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Nominal design equations and reai•tance factors are developed for steel 

beam-columns as part of Load and Resistance Factor Design criteria for steel 

buildings. The resistance factors are derived from principles of first-order 

probability theory using calibration to present designs. 



TABLE OF CONTENTS 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Introduction ............................................. 
Laterally Braced Wide-Flange Beam-Columns ••••••••.••••••••.. 

2.1 

2.2 

2.3 

2.4 

Assumptions ............................•........•...... 

Nominal Beam-Column Resistance ......................... 
The Resistance Factor 0 ................................ 
The Design Criteria 

Laterally Unbraced Beam-Columns and Biaxially Loaded Members 

3.1 

3.2 

Beam-Columns Failing ~y Lateral-Torsional Buckling 

Biaxially Loaded Beam-Columns 

Design Criteria for Beam-Columns 

4.1 

4.2 

....................................... General Criteria 

Special Cases .......................................... 
a) 

b) 

c) 

d) 

e) 

f) 

Flexure about one principal axis only 

Members in flexure and tension 

.............. 

Tapered beam-columns ............................... 
Beam-columns with transverse forces between the ends 

Beam-columns of W-shape under biaxial bending 

Concrete-filled pipe-columns ....................... 
Summary . ................................................... . 

. ............................................ . Acknowledgment 

References . .............................................. . 
Nomenclature . .............................................. . 
Figures ..................................................... 

ii 

PAGE NO. 

1 

2 

2 

3 

4 

8 

13 

14 

16 

18 

18 

20 

20 

21 

21 

22 

22 

24 

25 

25 

26 

29 

31 



1. 

1. INTRODUCTION 

This report will deal with Load and Resistance Factor Design (LRFD) 

criteria for steel beam-columns. Previous reports have presented the 

general background of the first-order probabilistic theory underlying the 

LRFD criteria (1,2). Load factors y for various important load combinations 

were developed (1,2), and resistance factors 0 were derived for compact 

beams and simple columns (1,2), for beams (3) and for plate girders (4). 

The LRFD criterion can be expressed by the formula (1,2) 

(1) 

where the right side represents the factored load effects (y is the load 
0 

factor accounting for the uncertainties of structural analysis, yD, yL, Yw' 

etc., are the dead, live and wind load factors, respectively, D, L and W 
m m m 

are the corresponding mean load intensities, and cD, cL and cW are the 

deterministic influence coefficients which translate load intensity into 

load effect) and the left side represents the factored capacity of the 

structural member, where 0 is the resistance factor and R is the nominal 
n 

resistance for the desired limit state. The resistance factor 0 accounts 

for the uncertainties underlying the determination of the nominal resist-

ance, and it is equal to (1,2) 

0 = (R /R ) exp ( - Ci S VR) m n (2) 

In this equation R is the mean resistance, a is a numerical factor equal 
m 

to 0.55 (1), S is the 11 safety index" and VR is the coefficient of variation 

of the resistance. The safety index S was obtained by calibration with the 

1969 AISC Specification and its numerical value was found to be S = 3.0 (1,2). 
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This report is concerned with the development of the resistance factor 

0 and the nominal resistance R for steel beam-columns. The derivation will 
n 

be made for laterally braced wide-flange beam-columns bent about their major 

axis. Subsequently, extensions will be presented for laterally unbraced 

beam-columns, for biaxially loaded beam-columns and for beam-columns in frames. 

2. LATERALLY BRACED WIDE-FLANGE BEAM-COLUMNS 

2.1 Assumptions 

1) Members are prismatic rolled steel wide-flange shapes bent by end 

moments about their major axis (Fig. 1) 

2) Member failure is by inelastic instability in the plane of the 

applied moments, as illustrated in Fig. 2 by a schematic load-deformation 

curve. The maximum force PF is the limit state defining the resistance of 

the beam-column. Failure involving lateral-torsional buckling or biaxial 

flexure will not be considered in the present development, although these 

limit states will be discussed later in the report. 

3) The in-plane capacity of beam-columns of wide-flange shape is known 

from previous work where the interaction curves relating axial force P, 

maximum end moment M , moment ratio H., and member geometry were determined 
0 

* by numerical integration . This analytical development assumed that P and 

H. remained constant while M was monotomically increased until it reached 
0 

its maximum value. There is enough evidence in the literature to demon-

strate, both from an experimental as well as a theoretical point of view, 

that proportional loading would give essentially the same interaction 

curves. 

* There is no need for summarizing the extensive literature on the behavior 
of beam-columns here; reference can be made to Chapter 5 in Ref. 5, Chapter 
8 in Ref. 11, or Chapter 7 in Ref. 6 for such a review. 
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4) In order to establish a unique relationship between the limit 

state as characterized by the interaction curve, and the axial load and 

end moments as determined by an analysis of the structure with the factored 

loads (Fig. 3), it will be assumed that the ratio of the end moment to the 

axial load, e = M /P, and the end moment ratio K is the same at failure as 
0 

at the design level. By this assumption it is possible to establish a com-

parison between a point on the interaction curve and a point in the P-M 
0 

domain representing the design condition (Fig. 4). Without this assumption 

the uniqueness of the relationship between the right and the left side of 

the design inequality (Eq. 1) is lost. 

5) Overall frame instability is not considered at this time, and only 

the member capacity of the beam-column for the forces P and M is involved. 
0 

The top of the beam-column is assumed not to move laterally with respect to 

its bottom. 

2.2 Nominal Beam-Column Resistance 

For the purposes of LRFD criteria interaction equations will be used 

to define beam-column resistance rather than sets of interaction curves. 

The following familiar interaction equations will be used (Fig. 5) 

L + p 
u 

M 
0 -= 

M p 

C M m o 
= 1.0 

1.1s (1 - L) ~ 1.0 
py 

In any given situation both equations must be checked, and the smaller 

(3) 

(4) 

value of either M0 or P, whichever is computed as the dependent variable, 

controls. These two equations approximate the numerically obtained inter-

action equations rather well (5,6). The terms in these equations are 



defined as follows: 

P, M 
0 

a point on the limit state interaction curve 

the limit state axial load which can be supported by 

the member in the absence of bending moment, 

Euler buckling load 

where 
a 

A s: /2 p ;;:: p (1 - 0.25 A ) for u y (5) 

:a 
p ;;:: P/x for A ~ /2 u y (6) 

2 

PE = p lA 
y (7) 

p = A F y y (8) 

A 
L ( l ) rt = r TT 

X 

(9) 

The remaining terms in Eqs. 3 and 4 are 

M = F z p y X 
(10) 

c = 0.6 + 0.4 X :?! 0.4 m (11) 

where Z and A are the plastic section modulus and the area of the member, 
X 

4. 

respectively, x is the moment ratio (Fig. 1) and F and E are, respectively, 
y 

the yield stress and the modulus of elasticity of the material. 

The two equations (Eqs. 3 and 4) will be used herein as the nominal 

resistance equations. 

2.3 The Resistance Factor 0 

The interaction curves represent the limiting strength of beam-columns. 

These curves wet·e determined by numerical integration, and this operation 

involves a certain number of inherent computational idealizations. Further 

idealizations were made in the derivations of the moment-curvature relations 
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which were integrated. The material properties also introduce uncertainties. 

Thus the interaction curves are random variables, and in the first-order 

probabilistic theory used, the characteristic statistical properties are the 

~value and the coefficient of variation of the interaction curves. These 

are the properties which need to be estimated. 

The curve R in Fig. 6 is a representation of a mean interaction curve. 
m 

Conceptionally, one could decompose the numerical integration process into 

all of its constituent pieces and perform an analysis to obtain mean values 

and coefficients of variation. This would be a formidable computational 

task which was avoided by correlating the ideal interaction curves with the 

many existing beam-column tests. 

Since the final outcome will be a design rule involving the empirical 

interaction equations (Eqs. 3 and 4) as the nominal strength equations R 
n 

(curve R in Fig. 6), the task is to correlate R with the ideal interaction 
n n 

curves. The variations in material properties must also be taken into 

account. Thus the mean resistance is determined through a series of three 

transformations, going from the tests to the predictions by the interaction 

curves, to the empirical interaction equations with the mean material pro-

perties, finally to the nominal interaction equations which use the nominal 

material properties. Symbolically this can be written as follows: 

R -
m 

[ rest strength J 
Prediction by theory m X 

Prediction by theory [ J X Prediction by interaction equation m 

[ Prediction by interaction equation "'--'--------'-___ ...._---...;.....;-..-.-,---.;,~ ... -.;..;;;.;;~;,;;. ] X R 
R m n 

n 



In abbreviated form this equation can be written as 

(12) 

where B stands for "bias", "Ex", "Th" and "Mat" signify "experiment", 

"theory" and "material", respectively. 

The question now arises: along which axis should the ratios indicated 

by Eq. 12 be measured? If either the ordinate P or the abscissa M 
0 

(Fig. 6) is userl, then undue bias is introduced at the ends of the curves 

(near P or M ), and, therefore, i.t is necessary to determine the ratios 
0 p 

along rays OABC from the origin. The angle 6 of these rays is determined 

by the proportionality which is assumed to exist between P and M . 
0 

The Test strength-to-Prediction by theory ratio was obtained from Fig. 

6. 

5.23 in Ref. 5, where a histogram of this ratio was given for 83 beam-column 

tests. From this source 

BEx = 1.005 and v = 0.093 
Ex 

The symbol V is the coefficient of variation. 

An analysis using tabulated theoretical interaction curve data (from 

Sec. 7 in Ref. 7) and predictions of R from the interaction curves (Eqs. n 

and 4) was made to determine BTh in Eq. 12. This analysis included curves 

for six values of A (corresponding to L/r 
X 

= 20, 40, 60, 80, 100, 120 for 

A36 steel) and five values ofx(l, 0.6, 0, - 0.6, - 1) for a total of 30 

3 

curves. For each curve six to nine ray angles 5 were used. Thus data cover-

ing the whole practical domain of parameters was included. The resulting 

values are 

BTh = 1. 01 and VTh = 0.04 
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The determination of the material bias (BMat in Eq. 12) was done in the 

following manner. Because of proportionality, 

M = Pe (13) 
0 

and if Eq. 13 is substituted into Eqs. 3 and 4, the following expressions 

are obtained for P: 

From Eq. 3: 

p = l ,~ (P + p + 
2 t u E 

From Eq. 4: 

p 
p = p e 

"i. + 1 1.18 M p 

C e P PE I 
m Mp u ) - v (P u + p E + 

C e P PE 2 } m u ) _ 4 P 
M u PE 

p 
•\ 

(14) 

p A F 
= = "i. (15) 

A F e A e + 1 "i. + 1 1.18 z 1.18 F z y 

The first of these equations is dependent on F and E (see Eqs. 5 through 10) 
y 

and, therefore, the standard deviation a is determined by the formula (8) 

2 

(jMat = ( ...Q_f t a F y m 
+ (16) 

where the partial derivatives were evaluated with the mean values of the 

yield stress (F = 1.05 F , where F is the nominal value) and the modulus ym y y 

elasticity (E = 29,000 Ksi). The standard deviations oF = F m VF = 
m y y y 

(1.05 Fy)(O.l) = 0.105 Fy and aE =Em VE = 29,000 x 0.06 = 1740 Ksi were 

used in Eq. 16. The second equation (Eq. 15) is dependent only on F , and 
y 

from this equation 

BMat = Fym/Fy = 1.05 and VMat = 0.1 
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The corresponding values from Eqs. 14 and 16 turned out to be somewhat 

smaller, and so, for the sake of consistency over the whole domain, the 

larger numbers above will be used. The material properties statistics 

F = 1.05 F , VF = 0.1, Em= 29,000 Ksi and VE = 0.06 were taken from 
ym y y 

previous work (1,2,9). 

From the information presented above, then, the mean resistance is 

equal to (Eq. 12) 

R = 1.005 X 1.01 X 1.05 R = 1.07 R m n n 

The corresponding coefficient of variation is equal to (1,2) 

(17) 

The fourth coefficient of variation above, VF = 0.05, is the coefficient of 

variation of fabrication, and it is an assumed value used throughout all 

previous reports (Refs. 1 through 4). 

The resistance factor 0 can now be determined from Eq. 2. 

0 = 1.07 exp (- 0.55 x 3.0 x 0.15) = 0.84 

Thus 0 = 0.84 is the resistance factor consistent with the interaction 

equations for wide-flange beam-columns failing by in-plane inelastic 

instability. 

2.4 The Design Criterion 

The resistance factor 0 is applied to the nominal resistance R (OB in 
n 

Fig. 6), that, is to the straight line from the origin to the interaction 



curve R • The design condition is, thus, from Eq. 1, 
n 

0 R ~ 
n 

(18) 

where PD and M0 D are the design axial force and the design endmoment deter­

mined by structural analysis from the factored loads. (Fig. 3, with M0 D 

being the absolutely larger value of the two end moments MUD or Mtn ). 

9. 

Since proportionality is assumed between the ratio of P and M, at the design 

level and the failure level, that is, 

Eq. 18 can 

or 

0 

M 
= ...2. 

p 
u 

= e 

be written as 

R 0 
~ 

ii!Pup ~ 

v PD2 + MoD2 

PD v;-:: 
The square root terms cancel out, and so the design criterion can be 

written as 

(19) 

(20) 

(21) 

(22) 

In this equation, P is the smaller of the two loads determined by Eqs. 23 

and 24: 

p ~ t {(Pu + PE + Cm eM:u PE ) - \1 (Pu + PE + Cm eM:u PE )o- 4 pu PE } 

(2j) 



p = 
p 

A e 
1.18 z + 1 

Both Eqs. 23 and 24 are subject to the restriction that if 

p~ 

M 
_E. 
e 

10. 

(24) 

(25) 

the plastic moment is exceeded and so in this case the design criterion 

becomes 

0 M ~MD p 0 

regardless of the value of PD. 

(26) 

The scheme presented above is straightforward and is relatively easy 

to apply. However, the advantage of the traditional ease with which ratios 

are summed to check if their sum is less than or more than unity is lost in 

this procedure. This advantage can be recaptured by using the following 

factored interaction equations: 

0 M (1 -
p 

1.18 0 M 
p 

1.0 

1.0 (27) 

(28) 

In any design situation both equations must be checked. A further check 

against exceeding the plastic moment must be made if the design axial load 

is less than 0.153 0 P by assuring that Eq. 26· is also satisfied. 
y 

The validity of Eqs. 27 and 28 can be checked by noting that at the 

limit where M0 D = 0 M0 and PD = 0 P the left side of each equation equals 

unity. If M = Pe is then substituted and each equation is solved for P, 
0 
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the resulting expressions will be, indeed, identical to Eqs. 23 and 24, 

respectively, as they should. 

In the previous section of this report it was shown that the resistance 

factor 0 for steel wide-flange beam-columns bent about the major axis and 

failing by inelastic instability in the plaae of the applied end-moments is 

equal to 0.84 in accordance with the statistics which were used. This value 

of 0 must now be compared to the resistance factors from the previous studies 

(1,2) for the limiting cases where P = 0 (i.e., the member is a beam) and 

M = 0 (i.e., the member is a column). From Ref. 1, the following 0-factors 
0 

were obtained: 

~\ = 0.86 for beams (29) 

0 = 0.86 for A ~ 0.16 c 

0 = 0.9 - 0.25 A for 0.16 
" A " 1.0 l for columns (30) 

c 

0 = 0.65 for A ::?: 1.0 
c 

With 0 = 0.84 for beam-columns as developed in this report, disconti-

nuities will exist at the limits of the beam-column domain. Such inconsis-

tencies could hardly be avoided since the three resistance factors were 

derived from different data sets. The extent of the effect of the disconti-

nuities is shown in Fig. 7, where the interaction curves (Eqs. 27 and 28) 

are plotted for A= 0.7. This A corresponds to slenderness ratios L/r of 
X 

about 62, 53 and 46, respectively, for F = 36, 50 and 65 ksi. The columns y 

are thus relatively slender; for shorter members the effect would be relatively 

less. 

The effect when PD = 0 (the member is a beam) is not very significant 

(see Fig. 7), but it is pronounced when M00 = 0 (the member is a column). 

Since the beam-column tests on which the derivation of 0, as presented here, 
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was based were tests with significant bending, the results of this analysis 

really do not apply to the case where flexure is slight or even absent, so 

in this region the column 0-values (Eq. 30) must supersede the 0-value for 

beam-columns. 

Two possible courses of action are suggested in Fig. 8. The solid lines 

represent the interaction Equations (Eqs. 27 and 28) with 0 = 0.86 (this 

slight adjustment of 0 from 0.84 to 0.86 reconciles the beam-column resis-

tance with beam resistance) with the proviso that 

PD ~ 0 P (31) c u 

where 0 are the 0-factors for axially loaded columns (Eq. 30). Thus a cut­
e 

off plateau is provided when the beam-column axial load becomes equal to the 

factored resistance of the member acting as a column. This implies that at 

the factored column ultimate load a slight amount of bending can be tolerated. 

This is reasonable, since the column theory on which the column 0-factors 

were based assumed an initial crookedness, which is equivalent to saying that 

flexure is present. 

The other scheme, represented in Fig. 8 by dashed lines is a more con-

servative approach whereby the factored interaction equations are adjusted 

to end where the columns are, i.e., 

PD 
+ 

em MoD 
1.0 

0 0b (1 - PDf0b PE) 
= p M c u p 

(32) 

PD 
+ 

MoD 
= 1.0 

~\ py 1.18 0b Mp (33) 
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In these equations 0b = 0.86 (Eq. 29) and 0c is the resistance factor for 

columns (Eqs. 30). In this scheme effectively a variable 0-factor is used; 

when flexure predominates the effective resistance factor approaches 0 = 0.86, 

which is the value obtained for beams; when axial load predominates the 

effective 0-factor approaches 0 , the value for columns. In this case the 
c 

uncertainties introduced by the variations in residual stress and shape 

begin to become more significant, while for beams these effects have no 

significance. 

Thus both schemes presented in Fig. 8 are physically reasonable. The 

final choice will be made when further extensions are examined in the next 

section for bearn-·colunms failing by lateral-torsional buckling and for 

biaxially loaded members. 

3. LATERALLY UNBR ACED BEAM-COLUMNS AND BIAXIALLY LOADED MEMBERS 

The previous sect:i.{.,n dealt with wide-flange beam-columns bent about 

the major axis of the section and failing by inelastic instability in the 

plane of the applied moments. In this section the behavior of beam-columns 

under biaxial bending, as well as the behavior of beam-columns bent about 

the major axis but failing by lateral-torsional buckling, will be discussed. 

For both the case of beam-columns failing by lateral-torsional buckling 

and for biaxially loaded members adequate theory exists to predict the 

maximum capacity accurately, and comparison of test capacities and theoreti-

cal predictions of the resistance are excellent. Compared to the vastly 

expanded domain of parameters (as contrasted to the relatively few parameters 

involved in the in-plane resistance of beam-columns) there are few tests. 

However, an examination of these tests indicates that theory can predict 

test capacity with about the same accuracy as was noted for the in-plane 

beam columns in the previous section (i.e., the mean is essentially equal to 
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the theoretical pH~dLct ion, r,.r:d the coefficient of variation is about 10%). 

3.1 Beam~Columns .r~; J-:Lng By_ Latera:l-Torsional Buckling 

The lat~st and m.;H>t conprehensive research work on the lateral-torsional 

buckling of wide-flange beam-columns is contained in the report of Lim and Lu 

( 10), This rer<>rt n.;v iei.i!'S all p:re.vious work and it examines the effects of 

end-restraint (in-plane restraint, end warping restraint and lateral 

restraint) on the lateral-torsional buckling strength and on the ultimate 

capacity of beam-coL.mro.s with colunm-type cross sections (i.e., 8 in x 8 in, 

10 in x 10 in, etc., scz:tions). The report concludes that for relatively 

a -6 
0.4 and J/Ad ~ 925 x 10 , where J is the short membeJ::s (L/r s: 40. PIP s . ,.,:: y 

torsion constant, /\ Lc; the cxos.os -sectional area and d is the depth of the 

section) the occur:r:enc:~ c,f lateral-torsional buckling does not reduce the 

in·-plane capacity becm .. ;se of post -buckling strength. 

Unfortunately the requ1.red computational effort is large and so not 

enough curves are given in Ref. 10 to construct a set interaction curves 

which include the various parameters. The report shows for two sections 

(WB x 31 and Wl4 x 142) and for 1' = 0.4 P that for K = + 1 (equal end 
y 

moments causing single curvature bending) and for F = 36 Ksi the following 
y 

interaction equat.i.on gives predictions of the ultimate moment which are 

conservative 

p 
uy 

1. 0 (34) 

This equation'' ti1•c' ~a':111? as Eq. 3 presented previously, except that p is 
uy 

determined for t ~,, weak t1.xL~ slenderness ratio L/r and M' is the maximum 
y 

moment capacity of the menber wh.er. the axial force vanishes. 
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This interaction equation (Eq. 34) has been suggested for use by 

various publications (5, 6 and 11 are but a few) as being conservative over 

the whole domain of all parameters. This fact, however, is based on an 

incomplete comparison with theory ( 10, 12, 13), and on but a small number 

of tests (10, 12, 13, 14, 15). Because of the large numerical effort 

which would be required in performing the necessary theoretical calculations 

it is thus not posstble to move from test-to-theory-to-interaction equation, 

as was done previously for the case of beam-columns failing by in-plane 

inelastic instability. Furthermore, a large number of the available experi-

ments (14, 16) were tested tn a manner that the ends of the columns were 

fixed-ended about the weak axis, and most of the test ultimate loads, 

although failure was definitely. by lateral-torsional buckling, were quite 

adequately predicted by in-plane theory (16). 

Even though the information is incomplete, it is possible to make the 

following statements with a reasonable degree of certainty: 

1) For the cases where comparisons could be made with the most 

complete theory, the test capacities can be predicted with about the same 

accuracy as this was possible for in-plane failure. 

2) * For relatively short beam-columns (L/r s 40) it is possible to 
X 

reach the in-plane capacity because of post-buckling strength and because of 

weak-axis end restraint which is usually always present. For such members 

the interaction equation 

p 
p 

uy 

C M 
m o = 1.0 (35) 

* Note that most beam-columns in buildings are usually not more slender than 
L/r = 40 

X 



16. 

is slightly conservative. 

3) As beam-column slenderness increases, Eq. 35 becomes more and more 

conservative. 

Since the test statistics are about the same, and the interaction 

equation is always conservative in comparison to theory, the resistance 

factor value of 0 = 0.86, which appeared to be satisfactory for the in-plane 

case, will be conservative in the case of lateral-torsional buckling, Since 

not enough information is available to develop a more refined value, it is 

suggested that 0 = 0.86 be used, conservatively, with the lateral-torsional 

buckling interaction equation. 

3.2 Biaxially Loaded Beam-Columns 

The biaxially loaded beam-columns represent essentially the same picture 

as the beam-columns failing by lateral-torsional buckling. An adequate theory 

* exists to predict test results and the usual interaction equation 

L + p 
uy 

C M mx ox 
+ M (1 - P/PE ) 

PY Y 

C M 
my oy = 1.0 (36) 

is quite conservative with respect to the theory, especially for column type 

sections. For such sections a more realistic interaction equation has been 

suggested by Chen (11). Unfortunately more work needs to be done to expand 

Chen's interaction equation to beam-type wide-flange sections. 

Springfield and Hegan (18), as well as Pillai (19), have evaluated 123 

biaxially loaded beam-column tests as regards their comparison with the two 

interaction equations (Eq. 36 and Chen's interaction equation). 

* For a series of 12 tests the mean test-to-theory ratio is 0.99, and the 
coefficient of variation is 0.04 (17,18). 



The resulting statistics are as follows: 

1) Comparison with Eq. 36: 

Mean Test-to-Prediction ratio: 

Coefficient of variation 

1.11 (Ref. 18) 

1.16 (Ref. 19) 

0.12 (Ref. 18) 

0.11 (Ref. 19) 

2) Comparison with Chen's interaction equation: 

Mean: 0.97 v = 0.13 

With p = 3.0, ~ = 0.55 (Eq. 2) and 

V = Vv 2 + V 2 + V 11 , assuming the material bias as R Mat Test Fab 

1.05, VMat = 0.1, and VFab = 0.05, the various values of the resistance 

factor are as follows: 

For Eq. 36, using data from Ref. 18: 

0 = 1.05 X 1.11 exp (- 0.55 X 3 X 0.16) = 0.90 

For Eq. 36, using data from Ref. 19: 

0 = 1.05 X 1.16 exp (- 0.55 X 3 X 0.16) = 0.94 

For Chen's interaction equation: 

0 = 1.05 X 0.97 exp (- 0.55 X 3 X 0.17) = 0.77 

It appears that for the more precise interaction equation (Chen's) a 

17. 

smaller 0 is required than for the more conservative interaction equation, 

Eq. 36. However, it should be noted that the tests for which these com-

parisons were made included tests for which Chen's equation does not 

strictly apply, and, furthermore, the data for some of the tests is 

probably not reliably interpreted (translation from the Russian). Thus 

the 0-values above can be considered to have only a comparative signifi-

cance. If a value of 0 = 0.86 is adopted, it is surely conservative when 
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used with Eq. 36; if Chen's interaction equation is adopted a lower value 

of 0, say 0 = 0.8, should probably be used. 

For the sake of simplicity and consistency it is tentatively recommen-

ded that 0 = 0.86 and Eq. 36 be used for the design criterion of beam-

columns under biaxial loading. 

4. DESIGN CRITERIA FOR BEAM-COLUMNS 

4.1 General Criteria 

In view of the fact that the interaction equations (Eq. 35 and 36) with 

0b = 0.86 will be conservative for beam-columns failing by lateral-torsional 

buckling and for beam-columns under biaxial bending, and considering that 

0b = 0.86 is satisfactory for in-plane beam-columns, it is suggested that 

the following design criteria be used for beam-columns: 

PD 
+ 

cmx (MoD\ 
+ 

c!!!Y (MoD)~ 
) " 1.0 (l)b p 

PD ) ( p u 
'\ M (1 0b M 1 - D 

ux 0b PEx uy 0b PEy 

(37} 

and 
PD 

+ 
(MoD)x 

+ <~D\~ 
~ 1.0 

0b p (l)b M (l)b M y px PY 
(38) 

For any beam-column both equations must be satisfied. In addition it 

must be assured that 

0 p 
c u (39) 

(M D) ~ 0b M o x px (40) 

(M D) ~ (l)b M 
0 y py (41) 
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The various terms in Eqs. 37 through 41 are defined as follows: 

Factored design axial load 

Numerically largest factored design end-moment about the 

x-axis 

Numerically largest factored design end-moment about the 

y-axis. 

These design forces are obtained from structural analysis for the factored 

loads (right side of Eq. 1) 

em Equivalent moment factor for the moments about the x-and y-axes, 

respectively, where 

c = 0. 6 + 0.4 )(. ~ 0.4 
m 

(42) 

P Limit state axial capacity in the absence of flexure, determined 
u 

for the largest effective slenderness ratio about the x-or the 

y-axis of the section, where 

::a 
Pu = Py (1 - 0.25 A ) 

a 
p = P/A u y 

A = Kh < l >{:.z 
r TT E 

for A~ /2 (43) 

for A~ /2 (44) 

(45) 

where K is the effective length factor, h is the member length, F is the 
y 

yield ~tress, E = 29,000 Ksi and r is the radius of gyration. Both K and 

r refer to either the x-or the y-axis, as appropriate. 

Euler buckling load about the x-and y-axis, 

respectively, where 

(46) 



P == A F 
y y 

A 

M ux 

M px 

(Jc 

f/J c 

f/J c 

= 

= 

= 

M uy 

M 
PY 

0.86 

0.9 

0.65 

-

20. 

(47) 

Cross-sectional area of member 

Limit state bending capacity in the absence of 

axial force for equal bending moments causing 

single curvature deformation (K = + 1 in Fig. 1 

or Fig. 3). M and M are computed by the 
ux uy 

formulas given for beams in Ref. 3. 

Plastic moment capacities about the x-or y-axes, 

respectively 

the resistance factor for beams and beam-columns 

resistance factor for columns, where 

for ).. ~ 0.16 

25 )., for 0.16 s:).. s: 1.0 (48) 

for ).. ~ 1.0 

The interaction equations, as presented in the Eqs. 37 and 38, assume 

that the factored end-moments and the axial force are the actual computed 

values, including, if appropriate, also the secondary P - b moments. In 

the case of unbraced planar frames (i.e., (M 0) = 0), where the forces are 
0 y 

determined by first-order analysis, an effective length factor K > 1 is to 

be used and C = 0.85, as in the 1969 AISC Specification. In this case it m 

is necessary to determine bending capacity M and M with due considera-ux uy 

tion of the end-moment ratio K by using the appropriate value of Cb from 

Ref. 3. 

4.2 Special Cases 

a) Flexure about ~ of the principal ~ only 

When flexure is only about one of the principal axes, i.e., (MD) or 
0 X 

(M D) are equal to zero, the second or the third ratio in Eq. 37 vanishes. 
0 y 
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In lieu of Eq. 38 more accurate interaction equations can be used in this 

case (Ref. 6): 

Flexure about the major axis of a W-shape: 

PD 
+ 

MoD 
s: 1.0 

0b p 1.18 0b H y px 
(49) 

except that MoD may not exceed 0b M px 

Flexure about the minor axis of a W-shape: 

( PD 
)" + 

MoD 
~ 1.0 

0b p 1.19 ~\ M 
y PY 

(50) 

e~cept that ~D may not exceed 0b Mpy' 

b) ~mbers in flexure and tension - --
The previous formulas apply to the usual case of beam-columns under 

flexure and axial compression. For the case of flexure and tension, only 

strength considerations, but not stability criteria, apply. Therefore, 

only Eq. 38, or if flexure is about one of the principal axes only, Eq. 49 

or 50 as appropriate, need be used. 

c) Tapered beam-columns 

For tapered wide-flange beam-columns with a single web-taper under 

flexure about the major axis, P and PE are determined for the properties 
U X 

of the smaller end, using the effective length factors from Appendix D of 

the Commentary to the AISC Specification (Supplement 3, effective June 12, 

1974), and M , M and M are determined for the larger end. The value of ux --u px 

M is determined from the formula 
ux 

M = ( S ) S Fby 
UX 3 X (51) 
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where 5/3 is the AISC factor safety which underlies the allowable flexural 

stress Fb , and S is the major axis elastic section modulus. The value of y X 

Fby is to be determined from Appendix D of the AISC Specification (Supple-

ment 3), where methods of determining C are also presented. m 

d) ~-columns with transverse forces between ends 

If transverse forces are present between the ends of the beam-column, 

in Eq. 37 is the maximum moment between the ends and C must be determined 
m 

by a separate analysis. Examples of such an analysis are presented in Ch. 8 

of Ref. 11 and in Sec. 1.6 of the Commentary to the AISC Specification. 

Conservatively C can be taken as unity. 
m 

e) ~-columns 2f W-shape under biaxial loading 

For wide-flange beam-columns under biaxial bending it is possible to 

utilize the more liberal interaction equations resulting from recent research 

(Chap. 8 in Ref. 11 and Refs. 20 and 21). These interaction equations must 

be used, however, with a more severe resistance factor 0b = 0.80, as discussed 

earlier. Since these interaction equations predict a considerably higher 

capacity than the straight-line equations (e.g. Eqs. 37 and 38), it is possi-

ble that member yielding under service loads may occur. This condition must, 

therefore, also be checked by assuring that Eqs. 37 and 38 are also fulfilled 

in addition to the equations given below. However, these equations (i.e., 

Eqs. 37 and 38) are to be checked for serviceability loads only and with a 

larger 0-factor, as outlined in Sec. C.l.2.2 of the proposed Criteria for 

"Load and Resistance Factor Design of Steel Building Structures" (under 

preparation in draft form, February 1976). According to these criteria 

0 = 0.94, y 0 = 1.05, Yn = 1.05 (dead loads), y11 = 1.50 (instantaneous live 

load), Yw = 1.30 (annual wind load) and Ys = 1.65 (annual snow load) under 
A A 

serviceability limit states. The factored ultimate strength interaction 
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equations for biaxial bending are (from Ref. 11, 20 or 21): 

( (MoD)x r ( (M D) f + 0 y :5: 1.0 (52) 
0b M. 0 M pcx b pcy 

and 

I 
c m:x (MoD)x 

)r f/Jb M (1 0b :: )( 1 
PD 

ux 0b PEx 

I 
c my (MoD\~ ) r ~ + 1.0 (53) 

0b Muy ( l - 0b :; ) (t PD 

0b PEy 

where 0b ; 0.80, all other terms are as defined previously, except that 

1.6 
PD 

0b p 
; Y.. el 

( PD ) 2 .en 
cOb py 

(54) 

1.4 + 
PD 

e2 = 
f/Jb p 

y 
(55) 

Equations 52 and 54 apply strictly only if the flange width-to-beam depth 

(bf/d) ratio is larger than 0.8. In a recent paper, Ross and Chen have 

tentatively removed this restriction, and they recommended that Eqs. 52, 

53 and 54 are valid, but Eq. 55 is to be replaced by the formula 

* 

bf 
+ d 

except that e2 may not be less than unity. 

(56) 
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f) Concrete-filled ~-columns 

While concrete-filled circular or square tubular beam-columns are not 

covered in the AISC Specification, it is possible to formulate LRFD criteria 

for such columns also. The resistance factor 0 was determined by Ganguly 

(Ref. 22) for an interaction equation proposed by Furlong (Refs. 23 and 24) 

(57) 

except that M0 D may not exceed 0b Mu. In this interaction equation PD and 

M0 D are defined as previously in this report, 0b = 0.75, Puis the axial 

load capacity in the absence of end moment and M is the plastic moment 
u 

capacity of the steel tube alone when the axial force is zero. 

where 

P = A F +A f' 
u s y c c 

F y 
0.0018 E s 

A = area of steel tube s 

A = area of encased concrete c 

F = specified yield stress of y steel 

f' = specified compressive strength 
c of concrete 

(58) 

The value of P may not exceed A F +A f' • The ultimate moment M is 
u s y c c u 

the plastic moment of the steel tube alone, i.e., 

F 
M = --3. 

u 6 
3 

(D 
0 

for a circular tube (D = outside diameter, D. = inside diameter) and 
0 1 

F 
M = _y 
u 4 

(59) 

(60) 
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for a square tube (D0 = outside dimension, D1 = inside dimension of tube). 

The interaction equation applies when the slenderness ratio of the 

beam-column, as determined for the steel section alone, is less than or 

equal to 50. 

5. SUMMARY 

This report has presented Load and Resistance Factor Design Criteria, 

including resistance factors 0 and nominal resistance interaction equations, 

for steel beam-columns. The design criteria are summarized in Sec. 4 above. 
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8. NOMENCLATURE 

A Concrete area in a concrete-filled beam-column c 

A s Steel area in a concrete-filled beam-column 

B Bias factor 

c m Equivalent moment factor 

c Influence factor 

D ' 0 Di Outside and inside pipe dimension 

D m Mean dead load intensity 

E MOdulus of elasticity 

el' e2 Exponents in the biaxial interaction equation 

e· Eccentricity 

Fby Allowable flexure stress of tapered beams 

F Yield stress y 

f' 
c Specified compressive strength of concrete 

h Story height 

K Effective length factor 

L Member length 

L m 
Mean live load intensity 

M End moment 
0 

MoD Factored design moment 

M Plastic moment p 

M pc Plastic moment in the presence of axial force 

M' Maximum moment capacity 

p Axial load 

PD Factored design axial load 

PE Elastic buckling load 

p Ultimate column load u 
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P Yield load 
y 

R Mean resistance 
m 

R Nominal resistance 
n 

S Elastic section modulus 
X 

V Coefficient of variation 

a Numerical factor 

e Safety index 

y Load factor 

0 Resistance factor 

A Slenderness parameter 

H. Moment ratio 

a Standard deviation 
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