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INFRASTRUCTURE THROUGH
ROBOTIC EXPLORATION

Probability of Detection (POD)
in Structural Health Monitoring
Dr. Genda Chen, Professor and Abbett Chair in Civil Engineering

Director of the INSPIRE University Transportation Center
Director of the Center for Intelligent Infrastructure




Notes abut This Presentation

* This set of slides (posted) are slightly
updated from the original presentation on
March 22.

* The full citation to the original developers
(Meeker, Roach, and Kessler) of the two
basic approaches for POD calculations are
added to provide full details of the
approaches.

* Meeker, Roach, Kessler and my group
agree on the use of two new names
(SODAD and RPM) to describe the two

approaches.
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Outline of This Presentation

Motivation
» Successful Structural Health Monitoring (SHM) Case Study
> Sensor Data Variation

Introduction to Corrosion Monitoring as an SHM Example

> Problem Statement
> Objectives

Probability of Detection (POD)

> Basic concepts
> Two mathematically-rigorous methods

Long Period Fiber Gratings (LPFG) Sensors

> Principle, Fabrication, and Application

Corrosion Experiment
> Sensor preparation
> Test setup

Results and Discussion
> Summary results
» Corrosion characteristic curve
> POD analysis
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Motivation



Successful SHM Case Study

* Seismic Instrumentation System to Understand
Earthquake Loads and Bridge Behavior
> 84 accelerometers with wireless transmission
> One data recorder inside each tower

> A central computer connected to internet for real-time
monitoring
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Successful SHM Case Study

* Vertical Accelerations in Bridge Deck during

May 1, 2005, M4.1 EQ
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Successful SHM Case Study

* Bridge Model Validated by Measured

Frequencies 2012 (2943) joints

i \“ . 128 (128) cable elements
J S5STT 2120 (3596) frame elements
244 (853) shell elements
274 (394) rigid link elements
Total: 10326 (14754) DOFs

« Scaled-up Rock Motion from May 1, 2005, EQ

08 1. Accelerations at Station D1
s were scaled up and used as
5 2| ground motions in analysis.
% _O.Z | 2. Three components of
< oal acceleration were input.
S L A 3. Peak values in global X, Y
0 4 8 12 16 20 and Z are 0.57g, 0.57g and

Time (sec)

0.42 g, respectively.

Transverse Acceleration at Station D1
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Sensor Data Variation

* ISHMII Benchmark — Strain Gauge Placement
» Courtesy of Dr. Douglas Thomson from U. of Manitoba
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Sensor Data Variation

» Strain Time Histories at Midspan
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Sensor Data Variation

 Sum of Strain Time Histories at Midspan

2, MISSOURI

fﬂ’g
@7 Ss¥




Sensor Data Variation

« Strain Ratios at Midspan
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Sensor Data Variation

* Distributed Strain/Crack Sensors

0.11 inch diameterx Current/ flow path )
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Sensor Data Variation

* Distributed Strain/Crack Sensors
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Sensor Data Variation

* Thus, it would be highly desirable to develop
methods that can be used to assess POD in
SHM applications.

 POD can be analyzed using the traditional
statistical methods as described in the 2009
MIL-HDBK 1823A for NDE and sample test data.
These data are obtained through independent,
repeated tests.

 However, while NDE experiments involve a set
of specimens with fatigue cracks (as an
example), SHM sensors are fixed and acquire
data over time as cracks grow, which could be
partially correlated.
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Introduction



Problem Statement

« Bridges are often exposed to deicing salts and/or
marine environments, subjected to daily and
seasonal changes Iin operation temperature, and
strained under traffic or extreme loads over years.

« Corrosion induced deterioration of steel structures
and steel bars in reinforced concrete structures is
the No.1 reason for bridge maintenance, repair or
replacement in the U.S. It accounts for
approximately $10B per year direct costs.

« Corrosion of steel elements is affected by a few
factors such as service life, surrounding moisture,
chloride content, and permittivity of cover
materials. Unless these factors are well
understood, it is difficult to provide engineers with
a definitive mass loss of steel elements in practice.
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Objectives

* To develop two statistical methods for
determining the POD in corrosion
monitoring using Fe-C coated LPFG
sensors

* To validate the methods from independent
laboratory tests

* To determine the steel mass loss at 90%
POD and the largest steel mass loss that
may miss from a corrosion inspection at
95% lower confidence bounds
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Probability of Detection (POD)



Basic Concepts of POD

* POD is a method used to determine the
capability of an inspection as a function of
defect type and size (ultrasonic test data for crack
length taken from Meeker, Roach, and Kessler 2019).

4 50.0 —

D%

20.0 -

0% @=ﬁ0+,31a+€ (1)
10.0 - e~Normal(0, o;)
5 5o " POD(a) =P(@>a,) =1—-d(2) (2)
Ath

;= ath _ (:80 + ﬁla) (3)
O-E
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Meeker WQ, Roach D, Kessler SS. Statistical Methods for Probability of e MISSOURI

INSPIRE Detection in Structural Health Monitoring. In: Structural Health Monitoring "‘ S&T
4 # 2019. DEStech Publications, Inc. Epub ahead of print 15 November 2019. V




Basic Concepts of POD

- POD is a method used to determine the
capability of an inspection as a function of
defect type and size (illustrated using a
series of ultrasonic tests on samples taken
from Meeker, Roach, and Kessler 2019)

1.0 —

0.8 —

0.6

POD

0.4 —

0.2 +

a90

a90

/ML PODestima
[ 95% Pointwise |

0.0 —

estimate is 0.0333

95 UCB is 0.0418

te
pwer confidence bound

L L I O L B B L B B
0.00 0.01 002 003 004 005 006 0.07

a Crack Length (inches)

4|N8I’IH|:F>

0y, - target size at 90% POD

g9/95 - @ 95% confidence value for ay,

the largest crack that might be missed
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Two Methods of POD

* The Size of Deterioration at Detection (SODAD)
method for corrosion monitoring is generalized
from the Length-at-detection (LaD) introduced
for fatigue crack data analysis developed by
Meeker, Roach, and Kessler (2019).

* The SODAD method only uses the size of
deterioration when first detected corresponding
to a threshold of the response signal.

POD(a) =P(A<a) = ® (a; d) (5)

* a and o, are the mean and standard deviation of
random variable A for the size of deterioration.

s, MISSOURI

‘\*‘ Py
& 5
& 2

% &

% &

Shargs of G4



Two Methods of POD

 The Random Parameter Model (RPM) is a
direct extension of the traditional method as
described in the MIL-HDBK-1823A.

 Renamed from the original term “Random
Effects Generalization” developed by Meeker,
Roach, and Kessler (2019), the RPM assumes
that each signal/sensor specimen in the
population has its own intercept and slopes.
The POD of the RPM is then evaluated by Eq.
(2) and

POD(a) = P(& > @) = 1 — ®(2) 2)

A — (Up, T+ Up, a)
Z = (6)

\/aﬁzo +a?ag + 2pagg op, + 0f
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Long Period Fiber Gratings
(LPFG) Sensors



Principle of LPFG

* Long period fiber gratings (LPFG) is a light
loss element with the refractive index of a
fiber core periodically modulated. Its
grating period is about 102~103 um.

Propagating constant h= Tneff‘\ effective refractive index

: - ;2T
Coupling condition Beo — B ==

y\ A0 grating period

fundamental core mode
j th order cladding mode

Surrounding Resonant wavelength  A.¢; = (ng%; — ni YA
medium,n;
For our experiment A =350 um
Optical Fiber
x 3 Aerr = 1550 nm
Grating Period e, MISSOURI
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Principle of LPFG

* Operation Principle
> Fiber
Bragg

Gratings
(FBG)

“

—————————— AR AN

> LPFG
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Fabrication of LPFG
* CO, Laser Grating System

(a)

co, |
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Ovtical Optic
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Laser Controller

Data
Acquisition

(b)

CO, Laser
. L
a

Y s
LI C
- Dod
% e
. : &~ 3
= Ta T ol ¥ . * >

|
Controffér. . Lineaks

Optic Table

(c)
0.0 (F-uﬂﬂq (,#ﬂ“”*““w\q rr
25
% 5.0
c
o
w15k
R
=
2 .100 |
i
=
125k
=15.0
150 1460~1620 nm
" | | M | M i |
1350 1400 1450 1500 1550 1600
Wavelength, nm




Application of LPFG

_(,co _|.cLoj Change with strain and
Aer = (neff ers ) A temperature

v

Change with surrounding medium index

 Temperature
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Corrosion Experiment



Sensor Preparation
 Fe-C Coated LPFG Sensors

» The Fe-C mix represents the chemical
composition of steel rebar and thus experiences
the same corrosion process when deployed in
the same corrosion environment.

> A conductive yet transparent layer is needed to
electroplate a Fe-C layer on the surface of LPFG
while maintaining the sensitivity of sensors

Conductive Layer Fe-C Layer
for Fe-C Electroplating for Corrosion Monitoring
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Sensor Preparation
* Graphene (Gr) Growing

vacuum gauge Quartz vacuum chamber

Q) — cH,

= R ) h,

High Temperature Tube Furna%

E’Pfessure Cu foil |
Vacuum control / MFC Ar
pump | system
a Copper Oxide b luﬂﬂ C; CHJHJ c

65

e

TS

Tl iy,

D [RASdE O A
I ::- - ?.. -, l|- = ::::, 'lll [ :I:F i'l..
e e oy W L ‘.
Copper

Low Pressure Chemical Vapor Deposition (LPCVD) System

MISSOURI

Wt OF TR4y,
& o,
& %,
g( 2
2\ &
°'r4rss of w




Sensor Preparation

* Gr Coating on the Surface of LPFG Sensor
(b)

PMMA
——p

Coating
(c) lEtching

()

Acetone Bath
>

0 copper #5555 graphene PMMAB water LPFG & ""%, MISSOURI
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Sensor Preparation
* Fe-C Coating through Electroplating

- Graphene

Thickness: &

30 um

185 um
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Test Setup

 Sensors were immersed in 3.5 wt.% NaCl
solution.

* An optical interrogator (Micron Optics si255)
records optical spectra every hour.

A Gamry instrument (Potentiostat/EIS 300)
with a standard three-electrode
configuration records the electrochemical
impedance spectroscopy (EIS) every hour.
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Results and Discussion



Summary Results

* Transmission spectra and wavelength shift
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Corrosion Characteristic Curve

 Assume that the corrosion processes of all
sensors are similar.

n =6.38 X 107°73 —1.98 X 107272 4+ 2.307
Coefficient of determination R? is 0.9996

100 ‘ ‘ ‘ & 100
A U . .
(a) ? § _/'/T (20 h, 96%) (b) —a— Original

‘ a : o Fit Curve

. 807 | | 80 1
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The Fe-C coated LPFG sensors in 3.5 wt.% NaCl solution
(a) mass loss of Fe-C coating over time, and (b) mass loss of Fe-C coating over normalized
time
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POD Analysis

 Traditional Method: Diagnostic Plots
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POD Analysis
 Traditional Method

» Linear-x vs Linear-y — Normal Distribution

>899 & Agq/95 Calculated Using the Software that was
Developed by Meeker, Roach, and Kessler (2019)
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POD Analysis
 Traditional Method

» Log-x vs Log-y — Lognormal Distribution
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POD Analysis
» SODAD Method

> Weibull Distribution
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POD Analysis
» SODAD Method

» Lognormal Distribution

Lognormal

LN L LI UL B N N L L AR BN R EA N RERRE RAR
14 16 18 200 22 24 26 28 30 32 34

Minimum Detectable Mass Loss of Fe-C (n%)

T
38

POD

oy ————
0.8
0.6 i i
o /I
Il
4 /
0.4 7 ;’
1 7
]
/
!
- /
0.2 g The aq estimate is 40
T /!
/ The ago/gs Uch is 61
0.0 o™
P! L I | U L Es LI I | o I |
20 40 60 80 100
Mass Loss of Fe-C (%)
df;.v*“" o, MISSOURI




POD Analysis
» SODAD Method

» Normal Distribution
» Selected for Later POD Comparison
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POD Analysis
» SODAD Method

» The Largest Extreme Value (lev) Distribution
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POD Analysis
* RPM

» Linear-x vs Linear-y

LPFG Sensor Data
POD Based on the Random Effects Model
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POD Analysis

* RPM
» Log-x vs Log-y

LPFG Sensor Data
POD Based on the Random Effects Model
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POD Analysis

« Comparison of Three Methods
under Different Detection Thresholds

linear-x vs linear-y log-x vs log-y
100 100
V7] Traditional V7] Traditional
90 [} SODAD 90 - SODAD
- w RPM .y RPM
& 704 T 2 704 Ll
o [ Q I
.';'? 60 S = < ..'}_‘) 60 - -
(/2] 1 (/2]
o ] R N o] 4 eSS
. 1 Lol e 3 HEN
2 304 , N 2 30- = 79N\ 7
= ol N A = il
209171 | 2N N 20/ IS \ ,
10 - — —— — 0l BN 7N SN N
N
O I 1 I I I I I 0 1 I I I I I
0.5 1.0 1.5 2.0 25 3.0 3.5 0.5 1.0 1.5 2.0 25 3.0
Detection (nm) Detection (nm)

4'"3';“‘5‘?




POD Analysis

* Robustness of Three Methods Using Leave-
one-out (LOO) 10-Fold Cross Validation
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Concluding Remarks



Conclusions

« A polynomial fit for the corrosion characteristic curve is
acceptable since the coefficient of determination is 0.9996.

 The ranges of wavelength shift for various Fe-C coated LPFG

sensors are different, but 70% of the sensors lie in a range of
6~10 nm.

 The concept of POD is successfully applied to the dataset
obtained from Fe-C coated LPFG corrosion sensors.

* For all three methods, the a90 and a90/95 increase as the
detection threshold increases. However, the traditional and
the RPM method shows a linear relationship, but the SODAD
method does not.

* Given the detection threshold of 2 nm, the RPM method is
more robust than the SODAD method since it takes full
consideration of the difference between datasets from
various sensors.
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