

End Loop;
End,

Fig. 25. Parallel Branch and Bound for N puzzle

The advantage of this scheme is the clear structural organization of the tasks. 
The controller knows the status of each worker and keeps track of the best bound 
reported thus far. However, the controller has become the point of centralization. 
All messages from the workers are directed to the controller creating a bottle 
neck. In terms of fault tolerance, the idea of having a centralized control is dis­
couraged because should the fault manifest itself within that particular processor 
appointed to be the controller, recovery would be impossible.

We use as a model algorithm that of [28] The algorithm requires only workers 
to search the solution space. The initial task, so, is assigned a designated worker
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to work on. As time passes, more tasks are created. Each worker retains one task 
for himself and redistributes the rest to other idle workers. When a worker has 
completed his task, he notifies the other workers that he is available to accept 
tasks; otherwise, he continues working on the original tasks distributed to him.
The only other communication that occurs among the workers is when a solution,
S{ has been found. This solution is only one of many in the solution space, A/, 
and may not be the best solution, but it allows some pruning to be done such 
that the number of tasks can be reduced. The worker who discovers the solution 
broadcasts to the other workers allowing them to update their local bounds. The 
algorithm terminates when all tasks have either completed or been discarded. 
Asynchronous communication and dynamic allocation of tasks are used in this 
method, The algorithm is described Figure 25.

Verification of the N Puzzle Problem The algorithm presented in Figures 5.2 and 5.2, 
is the algorithm presented in Figure 25 annotated with assertions and assign­
ments to auxiliary variables(denoted in italics).

Not all assertions are listed, since, there is one assertion, labelled I (defined 
in Definition 35), that is invariant throughout execution, except during com­
munication. This assertion and why it is not invariant throughout execution is 
described after Figure 5.2.

< Pren >
Host:
Begin

SyA =  S i , Ai\
,S,#, A! =  0, 0;
Distribute initial board configuration; 
<  ,S0  U  Si U  . . .  U 5 j v - 1  =  -So >  

Terminate workers;
End;
< Postn >

F ig . 26. Verification proof outline of the N puzzle problem (Host)

The following auxiliary variables are used in the verification proof:

Sj  : This is the set of all nodes in the tree that represents the state space 
Aj  : This is the subset of Sj  which contains the nodes that are solution nodes. 
,S" : This is the set of nodes that have been examined by the algorithm, either 

directly or by priming.
A f : This is the set of solution nodes that have been examined by the algorithm, 

either directly or by pruning.
S  : This is the set of nodes that have not been examined by the algorithm.
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<  P ra  >
Worker:
Begin

Wait for a task to work on;
Loop

While ( |iasfc|i| > 0)
Work on expanding lowest costing paths;

If first solution found
If f  ̂ Staaki) > f{Scurrenti)

Discard task.
To = { s11̂  (is a reachable configuration of staski} 
T \  — E To A Si is a solution state}
5 i ) 5 l 5 '  =  .Si - T o , 5 - T 0 l 5 , u r i

If a solution is found 
Notify other workers;
Update SBij for each j;

If (|tasfc;| > 1) and {workeri = ID L E )
To =  is a reachable configuration of Stas/c,} 
Si = Si -  To
Distribute task to idle workeri;

If a solution is reported
If f  {$recvj) f{scurrenti)

Scurrenti =  SrecVi't
Update Rij, where j  is the sending process; 

End While;

Wait for a task to work on;
To = {si|si is a reachable configuration of 
Si =  Si U  T0

If a solution is reported 
If f(Srecvi) < / (  Scurrentj)

5 current ; =  Sreevij
Update Rijt where j  is the sending process;

End Loop;
SolutlOlli =  S current j

End.
<  Posti >

Fig. 27. Verification proof outline of the N puzzle problem (Worker)



53

A : This is the set of solution nodes that have not been examined by the algo­
rithm.

Si : This is the set of nodes to be examined by process i.
Si : current task set in process empty or not 
taski : task set of process i
SBij  : This is the set of solutions sent from i to j .
RBij  : This is the set of solutions received by i from j .
solutioni : This is the value of scurrenti at the termination of worker i,
Scurrenti ■ current optimal solution
Srecvi • solution received from another process at process i 
Staski • state representing the task set of process i

The precondition to the host process assumes that there is a solution from 
the initial configuration. In other words, Pre./i is as follows:

< Aj  ^ 0 >

For each terminating component process labelled node, snode is the lowest cost 
solution in the search tree. At the termination of the program, we want each 
processor to have the same lowest bound. Therefore, the postcondition Postn  is 
represented as follows:

< solutiono =  solutioni =  ... =  solution^-lAsolutioui  is the optimal cost solution >

The precondition, Pre-i to each worker process i is the assumption that the 
worker processes initially have no tasks to examine and no communication has 
taken place. This is represented by

< Si =  0 A SBij  =  0 A RB^ =  0 for j, 0 < j  < N  — 1, j  i >

The postcondition, Posti  of the worker process i, is that the local variable 
Scurrenti has the following property:

< *5current, is the optimal cost solution >

Since S  and A are the sets of nodes and solutions, respectively, that have yet 
to be examined; then since, at the beginning of the program none of the nodes 
or solutions have been examined, S and A are initialized to Sj and Aj  respec­
tively. Similarly, since S ' and A' are the set of examined nodes and solutions, 
respectively; then since, at the beginning of the program none of the nodes or 
solutions have been examined, ,S" and A1 are initialized to 0.

The distribution of the initial board configuration corresponds to assigning 
to each process i, a subset of the nodes in the tree that represents the state 
space. No two processes should examine the same nodes. This corresponds to 
partitioning the auxiliary variable Sj  into the disjoint sets ,$o, S \ , Sat- i , which 
also satisfy the following immediately after initial board distribution:

< S0 U Si U ... U SN -  1 =  Si  >
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In other words, all the search space nodes are distributed among all the worker 
process nodes. Since, the details of the board distribution are not included in 
the pseudocode, nor will the verification details.

Each worker process i must only examine those nodes that are part of the 
state space. Process i is presumed to examine nodes it either (1) Generated 
through expansion of other nodes or (2) received from other processes. The first 
case implies that each new generated task must be part of the search space. For 
the sake of brevity, the details are not shown here, but it involves showing that 
each newly generated task is a reachable configuration from sq and hence, by 
Definition 29 considered to be an element of the search space represented by 
We can conclude that the following is always true:

<  Staski E >

Case 2 requires showing that the assertion is true after communication takes 
place i.e. the satisfaction proof. The details are not described, but it is intuitively 
easy to see by remembering that i will receive nodes to be examined from other 
processes, j .  We know that Sji C Sj  is true, since Sji is immediately updated 
as the node is migrated from process j  to process i and we know that all nodes 
migrated are members of Sj (Note that the definition of solutions implies that 
all solutions are members of ,$/). Earlier it was noted that j j i  C Sji is invariantly 
true. We can immediately conclude that

< Jji C Sj >

Since, process i must examine only those nodes that are part of the search 
space then the following must be invariantly true:

< Si C Si > (20)

There are three instances when Si is updated:

1. When a part of the search tree is pruned off.
2. When process i receives a node for expansion.
3. When process i migrates a node to another process j  for expansion by process

J-

For case (1), Si is changed by first determining the set of nodes associated 
with the subtree to be pruned off. If the root node of the subtree to be pruned 
off is Sj, then the set of nodes associated with the subtree to be pruned off is 
To =  {sj |sj is a reachable configuration of.s,:}. This set of elements is deleted from 
Siy i.e. the following operation is done: Si = Si — T0. It is, therefore, easy to see 
that Si C Si  is still true.

Showing that cases (2) and (3) maintain the truth of Si C Si is part of 
the satisfaction proof. Intuitively, this requires showing that the communication 
maintains the truth of Si C Si.  For case (2), process i receives a new task 
from process j .  It was earlier shown that that ji j  C Sj.  For case (2), Si is 
updated by first determining the set of nodes associated with the subtree in
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which the received node is the root. This is done by determining all the reachable 
configurations from the received nodes. This set of nodes is added to S).. Since the 
received node is a member of Sj then all the reachable nodes from the received 
node are also members of Sj.  Hence, the truth of Si C ,$/ is maintained. A 
similar argument can be made for case (3).

It is assumed that each node of the state space to be examined is assigned 
to a process. This is represented as follows:

< SoU...U5V_iU{s|.s G Sij — jij  As is a task, whereO < i , j  < N — 1, i ^  j }  =  ,S' >

{21)Task migration does not change the set of nodes to be examined as a whole. 
Instead, a task migration only changes the set of nodes to be examined by the 
migrating and receiving worker processes. These changes were discussed in the 
previous discussion. Because of the asynchronous nature of the algorithm, it is 
possible for process i to send a task to process j, but j  is not ready to immediately 
receive the task. Therefore, it is necessary to include the set

{s|s E Sij — j ij  A s is a task, where 0 < i, j  < N  — I , i ^ j ]

It is necessary to ensure that the algorithm only examines those nodes that 
are in the state space. It is also necessary to ensure that all tasks and solutions 
are examined before they are discarded. This can be ensured by having the 
following invariantly true:

< S’ U S = Sj A A! U A =  Aj  > (22)

The truth of this can be seen by observing that (1) The assertion stated in 22 is 
true at the beginning of program execution of the worker processes and (2)
S ’, A and A’ are updated when a subtree is pruned from the search space. The 
updating is done by determining all the set of nodes associated with the pruned 
subtree by finding all the reachable nodes from the root node of the subtree to 
be pruned ofF and determining all the solution nodes in the pruned subtree. The 
set of all nodes associated with the pruned subtree is deleted from S  and added 
to S’. The solution nodes are deleted from A and added to A*. These updates are 
done simultaneously. Since, the assertion is initially true, then from the updates, 
it is obvious that the assertion stated in 22 is always true.

In the program, in each process j, scurrenti is the solution that is known 
by process i to have the lowest bound, scurrent i is changed as more informa­
tion about other solutions becomes known from other processes. Therefore, the 
following assertion is invariantly true:

< Scurrenti =  min(a\ci E Ri>whereRi =  URBij)  > (23)

We would like to also ensure that the set of solutions received by each process 
by the termination of the program is equivalent. The following assertions aid in 
this. It must be invariantly true except when a solution is being broadcast (only 
because the auxiliary variable update is done after the broadcast).

< SBij — Rji U {x\x E Sij — j i j  A x* is a solution} > (24)
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< S B i o =  ... =  SB iN_ ! > (25)

The assertion stated in 24 states that the solutions that are sent from process i 
to process j  are the same received by process j  from process i except for those 
solutions that are in transit. The assertion stated in 25 is true because process 
i sends a solution to all processes.

Since, A! is the set of solution nodes known not to be a lower bound, then 
for each solution node in A' there is at least one solution node in the set of 
broadcast solutions that is of lesser cost. Mathematically, this can be described 
as follows:

< \fx E A \  there is an i and y such that y E ft* and f(y)  < f (x)  > (26)

D e fin itio n 3 5 f Let the assertion I denote the conjunction of the logical expres­
sions expressed in 20-26.

The verification proof shows that 1 is invariantly true throughout user exe­
cution except for the part expressed in (24), (25). However, this is immediately 
rectified after the communication through assignments to Si j .

The inner loop invariant for process i is the following:

< ((taski > 0 A Si /  0) V (taski =  0 A S ■ =  0)) > (27)

The outer loop invariant for worker process i is the following:

<  (workeri =  busy A .S'* ^ 0) V (xoorken = idle A Si = 0A 6  ̂ -  j ij  =  0) > (28)

It can be shown that the termination of the Host process implies that each 
worker processor knows the optimal cost node. First, it is shown that the ter­
mination of the program in Figure 25 implies that each processor received the 
same set of broadcast solutions.

Lem m a 36. At the termination of the program in Figure 25 the following as­
sertion is true:

< fto = ■ • • =  ft/v- i >

Proof. The outer loop invariant and termination of all worker processes implies 
that we have 6  ̂ — j i j  =  0. Hence, for a process i and any worker process j, we 
have that SBij =  RBi j . From (26), we can conclude that at the termination of 
the program that RB q{ =  ... =  ftftyv — h\ This is true for any worker process i. 
Since, for any worker process j, Rj =  URBji,  then we can conclude that

fto =  .. =  ft /v -ia

Now, Lemma 36 and Theorem 33 can be used to show that the termination 
of the program in Figure 25 implies that each worker processor has found the 
optimal solution.
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T heorem  37. The termination of the program in Figure25 implies the postcon­
dition, PostH

Proof’ At the termination of the outer loop, we have that all processes are idle 
and hence, for all i ) where 0 < — i < — N — 1, we have that Si — 0. Since, the 
verification proof shows that So U S'i... U Sn  — 1 =  S', then we can conclude that 
S =  0. Since, A C S and A U A* =  A /, then we can conclude that A! =  Aj.  
From (23), (26) and Lemma 36 we can easily conclude that scurrenti is the same 
in each process and is the minimal cost as defined by the optimization function 
defined in Definition 32. From Lemma 36 and Theorem 33, we know that this 
minimal cost is the optimal cost. □

5.3 T em poral R easoning

A system is responsive [29] if it responds to internal programs or external inputs 
in a timely, dependable and predictable manner. It is a necessity for a responsive 
system to manage initiation and termination of activities to meet the specified 
timing constraints. Also a responsive system is dependable and predictable, i.e. 
the system behaves as anticipated, and the occurrence of undesired actions (e.g, 
faults) does not necessarily lead to a failure.

The incorporation of real-time and fault tolerance into distributed parallel 
environments is a challenging task, while the specifications of the distributed 
system must be met within the deadlines in spite of the presence of failures. 
However, this integrated system or responsive computer system [29] can greatly 
benefit from the application of formal methods. Without formal techniques, life- 
critical distributed computer control programs cannot be relied on to produce 
correct results, in time, and, in the presence of failures.

The liveness assertion (p —► EFry) ensures what values the program variables 
must possess eventually at a state with assertion </, starting from a state with 
assertion p. These assertions are derived from the temporal proof system of 
Interleaving Set Temporal Logic [33], and are used to reason about progress 
property from one communication point to another.

Since the evaluation of any assertion is, essentially, a check of a safety prop­
erty, it might be questionable whether, given (p —► EFry), it is really necessary to 
evaluate the assertions p and q in time order. To see why, consider the following 
example. In a poker game, it is possible, during an evening, to be $10 in debt 
and $10 ahead many times. However, from the point of view of a player it is 
much better to be ahead $10 at the end of the night, rather than $10 in debt! 
In our logic, we would like to express p(=  $10 behind) —► EFry(= $10 ahead) and 
ensure, during this poker game, that this temporal assertion is met. If we don’t 
evaluate this assertion in time order, then p and q may be met, but p may occur 
last which means that we leave the game $10 poorer, a sorry proposition.

In terleav in g  Set Tem poral Logic Among many mathematical models, we 
choose Interleaving Set Temporal Logic(ISTL*) [22, 33], since it is capable of 
representing intermediate behavior of distributed programs.
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Traditionally, concurrent and distributed programs are verified using variants 
of temporal logics with interleaving semantics [6, 5, 30, 31, 15]. However, verifi­
cation using sets of state sequences which represent the executions of a program 
is tedious and unnatural since all the possible interleavings of a program must 
be checked. Thus, many attempts have been made to design a temporal logic 
with appropriate formalism for distributed programs. That is the partial order 
approach[21, 34, 35, 33], where the order is defined by the local events (events 
are executions of atomic operations) within a process and the events of sending 
and later receiving a message. All other events that are not related are arbitrary.

Interleaving Set Temporal Logic.(ISTL*) is based on a partial order approach; 
thus, the assertions derived are capable of describing the distributed nature of 
a program. These assertions can also serve as expected behavior to monitor the 
run time behavior of a program.

In the application to programs, an ISTL* [KaPe88, PePn90] structure cor­
responds to a computation (run) of a program and each (branching) structure 
denotes the global states of a single partial order as well as causal relations 
among these states. An ISTL* structure M  is a quadruple < E , 8 , E , L  > where

— E  is a set of states,
— 8 denotes the initial state of 17,
— E is a set of sequences of states starting at 8 ,
— L is a function which assigns to each state E E  an interpretation.

A liveness assertion of the form (p —► EFg) states that every computation 
contains some state sequence (path) eventually satisfying the assertion q when 
starting from a state satisfying the assertion p.

Proof rules of ISTL This section presents the proof rules of ISTL*; for details 
the reader may refer to [22, 33],

SS-T R A N S: This rule handles the case where progress is made by one single 
operation and derives the temporal formula of the form EX# from premises which 
are all state formulas.

(i ) p ^  <t>
(2) <j> —> enabled(r)
(3) W T - r ^ V , )
(4) f f l r M __________________________

p E X q  — ----- -----------  ' '
To justify this rule, suppose that the premises are all valid, consider a com­

putation with a p-state at Ej, . By premise (1), p implies <j> and from premises 
(2) and (3), <j> holds at Ei  and all subsequent states until a (/-state is reached. 
Hence a g-state is reached or the transition r is taken, which results in a g-state 
by premise (4). The desired conclusion follows.

T R A N S: This transitivity rule combines a finite number of successive con­
straints into a more complicated property. The state formula r is called the link
of the rule. 

p —► EFr
r —» EFg____________________________ .
p —► EFg
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CONF: This confluent rule allows us to prove eventual properties that result 
from combining a number of parallel eventual assertions.

(1) p —» EF(r V s)
(2) r ->■ EFq
(3) s -> EFg________

p —► EF(/ ~
To justify this rule, assume that the premises are all valid, and consider 

an arbitrary computation containing a p-state. By premises (1), a p-state is 
followed by an r-state or an s-state, both of which are followed by a (/-state. The 
conclusion follows.

R ule W IN D : This rule applies induction over well-founded sets, which is 
commonly used in liveness proofs. Assume that the variable a  ranges over the 
natural numbers N and n E N.

( 1 ) p -+
(2) (Vi)(<^(a) Acv =  i A? ' > 0  —►

EF(</>(ci') A (3j){(\ — j  A i  > j )))
(3 ) — __*&)-►  g___________________
p —► EF q
<f>(ot) A a =  i denotes that the state formula which results from the invariant 

by replacing all occurrences of the variable cv with the value i . To justify 
this rule, suppose that the premises are all valid, and consider a. computation 
containing a p-state Ekn- By premise (1), <t>{n) holds at From premise (2), it 
follows that there is a sequence of positions kn > kn- \  >  ... > fco, such that each 
Vki (0 <  i <  n) is a ^(z)-state and the index cv is decreasing in that sequence. In 
other words, there exists a sequence of assertions, (TjCn) (Tkn- \ , where the
index is decreasing.

5.4 B ranch and B ound  T erm ination

Since, in this example, all the processes are doing the same computations, we only 
show the verification involving Pi and Pj . The rest of the proofs are symmetric, 
and can be derived similarly. Note that for the synchronized communications 
between Pi and Pj where (i < j ) Pj will send its message to Pj first and wait for 
the message from Pj. On the contrary, Pj will not send its message to F\ until 
it receives the message from Pj. For clarity, superscript i is used to identify a 
variable being a local variable of process i.

T lieorem 38 . <j>\ —> EF(f)2 , where <f>\ ~  A at(PQ)i <j>2 = A A
(taskj — tasko)), (tctskj — tasko) denotes that Pj receives its task set from,Pj . 
This theorem shows that Pj retains taski and distributes tasko to Pj .

Proof Let 9 be the initial condition for the Branch and Bound algorithm. Thus, 
9 implies <j>i. First, to prove 9 —► EF(ai(/o) A at(l{)), by Rule CONF it suffices 
to show the premises

(1) 0 ->  EF(at(i<0) V .
(2) ^ (/* )^ E F (a < (/* )A a < (4 ))
(3) at(l30) - f  EF(a<(/‘ ) A at(P0))
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P j\(cisk[)

Pp.taskj

Fig. 28. (j>2 —► EF03

The above three premises are valid since initially the control of Pi and Pj 
resides in PQ and /£, respectively. Then the matching synchronous communication 
transitions establish the desired conclusion.

T heorem  39. 0 2 —► EF</>3, where <f>2 = at(l\) Aat(l [) , 03 = (S — at(l\) Aat(l{) A 
(srecvj =  Staski) A (s{ =  Sj) A (cv' < cv)). (s{ =  Sj) denotes that process Pj zs 
informed of ihe current task set in process Pi, (srecVj = siaski) that Pj
receives the current best bound of Pi, and (cv' < cv) represents the total number 
of unexplored states is decreasing. This theorem shows that each process works 
independently on its lowest cost path(expansion), and broadcasts when a solution 
is found. (See Figure 29)

Fig. 29. Each Process Sends a Solution

Proof. Let the assertion start  hold initially before the computation. Thus, start  
implies 0 2. To establish start  —> EF(at(ll3) A at(l{)) by Rule CONF it suffices to 
show the following premises

(1) s t a r t s  EF(a*(g)V «/(/{))
(2) at(l[) ^  EF {at (li) A at(l{))
(3) a t( /{ )^ E F (a i(4 )A a ^ (4 ))
Premise (1) is obviously valid and premise (2) says that P{ will progress to 

at(ll3). This premise can be derived by the transitive rule (TRANS). It suffices 
to show the premises: (a)$tart —► EXat(ll2) and (h)at(l2) —► E F o i^ ). Premise 
(a) is derived according to the following premises via single step progress rule 
(SS-TRANS).
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start  — ►  at(l\) 
at(l\) —> enabled(r)
{a t(/j)}r  -  T{at(l\)  V at(/*2)}
{a i(/i)}r{a<(4)}
All of them are trivially valid with respect to one single transition r  =  l\ —* ll2. 

Notice that the transitions between l\ and ll3 are not detailed, thus, we omit, the 
proof of (a/ < a)  from these sequential and non-communication transitions. 
However, since the set of all nodes to be examined is N n  and each expansion 
either examines or prunes some nodes, the set of nodes that have not been 
examined is decreasing.

Premise (3) is similar to premise (2). Thus, we establish start —> EF(a*(/3) A 
at(l33) A {&' < a)). By synchronous communication transitions we derive at(ll3) A 
at(l{) —*■ EF(atf(/i) A at(l{) A (srecVj =  siaski) A (s< =  s j )A (a' < «)). The 
conclusion follows.

T h eo rem 40. <f>3 —► EF<j>4 , where fa =  at(l\) A at(l{), $4 =  A at(l$) A
=  ) A =  Sj))* =  ^taskj) asserts that P{ receives the Current

best bound of Pj, and (Sj =  S{) denotes that Pi is informed of the current task 
set in Pj. This example shows that Pi receives the current best bound and the 
current task set of P j . (See Figure 30)

Pj7(srecv., Sj)

Pi-

$recvj ^   ̂current current j * "  ^reevj PMstaskj,Sj)

H

Sreevj — s current.

Fig. 30. Pi Receives the Current Best Bound and Task Set of Pj

Proof Let the assertion start  hold initially before the execution. Thus, start  
implies # 3. To prove start  —> EF(a£(/4) A at(lJ5)), we first apply confluent rule 
(CONF), It suffices to show the premises

(1) start —» EF(at(l\) V at(l{))
(2) at(l\) EF(at(l\) A at(l{))
(3) at(l() -+ EF(at(l{) A at(l{))
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Premise (1) and (2) are valid since initially the control of P{ and Pj are at l\ 
and respectively. Premise (3) requires a case analysis on (srecv- < .Scurrent̂ ) 
that determines which path is taken. The assertion a^/4) —> EF(ai(/5)) is implied 
by the following two formulas:

at(l\) A (s reevj ^ scurrentj ) —> EF(«<(/g) A {^current} — ))
at(l34) A ( srecvj ^ sc\irrentj ) -  EF(at(l{))
Each of them can be derived via single step progress rule (SS-TRANS) with 

respect to the transition r  =  l\ —► /£. Thus, we establish start  —> EF(at(li4) A 
at (/£)). Then synchronous communication transition establishes at(l34) Aat(l$) —> 
EF(a£(/g)A o>t(l3e)A(srecVi =  staskj)A(sj =  s:-)), and, thus, derives the conclusion.

T h e o r e m  4 1 . <f>4 —► EF<^, where (j)4 =  a t ^ )  A <̂ 5 =  ((at(/^) A a t(/{)) V
( a t ( l \ )  A a t ^ ) ) ) .  77ns theorem shows task migration. (See Figure 31)

Sj±0ASj = 0^>Pjr>SrecVj

F ig . 31. Task Migration.
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Proof’ Let the assertion start  hold initially before the computation. Thus, start 
implies <£4. First to prove start  —> EFat(ll6) A at(l{) by rule CONF, it suffices to 
show the following premises

(1) start  -> EF(at(/J) V at(/{))
(2) a*(/‘ )-» E F (a f(4 )A a < (4 ))
(3) at(4) —*• EF(o<(4) A at(lg))
Premise (1) is obviously valid and premise (3) is valid due to the synchro­

nization communication requirement. Premise (2) is implied by the following 
formulas

<*&)  A (Srecv; < scurrenti) EF(flt(/g) A (sCurrenti — *9recv,))
^(^5) A (,5recwi ^ 5currenti) * EF(fli(/g))
Each of them can be derived by single step transitive reasoning (SS-TRANS). 

To conclude #5 requires a case analysis to determine which path is taken.
There are three cases to consider:
(1) (at(/J) A at(l{) A *  /  0 A Sj =  0 -> EF(a<(/j) A a<(/{))
(2) (a<(4) A af(jj) A 4  =  0 A ^  ̂  0 — E F (a^{) A at(ij))
(3) (at(l{) A a*(fj) A 4  =  0 A Sj =  0 ->  EF(«f($) A «*(V7))
which may be concluded by SS-TRANS for synchronized communication 

transitions.

->end1

Fig. 32. This diagram shows that either the processes continuously execute 
the loops or the exit transitions /[ —► l\ and —► lJ7 are taken. Define
enter(l)  =  at(l) A completed(r).

T h eo rem 42. Show termination of the Branch and Bound program, i.e., (j)2 —► 
EF<f>6 : (at(l{) A at(l{)) — EF{at(l\) A at(l{))

Proof. Let start  hold initially before the computation. Applying the WIND rule, 
(1) start  —* enter(l\) A enter(l{) A (3?i, a  =  n)

it suffices to show (2> ™ e"‘ery' A A/ “ v  :*EF (e?iter(l\) A enter(l\) A (3j)(cv = j  A j  < z)))
(3) enter(l\) A enter(l{) A (cv =  0) —► EF(e?iier(/7) A enter(l{))
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Premise ( 1 ) is trivially valid. Premise (3) can be concluded by $ $ -T R ^ iS  
rule ŵ ith respect to the transitions r =(.$•—► l7 and r  =  l\ —> l7) which says;.()mt 
the control resides at the beginning of the loop and the loop condition is false, 
thus, the exit transitions are taken. Premise (2) which asserts that the total 
number of unexplored states is decreasing at each iteration can be established 
by applying transitivity rule over a finite number of successive properties of 
<j>2 —> EX 03, (f>3 —+ EX</>4, and <̂ 4 —► EXr/>s.

6 Sum m ary

This paper has covered a broad expanse of topics in an effort to provide both 
an informal basis for constructing parallel applications and a formal basis for 
reasoning about these parallel applications and how they are mapped onto a 
popular existing architecture.
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