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ABSTRACT

An extensive experimental and analytical investigation
of thin-steel hyperbolic paraboloid (hypar) structures was car-
ried out to provide design information. As a result of this
work, empirical data is provided regarding the behavior of
such structures and computer programs are presented for the
analysis of thin steel hypar structures.

Hyperbolic paraboloid structures possess a unique combina-
tion of structural and architectural properties; some of them
are the following: 1) Due to the double curvature of the sur-
face the internal stresses in the deck are generally low and
the deflections are small. 2) Since a hypar surface can be
generated by straight lines, thin-steel or light-gage panels
may be used to form the shell; furthermore such panels are well
suited to carry the in-plane shear forces in hypar shells.

3) Basic hypar units can be combined in a large variety of ways
to produce attractive roofs (Fig. 1-2, page 212). 4) The dead
load to live load ratio is very low in the case of thin-steel
shell structures.

A hypar unit is a warped surface bounded by straight lines
(Fig., 1-1, page 211). The equation of the surface is z = Cxy/AB.
According to the simple membrane theory, a uniform load p pro-
duces pure shear forces ny = ABr/2C. This membrane shear
transmits uniform eccentric axial forces to the edge members.

The following are the major problems associated with the

design of thin-steel hypar structures: 1) The deflections,



stresses, and the stability of hypars depends greatly on the
shear rigidity of the thin-steel deck. This property must be
evaluated experimentally for each combination of decking, con-
nections to edge members, and seam connections. Furthermore,
in the case of hypars the deck is warped and thus the shear
rigidity may be different from that of an equivalent flat dia-
phragm. 2) The deck may buckle due to the shear stresses, and
the buckling load must be evaluated for highly orthotropic
shells. 3) The design of thin-steel hypar structures is gen-
erally governed by stiffness (deflections or buckling) require-
ments. The evaluation of the deflections is a very complex mat-
ter because it depends on the deck rigidity, the edge member
axial and bending stiffnesses, and on the eccentricity of the
deck-to-edge member connection. 4) If the curvature (or rise-
to-span ratio) of a hypar is small, the deflections may be
large and a considerable portion of the load is carried by bend-
ing rather than by membrane shear. 5) Partial or concentrated
loads may cause large local deflections, especially if single-
layer decks are used.

The present investigation studied all the above-mentioned
factors. The experimental and the analytical studies are sum-
marized briefly in the following paragraphs.

The experimental investigation consisted of four types of

tests: a) Four medium-scale (12 ft by 12 ft in plan) inverted
umbrella tests to study the stresses, deflections, and the
deck buckling; b) Test on a small-scale (2 ft by 2 ft) inverted

umbrella structure to study scaling effects and the overall

ii



buckling of hypars; c) Sixteen flat shear tests to determine
the shear rigidity of the decks used in the hypar tests; d)
Twelve saddle-shaped hypar tests (5 ft by 5 ft in plan) with
various rise-to-span ratios to evaluate the effect of rise or
warping on the shear rigidity and to study other factors such
as partial loading andé single versus double layered decks.
Photos of the various types of tests are shown in Figs. 7.1 to
7.5. The experimental program is described in detail in Chap-
ter VII,

Prior to the main test program, several small-scale (2 ft
by 2 ft) four-quadrant tests and medium-scale single-quadrant
tests were also conducted. These tests were however discon-
tinued because of the severe scaling effects in the case of
the small-scale models and the violation of the symmetry condi-
tions in the case of single-quadrant experiments where the
neighboring quadrants were missing. Nevertheless, these tests
produced useful qualitative information and experience with
manufacturing and testing thin-steel hypar structures.

The edge members of the umbrella-type specimens were made
of tubular members since this afforded easy connection of the
warped surface to the straight edges. The decking consisted
of single or double layers of standard corrugated panels. One
layer was connected to the edge members with sheet metal screws
at various spacings. The seam connections between the panels
were also made by means of sheet metal screws. In the case of
shells with two layers, the top layer was connected to the bot-
tom layer in a similar manner.
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The medium-scale umbrella models were loaded using air bags
under each of the four quadrants. The saddle-shaped hypérs
were loaded with sand, whereas the small-scale models were load-
ed through loading pads and suspended weights.

The following are the principal conclusions of the experi-
mental part of this investigation:

The effective shear stiffness of the cold-formed deck and
the rise (or curvature) of the structure are the most important
factors influencing the behavior of hypars. For low shear stiff-
nesses and for small rise-to-span ratios the deflections may be
large, the bending stresses tend to increase relative to the
membrane stresses, and the possibility of deck buckling increases.
As in the case of flat shear diaphragms, the shear stiffness
depends strongly on the seam and edge connections.

The increase in shear stiffness due to the addition of a
second layer of deck was found to be only about 1/3 if the
second layer was connected only to the first layer and not dir-
ectly to the edge members. Similarly, the deflections of a
double-layered shell are more than half of those of a correspond-
ing single shell. If the two layers are interconnected with
sheet metal screws (on an 8 in. grid in the present saddle-
shaped hypar tests), thec deflections are further reduced by
about 10 to 20%, depending on the rise ratio.

A particular problem of certain types of hypar structures
is the deflection of unsupported outside corners (see Fig. 1-2,
page 212). The membrane shear cannot carry the load over such
flat corners and thus considerable bending and deflections may

develop. The tests showed that the bending stiffness of the
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edge members has a great effect on the corner deflections, in
fact, they indicate that the design of the edge members in hypars
with flat corners is usually governed by deflection limitations.
The measured bending strains in flat saddle shells (rise-
to-span ratio of 1.8) was much greater than the bending in hypars
with greater curvature (rise ratio of 1/3). The membrane theory
is insufficient for the design of flat hypar structures. How-
ever, the design of the connections (seam or edge) may be based
on the shear forces obtained from the simple membrane theory.
Several single and double layered saddle-shaped models
were tested under partial loading. Since such loads must be
carried mainly by bending of beam strips along the deformations
of single decks, relatively large deflections were noted. The
deflections under the 8 in. by 8 in. loaded area were about
three times greater in the single decks than on the double-
layered structures.
Since the effective shear rigidity of the deck is of para-
mount importance, the effect of curvature (warping) on it is
an important question. The effective shear rigidity of various
deck, edge member, and connection configurations are determined
by tests on flat diaphragms. The comparison of the measured
deflections for saddle hypars with various rise-span ratios and
the evaluation of the effective shear rigidities backwards from
the measured deflections indicated that the shear rigidity is
reduced by about 20% due to the warping effect.
The buckling of the deck is one of the design factors.
For émall rise-span ratios and for low deck shear rigidities
the deck may buckle. As an example, a 12 ft by 12 ft model
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having a single layer 24 gage corrugated sheet deck buckled

at a uniform load of 70 psf (see Fig. 6.14). Thié model had
relatively stiff edge members (3 in. dia. tubular sections).
The corner deflections remained linear with increasing load

beyond the buckling load.

The buckling load of double-layered structures is much
larger than that for single deck shells. A model, similar to
the above but with two layers of 28 gage standard corrugated
decks, did not buckle up to a load of 145 psf, when the test
was discontinued.

The major part of the analytical investigation consisted

of two finite element approaches for the calculation of deflec-
tions, stresses, and instability. In addition, two simple
methods were developed for estimating the deck buckling load
and the buckling of the compression edge members, which would
suffice in preliminary designs.

Two types of finite elements were used: curved shallow
shell elements and flat elements. The details of the analysis
are described in Chapter III. Both approaches were verified
by comparisons with existing experimental and analytical results.

The stiffness of the eccentric edge members were properlyA
accounted for in the mathematical representation of the struc-
ture. The connection of the decks to the edge members may al-
low rotation about the axis of the edge members and movement
normal to the edges due to slip at the connections. These pos-
sibilities were also considered in the analysis.

The instability of the decks was studied with the help of

the incremental stiffness matrix approach. The effective stiff-
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ness of the system is reduced due to the in-plane forces in
the deck. The in-plane forces depend on the deflections of
the shell and to obtain the buckling load, the eigenvalues of
a large order system need to be evaluated. In the present
study the load incrementation method was used instead. The
effect of the in-plane forces was evaluated iteratively at
successive load increments. The buckling load is obtained
from the nonlinear load-deflection curve, (Fig. 6-6, Page 276).

The comparison of the results of the flat element and
the curved element approaches reveals that both give good re-
sults for shells supported around the perimeter. However, the
flat element method gave better results in the neighborhood of
unsupported flat corners.

The analysis of the structures tested in this and in other
studies confirmed the conclusions of the experimental part of
the investigation. The stresses in most types of hypars are
low and the design is usually controlled by deflection or
buckling limitations.

The relative stiffness of the deck and the edge members
is an important factor. For stiff edge members the deck tends
to bend between opposite edges, whereas in the case of flexible
cantilevered edge members the shell partially supports the edge
members. Analysis of a structure including the weight of the
edge members indicated that this effect may have to be con-
sidered in the design of hypar structures.

The analysis of buckling of hypar decks showed that the
buckling load of double-layered shells is three to four times
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greater than that of single decks. The predicted buckling

loads compared well with experimental or previous analytical
evidence. The buckling load does not depend much on pre-buckling
deflections, however it depends on the axial stiffness of the
edge members.

The finite element analysis was also used to calculate
the deflection of an unsymmetrically loaded inverted umbrella
structure. The results, which compared well with experimental
data, showed that these deflections are about four times great-
er than those due to symmetric loading. This increase of de-
flections obviously depends on the type of structure; in this
case nuch of the flexibility was due to the bending of the
central column of the umbrella structure.

Since the instability analysis of hypars by the finite
element method involves considerable amount of computer capac-
ity and expense, approximate methods were developed for the
calculation of buckling loads. The buckling of the compression
edge members was studied by isolating them from the structure.
The instability of columns loaded by tangential axial forces
that remain parallel to the member during deflection was evalu-
ated. The results are tabulated in Fig. 6-13, page 284.

The buckling of hypar decks was also investigated by the
energy metihod (Section VI-7., The resulting equation has to be
minimized to get the critical load; this can easily be done
with the help of a computer. This approach is much simpler
than the finite element instability analysis and is preferable
in preliminary designs.
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A few buckling analyses of cold-formed hypar shells
showed that the critical load for double-layers is about three
to four times greater than a shell with a single deck.

The finite element analysis computer program will be made

available to designers by the American Iron and Steel Institute.
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GLOSSARY OF TERMS

Length of hypar quadrant in X-direction, inch.

> >

o

Cross-sectional area of the bean, inchz.

Area of deck along x-direction, inchz.

>4>

Ay Area of deck along y-direction, inchz.
AC Area enclosed by the cellular portion, inchz.
Ai’Bi’Ci Dimensions of the i-th quadrant.
a Length of the element in x-direction, inch.
B length of hypar quadrant in y-direction, inch.
b Length of the element in y-direction, inch.
C Rise of hypar quadrant, inch.
D Bending rigidity of an isotropic deck, 1b-inch2/
inch.
D1 Rigidity due to Poisson's effect, 1b-inch2/inch.
Dx ?gn@ing2r§gidity of the deck in x-direction,
-inch“/irch.
Dy oDy Torsional rigidities of the deck, lb-inch?/inch.
D Bending_rigidity of the deck in y-direction,
y 1b-inch?/inch.
E Young's Modulus, lb/inchz.
Ex Modulus of elasticity in x-direction, lb/inchz.
Ext Extensional rigidity of the deck along the x-
direction, 1b/inch.
Exyt Inplane shear rigidity of the deck, 1b/inch.
Ey Modulus of elasticity in y-direction, lb/inchz.
E Extensional rigidity of the deck along the y-
vt direction, 1b/inch,
E1 ¥g?qluszof elasticity due to Poisson's effect,
inché.
Elt Inplane coupling rigidity of the deck accounting

for Poisson's effect, 1b/inch.
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xy

T
n

y
(k]

[k

JRI R
(klpm

[k]curved
[klep

[k]eff

[k]ez

[k]flat

Shear modulus, 1b/inch2.

Shear rigidity of deck (=Exyt), 1b/in.
Effective shear modulus, lb/inchz.
Effective moment of inertia of a corrugated

deck, inch®/inch.

3
lMoment of inertia of the deck section, %— R

inch4/inch.

Moment of inertia of a beam about the y-axis,
inch®,

Moment of inertia of a4repetitive deck unit
about the x-axis, inch*/inch. '

Moment of inertia of a repetitive deck unit
about the lige of connection parallel to the
x-axis, inch™/inch.

Momeﬂt of inertia of a beam about the z-axis,
inch™.

St. Venant torsional constant, inch4.
Bending curvature in x-direction, inch™!.
Twisting curvature, inch™!.

Bending curvature in y-direction, inch-l.
Stiffness matrix.

Element stiffness matrix for plate bending.

Element stiffness matrix for w-displacement.

Flexural and membrane coupling element stiff-
ness matrix.

Element stiffness matrix for the curved element.

Effective stiffness matrix of the supporting
edge member with respect to the eccentric axes.

Effective stiffness of the‘deck after inclusion
of the instability effects.

Stiffness matrix of the plate element in the
global co-ordinate.

‘Element stiffness matrix for the flat element.



m
[N]
[N],

m_,m

N
[ ]global

~3..
Element of the stiffness matrix in the i-th
row and the j-th column,
Element Mmembrane stiffness matrix.

Length of a basic repetitive unit of the deck,
inch.

Direction cosines of the local element axes.
MHoment gbouyt y-axis, inch-1b/inch.

Twisting moment about X and y axis, inch-1b/inch.
Yoment about x-axis, inch-1b/inch.

Direction cosines of the local element axes.
Incrementa] matrix.

Incremental] stiffness for the flexural displace-
ments (w).

Incremental matrix for deck in the global co-
ordinate System.

Element Of the incremental matrix in the i-th
row and J-th colunn.

Force per unit length along the x-direction,
1b/inch.

Shear force, 1lb/inch.

Force per unit length along the y-direction,
1b/inch.

Directjon cosines of the local element axes.
Generators of the hypar surface

Local orthogonal element axes.

Normal tO the hypar surface at point o.

Load vector.

Uniformly distributed load, 1b/inch?.

Reductjon factor for the torsional rigidity of
a cellylar deck.

Developed 1ength of a basic repetitive unit of
the deck, inch.
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Stiffness of the i-th spring.

Component transformation matrices for the plate
element.

Coefficient for torsional fixity between the
deck and the edge member.

The coefficient for inplane fixity between the
deck and the edge member.

Rotational transformation matrix for the bean
element.

Translational transformation matrix for a beam
element.

Thickness of the deck, inch.

Thickness of the base plate in a cellular
deck, inch.

Thickness of the hat section in a cellular
deck, inch.

Strain energy, inch-1b,
Strain energy due to bending of deck, inch-1b.
Strain energy of a beam, inch-1b.

Average axial displacement of a beam section
measured at its centroid, inch.

Strain energy due to the membrane action of the -
deck, inch-1b,

Strain energy due to the warping of the deck,
inch-1b.

Displacement along x-axis, inch.
Displacements of the i-th node.
Potential energy of the applied loads, inch-1b.
Potential energy of the in-plane forces, inch-lb;

Displacement of the shear center measured along
y-axis, inch,

Displacement along y-axis, inch.

Displacement of the shear center measured along
Z-axis, inch.
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Differenciation of w-displacement with respect
to x and y.
Displacement along z-axis, inch.
x-coordinate of the local origin of a hypar
quadrant with respect to the global coordinate

systenm.

Cartesian coordinates of the center point o
of an element.

Orthogonal cartesian global coordinates.

Orthogonal axes other than the global cartesian
axes.

Eccentricity of the centroid of the cross-
section of the beam in the y-direction from
the shell surface, inch.

Eccentricity of the shear center of the cross
section of the beam in the y-direction from
the shell surface, inch.

y-coordinate of the local origin of a hypar
quadrant with respect to the global coordinate
system.

Eccentricity of the centroid of the cross-section
of the beam in the z-direction from the shell
surface, inch.

Eccentricity of the shear center of the cross
section of the beam in the z-direction from
the shell surface, inch.

Derivatives of the surface Z(x,y) with respect
to x and vy.

Ratio of shear rigidity of a corrugated deck to
that of a flat deck with the same thickness.

Warping constant of the deck, inch6/inch.
Warping constant of a beanm, inch6.
Shearing strain in the x-y plane.
Ceneralized displacement vector.
Generalized displacement at the i-th node.

w-displacement at the point a.
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Load increment gsed in load incrementation
method, 1lt/inch<.

Increment in the displacements due to the
application of the incremental load §p.

Strain in x-diréction.

Strains measured along x' and y' axes
Strain in y-direction.

Number of interconnected decks.

Twist rotation of a beam, radian.

Rate of change of twist rotation,
radians/inch.

Angle of twist of a beam at the i-th end, radian.

Rate of change of angle of twist at the i-th
end, radians/inch.

Rotation.about x-axis, radian.

Rate of change of rotation, radians/inch.
Rotation about y—axié, radian.

Eigenvalue for the critical buckling load.
Poisson's ratio.

Poisson's ratios in x and y-directions respec-
tively for the equivalent orthotropic plate.

Stress in x-direction, 1b/inch2.
Stresses measured along x' and y' axes.
Stress in y-direction, 1b/inch2.
Shearing stress, lbs/inchz.

Total potential energy of a system, inch-1b,



CHAPTER I

IHNTRODUCTION

I.1. HYPAR ROOFS

The hyperbolic paraboloid shell ronf, like any other
form of shell is one of the types of construction that makes
efficient use of materials by depending primarily upon the
form or shape for strength rather than on mass. The doubly
curved surface of a hypar shell is composed of straight lines
in two directions (Fig. 1.1). From the construction point of
view, this property is very attractive. It facilitates the
use of straight members for formwork and reinforcing steel in
the case of concrete hypars. This very feature also allows
the use of light gage steel deck panels, which could be easily
warped to the required degree to form the hypar surface.

The hypar surface shown in Fig. 1.1, can be gener-
ated in two wayslz (1) The surface can hbe defined by moving
a convex parabola ODC in a direction parallel to itself, over
a concave parabola BDA. Thc parabola ODC lies in the plane
perpendicular to that of BDA. (2) The surface can also be
defined as a warped parallelogram. The surface can be gener-
ated (Fic. 1.1) by moving along y-axis, a straight line that
remains parallel to the xz-planec at all times but pnivots while
sliding along the straight line AC. Physically the surface
can be visualized as a warped parallelogram OBCA, obtained by

depressing the corner H through a distance CH. By means of
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similar triangles (Fig. 1.1), it can be easily shown that the

surface equation is,

CH
OA x OB

PQ = Z = Kxy where K =

The surface is called hyperbolic paraboloid because
any plane parallel to the xy-plane, intersects it in a hyper-
bola; whereas a plane perpendicular to ODC intersects it in
a parabola.

For simplicity, the structural action of a hypar
can be visualized as a net of intersecting arches and cables.
The convex parabolas (arches) parallel to ODC carry compres-
sive stresses, whereas the concave parabolas (cables) parallel
to ADB carry tensile stresses. This implies'that the element
I is in a state of biaxial stress, compression parallél to
the arches and tension parallel to the cables. On the other
hand, the element II is in a state of pure shear. In the in-
terior, the membrane shear is carried by the shell. Along the
free edges, stiffening edge members are usually provided to
sustain the membrane action. These edge members themselves
carry gradually increasing tensile or compressive forces de-
pending upon the geometry of the structure.

By the combination of a basic hypar unit, such as
shown in Fig. 1.1, different elegant hypar structures can be
built. Four such configurations are shown in Fig. 1.2. The
edge members are provided to build up the membrane action and
also to stiffen the structure. Tension tie rods are commonly
employed to balance the horizontal reactions hetween the low

corners.
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Because of its architectural beauty, ease of con-
struction and ability to provide large column-free working
space, the hyperbolic paraboloid shell has been used for in-
dustrial plants, churches, assembly halls, etc. In Mombasaz,
the hypar structure was used as a footing on low bearing capa-
city soil. A 225-feet double cantilever hypar roof is under
construction at Los Angeles for the American Airlines jet
hangar. The roof uses a cellular form of deck. This struc-
ture may very well prove to be the forerunner of many more

similar structures.

I.2. LITERATURE REVIEW

Like any other shell, hypars carry load by both mem-
brane and bending actions. The membrane theory, as indicated
before, results in a state of pure shear. The liritations of
this theory were realized by the most investigators and the
necessity of probing into the bending behavior of the shells
became apparent.

The shallow shell theory of ”arguerres and V]assov4
is often used to analyze the bending action. Though this theory
is approximate, it is considered fairly accurate for a shell
surface where the slopes of the tangents are very small compared
to unity. Two basic approaches were used to formulate the
shallow shell theory.

In the first approach, two fourth-order coupled par-
tial differential equations in terms of normal displacement w
and Airy-stress function F are formed. T?.eissner5 using this

approach, determined the buckling load of a uniformly loaded
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isotropic hypar with rnoment-free rigid edges, with the edge mem-
bers of infinite axial rigidity tut negligible bending rigidity
in planes tangential to the shell. Apeland and Pcpov6 reduced
these two equations to a single eight-order differential equa-
tion. Using Levy-type boundary conditions (with two opposite
edges knife edge supported) they tried to establish the effect
of edpe disturbances in the same way as that for cylindrical
shells. Their important conclusion was that the effect of the
edge moment does not die off very rapidly in the case of hypar
shells.

The formulation in terms of middle-surface displace-
ment u-v-w, results in three coupled partial differential equa-
tions, two second-order (u-v) and one fourth-order (w). Sal-
vadori and Bleich7 using Vlassov's shallow shell equations fol-
lowed this approach. Assuming u=v=0 all over the middle sur-
face, the fourth-order differential equation reduced to that
of a plate on an elastic foundation.

However, it must be emphasized that in order to obtain
the solutions to these mathematically complicated equations,
simplifying assumptions were made. The choice of boundary con-
ditions was dictated by the possibility of ohtaining solutions
rather than simulating the exact boundary conditions in a phys-
ical model.

The shortcomings of the classical solutions resulted
in the realization of the importance of numerical approaches
for the solution of these differential equations.

Chetty and Tottenham8 applied a variational method
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for the analysis of shallov shell equations (%”-F). However,
the choice of approximating functions limited its applicability
to the specific boundary conditions. Besides, non-classical
boundary conditions presented serious difficulties.

The numerical scheme of finite difference provided a
very useful tool in the solution of these equations. Das

Guptag, Mirzalo, Russell and Gerstlell’lz

using the *'-F approach
applied this method to different hypar structures using mean-
ingful boundary conditions. The edge members were also incor-
porated in their analysis. Everybody used the classical bear
theory. Mirza solved an umbrella shell. Iowever, the magni-
tude of the corner deflections obtained for an umbrella shell
and the boundary conditions used along the line of symmetry,
raise serious doubts about the validity of the methodls.

Fussel and Gerstlelz mainly analyzed two-corner and four-corner
supported hypars. DNon-dimensionalized design parameters were
provided. Thre main contribution of their work was to show the
importance of the line-load along the edge members. Croll and

Scrivener14’15

used the u-v-w formulation. The effect of the
eccentric connection of the beam to the shell is discussed. One
of the important features of their work is a complete discussion
of the convergence characteristic of the solution with relation
to the relative proportions of the shell and the edge member
stiffnesses. A comprehensive review of the above mentioned
method is presented by Brebbia16.

The finite element method, whick is nothing else but

the matrix formulation of Rayleipgh-Ritz method of variational
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principle, was successfully employed by several workers. The
ease with which this method can handle realistic boundary‘con-
ditions, made this method very suitable for hypars. It is

also believed that the variational principle used in the finite
element method will yield better results than the finite dif-
ference method because it involves integration rather than dif-
ferentiation as used in the latter method.

17

Connor and Brebbia using shallow shell approxima-

tion, formulated the stiffness matrix for a thin shell curved

element, rectangular in plan. Similar formulations were worked

18 19

out by Deak and Parker Pecknold and Schnobrich??:21 work-

ing along the same lines, extendecd the work to the skewed

shallow shells. All these workers used linear displacement
field for u, v displacements. The major difference was the
displacement field they used for the normal displacemrent w.

18 20

and Pecknold both used the Birkhoff-Gara-

17

Deak
bedian interpolation formula. Connor™  used a twelve-term poly-
nomial vhereas Parker19 used the Lagrange interpolation formula.
Parker extended the work to orthotropic light gage steel hypars
and compared the results with the experiments. None of the
Refs. 17, 18, 20, 21 mentioned any correlation with experi-
mental results but were content with the comparison'to solu-
tions obtained by other nurerical methods.

The buckling and nonlinear analysis of hypars are

22 continued

also reported in the literature. Ralston
Reissner'ss work by investigating the buckling of a hypar-

under its ovn weight. Dayaratnam and Gerstle23 presented a
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solution to the buckling prohlem of hypars with edge beams,
simply supported at their corners. The in-plane displacements
u and v were assumed equal to zero. A double sine series de-
flected shape was assumed and the total potential energy of
the system was minimized using Ritz procedure. The critical
load was determined by equating the determinant of the result-
ing matrix to zero. It was concluded that for all positive
values of the ratio of bending rigidity of the edge member to
the deck, the deck buckling always preceeded the edge member
buckling. The study in Ref. 19, indicates that for a very flex-
ible edge member, the possibility of overall buckling prior to
the deck buckling does exist. The erroneous conclusion of Pef.
23 was reached because of two reasons:
(i) A non-compatible displacement field between the shell

and the edge beams.

(1i) In determining the eigenvalue the off diagonal terms
were neglected.
These points are discussed at length in Ref. 19. “uskat??
studied the buckling of hypars with corrugated orthotropic
deck. A method for determining the buckling load of the deck,
considering pre-critical deflections of the entire structure
was developed, using the energy approach.

Brebbia and Connor25

presented a consistent finite-
element displacement formulation applicable to the shallow
shell elements using the Newton-PRaphson iteration scheme, by
linearizing the incremental equation. The load deflection

curve for fixed hypar was presented.
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A large number of experimental studies have been re-
ported for hypar shells. A major portion of the experiments
were carried out to mecasure deflections and stresses on small
to medium scale models. The results were correlated with the
approximate theories and by changing the design parameters,
certain predictions on the overall behavior of the hypar shells

were made. Rowe and :‘.?irzaz6

tested plastic models with two
adjacent edges fixed and the other two free. The effect of
rise to span ratio was studied on the free corner deflections
and axial strains. By changing the depth of edge beams along
the free edges, it was concluded that by increasing the depth
of the edge beam both the axial strains and the vertical de-

flections are decreased in the shell portion. Rowe27

also
tested medium to small scale concrete models and used unsym-
metrical loading. In order to study the ultimate load carry-
ing capacity of the umbrella shell hypars, an experimental re-
search program is underway at the Cornell University, where
small scale concrete umbrella shells are being tested to

failure65.

24 28

I'uskat and Leet tested small scale models to
determine the buckling characteristics. Leet tested plastic
models subjected to uniform normal load. The effect of imper-
fection was studied on the fixed shells. Edge beams were used
to study the effects of different edge conditions on stresses,
deflections, shell buckling and overall buckling. The effect
of different boundary conditions was not very pronounced on the

shell buckling. By studying the effect of different beam
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sizes Leet concluded that the cross-sectional areas of the

edge beams have a significant effect on the deck buckling.
Most of the experiments were conducted with medium

scale models. Ref. 19 has listed most of them. Bertaro and

29 tested an 8' x 8' model. The model with edge beams and

Choi
two diagonally opposite corners supported was chemically pre-
stressed by using expansive cement. The model was tested in
the inverted position using air pressure loading. Deflection
profiles, crack patterns, and stresses were presented.

| In the last 8 years or so, the use of light gage
steel decks as a hypar shell has gained some momentum,.

30 tested two 8' x 8' orthotropic light gage steel,

McDermott
saddle-shaped (Fig. 1.2b) models. In the first case, the

steel deck was welded to the edge members whereas in the second
case the steel deck was glued. The rubberized canvas bags were
pressurized by water in the first case whereas air was used in
the second case. He also tested a large-scale model with a
single layer standard corrugated deck. The edge members con-
sisted of built-up sections. The loading was applied with

sand bags. Strains and deflections were measured.

31 tested a concrete inverted umbrella

Yu and Kriz
shell 24' x 24' in plan, in which upturned edge beams were
used. The symmetrical and unsymmetrical 1oading was simulated
by the discrete loads. The measured strains and deflections

were presented.
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Three large scale tests were conducted for hypars
using orthotropic deck as a shell surface:

32 tested a 15' x 15" hypar quadrant with simu-

Nilson
lated boundary conditions of the adjacent quadrant. A single
layer of cellular deck was connected to the channels, which
were used as the edge members, by means of a warped plate. Uni-
form loading was applied by 25 jacks. The load deflection curve
and the measured membrane stresses were reported.

Two large scale hypar models 50' x 30' in plan, were
tested recentlyss. Two different cellular orthotropic single
layer decks were used in each case. 14 WF sections were used
as the edge menmbers, which were allowed to move freely in the
plane of the hypar but were supported against the vertical move-
ment. The normal uniformly distributed load was applied by

creating a vacuum in the enclosed chamber,

1.3 SCOPE AND OBJECTIVES OF THE PRESENT INVESTIGATION

The main purpose of the present investigation was to
determine the deflections, stresses, buckling and collapse loads
of light gage steel hypar shell roofs and to provide design in-
formation. An analytical procedure was developed so that it
could be extended to include fhe analysis of hypars with various
support conditions as well as hypars subjected to partial loadings.

The finite element method was selected because of its
versatility. The entire project was approached from an engineer-
ing point of view. The validity of the method was established by
comparing the theoretical and experimental results for different
kinds of hypar structures.

Two separate computer programs were written, (1) For
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stiffness analysis; (2) For instability analysis.
(1) Stiffness Analysis

A linear elastic analysis of the structure was per-
formed and the deflections, the edge member and deck stresses
were computed. The program can handle the following variables:

(a) Different types of orthotropic decks.

(b) Different configurations of the hypar structure.

(¢) Realistic physical boundary conditions such as

eccentric connections of the edge members and
discontinuity between the deck and the support-
ing edge members.

(d) Different loading conditions such as unifornm,

unsymmetrical, line loads, etc.
(2) Instability Analysis

A linear load incrementation method was used for the
instability analysis. The effect of the in-plane forces Nx’
Ny and ny was included.

The experimental part of the investigation included
the determination of the effective shear rigidities of standard
corrugated decks and the determination of deflections, stresses,
and buckling loads in inverted umbrellas and saddle-shaped
hypars constructed of corrugated steel decking and tubular edge

beams.
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DECK PROPERTIES

IT.1. IHTRODUCTION

A material in which resistance to mechanical actions
is different in different directions, is called anisotropic.
Orthotropy is a special case of anisotropy, where the body
possesses. elastic properties which are symmetric about three
mutually perpendicular planes.

Orthotropy can be further classified into two cate-
gories namely, natural and geometric. The natural orthotropy
is a result of the material property itself. A classical
example of natural orthotropy is timber, where the modulus of
elasticity, along the direction of its grain in tension, is
substantially higher than the corresponding modulus in the
direction perpendicular to it.

In the geometric type of orthotropy, the difference
in elastic properties in the perpendicular direction, as shown
in Fip. 2.1, is due to the geometrical confipuration of the
structural element even though it is made up of an isotropic
homogeneous material. Different types of decks belonging to
this category are shown in Fig. 2.2.

In both the cases, the definition of elastic con-
stants in two mutually perpendicular directions is required.
However, geometric orthotropy is of particular interest for

the hypar structure dealt with in this work.

-18-
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In the following analysis the decks, shown in Fig.
2.2, are replaced by eqguivalent orthotronic plates, having the
same physical properties as the decks, such as extensional and
bending stiffnesses. It is impossible to achieve a complete
equivalence between the actual physical system and the ideal-
ized orthotropic plate, in all respects such as strain energy,
deflections or momerts at different points under different
criteria. The properties of the idealized system can be deter-
mined either by equivalence of stiffness or eauivalence of
strain energy Letween the idealized and the physical system34.
The equivalence of stiffness is established by equating only
the deformations between the actual and the idealized system.
The equivalence of strain energy is obtained by equating the
work done by the internal forces in beoth the systems when sub-
jected to identical loading and boundary conditions.

The elastic constant for the idealized plate material
is assumed to be the same as that of the parent material. The
properfies calculated depend only upon the direction consid-
ered and not on the position of the corresponding voint on the
actual deck. The orthotropic plate theory is applicable to
the decks, shown in Fig. 2.2, provided the ratio of the dimen-
sions of the repetitive unit (2) and the overall span of the

deck, is very small, i.e.,; <<1.

IT1.2. ELASTIC PPOPERTIES OF DECK

In the case of a geometrical orthotropy, as present
in corrugated or closed formed decks, in order to calculate

elastic properties in two mutually perpendicular directions,
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it is necessary to separate the in-plane membrane and the
bending action.

A. MEMBRANE PROPERTIES

The principal directions of elasticity in an ortho-
tropic deck are those along which the extensional rigidities
are either minimum or maximum. When the axes x and y coincide
with its principal direction of elasticity, the equation of gen-

eralized Hooke's law for plane stress-strain can be written as

o v
: X Xy
E, T g7 -~ =0 2-1la
X Ex Ey y |
Y o
X
€y —Ei- o, * E% 2-1b
é_’SL
Y = 2-1c
XY Seff
Solving the equations for the stresses we get,
O ] Ey vxy X 0 €x
1
(o] = v__E E 0 € 2-2
y (L-VeyVyed | XY y y
Txy 0 0 (17vxyvyx)Geff Yxy
L X .

The terms vxy and vyx represent the coupling effect of the
actions (stress or strain) applied in two‘perpendicular direc-
tions. From Fig. 2.2, it is obvious that these coefficients
(\)xy and vyx) cannot be equal. For example, consider the
cellular deck shown in Fig. 2-2c, where a uniform stress
applied along the bottom plate of the deck in the x-direction
will produce a negligibly small strain in the y-direction, in
the hat portion. Whereas a uniform stress applied over the

entire cross-section along the y-direction will produce a
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strain in the bottom plate proportional to the material con-

by Maxwell-

i 's Patio). Thoug
stant v, (Poisson's latio) Though vxy # vyx’

Betti reciprocal theorem the following relationship holds:

Exvxy = vyxEy = B 2-3
As explained by the physical behavior above, vxy is
equal to v and hence,
Ex
\Y = ==V 2-4
E
yXx y
The value of Geff is given by,
G = al 2-5

eff
where o is called the relative shear rigidity factor, the
value of which depends upon a number of factors. A complete
discussion of o, together with a description of the experi-
mental method of determination of a, is given in Section II-3.

The methods for the determination of constants Ex’ E., v

y® Xy
and v__, for both closed and open form decks, are given in

yX
Appendix A.
Since the decks are idealized as uniform orthotropic
plates of constant thickness, it is converient to express the

membrane stiffness constants and the forces in terms of their

thicknesses. [IMultiplying the first row of Eq. 2-2,

Ext Elt
ot = — €, *+ - € 2-6
X vvyx X (1 vvyxi y
Mx = Ext €y * E1t ey 2-7
E t E t
where Ny = 0yt; By ~ 1-vv )7 F1e T TTTUU;;T . 2-8

The other rows can be modified similarly (see Eq. 3-13).

Depending upon the method of connections the elastic
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- constants, calculated above purely on the basis of geometrical
configuration, thickness and material properties, need modifi-
cations.

The elastic constuant Ex for an open deck is given
by, (Appendix A)

I E
E = 2+ 2-9
X Iy'

The value of Iy' depends upon the linc of application of the
load. A substantial reduction in the value of Ex results from
the eccentric connection. The cellular decks (Fig. 2-2c) are
usually connected to the supporting member along the bhottom
plate leaving the hat portions free. As shown in Fipg. 2-3,
the forces applied along the bottom plate will be partly re-
sisted by the vertical sides of the hat. Depending upon the
joint efficiency betwcen the hat and the bottor plate, the
effective area of the hat section in resisting the forces oy
will vary. In the absence of the test data, it will be con-
servative to consider the bottom plate only as being effective
in resisting the in-plane forces oy. In the computer programs,
a provision'is made to include the effective width of the web

plates of the hat.

B. BENDING PROPERTIES

. NP - :
The bending rigidities, Ty Dy, ny and Dl’

geometrically orthotropic plate cannot be ohbtained directly

for a

from the directional elastic constants given in Eq. 2-2. The
relationship between the bending rigidities and the moments,
is given in Eq. 3-16. In thec case of a light-gage orthotropic

deck (corrugated or cellular) Dy >> SO.DX. ‘This property can
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be used to approximate proverties such as Dl and Vyx* Since
the twisting rigidity ny is not eaual to Dyx (see Appendix
A), the average of the directional twisting rigidities is
usedss.

In the case of an onen formed deck there is a
tendency for the warping of the surface. The method of cal-
culating the warping constant T, based on the assumption that

35

an individual unit of a plate twists about its center of

rotation is well known36. However, considering the plate as
a whole unit, the.plane of twisting changes, depending upon
the distance of a point from the support. The extent to which
this warping restraint alters the behavior of the deck is not
very clear.

The moment of inertia used for the computation of
Dy is calculated at tte centroid of the repetitive section.
The effect of eccentric location of the ribs or hats in the
case of decks, on the bending properties is discussed in great

detail by Massonnet and Baré537.

However its use in practical
problems is difficult. Due to the local buckled form for high
width to thickness ratio for a compression flange39 (Fig. 2.4),
the effective moment of inertia for both deflections and stress
analysis is reduced. The reduction in the moment of inertia

is a function of the stress level. This factor may be of im-
portance in the cellular deck. DNepending upon this reduction
of the effective section, a second analysis of the hypar shells

may be necessary thoush in most cases the stresses are small.

The procedure of calculating I.a is discussed in "efs. 38, 39.



-24-

The mechanisr of reduction in bending rigidities due
to the connection between the different panels is not very
clear. Experimental results on the determination of these
rigidities for a continuous single panel have been reported40.

The bending rigidities Dx and D are particularly affected by

Xy
the discontinuities between connections of different panels.
Examination of structural problems solved in this. study shows
that the magnitude of both these constants (Dx and ny) is so
small for an open formed deck that the reduction even of the
order of 1/10, does not affect the results significantly
(<<5% variation).

The properties for two or more decks placed perpen-
dicularly can be calculated by adding the corresponding direc-

tional constants.

C. ELASTIC PPNPERTIES FOR ARBITPRARILY CRIENTED
CO-OPDINATE AXES

“hen the structural axes and the principal axes of
orthotropy coincide, the elastic properties of the deck cal-
culated on the basis of principal axes can be directly used in
the analysis without any modifications. As explained in the
Section I.1, the structural behavior of a hypar can be broken
up into mutually orthogonal arches and cables. When the decks
are placed along the axes of arches and cakles (Fig. 2.5), the
structural axes x and y, do not coincide with the principal
axes of orthotropy x' and y'. The elastic constants in terms
of the structural axes are expressed by the principle of work

equivalence41” . The membrane strain energy in two systems
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of axes can be given by,
V = % o.e_ *+ % o.e. *+ % T_LY 2-10a

t + _]; 1 !

v = %»ox'ex 5 oy‘ey' + T'Tx'y'Yx'{ 2~10b
Expressing strains in terms of stresses in both vhe Systems
of axes and equating,

LAY 2~10c¢
one can obtain the equivalent elastic constants, Tre eaqVl-
valent bending constants can be determined by eq/i Mg the
bending strain energy along both axes (Eq. 3-17)- fhe ¢lastic
properties for an orthotropic material in terms 2% My 2Thj-
trarily oriented co-ordinate axes are given in dﬁ\ail by

Lekhnitskii®!.

IT.3. SHEAR RIGIDITY OF OPTHOTROPIC DECKS

The shear stiffness of an orthotropic P{afe, aSsum-
ing ny = Nyx (Section III.2 B), is given by the \%Pre55ion

Exyt = G' = o G nt 2-11
where n is the numhber of interconnected decks, ¢ P the thick-
ness of each deck and G is the shear modulus of t\¢ Material.
a is the relative shear rigidity coefficient gidi\g the Tratio
of the shear stiffness of the actual orthotropi¢ ﬂgck sysStem
~and the isotropic plates of thickness nt. In 18 (3s¢ of an
isotropic plate, the vertical load on a hypar ¢ b¢rt1y carried
by the membrane action in shear and therefore #% 9hear stiff-

ness of the deck is of utmost importance in itg %t{uctufal be-

havior. Experimental and theoretical determinac\oﬂ of &

was carried out by several workers. The factar \ AQpeﬂdS
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upon a nunter of factors listed below:

(a) The different shapes (corrugated sine form, N-type,
etc.) of diaphragms (Fig. 2.2), show different resistances to
the in-plane shear loads. The shearing lcads produce bending
and twisting of the corrugations and also set up membrane
stresses and shearing strains. On the basis of the assumed
displacement field of the corrugations, energy stored due to
each of these above mentioned actions (bending, twisting, etc.)
is reported in Refs. 43, 44.

(b) The spacing of the connectors, between the deck énd
the edge members, transverse to the corrugations have a pro-
nounced effect on the value of , whereas the spacing along
the directions of the currugations has a very minor effect.
Flat shear tests on a 26-G. standard corrugated deck, 6' xv6'
in plan, were conducted in this investigation (Chapter VII).
Two tests were performed with the connectors between the deck
and the edge members at each valley and one with the connectors
spaced over every third valley. The other factors, in the
above tests, being the same, the value of the shear stiffness
obtained for the former cases was reported nearly three times
as large as that of the latter.

(c) According to Luttrell45

, the shear stiffness of a
panel also depends upon the length along the corrugations.
Accordion-like warping results due to the connection of the

diaphragm to the edge members. It was found45

that the length
of penetration of this warping is independent of the overall

span of the diaphragm and this warping reduces the shear stiff-
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ness, particularly for short spans.

(d) According to Ref. 43, the seam-slip between the ad-
joining deck panels and the connection of the deck to the edge
members contributes substantially to the shear flexibility.

(e) As found in the experiments (Chapter VII), for the
limited range of thickness of panels studied, the shear rigid-
ity increases linearly with the effective thickness as given by
Eq. 2-11. However, consideration should be given to the con-
nections between two or more decks and their connections to
the edge members. The results are reported in Chapter VII.

The two layers of corrugated decks placed perpendicular to each
other were connected to the edge members through the connection
of the lower deck (Fig. 2.6). The additional flexibility
provided by the lower deck corrugations, reduces the effective-
ness of the upper deck. The position of the screws with respect
to the direction of the applied shear also affected the stiffness
of the shear panel. It was found that only 33% increase in Exyt
was noted for two decks connected as shown in Fig. 2.6, whereas
the value of nt doubled.

All the factors mentioned above are important for open
form decks as shown in Fig. 2.2a,b. In the case of cellular
decks or stiffened panels (Figs. 2.2c,d) the flat plate of the
deck is directly connected to the edge members. In view of the
low shear carrying capacity of the out-of-plane hats, a major por-
tion of the shear is carried by the flat plate. Knowing the
seam-élip characteristics between the adjoining panels, the

shear stiffness for the cellular deck can be estimated conser-
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vatively as that of the flat plate.

The dependence of the relative shear rigidity co-
efficient o on some other factor such as connecticn with the
intermediate purlins, etc., 15 discusscd in detail in Ref. 43.

IT.4. DETERMINATION OF THE EFFECTIVE SHEAR
PIGIDITY FOR ORTHOTROPIC HYPARS

The theoretical determination of shear rigidity co-
efficient a, was done by equating the work done by the applied
shearing force with the strain energy stored in the deck panels
due to deformations. In‘Ref. 43, an éxcéllent correlation be-
tween the theoretical and experimental results was reported.
Since a major contribution to the shear flexibility was from

43 and the connections of

the connection between the deck nanels
decks to the edge members, a previous knowledge of the seam-
slip characteristic is required. Based on an experimental in-
vestigation, the method for the determination of the shear
rigidity from flat shear test is given in PRef. 45.

The next question arises as to whether the relative
shear rigidity determined by the flat shear test can be di-
rectly used for hypar structures without any modification. To
correlate the shear rigidity coefficient a determined by the
flat shear tests and that of the warped deck in the actual
nypar surface, twelve saddle-shaped hypars, uniformly loaded,
with tubular edge nembers of 3" diameter and %" thickness
(vertically supported all around) were tested (Chapter VII). The

1n

lower corners were connected by 27” X tie bars, in order to

restrict the horizontal spreading.‘ The tests were conducted
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for both single and double decks with varying rise to span
ratios.

It was found that for the lbwer values of a (<0.12),
the center deflection of all-supported hypars was proportional
to the value of a. Both single and double deck hypars were
tested for three different rise to span ratios (1/8, 1/5, 1/3).
The theory developed in Chapter III correctly predicts the
effect of o and rise independently on the central deflection
60 (Key Sketch, Table II.1l, 1I.2). The value of a in the
actual hypar surface was interpolated from the structures
analyze. with different assumed o values for the constant rise
to span ratio.

The results obtained for the effective value of a

are compared with the results given by Parker19

, who aralyzed
the same shells on the basis of plate on an elastic foundation
(u=v=0) and did not include the effect of the tie bar. For
both single and double deck, a certain amount of increase in
the value of a was noted for the low rise to span ratio (1/8)
but with the increase of the ratio, the value of effective o
reduces. The results obtained by direct interpolation for
single deck hypars appear quite reasonable (Table II.1). The
direct interpolation if applied to the double ddécks, results
in extremely low effective value of o particularly for the
ratio of 1/5 and 1/3 (Table 1II.2). The fallacy in the method
of interpolation can be explained as follows:

All the test results marked with an index (I) (821(I))

were the tests where two transversely placed corrugated decks



-30-

were inter-connected whereas in the rest of the tests, the top
deck was connected only along its periphery to the bottom deck
which in turn was connected to the edge member. The center
deflections obtained for Case (I) is roughly 20-30% less than
that where the decks were not inter-connected. In the mathe-
matical model there is a complete coupling between the in-plane
displacenents of u-v and the normal displacement w (sce Chapter
ITII). Secondly when two decks are placed on top of each other
in the analysis, the in-plane stiffnesses of the fOp deck F

xt’
E and E1t arc assumed to be fully effective in re-

Eyt’ Xyt
sisting the load.

In case of the decks only connected at the edges,
the deviation between the mathematical and physical model is
very drastic, and therefore the deflections given by the anal-
ysis are very low. ™ith these considerations in view, a cer-
tain amount of discretion must be used in estimating the valuecs
of a. The results obtained by the analysis were compared with
the test results . The resultinr reduction in values of o
can be attributed to the warping of the surface and the deck
and the edge member connections. These factors are common to
both single and douhle decks (Figs. 2.7, 2.8).

""hether the increase in the effective relative shear
rigidity for the low rise to span ratio of 1/8, is an inherent
behavior of the hypar or whether it is the shortcoming of the
theory in the region of transition between flat plate and warped
hypar surface 1is not very clear. It will be conservative to
neglect any increase in the value of o obtained from flat shear
test. The importance of the values of o and the recommended

reductions are further discussed in Chapters IV and V.
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FINITE ELE{ENT I'LTHCD FOR STIFFNESS AND STRESS ANALYSIS

ITT.1. INTRODUCTION

As discussed in Chapter I, the solution of the shal-
low shell equation for realistic boundary conditions is an
extremely complicated mathematical pronosition. This necessi-
tates the use of numerical methods. The finite element method
was chosen because of its versatality in handling realistic
boundary conditions, different structural configurations, ortho-
tropic deck materials and any forms of loading, with ease.

The method has also deronstrated good convergence character-
istics.

The finite elerent method based on the stiffness
analysis uses the principle of minimum potential energy. The
total potential energy of an elastic system, for a georetri-
cally admissible state can be represented by,

®=U+V 3-1
where U is the strain energy stored in the system and V is the
potential energy of the applied loads. Both U and V are ex-
pressed in terms of displacements at the joints of an idealized
structure. U is a quadratic function of the nodal displace-
ment. The principle of the minimum potential cnergy states
that, '"The total potential energy is minimum, when an elastic

body is in equilibrium'.

Qr

d 9
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QP



P. = 3-3

For the linear elastic analysis, these expressions
can be put in matrix form,
(P1 = [K] [a] 3-4
The elements of the stiffness matrix can be obtained by the
second differential of_the strain energy,

2.

. 2~

K:: = 550557 3-5
i) BAiaAj

In the case of a framework composed of linear members such as
beams, struts, etc., the individual elements are connected to
each other at their nodal points. ¥Well-defined boundary con-
ditions at these joints enables one to solve the physical
probler without any difficulty. 1In this case, there is one to
one correspondence between the mathematical and the physical
model. However, in the case of a two-dimensional structural
medium such as a plate or a shell surface, the discrete ele-
ment approach does not give a one to one correspondence between
the element used in the matrix analysis and the forces in the
actual surface. Here the entire structure is idealized into
discrete elements, curved or flat, connected to each other at
the nodal points. lie displacements of the nodal points are
interpreted as those occurring at the corresponding points in
the structure. The state of stress and strain inside an ele-
ment is defined completely in terms of its nodal point defor-
mations. The success of determining the elastic properties of
an idealized structural element lies in the equivalence estab-

lished between the actual model and its equivalent discrete
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model.
The linear elastic stiffness énalysis consists of

four important steps:

(1) ‘The formulation of thé element stiffness matrix.

(2) The formulation of the master stiffness matrix for
the entire structure by assembling individual elements.

(3) The solution of Eq. 3-4 for the given boundary con-
ditions and loading.

(4) The interpretation of the deflected shape and the
computation of stresses and forces.

Two alternative stiffness formulation methods are

studied here:

Method 'a': The use of rectangular curved elements, based on

shallow shell theory.

Method 'b': The actual curved shell surface is approximated by

the assemblage of flat rectangular elements.

I11.2. ELEMENT STIFFNESS

The elements rectangular in plan are selected. These
elements are very simple to formulate and for the structure
under consideration, their limitation of application to the
rectilinear rectangular boundaries, is not considered to be of
any serious consequence.

As shown in Eq. 3-1lc, the element stiffness matrix
can be derived from the strain energy U of an element, ex-
pressed in terms of an assumed displacement field.

A. DISPLACEMENT FUNCTIONS

The displacement fields assumed for the analysis are
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as follows:
u = %5 [(X-a)(}’-b)u1 - x(y-b)u2 * Xyu, - (x-a) yu4] 3-6a

v = de [(x-2) (y-h)vy - x(y-b)V, + xyvs - (x-23) yv,] 3-6b

1 3 3 3 2 3
w = [(a“+2x
a3b3

-3ax?) (b3+2y>-3byh)w + (3ax?-2x) (b42y -3by?)w,

2 2

+ (3ax -2x3)(Sayz-ZyS)w3+(a3+2x3-3ax2)(3by -2y3)w4

2 3

- ax(x-a)J(b3+2y -3by2)9y1-a(x3-ax2)(b3+2y -3by2)ey2

3 2 2

) w2 w3 . N2, 0y 3
a(x“-ax”) (3by~ -2y )ey3 a(x-a) "x(3by~-2y )6y4

3

+ b(adraxd-3axP)y (y-b) 2o, +b (3ax?- 2Py (y-m) %6,

2

+ b(3ax -2x3)(ys-byz)9x3+b(33+2X3'3aX2)(Ys'byz)9x4

2 2
. abxy(x-a)z(y-b)zexy1+abxy(x -ax) (y-b) “0,. )

+ abxy(xz-ax)(yz-by)exy3+abxy(x-a)2(y2-by)e 3-6C

xy4]

50

The same functions were used by Gallagher and

51

Yang~~, but in their studies the x,y cartesian co-ordinates

werc replaced by the more general curvilinear co-ordinates oy

and a,- As seen here, the displacement field inside an ele-
ment is directly expressed as the function of its nodal dis-
placements rather than in terms of undetermined parameters.

An element, as shown in Fig. 3.1, has six degrees of freedom
per nodal point and a total of 24 degrees per element. The
displacements u,v,w,ex, and By have a physical meaning at each

Szw

node. The term ex represents the twist curvature %5y Using

y
the right cork-screw notation,
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o, = W . = - 2 _ 9%
X y Ty X = Xy aX3y

3-7
One may also note that the inplane rotation about the z-axis
is being omitted in this formulation.

The function for w, normal bending displacement, is
of the cubic order. The terms corresponding to the degrees of
freedom w, . and ey are obtained by the cross product of the
corresponding terms for the beam function in x and y-directions.
In order to represent the constant strain corresponding to the
twisting term %;%; i.e., the term ’'xy’', the additional decgree
of freedom in the form of exy is added to the displacement.

The displacement functions are geometrically symmetri-
cal and include the constant strain and rigid body modes for
the flat plate. It is obvious that the assured displacement
fields for u, v and w are not of the same order. Whereas those
for u and v are linear, as stated before, w displacement is
cubic. If the displacement fields of u and v were of the same
order as that of w, eacht node would have 12 degrees of freedom
thereby having a total of 48 deprees per element. Besides
this, the linear edge member elements would have to he given
the same order of stiffness matrix. The additional degrees of
freedom would involve more computational work and this effort
could only be justified if good results, without sacrificing
the required degree of accuracy, could be attained with a fewer
number of elements.

Any combination of diSplacements which can be accomp-

lished without straining the structure are called rigid body

displacement modes. These displacement modes can be easily
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recognized in the case of linear members or flat plates whereas
their role is not easily recognized in the displacement field
for the curved shells. The assumed displacerment field does not
include rigid body motion for the curved element. Cantin and
Clough52 used the displacement field for a cylindrical shell
clement and added the appropriate rigid body motion terms in
the form of trignometric functions. It was shown that with the
inclusion of the rigid body motion terms, therc was an improve-

53

ment in the rate of convergence. FHaisler and Stricklin and

Connor and Brebbia17

s have shown that inspite of omitting the
rigid body motion terms with the refinement of the grid size,
the convergence is still insured.

Pecknold and Schnobrich20 proposed the most logical
method for the inclusion of the rigid body motion terms. It
was suggested that these terms should satisfy the horogeneous
part of the strain displacement relationship used for the
curved element (Eq. 3-9,3-10). The inclusion of these terms
involves more computational effort but they seem to have cer-

tain advantages, which are further discussed in Chapter IV.

B. CURVED ELE'ENT

Strain Displacement Relationship

The strain displacerent relationships used in the
curved element formulation are simplified according to the
shallowv shell theory. The following assumptions are made:

(1) For a given surface defined by the equation, z=F(x,y),
the slopes of the surface z X and z y are considered negligible

in comparison with unity. In general, the shallow shell theory
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will be quite accurate as long as Ziygs Ziy S 1/8, and often

y
accurate enough for practical purposes as long as Zyygs Zo

y
< 1/25; though the second limit could be considered as too
liberal.

(2) The sides of a differential shell element, which are
orthogonal in the projected co-ordinate plane, are assumed to
be orthogonal in the plane of the middle surface of the shell.
In other words, the gecometry of the surface is approximated by
that of its projection on the co-ordinate plane.

(3) If the equation of the middle surface is of the
second order as is the case for a hypar, the assumption (1),
leads to the approximation that the curvatures of the surface
are constant.

The errors resulting from these assumptions increase
as the depth of the shell increases. For the shallow hypar

surface defined by the equation,

z = %ﬁ Xy 3-8

the linear strain displacement relationships for the thin
shells assume the following form20’17:

The membrane strain displacement relationships:

ex = u’X 3-9a
ey = V,y 3-9b
Yxy = u’y + Vox %% w 3-9c

The bending strain displacement relationships:

Kx = -w’xX 3-10a

K

y -w,yy 3-10b
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Zny = -ZW’xy | 3-10c

Strain Energy

The strain energy for a typical element consists of
two parts: the membrane and the bending strain energy.

U= Ub + Um 3-11

The membrane strain energy for an element is given by54,

b a
S F (N_oo_ + N o +1

= \f A
v X X Yy XYYX}’

m ) dxdy 3-12

D] b=

oo
The stress-strain relationship for an orthotropic material

(Fig. 3.2) can be represented by

- - - ~ - -

Ty Ext E1t 0 €x

NY = Elt “yt 0 Ey 3-13
ny 0 0 I:xyt Yxy
ren - . el - w—

The method of computation for the above mentioned elastic con-
stants is discussed in Chapter II.

Using the strain displacement (Eq. 3-9, 3-10) and the
stress-strain relationship (Eq. 3-13), the membrane strain
energy (Fic. 3.2) of an element can be expressed as follows:

1 2 3

b a ( 2
J J E u-, + E v
o o Xt X yt

]
ot
]
N

'y + ZEltu’xV?y

4 5 6

2 2
+ Exyt[u iy VT, Zg,

y X yv,x]

7 8
C
T Ay (73R W usy, t v,y

9

+ 4E (9—)2 w?} dxa
xyt ‘AB y 3-14
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The same strain energy expression is also reported in Tef. 19.

The bending strain energy is given by the expression54,
b a
\ 7 -1y ] -1y : -1
s [PX( J,Xx)+hy( L,yy)+2?xy( Yixy

T

U =

b ) 1dxdy 3-15

o o

The moment strain relationships (Fig. 3.3) are:

-

Nx Dx D1 0 Vx|
M = D “W, 3-1
My 1 Dy 0 v vy 6
I Txy- 0 0 DX}" et 2‘\7 ,xy
. . . . 38
The bending strain energy is given by~ ,
1 D@ 2 2 2
hb = 5 J’é‘ [wa,xx+Dyw,yy+2D1w,xxw,yy+4uxy(w,xy) ]dxdy 3-17

L Y

This energy expression assumes that ! = Y . However, as

Xy yX

pointed out in the Chapter II, for an open orthotropic deck,

M " Iy h : i in Eq. 3-16, i
My ¥ Lyx and therefore the value of ny piven in Eq. 3-16, is
to be interpreted as the average value. The energy expression
3-17 neglects any energy stored in the deck due to the re-

35

strained warping. As pointed out by Smith™~, in an open form

deck, the twisting moment Myx consists of two parts:

T?YX = -(ZDYXVJ,XY - Er‘\’,xyy) 3-18
The warping strain energy is given as,
1 b a 2

The omission of this energy term is not considered to be of any
serious consequence. The stiffness matrix for the curved ele-
ment is obtained by using Ea. 3-5. The complete stiffness

matrix is given in Appendix B.
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C. FLAT ELEMENT

The stiffness matrix for the flat elements can be
obtained directly by putting ¢ = 0 in the curved element stiff-
ness matrix. The strain displacement relationships for the
flat elements are the same as those for the curved elements,
except for the shear strain given by the Fq. 3-9c. For the
flat plate, the last term in Eq. 3-9c, due to the twist curva-
ture of the hypar surface disappears. The difference between
the curved and the flat element stiffness matrix can be shown

schematically as follows:

. - -
(K], | Ky, T[o
v
= aeae-a- i O U - - T -
[K]curved [K] 5-20
bbb
[X]. 4
L hm +[K]bbp
o - Tﬁ:
(K, | ©
v
[K]flat ------- 1===-=--"7 - = - 3-21
0 K]bb w '

The membrane stiffness matrix [K]m, is 5Et5i;ed from terms

1 - 6 of the membrane energy expression Eq. 3-14. This
stiffness matrix is common to both curved and flat elements.
The coupling matrix terms [K]bm and [K]bbm are obtained f}om
terms 7 , 8 and 9 respectively, of Eq. 3-14. These terms
are zero in the case of the flat elements. The stiffness
matrix [K]bb, common to both types of elements, is obtained
from the bending strain energy given by Eq. 3-17.

The stiffness matrix derived for the orthotropic flat

plate was checked term by term, with the stiffness matrix for
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an isotropic plate reported in Ref. 51. To establish the
validity of the stiffness matrix further, the results for the
plates shown in Fig. 3.4a,b,c were checked with available class-
ical solutions. For the isotropic plates shown in Fig. 3.4a
and b, the comparison between the classical solution and the
stiffness analysis for the center deflection GB was excellent.
The error was less than 1% in botl: cases and the geometrical
symmetry in the nodal displacements was satisfied.

The third example (Fig. 3.4c) is of particular in-
terest. The 28-C standard corrugated deck can be considered
as an extreme case of orthotrépy, Here the bending rigidity
Dy is 1678 times on The bending rigidity constants were used
as given in Ref. 54. It is reported in Ref. 19, that the rec-
tangular'elements proportioned in the ratio of their bending
ricidities, in two directions, would give better results than
the square elements. A quadrant of the plate was analyzed by
using square (6x6) elements and elongated rectangular (2 x 12)
elements. The results for (1x30) size elements were also com-
puted but are not reported since there is practically no dif-
ference bétween these results and those with a 2x12 elewent
grid. The deflection profile across the corrugation is plotted
in Fig. 3.5. There is practically no difference (see Table
I11-1) between the rectangular and the square element solutions,
a dip in the deflection profile near the support is seen in
both the solutions. Similar deflection profiles are also re-
ported in Ref. 19. The solutions obtained by the stiffness

analysis are compared with the classical solutions given by
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Timoshenkos4 in the form of a double sine series, for the uni-

formly loaded, simply supported orthotropic plate.

W = )) )) amnsin E%l sin E%X 3-22
m=1,3,5,... n=1,3,5,...
where,
. = 2% 1 3-23
mn 70 (mﬁD . 2m2n2H . Eny)
a4 X a2b2 4
where,
H = 2Dxy + Dl 3-24

The first few significant terms in the sine series
were computed. The comparison of the results is shown in Table
III-1. Both the classical and the stiffness analysis solutions
are well within the limits of practical accuracy.

A strongly orthotropic plate such as the one under
consideration, primarily bechaves as a plate on an elastic
foundation. The stiffer beam strip near the support attracts
more load because of the presence of the plate action. In
other words, the deflected profile of the plate is the func-
tion of the assumed bending rigidities and does not appear to
be dependent upon the shape of the element (rectangular or
square) .

The non-monotonic convergence characteristic of this
problem, observed in the Ref. 19, is probably the function of
the deck properties. This analysis indicates that elements
which are square in plan can be used for the single deck hypar

structure.
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n,  EDGE I'EI'BEP

The conventional beam stiffness matrixSS is primarily
based on two assumptions:

(1) The shear center and the centroid coincide, {{i¢. 3.62).
(2) The bending of the section takes place ahout the axix
of symmetry (Fig. 3.6a).

In the case of a‘symmetrical channel (Fig. 3.6b), the
shear center (S.C.) and the centroid (C.G.) of the section do
not coincide. 'Yhen the section is subjected to a vertical 1load
P (Fig. 3.6c), acting at a distance e from the shear center, it
not only deflects in the plane y-z but also twists through an
angle 6 about the x-axis, passing through the shear center. In
other words, the bending displacements v and w need to be ex-
pressed at the shear center of the section. This observed fact

56

was elegantly expressed by Bleich and Hoff57, in the strain

¢
energy of a beam of arbitrary cross-section. The total strain

energy of a beam (Fig. 3.7) is given as,

2 2

a ”
2 2 2
) T E + -
;’ [EIyL,xx+EIZv, +GJ(13,X+“I‘be",XX EAbu,x]dx 3-25

1} =

“bb

N =

XX

where, w and v are the displacements of the shear center (S.C.)
measured along the axes y and z parallel to the principal
centroidal axes of the section and u is the average longitudinal
displacement of the section along the axis x measured at the
centroid (C.G.) of the section. 6 is the angular rotation of
the section about the x-axis.

Neglecting the warping of the section, the conven-

tional beam stiffness matrix can be obtained by assuming the
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following displacement fields:

u=32u, + (1-5y 3-26a
v = i? [(a3+2x3-3ax2)v1+(3ax2-2x3)v2+ax(x-a)26Zl
+ a(x>-ax?)e_,] 3-26b
W= ig [(a3+2x‘7’-3axz)wl+(I’;axz-Zx?’)‘.»'z-a)c(x-a)zey1
- a (x3-ax2)ey2] 3-26¢C
6 = [0, + (1-20,] 3-26d

Using Eqs. 3-25 and 3-5, one can obtain the conventional beam
stiffness matrix.

However, the warping restraint is of practical im-
portance, particularly for thin-walled open sections. To in-
clude the warping effect, the displacerent field for o is

assumed to be of the same form as that of v and w58.

_ 1 3 3 2 2 ,.3 20
6 = ;3 [(a”+2x"-3ax )61+(3ax 2x )62+ax(x a) ex]
3 , .
+ a(x -axz)ele 3-27a
. 20

The stiffness matrix (14x14) for this member can be
directly obtained from Table III-3 by substituting YC = ZC =
Y = 2_ = 0. The additional degrce of freedom (exy) intro-

S s
duced, does not present any problem. If the beam shown in Fig.
3.8 is attached to a shell surface or a plate along the line
passing through the shear center, one can easily find the cor-

relation between the degree of freedom for the plate and the
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beanm.

T I 3-28
T Yx 3y X Xy  0x0y

Mmitting the rotation about the z-axis (ez), the
plate and the beam element can be connected to each other with
a one to one correspondence in the nodal degree of freedom.

E. ECCENTRICALLY CONNECTED NON-COMPATIBLE
SUPPORTING EDCE 7'EMBER

The above méntioned matrices can be used only in the
case of non-eccentric loads or concentric connections of the
edge members to a shell or a plate surface. In practice, con-
centric connections between the supporting edge members and a
shell or a plate are seldom possible (Fig. 3.9). The eccen-
tric connections modify the effective stiffness of the support-
ing members. Thke modified stiffness for the non-compatible
edge member can be obtained by the use of simple linear con-
gruent transfofmations similar to the one suggested in Ref. 59.
The difference between the compatible and the non-compatible
eccentric members is discussed in Appendix E and the relevant
stiffness and incremental matrices for the compatible element
are given in Table E-I and E-II. The linear transformation

assumes that the beam bends about its own neutral axis (Fig.

3.10).

1 0 0 o0 ez -v_ 0][u

1o zo 0 o0 oflfv

1 ¢Y, 0 0 0w

[Ag = 1 0o o olle 3-29

' X

1 0 olle

y

0 1 o]]e,
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], 0

[T]. = 3-30
s 0 [A]

-

The effective stiffness of the edge member can be given as,
(., = (MY K [T 33
~“leb s S

Similar stiffness matrices were independently de-
rived in Pef. 21. The stiffness matrices, with the linear
variation and the non-linear variation of the twist angle are
- given in Table III-2 and III-3} respectively. The convergence
 characteristics and the accuracy of the stiffness matrices, was
checked by solving three cantilever beams (Fig. 3.11). Only
"~ axial (Fig. 3.1la) and bending (Fig. 3.11b) loads were applied
eccentrically to the beam. All displacerents were computed
along the line PQ (Fig. 3.11). Ttre deflections and the twist
angle at the free end Q, were compared with classical solutions.
As it can be seen, the convergence in all cases is insured and
the results for the case of six elements are within 0.2% of the
classical solutions. he loading 11 was‘apblied to two cases:
IIa) Free torsion with a linear variation of twist. 1IIb) In-
cluding the warping restraints at the fixed end. The classical
solutions for the case IIh, were obtained from the Nef. 60.

The convergence in case of the restrainecd varping is slightly
slower than in the case of free torsion. The influence of in-
cluding the warping degree of restraint can be seen from Fig.
3.13a. The free end deflection 60 in the case IIb, is about

63.5% of the deflection obtained in the case Ila.
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F. ELASTIC SPRINGS

In order to simplify the mathematical solution without
undue loss of generality, certain structural elerments are ideal-
ized in the form of concentrated spring stiffnesses. For ex-
ample, the central column in the case of an umbrella shell, if
idealized as a physical member with its end noints, will not
only create an additional node point for the master stiffness
matrix but will also disrupt the regularly arranged grid pattern
and will warrant a modification in the entire assembly routine.
In order to avoid this, the stiffness of the column can be
idealized into six discrete springs accounting for its axial,
shear, bending and twisting stiffnesses (Fig. 3.14). These

stiffnesses are given as,

} 4ET 4E1
S = .A_I_'_ ] S = ___X : S = z
A a BY a BZ a
3-32
12ET 12ET
S = _._-_X , S = z . S = g_‘l
SY a SZ a sy T a

hese spring constants are added along the main dia-
gonal elements of the master stiffness matrix. This idealiza-
tion is not alway- satisfactory. In Fig. 4.1, a tension bhar
connecting the lower corners of the saddle shaned hypars are
replaced by four springs in the u and v directions, two at each
corners f and b. This idealization eliminates the interaction
between the nodes f and b. The validity of this approximation

can only be assessed by engineering judgement.

I1I.3 I'ASTER STIFFNESS MNATRIX

The stiffness formulation presented so far is for an

individual element. The total stiffness of the structure is
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developed by the assemblage of these individual elements. The
two different methods ('a' and 'b'), mentioned in Section III.1,
differ in the formulation of the stiffness matrices.

a) Curved Element

The element stiffness is formulated by using an ele-
ment of the same shape as the shell middle surface (Refs. 17,
19,20). However, the fact that the shallow shell assumptions
~are made in this formulation, should not be overlooked (a point
which is discussed at length in Chapter IV). The assumed
shallowness of the shell does not warrant any form of co-ordin-
ate transformation. The strain displacement relationships
given in Eqs. 3-9 and 3-10 are based upon the displacements u,
v, and w wvhich are measured along the tangent and normal to
the surface.

b) Flat Element

The middle surface of the shell is approximated by a
series of flat platcs. The geometrical approximation of the
actual surface needs three important steps:

(1) Definition of Surface -

As pointed out in Chapter I, different hypar struc-
tures can be built with various combinations of the basic units
(Fir. 1.2). It is necessary to express the equation of the
generated surface with reference to the chosen global axis.
The general equation of a structure using the hypar units can
be expressed as, | |

i

7 AiBi (x'xi) (Y°Yi) 3-33

Figs. 3.15a and 3.15b show two structures and also give the
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values of the consfant, defining the surface equation for each
quadrant. In Fig. 3.15b, points P,Q,R,S are the local origins
of the quadrant surface. x' and y', are the local co-ordinate
axes passing through the local origins.

(2) Element Size -

For shallow shells, the size of the element can be
approximated with the size of a rectangle projected on the co-
ordinate plane xy (Fig. 3.16). For example, the size of the
curved element PQRS is approximated by the projected element
PHQURS".

A better approximation for the size of the element
PQRS can be made by calculating the actual lengths PO, QR, ctc.,
and ﬁsing a rectangle P'Q'R'S', of an equal area. For the low
rise to span ratio (<1/5). the error introduced by using the
projected element is very small (2-3%). To take advantage of
- this fact, a provision is made in the computer program to
choose between the above mentioned approaches. The difference
in results‘when using these two methods was about 10% for the
structure shown in Fig. 4.3. The computation of the exact
lengths gives different stiffness matrices for each element.

(3) Co-ordinate Transformation -

It is not possible to generate a smooth curved sur-
face by using flat elements with rectilinear boundaries. This
results in.gaps and non-comnatibilities between the adjacent
elements forming an idealized uneven surface (the picture of
the idealized surface is left to the imagination of the readers).

Such gaps and discontinuities occurring at the boundaries of
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adjacent elements, have been known to produce undesirable and
61

non-existing nodal forces, for shells of revolution ~, which

had significant effccts on the solutions. However, no such
noticeable difficulty was encountered in the solution of shallcw
hypar shells. The solutions obtained for these shallow shells
did not show any necessity of placing local tangential ortho-
gonal axes at each nodal point.

In writing the master stiffness matrix and the overall
equilibrium equations, local nodal axes can be chosen. Instead
of these, a simple and approximate approach is used. A plane
tangent to the surface is drawn at a point 0 (Fig. 3.17). The
most logical point for the tangential plane is the center of
the element. 1In the case of umbrella shells, the flat portion
near the free corner shows a pronounced hending action. To
estimate this bending action conservatifely, the tangent planes
were drawn along the horizontal lines PQ and PS instead of at
the center point 0 (Fig. 3.17a). Wihen usihg the corner point
transformation, one has to exercise proper care t6 retain the
symmetry of the solution. For a large number of elements, both
methods should give about the same results but the corner point
transformation is more cumbersome and therefore it is not used
in the analysis.

In Fig. 3.17a, the line 0Z' is normal to the surface
whereas OX' and NY' are generators of the surface. The direc-

tion cosines for the lines OX', OY' and CZ' are given as,
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As discussed in connection with the shallow shell
assumptions, the angle between the penerators OX' and OY' is
not equal to 90°. Hence a new set of mutually orthogonal axes
0Z, 0X, and OY are obtained, vwhere OZ coincides with 0Z'. The
procedure for obtaining the direction cosines of 0X, OY and 0Z
is a simple application of the three dimensional solid geometry
(Fig. 3.17b).

The transformation matrix for each node can be repre-

sented as
EA]I 0
(Tl = 3-35
-0 [A]%-6x6
b %y 2] by Ay 0]
[A]1 = | my my m, [A]2 =™ My 0 3-36
n, ny n, .0 0 nz‘

The in-plane rotation ez is omitted. From the matrix [A]2 it
can be seen that exy the additional degree of freedom, is trans-

formed from the local to the global axis in the same way as w
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except for the assumption that there is no coupling betwe-n the

rotation ex and the rotation Bx, ey. This transformation can

y
be viewed as an approximation.

The master stiffness matrix for the shell surface,
using method 'b' (see Section III.1) is completed by transform-
ing each and every element stiffness from its local axes (0X,
0Y,0Z) to the respective global axes (0X,0Y,07). Depending
upon the direction cosines of the local axes of the individual
elements, every coefficient of the transformed element stiff-
ness matrix can have a non-zero value, i.e., there is a coupl-
ing between u, v, and w displacements, expressed in terms of

the global co-ordinate.

Becam Element

The co-ordinate transformation given by Weaverss, to

transform the stiffness of the beam element from the local to
the global axis is used. The transformation matrix with a minor
modification to suit the problem at hand is given in Table III-4.
After orienting the axis x of the member, it is also necessary
to define the orientation of the principal axes y and z, since
the stiffness of the beam element is expressed in reference to
its principal axes. The angle B defines the orientation of the
principal axes. The definition of the angle B8 is given in Ref.
63. (Fig. 3.18).

For the method 'a', using the curved element, the
stiffness of the edge members is added without any co-ordinate
transformation. For method 'b', using the flat elements, the

edge member stiffness is added with a proper co-ordinate trans-
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formation as given in the Table III-4.

I11.4 LOADING

A uniformly distributed load acting on a rectangular
element can be replaced by statically equivalent loads of
equal intensity acting at each nodal point. This procedure is
acceptable if the size of the element is small.

The alternative approach known as the work equivalent
load is based on the equivalence of energy. The nodal forces
are so assigned that during any virtual displacement the work
done by thesc forces is equal to the corresponding work done
by the actual distributed 1load.

The work equivalent nodal loads for the rectangular

element, with unit normal load, are given helow:

up ] [ab/a ] [0 7 [ eb?/24

W, ab/4 0, an’?/24

Wy ab/4 6X3 —a1)2/24

Wy | = | ak/4 0xq | = -ab2/24 3.2
01 a’b/24 Oyl a’v?/144

87 a’b/24 O xy2 a’b%/144

0,3 a’b/24 0 y3 a’b?/144

6] :a2b/24~ Lexy4 | -a?p2/144]

The nodal loads associated with exy depgree of freedom
do not have any physical significance. The moment Mx is
associated with ey degree of freedom whereas the moment MY is
associated with ex. For an interior point, the work equivalent
load reduces the static load for uniformly sized elements. The

effects of the nodal moments cancel out along the boundaries
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whereas they add up in the direction normal to the boundaries.
A1l throughout this work, work equivalent lodds are used for
uniformly distributed loading.

In the case of a uniform load acting normal to the
surface, statically equivalent projected uniform load is cal-
culated. The work equivalent nodal loads then calculated for
the mrodified load intensity are directly applied to the struc-
ture, in terms of the global co-ordinate axis without any
transformation. This is again an approximation. A more
accurate method of determining the nodal load would involve a
co-ordinate transformation from the local to the global axis.

Besides the uniformly distributed load, a concen-
trated force or moment can be applied to the structure by
specifying the magnitude of the load at the corresponding de-

gcree of freedom in the load vector.

ITI.5 BOUNDARY CONDITIONS

The boundary conditions for a structure can be
broadly classified into two categofies:
(1) Force boundary conditions.
(2) Displacerent houndary conditions.
In the conventional stiffness analysis, thke latter can te
easily satisfied whereas the former can be satisfied only in
the variational sense. A detailed discussion of this point is
reported in Ref. 21.
The typical boundary conditions for the edge where

X is constant, are:
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Boundary
Conditions u v w X y Xy

Finge
Knife-edge
Fixed

Free - - - - - -

o o O
'

e e B e
o> O O
1
'

Symmetric 0 - - - 0 0

For the free edge, no displacement toundary con-
ditions are specified. All the boundary conditions are applied
with respect to the global axes. The boundary conditions for
the member PQ (Fig. 3.19), which was supported vertically but
allowed to slide along its length, should be specified in terms
of the local axes x, y and z but instead they | are specified
in terms of the axes x, y and z. This is an approximation and
the error due to this will increase with the increase in depth
of the shell. The procedure to express the boundary conditions
in the local axes X, y, z is given in Ref. 62.

The connections of the edge members to the deck
present a problem in expressing the correct boundary conditions.
Two non-compatible boundary conditions are shown in Fig. 3.20.
In Fig. 3.20a, the deck bends freely without twisting the edge
member. This moment-free deck to edge member connection is
quite common in practice. The open-form decks are discretely
connected to the edge members whereas the close form decks are
connected only along their bottom plates (Fig. 2.2). 1In both
cases there is no transfer of moments between the edge member
and deck.

The other type of discontinuity can result in the rela-
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tive displacement between the deck and the edge member, normal
to the boundary (Fig. 3.20b). This type of a connection can
result because of an oversized hole, loosely connected screws,
or due to tearing of the deck. TLepending upon the continuity
achieved between tlie deck and the edge members, different
values of fixity coefficients are used. TF and TH represent
the torsional and the horizontal fixity coefficients, respect-
ively.

In the case of the moment-free deck to edge member
connection, Tp = 0. The edge merber stiffness matrix is modi-
fied by multiplying the columns and rows corresponding to the
twisting degree of freedoms (ex and exy) by TF’

The problem is further complicated by the eccentric
connections. As showvn in Fig. 3.21a, even with a discontinuity
of the rotational degree of freedom, twisting can still be
introduced in the edge memher because of eccentrically trans-
ferred vertical or horizontal load. This problem is not solved
satisfactorily. By the method of fixity coefficients, the
twisting action introduced by these eccentric forces is elimin-
ated. There is no moment transfer when two elements are intér-
connected by means of hinges and this results in the local re-
lease of the member forces. This formulation does not include
the effects of these relecases. The details for the incorpor-
ation of these local member releases are given in Pefs. 62 and

63.

ITII.6 SOLUTIONS OF EQUATIONS

The equation 3-4, relating the aprlied nodal loads and
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the generalized nodal displacement can be solved. To obtain
the displacement vector,
[a] = [¥]°

The inversion of the large matrix [k] not only re-

1 1p) 3-39

quires a very long time but also needs a large storagc space
in the computer. The structural matrices are usually well
banded about their main diagonals and are also symmetrical.
Banavalkar wrote a subroutine which stores only the half band
of the matrix in a vertical fashion (Fig. 3.22). The equations
are solved by the Gauss-elimination scheme64. With the limi-
tation of the available core size and the computational cost,
a total of 486 equations with a maximum half band width of 66,
were solved for a normal problem (64 square elements). The
rectangular matrix of 486x66 was formed and stored in the
computer.

However, there are probtlems where the structural con-
figuration destroys the close-bandedness of the matrix. For
example, the tension-tie connecting the lower corners b and f
of the hypar (Fig. 4.1), creates sparse entries in the stiff-
ness matrix (Fig. 3.22c). In <uch cases, instead of revising

the entire solution procedure, the structural element is ideal-

ized in the form of discrete springs (see Section III.2F).

ITI.7 STRESS ANALYSIS

Since the main aim of the project is to establish the
behavior of the hypar shells, the physical interpretation of
the computer results is very important. The deflections, as

well as the stresses in the different structural components
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such as deck, edge members, etc., represent the physical be-
havior.

In the finite element analysis, the generalized nodal
forces are related to the stresses. But because of an error of
diséretization and applied joint loads, the resulting nodal
forceé for the adjoining elements show deviations. In order to
obtain some form of average stresses, the element forces are
~calculated at the mid-point of an individual element.

A. TDECK STRESSES

The deck stresses are calculated at the center point
of an individual element. Depending upon the choice of méthod
of analysis, method 'a' (curved elements) and method 'b' (flat
elements), corresponding strain displacement‘relationsﬁips are
used at the center point (see Eqs. 3-9, 3-1n). The forces Nx,
N, and N and the moments Mx and M

y Xy y
length. For the complete derivation of these forces, see

are calculated per unit

Appendix C. The major difference between the computation of
stresses for a curved and a flat element is that in the case of
the former, consistent with the shallow shell assumption (see
Section III.2B) displacements tangential and normal to the sur-
face can be used directly. But in the case of flat elements,
the displacements obtained in the global co-ordinates are trans-
formed into the local co-ordinate axes (See'Section IIT.3) and
the relevant displacements in the local co-ordinate axes are
used. The difference between the strain-displacement relation-
ships for the curved and the flat elements was already shown

in Section III.2B.

It must be realized that the forces are calculated on
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the basis of orthotropic plate theory which can be considered
as an approximate mathematical idealization. The forces cal-
culated per unit length are multiplied by the lengths of the
basic units (Fig. 2.2). In the case of a uniformly loaded
structure, this method can be considered to be fairly accurate.
For the light gage sections with high width to thickness ratio
of the individual components, the effective Ied of the section
and the location of the neutral axis need modification in
accordance with the level of the load (Ref. 38).

The stresses calculated do not include the 1local
bending behavior. For example, the bottom deck plate AB bends
locally between the vertical web plates of the hat (Fig. (2 of
Appendix C). The problem of deviation between the mathematical
and the physical behavior of the orthotropic deck is dis-
cussed in detail in Refs. 46,47.

B. BEAM STRESSES

The nodal forces calculated in the local axis of the
beam can be directly used to calculate the beam stresses. The
method of calculation of stresses for the concentrically con-
nected beam member is well known.

The imaginary forces calculated along the line PO
(Fig. 3.11), are to be transferred to the shear center and
centroid to calculate the relevant stresses. The tear forces
[P]b can be calculated by,

[(P1y, = [Tl (K] [T], (4] 3-40

The pre-multiplication of the global displacement
[A}, by [T]F (Table I11I-4), transforms the global nodal dis-

placements to the local axes whereas the pre-multiplication of
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[K] [T]R [A] by [T]E.transforms the forces to the shear center
or the céntrdid'of the beam.
| Because of the mathematical idealization, certain

diffiéuities'are encountered. A beam with an eccentriqity in
the z-direction is shown in Fig. 3.23. The variation of the
axiél forces is shown in Fig. 3.23b and 3.23c. Since the forces
are‘balancea at point O, the axial force also contributes to
the equilibrium of the moments at point O. This results in the
inequality of the moments along the axis of the beam PQ. The
problem beﬁomesvparticularly critical in the case of rapidly
changing axial force and a deck with strong bending rigidity
(e.g., cdncrete hypars). No suitable solution is found for
this protlem as of this moment. 1In the abscnce of definite
guidelines, the deflected shape of the structure should be used
to decide the sign of the moment.

Experience shows that the bigger of the two moments
(MGP or N%Q) is always in conformity with the correct deflected
shape of the beam. The difficulty experienced in computing the
stresses of an eccentric edge member is one of the shortcomings
of using the nodal points only along the shell surface.

The results obtained by this stiffness analysis are
compared with experimcntal and the available solutions in the

literature in Chapter IV.



CHAPTY'P 1V

A GENEPAL COI'PARATIVE STUDY

Iv.l1 TINTRODUCTICON

As discussed in Chapter III, two methocds vere used

to analyze hypar shells: method 'a', uses rectanpgular curved
elements based on the shallow shell theory; whereas method 'b'
approximates the actual shell surface by using a series of
flat rectangular elements. The solutions of selected pnroblems
are prescented here with three purposes:

(1) To substantiate the use of the finite element method,
by method 'a' only, by comparing the solutions for problems
for which analytical or other numerical solutions are available
in the literature. The comparison for flat plates and linear
beams are already presented in Chapter III.

(2) To compare the solutions obtained by rethods 'a' and
'b', for typical hypar structures. The comparison is done pri-
marily with a view of assessing their suitability in applica-
tion to the practical problers and also to find out their
shortcomings and limitations.

(3) To compare the analytical solutions with the experi-
mental results chbtained by earlier workers. Thke details of
the structures analyzed are given in Table IV-1.

A1l the analytical results are further used to study.

to a limited degree, the effects of different structural para-

meters on the behavior of hypar shells, such as relative shear

-61_
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rigidity factor o, rise to span ratio, etc. The effects of
these parameters are further discussed in length in Chapter V.

IvV.2 COI'PARTISON OF METHOD 'a' WITH OTHEP NUMEPTCAL SOLUTIONS

Connor and Brebbia17 presented the centerline deflec-
tion profile for a saddle shaped hypar structure (Struc. '1l’',
Table IV-1), with clarped boundaries all around. Théir results
‘were based on exactly the same procedure as used in this study.
The only difference is that they used a 12-term polynomial for
‘the normal displacement w, whereas this approach used the 16-term
displacement function as given in Eq. 3-6c¢c. Fig. 4.6 shows
the results obtained by the author. For the grid size of 8x8,
the deflection profile along the line oa is similar with the

17 The deflection profile

one reported by Connor and Brebbia
along the diagonal ob is also plotted to check the symmetry of
the solution.

The convergence characteristics of the solutions are
checked by refining the grid size for the above mentioned
structure. As seen in Fi~. 4.7, the convergence for the center
- deflection at point o (Fig. 4.1) is monotonic and rapid. Dy
refining the grid size from 6x6 to 8x8, an improvement of only
2.3% is obtaincd in the result.

Pecknold and Schnobrich20 presented the centerline de-
flection profile for the same type of a structure, with the
perimeter knife-edge supported (Struc. '2'). As pointed out
earlier, they used the Birkhoff and Garabedian interpolation

formula for w displacements. Besides that, the complete rigid

body modes of displacements were included by solving the homo-
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geneous part of the strain displacerent relationships given in
La. 3-¢. The inclusion of the rigia body motion terms des-
troyed the interelement compatibility and put additional re-

straints on the in-plane displacement fields of u and v.

u F(ui) + Fl(w) 4-1a

v F(vi) + Fz(w) 4-1b

The displacement functions Fl(w) and Fz(w) are the
results of the solution of the homogeneous part of the Fq.
3-9¢c. Pecknold and Schnobrich compared their solution with a
Navier-type (double sine series) solution, for which 50 terms
in each direction were includedzo. he deflection profiles
along the center line oa and the diagonal ob, obtained in this
study (grid size 8x8), arc shown in Fig. 4.8. The central
deflection obtained in this manner differs by +0.2% from that

obtained by the series solution (9.18x10"3

inch.); wkereas it
differs by approximately -1% from the finite element solution
of Pecknold and Schnobrich.

The solutions obtained by method 'a' for both Struc.

'1' and '2' mentioned above, are considered to be quite good.

Iv.3 CONPARISON OF METHOD 'a' AND !I'ETHOD 'b’

Both structures solved hy method 'a', were solved
again by using method 'b'. The deflections obtained by the two
methods using the grid size of 8x8, are shown in Tabhle IV-3.
Methods 'a' and 'b' show similar deflection profiles along both
the center and the diagonal lines oa and ob respectively. The
central deflection obtained by method 'b' for both structures

is on the higher side, as compared with the one obtained by
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method 'a'. For Struc. 'l', the difference in the central de-
fléction i$ abouf 0.8% whereas for Stru;. '2', the difference

is about 1.30%. The central deflection for Struc. '2' is only
0.5%;on the’higher side of the deflectiﬁh obtained by Pecknold
and.Schnobfich. |

The correlation obtained Ly methods 'a' and 'b' is
excellent for these two structures. However, it must be
pointed'out that both of these structures, taken from Pefs. 17
and 20, are supported all-around. From the practical point of
view, these structures are only of academic interest. The
boﬁndary conditions such as free edges, encountered in an um-
brella shell (Fig. 4.2), provides a more critical test for the
'éomparison of the different methods.

It was not practical to compare methods 'a' and 'b'
for all the examples, therefore only a selected number of struc-
tures were chosen for comparison (Struc. '€' and '9' were
used). CStruc. '6' is a small scale concrete model. In this
structure, the stiffening cdge members are located eccentri-
cally, on top of the shell. The idealized edge members are
considered eccentric only in the z-direction (see Figs. 4.2
and 4.5).

Struc. '9' is also an umbrella shell hypar with 28-G
double layered standard corrugated decks placed perpendicular
to each other. Here the edge member is cocnnected eccentri-
cally to the deck with the deck on top. In the case of Struc.
'6' there is full fixity between the edge member and the shell,

whereas in the case of Struc. '9', the connection between the
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deck and the edge member is moment-free.

The comparison of the deflected profile obtained hy
methods 'a' and 'b' und the corresponding deflected shapes are
presented in Fies. 4.13 and 4.23. Comparing the solutions ob-
tained by methods 'a' and 'b' for Struc. '9', it is obvious
that the method 'a' underestimates the free corner deflection
ab. Method 'a' gives a good correlation between the theory and
experiment for the deflection §,.

The deflection profile obtained by method 'b' for
the edge member ab, where a major portion of the load is car-
ried by the bending action, is very good when compared with the
.experimental results. The relative deflection between the
poiﬂts a and b according to experiments is 1.2 inches, method
'b' piving a relative deflection of 1.0 inches; whereas that
predicted by tke method ‘a' is 0.73 inches.

A distortion in the deflected profile for the member
ab and the underestimation of the relative deflection between
the points a and b, results in the underestimation of the bend-
ing and the total stresses at the point a. The bending stress
at point a by method 'a' is 8.44 ksi, whereas that by method
'b' is 17.14 ksi. The total stress at the point a by method 'a'
is 12.5C ksi, wherecas by method 'b' it is 19.90 ksi. The cor-
ner deflection Sb andnthe stresses at a (Fig. 4.2) are of a
great practical significance for a designer, from both the choice
of edge memher sizes and the overall bebavior of the hypar
structure.

Another important shortcoming noted of the method 'a‘

is that the statical check for the total vertical load is not
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satisfied at the column. Because a very flexible deck was used
for the shell surfacé, thé.deck'éould not transfer a substantial
amount of load near the column éﬁd the resultant axial component
and thé vertical shear in the edge member oa should sum up to the
totalsapplied vertical load;‘Oﬂly 73% of the total vertical load
is accounted for by méthodh'a' whereas 98% of the applied load
is accounted for by method 'b'. This discrepancy of the statical
check was also noted when working”With;fhe computer program formu-
lated by Parker!?. |

" In the case of Struc. '6', the deflection profiles obtained
'by methods 'a' and 'b' along the compression member are reason-
ably.c16$e. However, thésé'tﬁo methods give entirely different
defiected'shaﬁes élong the fension member ab. According to
method ‘'a', the pdint b (free torner) instead of deflecting
downwards relative to point’a; iﬁ deflects upwards. The same
difficulty“was aléo éncountefed regarding the corner deflec-
tion when uSing the computer program of Ref. 19. Because a
part of the load near the column is also carried by the con-
crete shell, the thickneés'of which is quite comparable to the
depth of the edge members oa and oc, it is difficult to figure
out the statical check for the total vertical load.

' The corner deflection of Struc. '8', which is identical

to Struc. '6’ excepf*for the fact that the edge members are
dowﬁturned, was found to be quite low when analyzed by the
method of Ref. 19, as compared with the experimental results.

Briefly, the shortcomings of method 'a' can be summarized as:
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(1) The method underestimates the deflection of the free
corner of an umbrella shell where the shell surface degenerates
almost to a flat platec.

(2) The prediction of the deflection profile along the
eccentrically connected tension members ab and bc is not con-
sistent and leads to the underestimation of the bending and
total stresses in:the edge members, which are of practical
importance.

(3) A discrepéncy for the statical check of total verti-
cal load is noted (Struc. '9').

Because of these shortcomings, it was decided to use
method 'b' in the analysis of all structures. It must he
emphasized that method 'b' does have certain shortcomings,
though none as serious as the ones associated with method 'a'.

"'ethod 'b' is discussed later in Chapter V.

Iv.4 DISCUSSION OF METHIOD 'a'

The umbrella shells with flexible edge members show
a pronounced bending action near the free corner b (Fig. 4.2).
This bending action was observed in tests conducted on con-
crete shells (Refs. 31,65) and Struc. '9' (using hyvar with a
corrugated deck) tested at Cornell, The shell in this region
acts almost like a flat plate. 1In Ref. 1, this observed bend-
ing behavior of the shell was termed as secondary'bending and,
based on the non-dimensionalized parameter of %%, the bending

moment coefficiemts for this region were given. !ethod 'a'

based on the use of the shallow shell theory fails to predict
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this localized bending behavior at the free corner.
| Before discussing this shortcoming of method 'a', it
is hecessary to point out that in the formulation of the curved
element, the nodal displacements (u,v,w) are measured aloné the
tangents ancd normal to the.surface, rather than along the car-
tesian axes. In other words, fhe strain disp1acement relation-
ehips giVen in Eq. 3-9 are all cexpressed along the lines of
generators of the surfaée. The eleﬁent stiffness matrix based
on these displacements e11m1natcs the co- ordlnate transforma-
tion. In the solution of the master stlffness matrix, method
'a' gives the displacements along the generators and normal to
the surface whereas the method ‘b’ u51ng flat clements gives
these dlsplacements along the global cartesian co-ordinates.
However, because of the shallowness of the shells,
(see Section III.2B) the surface co-ordinates along the gener-
ators afe approximated by the Cartesian co-ordinates defining
the surface. Because ol this approximation, a constant shear-

. . -2WC . . . .
ing strain term sAgC is added to the shearing strain of a flat

plate (Egq. 3-9c). This term does not reduce to zero near the
flat corner b (Fig. 4.2). It is believed that this term: adds
extra stiffness to the free corner where the structure behaves
almost like a flat plate. This addition is probably the cause
of the underestimation of the corner deflection. The deficiency
of method 'a' ‘in predicting the deflection of the free corner
needs further .investigation. The solution could possibly be
improved by refining the.grid size or by the use of higher order

strain termsll; But this will definitely entail additional
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computational work.

The strain-displacement relationships for the curved
element are dependent only on the twist curvature %ﬁ irrespective
of the shape of the actual structure. To exnlain this further,
consider only the quadrant oabc of a structure of Type I, Fig.
4.1. One could build two cantilever hypars from this quadrant.
The first structure would have edges oa and oc fixed whereas
edges ab and bc would be free. In the second structure, the
fixed and the free edges would be interchanged. 1If both these
structures are subjected to the same loading conditions, method
'a' would give identical deflections and absolute values of the
stresses.

The solutions by method 'a' for Strucs. 'l' and '2'
did not show any advantage of using a 16-term displacement
function for w-displacement, which ensures the slone compati-
bility normal to the boundaries of the adjoining element as
against the non-compatible 12-term polynomial used in Pef. 19.

The solution obtained for Struc. '2° with the inclu-

2 . .
20 and that obtained in this

sion of complete rigid body modes
study , without the inclusion, did not show much of a differ-
ence (Fig. 4.6). To study the effects of inclusion of rigid
body modes further and also to evaluate the differences in the
solution using 16 or 12-tcrm polynomials for w displacement,
Struc. '15' was analyzed. The results are plotted in Figs. 4.37
and 4.38. It may be worthwhile to note that in this structure

the rise to span ratio is rather high for it to be considered

as a shallow shell (see Section V.2). The deflection profile
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across the diagonal ob shows that there is practically no dif-
ference between the solution obtained by the use of a 12-term
polynonial for the normal displacement w, and the function used
- by Banavalkar. The maximum difference of 2% is seen in the
corner deflection Sy (0.090 inches by the present method and
0.092 inches‘in.Ref. 19). Even the u-v displacements all over
the shell, obtained by the.two methods were within 0.5% of each
other. The striking similarity in the results tends to confirm
‘the conclusion that both methods give the same results for the
uniformly loaded hypars. This.view is also shared by Pecknold
and SchnobrichZIi The comparison may not be as accurate for
unsymmetrically loaded hypars where the 16-term displacement
function for the hormal displacement w would possibly give bet-
ter results.

However, the comparison with results reported in Ref. 21
shows a difference both in the deflections and stresses (Figs.
4,37, 4.38). Though the deflection profile and the stress
variation are alike, the added flexibility of the curved ele-
ment with the inclusion of rigid body modes is apparent in Fig.
4.37, where the corner deflection is nearly 60% larger than the
one obtained in this study as well as by the method used in Ref.
19. Though the solution obtained in Ref. 21 used a 12 x 12 grid
size as against a 8 x 8 grid size used in this investigation, it
is not believed that the difference in results is due to refin-
ing of the grid size.

Analysis of the same.étructure by method 'b' using flat

elements, results in the corner deflection 6b (0.123 inch)

being nearly 33% larger than that given by the method 'a'. As
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pointed out earlier, the def1¢¢tions by method 'a' are given
normal to the surface whereas for the rethod 'b' they are in

the global axes. However. this does not affect the corner de-

- flection Gb' Moreover, the deflection profiles along the com-
pression member oa and the tension member ab, are different for
the two methods. It is quite interesting to note that both of
these methods, which give close results for edge-éﬁpported hypars
(see Table 1V-3), could differ in the case of this structure
(Fig. 4.37). The anclusion of the rigid body modes in the
solution seems to account for the correct behavior of the flat
corner but since no comparative results - with experiments - are

presented21

, it is not possible to comment on the validity of
the method in Ref. 21.

IV.5 THE COIPARISON OF ANALYTICAL AND EXPERIMENTAL WCORK

Because of the shortcomings encountered in method
'a', the analysis reported hereafter is carried out by method
'b'. The\experimental results used for the comparison can be
basically categorized into three types:

(1) Hypars'Supported vertically along the line of gener-
ators all around the perimeters. Strucs. '3', '4' and 'S5' come
under this category (see Table IV-1).

(2) Small scale concrete models of umhrella shells65
(Strucs. '6', '7' and '8').

(3) Umbrella shells havine standard corrugated open decks

for the shell surface (Strucs. '9' - '13%).

A1l the above mentioned experimental tests were con-

ducted at Cornell, except Struc. '5' (Ref. 33){ The testing of
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the concreteﬁhypars was .conducted as a part of a research pro-
ject.gurrently»in_pyogress:at the Corﬁell Uni?ersityés.' |

. The comparison between.the éhal}ticai aﬁd experimehtal
results for the deflections, edge member stresses and the deck
stresses. is given in Figs.~4.9-4.36.. In all.the analytical

solutions, the surface of the hypar is approximated by the tan-

- . gent planes drawn at the center of the element except in Strucs.

"6' and '8' where these planes are drawn at points along the
free boundaries ab and pc (Fig. 4.5). However;‘these two
‘structures were not reanalyzed btecause of minor differenceé
(<10%) in .the results of other similar cases using both méfhods
of. transformation. o

A. EDGE-SUPPORTED HYPAPRS

The saddle shaped hypars (Strucs. '3’ énd '4') were
analyzed mainly to find the effect of rise on the value of
shéar rigidity factor 'a'. The values of the central deflec-
fioné are given in Tables II-1, II-2, In the experiments, only
thé central deflection Q} (Key sketch Table II-1, II-2.) was
measured. The results obtained in the ‘analysis of these
structures are used in Chapter V, to study the effects of the
variation in the structural parameters.

Struc. '5' was a large scale model with the plan
dimensions of 50'x30'33. A single layer of a cellular deck
(see Table I1V-2) was welded to the edge members using a warped
plate connection. The hat section was welded to the base plate
with spot welds 1" o.c. The adjoining deck panels were butt

welded so as foﬂaévelob the full strength of the flat plate.
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The edge members were free to move in the plane tangential to
the shell boundaries but were supported vertically. A 3%” dia-
meter, high-strength steel tie bar connected the points a and
b (Fig. 4.3). A uniform load normal to the surface was applied
by vacuuming the enclosed chamber. A predeterrined tension
force was applied to the tie by means of a 500 ton jack which
prevented the relative displacement between the points a and c.
However, the details of the connections of members oa and oc
‘were such that there was no force on the member at the ends a
and c. The members ba and bc were free to move at the end b.
The stresses and the deflections were measured.at various 1lo-
cations. The complete details of this test with the instrumen-
tation are given in Ref. 33.

In calculating the membrane constants for the decl,
the stiffening effect of the hat is neglected. The membrane
stiffness calculated only on the basis of the properties of the
base plate, is on the conservative side. Since no seam-slip
was noticed during the tests, the shear rigidity factor a is
taken equal to unity. The deck is highly orthotronic as is
apparent from the bending rigidities (Ey = 29,300 Dx). The
bending constants calculated on the basis of the geometrical
shape are used in the analysis without modifications. As given
in Ref. 33, the equivalent projected load is calculated on the
basis of equating the shear force at the point o on the actual
surface and that given by the membrane theory for an equivalent
projected load. The load intensity used in this analysis is

S% on the conservative side of the criteria given in Chapter
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111, Secfioﬁ IT1.4.
" Thé experimental deflection profile along the lines
de and fg (fig:Qd.Sf{afevcotféCté& by subtracting the vertical -
dispiéceﬁenfs atiﬁoinis\d; e, f; and g. The center deflection
coleulated ahalytiéally.is 5% on the highér side of the exper-
imentél deflection 2.36 inéhes (Fig. 4.9). As shown in Figp.
4.10, thé axiéllstrésées in the edge members'éfé very close to
half the vélués givenlﬁy the membrane stresses. The reported33
strain measurements on the edge members tend to confirm this
observation. It is quite logical to expect the forces in the
edge members to be lower than those given by the membrane theory
because a:paft of the load is carried by the flexural action of
the deck.
~ As shown in Fig. 4.11, the difference between the

analytical and experiﬁental results for the shear stresses mea-
sured Ey}the rosettes 1 and 2, is even less than 5%. The var-~'
iatioﬁréf the sLear'force all over the hypar surface is shown'
in Fig: 4.12. Ks expected, the value of the shear force over
a major portion of the shell surface is less than that given
by the memwbrane theory. The increase in the shearing force
noted at the corners a and c is due to the restraint offered by
the tie; whereas the value of the shearing force in the fixed
corner o is almost twice as that given by the membrane theory.

: Thé tbnnecfidn between the edge\members and the deck -
should be adequate;eﬁougﬁ to carry this high value of shear.
The bending stresses calculated at’ the center of the 'span on

the top of the hat, do not show good correlation with the exper-
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imental results. The bending stresses.calculated using the
effective inertia Ied (Chapter II, Section II.2.B) is 6.70 ksi,
whereas the measured total stress in the y-direction at the

- same location is 12.50 ksi. One reason for this underestima-
tion is that the measured stress is total whereas the calcu-
lated stress is only due to bending. Since in calculation of
the membrane stiffness only the flat plate was considered, it
is not known as to what extent the hat portion participated at
the center of the deck in resisting the membrane stresses.

The reduction in the moment of inertia calculated on
the basis of the full cross-section, is not affected by the
calculated compression stress in the top hat plate (the vari-
ation is less than 5%). The change in the bending rigidity Dy

does not warrant a new analysis.

B. CONCRETE UlI'BEELLA SHELLS

The concrete hypars differ from the hypars using
corrugated orthotropic decks mainly in two aspects. For the
loads used in the elastic analysis of this study, the shell can
be considered as made of an isotropic material. Secondly the
bending and axial stiffness of the shell is quite comparahle
with that of the edge merber.

The experimental work on Strucs. '6', '7' and '8' was
conducted at Corne1165. Strucs. '6' and '7' were identical
except for different eccentricity of the edge merbers (Fig.
4.5). In Struc. '6' the beams were located on the ton of the

shell surface whereas they were located below the deck in Struc.

'7'. These structures were loaded uniformly using concentrated
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loads applied discretely over the surface, whereas only half
of the structure was loaded in_the casevof Struc. '8'.

The elastic properties of the concrete used in the
_ mode1 were determined experimeqtally. In ;alculating the prop-
Aerties of the shell only the concrete section isAconsidered.
The classical team theory which assures the linear variation of
the angle of twist is used in the analysis. The beams are con-
~sidered eccentric only in the z-direction. The bear provertics
calculated are based only on the ribs projecting above the deck.

‘For Strucs. '6' and '7', the comparison between the
experimental and the analytical results are shown in Figs. 4.13-
4.19. As shown in Fig. 4.13, ror Struc. '6' the compression rib
deflec?ion Gav%s“about 10% smaller than the experimental re-
sults whereas the free corner deflectionrsb is about 5% larger
than the experimental value. For Struc. '7' (Fie. 4.17), the
deflection 6, is about 60% and §, is about 8% of the experi-
mental values. Though percentage-wise the error in §a’ in
Struc. '7' is about 40%, the magnitudes of the deflections are
very small. Except for the deflection profile along the dia-
gonal ob near the column support, the gencral shapes of the
profile agree fairly well with the experimental values. The
deflection profiles of the tension members ab in both the
structures, where the bending action in thq-shell dominates
over the membrane actiqn, is very good and élﬁést paréllel to
the one Qbservéd experimentally. |

To verify the idealization of.the edge éember,AStruc.

'6' was reanalyzed, but a certain portion of the deck was in-
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cluded as the>effective width in recalculating the beam prop-
erties. The modified eccentricity of the beam with respect to
the deck and properties were recalculated. It is obvious that
in doing so a certain pértion of the deck is duplicated, with
the result that the proﬁerties of the edge members are over-
estimated. For the same structure it was found that the free
corner deflection 6b remained almost unaltered (0.022 instead
of 0.023) whereas the deflection Ga reduced from 0.016 to 0.012
inches. This observation shows that important deflections are
insensitive to the edge member properties for this particular
structure. However, there is a redistribution of the bending
and axial stresses in the shell, which are of a relatively
small magnitude. The upturned beams used in Struc. '6' seem
to have a pronounced effect in reducing the corner deflection
Gb as seen from the analysis as well as experiments. The free
corner deflection Gb for Struc. '6' is nearly half that of
Struc. '7' whereas the compression rib deflection 8, for Struc.
'6' is larger than that for Struc. '7'. These points are
further discussed in Chapter V.

' Because of the varying size of thie edge members, the
axial forces are plotted instead of axial stresses. The ratio
of the calculated axial forces to that given by the membrane
theory is 70-80% for the compressiorn memters oa and oc and

. 50-60% for the tension merbers ah and bc. The analytical and
experihental values of the stresses for the tension member are
in close apgreement, whereas the analytically calculated results

for the corpression members are on the conservative side.
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Even though part of the vertical load near the column is car-
ried by the concrete shell, in order to satisfy the static
equilibrium for the vertical load it appears that the experi-
mentally measured forces in the compression rib are quite low.

The axial and the bending stresses are measured along
the diagonal ob at an angle of 45° with the x and y axes (Fig.
4.15). The measured axial stresses show excellent agreement
" with the analytically calculated value of 72 psi. An important
point 'to note is that the calculated and the experimental values
. are about 34% higher than those given by the membrane theory at
a load of 40.9 psi, the reasons for which are not readily
apparent. The values of bending stresses are very low and are
not compared here. The variation of the shearing force is
plotted all over the shell for both the structures. Though
there are minor differences in the shape of variation of shear-
ing forces, two important observations can be made. The values
of the shearing forces over a substantial portion of the shell,
are larger than those given by the membrane theory. The shear-
ing force near the column is nearly twice as large as that
given by the membrane theory. This sudden increase in the
-shearing force clearly indicates that the shell participates
in trcnsmitting a certain portion of the vertical load. The
same behavior is also noted in Struc. '5'.

Struc. '8' is .the same as Struc. '6' but it is sub-
jected to an unsymmetrical load (Fig. 4.20), where half of the
structure is loaded uniformly. Only half the structure along

the line ¢f (Fip. 4.20) is. analyzed-using 16 elements in each
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quadrant. The statically'equifalent load is used in one
quadrant. The central column is idealized by means of con-
centrated elastic springs as given in Chapter III, Section
ITI.2.F. The comparison between the theoretical and the ex-
perimental results is shown in'Fig. 4.20. The deflection pro-
files appear to be quite reasonaBie though the magnitudes of
the deflections Gb and Ge are 30-40% on'the lower side of the
values obtained experimentally. A static check for the ver-
tical load is satisfied at the cenfer column though a dis-
crepancy in the overturning moment is noted.

A highly irregular pattefn of axial forces and moments
is obtained which unfortunately could not bhe verified properly
because of the difficulties encountered during the experiment.
A better solution can be obtained by using a finer grid (64
elements in a quadrant) and also by using work equivalent loads.
It was not possible to check the impiovement in the solution
because of a limited comruter core capacity. The example how-
ever, clearly showed that the tﬁeory can solve unsymmetrical
loading conditions such as wind load, etc., and can satisfac-
torily predict the overall behavior of the shell.

The corner deflection Gb in Struc. '8' is nearly
three times as large as that obtained for the uniformly loaded
Struc. '6'. The increase in deflections in the loaded quadrant
is mainly due to the twisting of the shell about the line ah.

C. UMBRELLA SHELLS WITH STANDARD CORRUGATLT; DECKS

Four medium scale umbrella shell models (Strucs. '9',

"11', '12' and '13'; Table IV;l), 12%12' in plan and with a
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rise of 14,4 inches, were tested’at Cornell. ~Struc. ‘10"
is a hypothéticalvétructure énalyzed fo{s;udy the effects of
change of shape iﬁ Struc. '9' duec to the excessive deformations.
| Self-tapping screws were used to connect the adjoin-
ing.deck panéls and also to connect the deck panels to the edge
members. The main supporting edge member frame cénsisted of
circular pipes (for sizeé see Table IV-1) connected eccentri-
cally below the deck.
| | For the structure having two decks placed in a ru-
tually perpendicular manner, the decks were not only connected
along the peripheral edges'but were also connected intermit-
| tently all over the surface. In the case of the two deck sys-
’tem, the bqttém deck was directly connected to the edge’member
’whereas the top deck was connected to the bottom deck (Fig.
2.6). All structures were supported at_fhe centef column and
a uniform load was applied uﬁing pressurized canvés rubber bags
vith one bag placed under each quadrant (see Chapter VII).

The properties of the decks used in the analysés are
given in Table IV-1, The gage thickness of the deck was
checked by the microreter screw and the properties correspond-
ing to the uncoated decks are used in the analyses. To account
for the effect of rise, the shear rigidity factors used in the
analyses are modified from the values obtained by the flat
shear tests (Figs. 2.7 and 2.8). The reduction in these values
of a is foughly 25% for the single deck whereas it is about 15%
for the double decks. iero'torsiqngl fixity between the deck

and the edge members is assumed for all the structures analyzed.
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In order to have a better undarstanding of the be-
havior of thesetStructurcs, they are classified into two cate-
gories} This cilassification is based on the ratio of the rel-
ati#e stiffnesses of the deck and the supporting edge members.
Strucs. '9' and '10' are considered to have flexible edge mem-
bers whereas Strucs. '11', '12' and '13' are considered to have
very stiff edge werbers. The edge members used in Strucs. '11',
'12% and '13' are 4.37 tires stiffer axially and 236 times
stiffer flexurally as compared with the edge members used in
Strucs. ‘9' and '10'. This large difference particularly in
the bending stiffness alters the behavior of the umbrella
shells,

C.1. INVERTED UMBRELLA SHELL WITH FLEXIBLE
ENCE "Ei'BERS

Strucs. '9' and '10' were analyzed using the boundary
condition V (Table IV-2) which assumes full horizontal fixity
between the edge memhers and the deck. The convergence char-
acteristics for the cerner deflection '8, for Struc. '9' are
shovn in Fig. 4.22. Ry refining the grid size, the free cor-
ner deflection increases. This is because of the effect of
eccentrically connected edge members (Fig. 3-12). The differcnce
in the corner dcflection Gb between 6x6 grid size and that of
8x8 grid size is less than 2%.

The deflections and the edge member strecses obtained
for Struc. '9' are compared with the experimental results in
Figs. 4.24-4.28. The analysis underestimates the deflection 6a
by 32% whereas the deflection Ge is overestimated by 40%. The

difference between the analytical and experimental results for
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the corner defie;tionjﬁb is 10%. Compafing fﬁe‘fclative magni-
tﬁdés of these'aeflécfions (Sa, Gb”and~66), it is apparéht.that
in the éase of é fléxible edge membér the free corner déflec-
tion Gb is of ufﬁost impbrtance. The shape of the deflected
profile for the member ab and the relative defleétions between
pbints a and b, by theory and experiments are in close.agree-
ment (error 2 1%). The reasons for the underestimation of the
compression rib deflections are discussed later in this section.
| The corner deflection Gb is greater than 10% of the
rise of the hypar'shell, which is 14.4 inches. In other words,
the change in the shape of the structurc is qﬁite important.
To estimate the effect of the change of shape, a very approx-
imate method was used whereby the samre structure (Struc. '9')
was reanalyzed by only modifyinp its rise from 14.4'inches to
13.8 inches. The reduction of 0.6 inches in the rise was cal-
culated by taking half the difference betveen the relati?e de-
flections of the points a and b. The analysis of Struc. '10'
using the modified rise, shows an increase in deflections. The
error in the deflection éb in partigular is reduced further to

4

o
.

A comparison between the experimental and the analy-
tical results for the axial and bending stresscs, and the abso-
lute value of the total stresses for the edge memters is given
in the Figs. 4.25 and 4.2€. The bending and tue total stresses
show very good correlation with a maximum error of -15% for
the tension members. Comparing the analytical and experimental

results for the axial stresses, it is noted that the calculated
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compression:stresses for members oa and oc are on the high side
whereas in case of the tension rembers ab and bc are on the low
side. The measured axial stresses are only about %th in magni-
tude of the total stresses and therefore the deviation (-55% for
the member ab) between the theory and experiment is not consid-
ered to be a serious handicap.

To examine the validity of the solution and also to
help to understand the behavior of hypars, 'the variation of
the bending moment My and the in-plane shearing force ny are
plotted over the shell surface (Figs. 4.27 and 4.28). Along
- the column line 1 (Fig. 4.27), the deck bends with the tension
member like a cantilever (negative moment) whereas in the in-
terior of the span, it acts as a simply supported span between
- the opposite edge members. Along the column line 8, ‘the deck
haé a region of negative bending moments near the supporting
column. The variation in the shearing force (Fig. 4.28) is
similar to that indicated for the concrete hypars (Strucs. '6'
and '7'). Near the center of the quadrant, the shearing force
ny is larger (by 10%) than the values given by the membrane
stresses. However, one major difference noted between the con-
crete and corrugated deck hypars is that near the column the
deck does not carry a substantial portion of the vertical load
as is seen in:the case of Figs. 4.16 and 4.12. The comparison
of the axial, bending and total stresses calculated by theory
and measured experimentally at point e is given in Table IV-4,.

The - calculated stresses are compared with the aver-

age measured values obtained for the top and bottom deck. Be-
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cause of ghevvery small ﬁagnitude of the stresses, the varia-
tion. in their @éasured value was extreme. The variation in
the’measured axial stress ranges from 210 psi to 1780 psi
whereas that in the‘bending stresses ranges from 140 psi to 2840
psi. Though the calculated values anpear to be in the vicinity
of these measured valuns, a d1rect comparlson would not be
frultful |

B In the analytlcal SOlUthD of Struc. '9', it is noted
that the deflectlon 6 is underestlmated Fig. 4.29 $hows a
typlcal connectlon between the tension nember ab and the com-
pression member oa. Because of the eccentric connection be-
‘tween the deck and edge members, all the node points are along
thgjtop of thq edge members ab and oa. The in-plane forces on
‘the'membér}ab are transfcrfed eccenfricélly to the member oa
at the nodeva,vresulting in its upward deflection as shown in
Fig 4 29 ’In order to illustrate the effect of this eccentric
“transfer of the in- plane forces, Strucs '9' and '11' are
analyzea for the two boundary condltlons V and VI (sée’Table
IV-2). | |

For Struc. '9', inspite of certain redistribution of

forces due to thevcaange in the Loundary conditions, there is
practically no cbange in the deflectlons 6 and Gb. The re-
nlease of the 1n plane shear of 328 1bs. actlng eccentrically
at p01nt a, results in an increase in the deflection §, by
0.17 1nches (Flr 4 30) This snear, if resisted entirely by
the compre551on ﬁenber oa actlng ‘as a cantilever supported at

point o, produces a deflectlon of 0.22 inches. "Except for the



- -85-

bending stresses in the tension remhers ab and bc, the changes
in the stresses for both the edgée members and shells are in-
significant. As shown in Fig. 4.31, the decrease in the verti-
cal shearing force due to the release of the in-plane forces
results in the reduction of bending stress at point a in mem-
ber ab. |

From the consideration of the mapgnitude of the in-
plane shear and its eccentric transfer, Struc. 'll' represents
an extreme case. As shown in Fig. 4.32, the deflection pro-
file along the diagonal ob rermains practically unaltered for
both boundary conditions for Struc. '11'. Recause of the very
~high in-plane rigidity of the 3" diameter pipe, the value‘ of
- the in-plane shear developed at the junction a (Fig. 4.29) is
quite large (742 1bs.)}. Though small in magnitude, the in-
crease in the compression rib deflection SC and Sa is almost
200%. The increase in deflection exceeded that which would
have been obtained by considering the edge members oa and oc as
cantilevers, acted upon by the eccentric shears at points a
and ¢ respectively. A srall increase in the deflection Gb is
noted and it must be pointed out that the transfer of the
eccentric force also exists at the junction of the tension mem-
bers but it is of minor importance.

In the case of concrete hypars wvhere full'fixity be-
tween the edge member and the shell exists, this transfer of
eccentric forces in two mutually perpendicular directions does
not present a problem. To éet an exact solution for the dis-

continuities between the edge member and the steel deck, equa-
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tions of compatibility will have to he satisfied at the addi-
‘tional nodal p01nts thereby 1ncreas1ng the complex1ty and the
storage requlrement for the computerue;ogran Botb cases pre-
sented here,‘parficulafly Struc. ‘11'; represcﬂts en extreme
'class:bf'problemsiwhich Qifl”ﬁe‘ﬁardiy'edeounteeed iﬁ‘prdetice.
Besides the eccentric connection, the in-plane stiffness of |
circular pipes is equal to the vertical bendlng rigidity. On
the assumpt1on of full horlzontal f1x1ty between the edpge mem-
bers and the ‘deck, the horizontal stiffness attracts high in-
1b1ane shears, the magnltudes of which ra1qe the questlon of
"1ts va11d1ty .4 j | .
| In practice, the folled secfiohs such és channels
and I-sections héve very srall in-plane stiffneeees as compared
with their bending stiffnesses. Secohdly, these‘mémbers.will
be usually connected along their shear centefe'By means of
warped plate connections (Fig. 3.10). One way to correct the
deflection 6a is by applying the moments, equal in magnitudes
but opposite in directions, to those produced by the eccentric
shears at the junction of two ecceﬁtric merbers (Fig. 4;29)
and recalculate the deflections of only the supporting frame.
Since the exact amount of herizontal fixity is not
known, the other alternative is to reenalyze the structure with
a complete reclease of the in-plane forces (boundary condifion
VI) and use the conservative results for the design.

c.2. I}'VEPTED UMBPELLA SHELL WITH
STIFF EDGE I'E!'BERS

Strucs. '1ll' and '12' used single corrugated decks

whereas Struc. '13' used two perpendicularly placed intercon-
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nected decks. The structures are analyzed using the btoundary
~condition VI. This boundary céndition is on the conservative
side as far as the comﬁutntion of aeflections are concerned.
Fig. 4.33 shows the comparison of the experimental
and analytical deflection profiles along the diagonal ob, for
all the three structures. Besides this, the comparison between
the measured and calculated deflections at points a, b, ¢ and
e is given in Table IV-5. During the experirments, difficulty
was encountered in ohbtaining the syﬁﬁetry of deflections. The
unequal rate of leakage from each canvas bag, placed under the
quadrant resulted in an unequal pressﬁre loading being applied

In order to show this resulting un-

to different quadrants
symmetry in theasolution, Table IV-5 shows the average, maxi-
mum and minimum measured values for the deflections. A com-
parison.between the results is based on the average value. In
general, the shape of‘the deflection profile along the diagonal
ob shows a reasonably good correlation between theory and ex-
periment. The deflection 6e ét the center of the quadrant for
a single deck hypar (Strucs. '11' and "12') is overestirated
by the theory whereas the déflectibn‘for a double deck (Struc.
'13') shtows a difference of only 10% from the measured value.
Except for the minor scattér of the deflections Ga, Gb and GC,
the analytical results are within 15% of the average experi-
mental values.

The axial-and bending stresses arc measured at five
locations (Table IV-6). For the tending stresses greater than

2000 psi, the experimental and analytical values show a devia-
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tion-of-less‘than 20@. For very small ragnitudes of stresses
(such as less than 2000 051) the calculation of the error hased
on the measured stresses W111 ‘be misleading.  The accyracy Qf
measurerent for the small magn1tudes of stresses is.always :
less. The measured total stresses also show a fair amount of
agreement with the analytlcal solutions. S

The major‘diserepancy arises in- the comparisontbe-
tween the measured and the calculated axial stresses. Based
‘purely on the membrane theory, the maximum axial stress should
-~ be 1570 psi; as agalnst this, the measurcd value of stresses
- reaches as high as 2446Tpei (Struc. '11') which is_nearly_SS%
larger than that glven by the memtrane theory. This apnears
inconsistent w1tn the expected bebav1or, since a part of the
load is also cerr;ed by the bendlng action.

In erdef to understeﬁé”the‘differencefin behafior be-
" tween the slngle layer and double ‘layer decks, Figs.. 4 34 and
~ 4,35 show. tbe varlatlon of the axial stresses and the verti-
cal shearing forces carrled by the edge merbers. For Struc.
"'11' (which has a 28-G 51ng1e layer deck), both the. compression
member oa and the ten51on member bc placed-across .the corruga-
‘tions (along the weak ax1s), carry high axial loads as compared
“to the merbers ab,and oc, placed perpendicular to the direc-
“tion of the corrugations. This trend is also observed experi-
mentally. Because of very low in-plane stiffness across the
corrugations, the effective area of the deck resisting the in-

plane shear along with the edge members oa and bc is very small

-+ and therefore the entire shearing forces are resisted by the
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edge members alone. As against this, in a direction along the
corrugations a part of the deck shares the in-plane shear and
subsequently results in the reduction of the axial stresses

in the edge members.

Fig. 4.35 shows the transfer of the vertical load
to the edge members. 17ith the strong axis of bending placed
parallel to the lines oa and.bc (Fig. 4.2) the deck basically
Bends between the supporting lines oa and bc. - ™ith Dy = 1845
Dy» practically no load is transferred directly to the edge
members oc and ab. However, from the conditiors of compatibility
at points b and ¢, the member bc is supported at its end by
members ab and oc. The nepative shearing force at the point
b on fhe member bc and the constant shearing forces along the
members oc and ab confirm this expected behavior. This manner
of transfer of load for a sinsle deck is also reflected in the
bending stresses at points a and e (Table IV-6) which are
higher than thtose for double decks (Struc. '13').

The measured axial and bending stresses at the center
of the quadrant were hichly erratic and did not show ary con-
sistent behavior. The minimum measured bending stress was
half the value of the maximum measured value at the same lo-
cation. This wide range of scatter is due to two reasons, first
the magnitudes of stresses are too srall to be reasured re-
liably and secondly there was an unsymmetry due to unequal
pressure loading. For completeness, the comparisons between
analytical and experimental values: for the decl stresses are

given in Table IV-4. The bending stresses for Strucs. '1l1' and
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'12' ;fé oveféstimated Ly ‘the ahal&tital method whereas they
aré ﬁndefestimétéd for Struc. '13°'.

| Fig. 4.36:shows'the variation of the in-plane shear
fo;;g\ﬂxy over the entire shell surface for Struc. 'l11'. An
almost identical variation in the in-plane shearing force is
alséhdbtéined'in Struc. '12' (24-C single deck)'which has 61%
larééf.éhear énd'bending rigidities than those of Struc. '11"
(28;G sin.glendeck). ‘For Struc. '13' with 4 28-G doutle layered
de;k, thé-shear force distribution is very similar to that ob-
.fained fdr Struc.'.'9i with 1' diameter flexible edge members.
Howévef; fhe maximur values of the shear force are about 5-10%
1owef for Struc. '13'. The only noticable difference for the
variafion of the'éhear force for single and double deck struc-
tufés is that, in the case of the former structure, the maxi-
mﬁm value of the shearing force does not exceed the shearing
force given byAthe membrane theory whereas it exceeds the mem-
brane shear force in the latter case. It may be of interest
to note that the results for the deflections of the deck are
quite close to thosé reported in Chapter VII. With the stiff mem-
bers, as those used in Strucs. '11', '12' and '13', the deflec-
tions along the free boundarizs are small and therefore the
behavior of fhe shell is quite close to that of an edge-sup-
portea hypér for which, as pointed out earlier, methods 'a' and
'b! give'the same results.

. The salient features differentiating the behavior of

the hypéf with Vefy stiff edge members (Strucs. '11', '12' .and

"13") and the behavior of tke hypars with very flexible edge
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members (Strucs. '9' and '10') afe further discussed in detail
in Chapter V. The effect of the edge member weight on the

behavior of hypars is also discussed in Chapter V.

IV.6 SUMMARY

The validity and the accuracy of the finite element
methods were assessed. Both approaches were found to converge
satiéféctorily. A grid of 6 by 6 gave essentially the same
results as a grid of 8 by 8.

For hypars with fully supported edges, both the flat-
element and the curved-element methods yielded deflected shapes
that are identical with those given in the literature. Satis-
factory agreement was also found with experimental results
even when the effects of eccentric edge members were included.
However, the deflections of flat corners, such as those at the
outside corners of umbrella-type hypars, are underestimated by
the curved-element method. The flat element approach predicts
the experimental deflections and stresses of various types of

hypar structures with satisfactory accuracy.



‘CHAPTER V

’ QUA'L'ITATIVE EFFECTS OF PRINCIPAL VAPIABLES -
N BEHAVIOR OF HYPARS

V.1 INTRODUCTION

Based on the ana1y51s of some selected structures

(Table 1v- 1) it is poss1b1e to shov qvalltatlvely the effects
of different parameters on the behaV1or of a hypar shell |
S1nce the number of parameters affcct1ng the behavior of the
shell is qu1te large and thelr 1nteract10n is very compler, .
’.attempts to show their effects on the structural behav1or by
means of formulae would 1nv01ve exten51ve computat1ona1 work.
Durlng the follow1ng discussion sore of the parameters which
were not inveetiéated are‘mentioned.

- fhe structural variables affecting the behavior of
the shelllcan be broédiy classified into four categories:

(1) Geometrlc shape of the hypar shell.

(2)' Propertles of tbe deck used as a hypar surface.

(3) Boundary conditions.

(4) Loading.

V.2 GECMETRICAL SHAPE

All hypar surfaces have a constant twist curvature
gg. The effect of rise to span ratio on the central deflec-
tions of the saddle shaped hypars (Strucs. '3', '4', Table 1IV.1)
is illustrated by plotting the deflections against the non-

dimensional parameter of é% (Fig. 5.1). With the increase of
C

-92-

-~



-g3-

rise to span ratio, the curvature of the surface increases.
This increase in curvature. reduces the bending action of the
shell whercas the membrane action is increased and this cven-
tually leads to the decrease in the central deflection.

The effect of the rise can be shown by comparing the
central deflections of a simply supported 28-G square plate
(60"x60" in plan) with those of a hypar having a rise of 7.5
inches (rise to span ratio = 1/8) (Fig. 5.1). The deflections

in the latter casec are nearly 40% of thosé obtained in the
former case.

The sensitivity of the structurallbehavior to the
change of rise is well deronstrated by comparing the deflec-
tions and the stresses for Strucs. '9' and "17' (Table V.1)
where the rise of Struc. '10' is only 4.3% smaller than that
of Struc. 'S'. The increase in the bending action with the
reduction in rise is evidenced by the increase in the deflec-
tions Sa, Sb, 6C, and 6e and also in the hending stresses.

The bending stress in the center of the deck increases

from 1870 psi to 2130 psi. According to the membrane theory,

the in-plane shear force is inversely proportional to the rise

AB
= ﬂ”~_].

xy = "2C The same trend is also observed

to span ratio (N
in the increase of the in-plane shear and the axial edge mem-
ber stresses (Table V-1).
A3 ,C 1 .
For larger values of ~ (K < §), the membrane action
r‘ R
is reduced to a minimum and the entire load is practically
carried by bending action. The calculation of the in-plane

shear on the basis of the membrane theory, as C approaches zero,
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is meaningless. The theory given here is primarily good for
rise to span ratio of < % (AB/C2 % 15) but it can be used for
. greater. rise with loss of accuracy. From the construction
point ‘of view, the choice of rise to span ratio will be also
governed by the warping of the deck.

V.3 DECK PROPERTIES

In the case of an open form deck, the membrane elastic

" constants Ext’ E1 and the bending constants Dx’ D1 and Dx

t y
(Fig. 2.1) are very small and their influence on the behavior

of the shell is insignificant (for the stiffness coefficients
-see Appendix B), However, in the case of the closed cellular
decks, though the magnitudes of D, and D, are small and insignif-

_ilcant, E Eltwand D,, are comparable in magnitudes to the

xt? y
propertles‘Eyf, Dy-and Exy
“the structural behavior cannot be overlooked. Since only one

N and therefore their influence on

structure was analyzed for the cellular deck (Struc. '5'), the
discussion given below primarily concerns the open form (stan-
‘dard sinusoidal) ‘decks.

A, SHEAR RIGIDITY

According to the membrane theory, the normal loads
on the hypars are carried by the in-plane shearing force ny.
In reality, though a part of the load is carried by bending,

the magnitude of the in-plane shear N is quite comparable to

Xy
that given by the membrane theory (Figs. 4.12, 4.16, 4.19, 4.28,

and 4,.36) and even exceeds it in certain regions of the shell.

Therefore the in-plane shear resistance Ex = Geff.nt, is very

yt
important in the behavior of hypars. As discussed in Chapter
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IT, the effective shear modulus (Geff) is obtained by reducing
the shear modulus of the material by the factor a. In the
»suddle shaped hypafs (Strucs. '3' and '4') for a rise to span
ratio of 1/5 (AB/C2 = 25)>(Fiq. 5.1), the reduction in the
shear rigidity}a from 0.096 to 0.04, shows an increase of nearly
30% in the central deflection. The behavior of the hypar shell
is very sensitive to the values of o < 0.10.
To illustrate the effects of a on the behavior of

the shell, the results for Strucs. '13' and 'l1l3a' are compared
in Table V-1. With the increase in the value of o, the deflec-
tions (Ge, Gb) and tihe edge member and deck bending stresses
are reduced whereas the axial stresses in the edge members and
the in-plane shear force ny are increased. Except for the
axial forces in the edge merbers and the in-plane shear ny,
the response of the structure to the variation in o is similar
to that of the variation in the rise to span ratio. The
optimum value of o in orthotropic‘hypar'structures is a = 0.1
since larger a does not improve the behavior much. Factors

~which improve the value of o were already discussed in Chapter

IT.

B. THICKNESS OF THF CORRU'GATED DECK

In the case of an open deck the important membrane
properties such as Eyt’ Exyt and the bending rigidity Dy are

directly proportional to the thickness of the deck. However,
it must be pointed out that the bending rigidity of the deck
is small compared with the membrane stiffness. Tioreover it is

the change in the shear stiffness that influences the behavior
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of the hypar shclls and therefore the effect of 1ncrea51ng the
thickness is analogous to that of 1ncreaq1ng the value of a.
' To substantiate this observation the comparison between the de-
flection and stresses for Struc '11"(28-G single deek) and
Struc '12’ (24-G single deck) 1skgiven in Table V-1.
kThe.Varietion'of the in;piane shear rigidity, which
is directly proportional to the thickness and the shear
rigioity factor‘a? also affects the manner in which the verti-
cal.loed ie traneferred to the supports by the mermbrane action.
‘Because of the high shear rigidities for the concrete struc-
tures (' 6' and '7') and Struc 's5! us1ng the cellular deck with
the full effectiveness of the bottom plate, the values of the
1n-p1ane shearing forces_show a substantial increasc near the
‘supports (Figs. 4.12, 4.16, 4.19). The increase in the shear-
ing force indicates the participation of the:deck in carrying
a pert of the rerticel 1oadr..As against‘this, Strucs. '9{-'13'
| nith fow sheer rigidity do not showvany increase in the ‘in-plane
shearinp force (n ) near the supporting columns (Figs. 4.28,
4.36). In other words, in these structures the entire vertical

load is primarily carried by the edge members.

C. NUMBER OF DECKS

As far as deflections and stresses in a hypar are con-
cerned increasing the number of decks has the same effect on
the behavior of the shells as that of increasing the shear
rigidity factor a and the thickness. However, this observation
does not apply for buckling (see..Chapter VI). As discussed in

Chapter II, the effectiveness of the deck in resisting the
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loads depends upon the manner in which two or more decks are
interconnected and connected to the supporting edge memhers.
However, it must be pointed out that in order to avoid chatter
and get a better structural performance, it is desirable to
interconnect the decks all over the surface of the shell.

'"hen two decks are used, they are placed in a mut-
ually perpendicular manner and this gives an equal bending
rigidity to the structure in both directions, thereby distri-
buting the applied loads more evenly to the supporting edge
members. The comparison of the results for Struc. '11' using
a single deck (28-G) and those for Struc. 'l3a' using the
double deck, all other constants being the same, shows that the
uniformity of the stiffness in Struc. 'l13a' has more even
distribution in the edge member axial stresses (Table V-1).
Though the corner deflection shows practically no change, the
center deflection §_ for Struc. 'l13a' is nearly half that of
Struc. '11'. The change in the bending stresses of the edge
member is very small but because of the increased membrane
action the bending stresses in the center of the quadrant are
reduced by nearly three times.

In practice, the use of a double deck with two decks
placed mutually perpendicular is more desirable than a single

orthotropic deck.

V.4. BOUNDARY CONDITIONS

From the practical point of view, boundaries such as
simply supported, knife-edge Supported or fixed all around, are

not realistic. Boundary conditions which consider the proper-
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ties of edge members-and the manner in which they are connected
"to the deck are realistic from.the practical point of view.

A. EDGE MEMBER PROPERTIES.

The edge member properties Ay s Iy’ Iz’ J ang Fb for
‘available rolled sections show variations over a wide réhge.
A sufficient nurter of analyses could not be cérried out to
formulate any definite rules by which the effect of the varia-
tion of these individual properties on the behavior of the
' 'shell can be assessed: Except for the.con;rete hypa?s, ;he
analysis was carried out for zero torsional;fixity and fhere-
fore the influence of the torsional_constanfs J and T is not
clearly known.

To get the general idea of the effect of the.éfiff-
ness of the edge members, one can compare the results of Struc.
'13" with very stiff edge members and Struc. '9' with very

flexible edge members. The difference in the behavior of these

two extreme structures is obvious from the deflection profile

o along the diagonal ob (Figs. 4.24 and 4.33). 1In the caée of

Struc. '13' because of very high bending rigidity of the edge
members, the deflections along thke periphery are quite small
and the deck bends freely between the opposite supporting
edges. The simply supported plate bending action is quite
dominant in this case. Because of the small bending figidities
of the edge members in Struc. '9', it appears from the deflec-
tion profile‘along the diagonal ob that it is the deck that
supports the edge members:neér'thé free corner and therefore

the deck stiffnesses (both béhding-and memhrane)’ are quite
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important for this structure.

The fac£ that fhe-cérner deflection 8y fbf Struc.
'13' is not very differeh%:fhan that of Strucs. '11' énd '12°',
where single laycr decks with different shear rigidities and
thicknesses are used, éiéarly indicates that the deflections
along the periphery of"these structures prirarily depend upon
the pfopef%ies of tﬁe'edge membefs. In order to optimize the
intefaétion'befwécn the deck and the edge members to give a
>satiSfactory structural perfdrmance, the rétio of‘the bending
rigidities of the deck and the edge members would have an
optimum value between the two extreme cases (Struc. '9' and
Strucs. '11'-'13'").

E. EDGE MEMBER AND DECK CONNECTICN

As shown for Strucs. '6' and '7' (Table IV-1), the
eccentric location of the edge members affects the deflection
of the structures (Figs. 4.13 and 4.17). The difference in
behavior of the edge members is shown in Fig. 5.2. For umbrella
shells to reduce the vertical deflection for tlhe compres-
sion member, it is teneficial to connect tlre deck on top of the
edge member whereas in the case of the tension members, it is
beneficial to connect the edge member on the top of the deck.
The experimental as well as the analytical results for Strucs.
'6' and '7' seer to confirm this conclusion.

No comparative results are presented for the zero
and full torsional fixity, though results are presented for
the full and zero in-plane fixity (TH) between the edge members

and the deck (Figs. 4.30-4.32).  Though the results are very
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limited, it is be11eved that prov1«:‘1nt7 fixity along the perlph-
eral edge members tends to attract more vert1ca1 load on the
edge wembers (Flg 4 31) o | |

| In the case of saddle shaped hypars, theﬁlncrease in
.area of the tens1on t1e bar connectlng the lower corners (hey
sketch, Table 11- 1) of the qhell and the in- plane bend1np
r1g1d1ty of the perlpheral edge rembers have benef1c1a1 effects

19

in reduc1ng twe bcndlng actlon of the shell The effects

of these varlables may need furtber 1nvest1gat10n
V.S5. LOADIJG

All the cconclusions given above on the behavior of
the hypars are based on the;ana}ysis for the uniformly distri-
buted vertical loading. In reality the structures are also
subjected to unsymmetrical loads such as wind or drifting
snow., The strencth of: the structure under these kinds of loads
~is tested more severely than under the conditions of uniform
loads. - The unsymmetrically- loaded Struc. '8' shows the: cor-
ner deflection 6b nearly three times as large as that obtained
for the uniform loading condition.

'A. EDGE MEMBER.WEIGHT

In case. of some shells, such as umbrella shells, the
edge merber weiglit is distributed along the periphery of the
shell. The customary procedure of srearing this load uniformly
over the whole surface and analyzing the structure can lead to
a,gross underestimation of hoth the deflections and the
stresses. To demonstrate this, an umbrella shell with each

quadrant of 20'x20' in plan having a rise of 4', (Tahle IV-1)
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is an:lyzed. The edge member sizes and the deflection toler-
ances used for this structﬁre represent:the values which are
encoﬁntered in practicei Thefdeflectien profiles and the bend-
1ng stresses for the edge meh“ors, with andlw1thout the 1nc1u-
sion of edge merniter velgpts, are shown in Flvs 5.3 and 5.4.
The weight of the edge member is 20%:of the total uniform load
of 40 psf over the whole surfaee. A simple frame analysis
consicering only the edge ﬁember'weight and edge members, would
have given an increase of 0.74 inches in the defleetion of
point a (as against 0.33 inthes):and 0.202 inches in the deflec-
tion of neint b relative to p01nt a (as agalnst .15 inch).
This shows the effectlveless of the shell in carrying the
weight of the edge members. The cable and the arch action along
the diagonals ac and ob is‘efident in Figs. 5.2 and 5.4. The
increase in the deflections Sa and 6C produces an upward de-
flection at the center of the'span.

| The axial stresses for both the tension and the com-
pression members show an increase of nearly 20%. This is equal
to the increase in fhe.tetal load of the structure By the in-
clusion of the edge mcmber welght.' The bending stresses for
both the tension and 1he compresslon edge members show an in-
crease of nearly 50% in the maxirum stresses (Points o and a,
Fi~. 5.4). The increase in the beﬁ&ing stresses clearly in-
dicates the uﬁconservati?e assumptioﬁ.of srearing the edge
merber weight over the whole sufface.

The effectiveness of the shell in carrying the weights

of the edge members raises an important question as to the
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method of construction. The situation is analogous to that
encountered- in 'a composite construction using steel beams and
concrete -slab.. There.are three alternatives for the ‘construc-
tion. Depending upon the size and-shape of the shell, with the
decks 'in position, a hypar can be built on the ground and erected
in position; or it can be built in place by using an adequate
shoring for fhe edge members. In these methods of construction,
the effectiveness of the shell in carrying the weight of the
edge member will be utilized. The third way of construction
will eliminate the shoring and depend entirely upon the strengths
of the ‘edge members. The economics will obviously\detide the
method of construction.

From the analysis of the different structures, it is
found that the axial stresses in the edge members derived on
the basis of the membrane theory are always overestimated
(Table V-2). Because of the relatively small magnifude.bf the
edge member stresses in comparison with the bénding stresses
and with the uncertainty in the calculation of the exact bend-
ing stresses, the design of thé edge members for the' axial
stresses based -on the membrane theory cannot be consideféd to
be on a very conservative side."- |

‘From the analysis of different structures it appears
that -the non-dimensional parameéter 9%%3 provides a good index
for the behavior of the shells. The higher the value of this

constant, the more dominant is ‘the membrane action. As'&is-
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cussed earlier, the beneficial membrane action reduces both
the bending stresses and the deflections of the shell. A
second good non-dimensional parameter would be the relative
stiffness of the decl and the edge members. This however

would need further study.



CHAPTEFR VI

INSTABILITY AMALYSIS OF HYPARS

VI.1. INTRODUCTION

The linear stiffness analysis given in Chapter III does
not include the effects of middle-surface forces Nyo Ny and
N on the behavior of hypar shells. The omission of these

Xy
effects precludes the possibility of the analysis of insta-
bility of the individual finite elements. The accumulation of
the instabilities of the individual elements eventually lecads
to the general instability of the structure.
In the case of a hypar with light gage steel deck
used as a shell surface, the effcct of the in-plane forces is

manifested in three different types of instabilities:

(1) Local Buckling - In the case of a !!'-tyne open deck

or a cellular deck (Fig. 2.2b and c) the deck is composed of
flat plates. These individual plate components, depending

upon the thickness to width ratio and the boundary restraint
offered by the adjoining plates, may buckle locally when sub-
jected to in-plane compressive and shearing forces. In spite
of the uncertainty in the degree of restraint offered by the
adjoining plates, this local buckling can be approximated on
the basis of the stress level in each component plate36. The
effect of the local buckling on the behavior of light gage

bteam section is discussed in detail in Pefs. 38, 39.

The local buckling of the individual plate components

-104-
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results in the redistribution of the total stiffness of the
shéll. Thé fheory used in this chapter does not account for
thé local Buckling and therefore the effect of local buckling
on the shell stiffness cannot be predicted. The local buckling
jcén.be prevented by choosing proper thickness to width ratio
for each inaividual plate element.

(2) Deck Buckling - In this mode of buckling, the edge

beams remrain stable whereas the deck, used as a shell, buckles
as a unit. To understand the deck buckling, consider the
umbrella shell in Fig. 4.2. The deck acts prirmarily as a com-
pression arch between the points o and b, and thereforé it can
buckle along the diagonal ob; but the shell edge members re-
main stable.

(3) Overall Buckling - The shell and the edge mermbers

buckle as a whole unit. One can imagine an umbrella shell,
folding -down as an umbrella.turned inside out. Overall
buckling could occur either simulataneously with the deck
buckling or it can happen after the deck has buckled.
According to a simplified analysis by Parkerlg, the
possibility of overall buckling for the practical size of edge
memhers is very remote. Very high values of deflections and
stresses for both edge members and the deck will indicate the
possibility of overall buckling. The conclusion that overall
buckling is very unlikely is further verified by Struc. '9°'
(Table IV-1) tested at Cornell , where 1" diameter standard

pipes were used as ecdge members. The resulting structure was

too flexible to be used in practice. In spite of excessive
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i

deformations fnearly_one half the rise of 14.4"), the struc-
ture.did hot show éﬁy fendency of overall buckling though the
deck buckled.

The pfesent study was primarily concerncd Wlth dack
buckling. However, the overall instability due to the buckling
of the edge members can also be predicted from the load deflec-
tion cufvé. The aésumptions used during thévanalysis and the
limitations of the theofyvare as follows:

(1) A linearized Stability analysis was car;igd out to

51’66. The prebuck-

pfédict'the bifurcation point of buckling
ling deformations were within the limits of small deflection
fheory.

(2) MNo attempt was made to predict nost-buckling behavior
or the post-buékling strength., To be able to prédict the
post-buckling behaviof, one needs to retain the higher order
strain terms in the strain displacement relationships and have
higher order matrices67. It is extremely difficult to formu-
late these matrices explicitly aﬁd one has to resort to
numerical integration{ The non-linear equations can be solved
by the use of methods such as Newton-Raphson schemezs, energy
search technique67, ctc.

(3) The possibility ofvlocal buckling was totally
neglected. | |

(4) The material was assumed to be linearly elastic.

36

(5) Buckling was assumed to be conservative™~ .

Both curved and flat elerent approaches were used.
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VI.2. INCREMENTAL MATRIX FOR THE DECK AWD EDGE MEMBERS

In order to represent the instability effect in the
finite element analysis, the change in the potential energy
due to the middle-surface forces Nx’ Ny and ny, which occurs
during the flexural action is to be includedﬁﬁ. For the con-

stant values of Nx, Ny and N at any prescribed load level,

Xy
the potential energy due to in-plane forces assumes the form of,
b a 2 2
.1 % (AU dyry (3w S
Vi, = 5 g'df[Nx(gi) +Ny(8y) +2ny(3X)(8y)]dXdy 6-1

With the inclusion of the work done by the in-nlane

forces, the total potential energy can be written as,
o = &L rxyeay + L&l vygay - (a1em 6-2

For stable equilibrium, the first variation of the total po-

tential énergy is zero.
{r}
{r}

[[K] + [N]11{aA} 6-3

The matrix [N] is called the incremental matrix and itis ob-
tained by the second differential of the potential energy (Fa.

6-1) with respect to nodal displacements.

a2y ]
(N155 = 5532 6-

The coefficients of the incremental matrix [N], depend only
upon the geometrical parameters of an element, such as its
length. The incremental matrix is identical for both ortho-
tropic and isotropic cases.

For constant values of Ny » NY and ny the incremental
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matrix for a shallow 5shell hypar element and that for flat
plate elements arc;identicgl. The only difference is the manner
in which the in-plane forces are determined (see Chapter IT1).
The incremental matrix [N] for the deck is given in Appendix
D, Tables D-I to D-IV. |

. Due to the presence of the:axial force Nx’ the effec-
~tive stiffness of a beam element is alsb modified. Neglecting
the torsional mode of buckling, the potential energy due to the
axial force N¥'can be obtaineﬂ by putfing'the values of Ny and
Any equal to zero, in [q. 6-1. The procedure for determining
the incremental matrix forAthe heam is identical with that for
the deck. The incremental matrix for a beam element is given
iﬂ Appendix E. The.incrémentél matrix for the whole structure

is obtained By the same'procedﬁre as described for the formula-

tion of the master stiffness matrix in Chrapter III.

VI.3. CHECKING CF THE INCPEMENTAL MATRICES

Before analyzing hypér strucfures, it is necessary
to eétablish the:validity of the incremental matrix given in
Appendix D. Theldetermination of the in-piéne buckling loads
(Nx, Ny, ny) for flat pla;es provideé a pgood check; At a
critical load, absolute magnitudes‘of the deformations are
indeterrinate and the determinant of the effective stiffness
matrix [K] gg Must vanish.

| CILIKY + A 11 =0 6-6
where A is the eigenvalue ﬁhich”depénds upon the applied state
of membrane stress e.g. for an uniaxially compressed plate,

along the x-direction it will giveé eigenvalues corresponding
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to the in-plane force Nx (see Table VI-1). From the structural
point of view, one is only interested in ‘the minimum critical
load. To achieve this, it is necessary to rearrange Fq. 6-6

to get the first eigenvalue corresponding to the critical 1oad68.
1 -1
|5 (11 + [K17°[(N11] = o 6-7

The negative reciprocal of the first eigenvalue of the matrix
[Q]% where,

[Q1 = [[X]™"[M]] 6-8
will give the critical value of the membrane force. A sub-
routine named “NROOT? available in the IB}M system/360 Scientific
Subroutine Packageﬁg, calculates eigenvalues and eigenvectors
of a real, square, non—symmetric matrix given in Fq. 6-8,
where both [K] and [N] are real symmetric matrices and [K] is
real positive definite. In order to avoid underflowﬂand over-
flow in the computer program, it is necessary to divide both
[}1] and [K] matrices by some large number, like 1000.

The first three problems solved were uniaxially com-
pressed simply-supported plates with or without stiffeners (Table
VI-1). 1In general, the buckling in-pnlane force ”x (1bs/inch)

is given by,

6-9

where K is a constant depending upon the aspect ratio a/b and
also on the relative stiffness of the plate and the stiffener.

The ratio of the stiffnesses of the plate and the stiffener are

given by non-dimensional parameters y_and 636.

_EI A -
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‘I is the moment of inertia of the eécéntricaliy connected
“‘stiffener calculated about the junction of the §tiffener and
the plate. For these problems, the torsional mode of buckling
of the stiffener is neglected. The error fof the values of K
for these three cases is less than 0.2% as compared to the
classical solutions. One of the interesting observations for
these problems was that the plate with the aspect ratio of
a/b = 2, buckles in a double sine wave with zero deflection at
the center line. However, with the attached stiffemer it
buckles in a single sine wave. Vhile analyzing only a quad-
‘rant of a plate, proper boundary conditions are-to be applied
to account for this behavior.
| Since the shearing action is of primary importance
in the case of hypars, the shear buckling loads for a square
isotropic and for a 24-G standard corrugated flat deck were
’also calculated. The value obtained for the critical shear-
ing force ny in the isotropic square is compared.with Timo-

6

shgnkos and that obtained for the corrugated deck is com-

- pared with 'cFarland*®. The error between the classical solu-
tions and that obtained in this study for the-shear buckling
(ny) is more than that for the uniaxial compression (Nx).

~One reascen for the greater error is that the assumed displace-
rent field for the displacement w (Hermitian Interpolation)
closely approximates the buckled surface for an axial compres-
sion. To approximate the buckled wave. form due to shearing-

load, a greater number of elements is required to -achieve equal

accuracy. The error for the critical shearing force for the
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orthotropi; deck is 7.46% on the high side compared with a
s simplified formu1a48.f“ﬂowever, according to the authors48
itheir formula underestimates the critical lbad'by as much as
by:-5%. Therefore the actual error may be considefably less
than 7.46%. The error for the isotropic plate with only &
elements is 4.65% (Table VI-1).

The correlation between the classical solutions and
the solutions obtained here is considered adequate to sub-
stantiate the incremental matrices for the beam and the plate.
A further check will be presented in the Section VI-6, for
the cése of an isotropic hypar for which a classical sclution

: :

1s available .

VI.4., INSTABILITY OF HYPARS

The incremental matrix [N] is a function of the in-
plage forces Nx’ Ny and ny. In the casec of plate buckling
problems there is a complete untoupling between the flexural
and membrane action. This enables one to formulate the [N]
matrix from a given distribution of the in-plane forces which
are predeterminéd, independent of the flexural action. In the
case of a hypar; or for that métter any curved shell surface,
the values of NX, Ny and ny arc dependent on.the deflections.
With the change in the applied loading, the magﬂitudes of the
in-plane forces also change. In other words, there is a
coupling between the membrane and flexural behavior. The in-
érease in the in-plane forces resulting from the corresponding
increase in the load causes some of the elewentg to undergo a

marked decrease in the effective stiffness. This reduction in
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the effgcpiye $tiffnés§ of an element ﬁill adjust the incre-
mental force digtribuﬁion;  The accumulation of "these local :-
element instabilitiés wi11 éventuéll& lead to Buckling. Them
discussion of tﬁisvmembrané.énd flexural behavior for the shell
structures is given in detail in Refs. 51, 66.

The incremental [N] mafrix used for both curved and

flat elements is_ideﬁtical and can be represented by,
u —
(M = e ‘_-’- : .. 6-11
w

The only difference is that u, v, and w fdr the flat
elements are measured along local axes whereas thosekin.the case
of the curved elements are measured along the tangéhf éﬁd ﬁor-
mal to thg surface. As pointed out in Chapter III; the'transfor-
mation from the local to the global system for the flat ele-
ments can result in non-zero entries in all elements of the

[M] matrix and the matrix assumes a general form of, -

[nglobal - 6-12

whereas its basic form remains unaltered in the case of the

curved element.

VI.5. DETERVMINATION OF THE BUCKLING LOAD

The linear eigenvaluelfdrmulation for the determin-
ation of the eigenvalue and thefeby the lowest.bﬁckling load
is well documented.ip the Refs. 513.66 énd therefbré'it'is not
’ repeated;here..”Becausevof'the 1;;£.§f a:reliaBie eigenvalue

subroutine for the large-order systems and sufficient computer
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storage, Banavalkar could not use the direct eigenvalue approach.
Instead, a linearized load incrementation method had to be used.

In the load incrementation method, as used by the
author, the assumption is made that the in-plane forces N H
ahd ny are constant during an incremental step and are equal
in magnitude to the value at the end of each step. The proce-
dure of the solution can be demonstrated by the use of Fig. 6.1.

In the incremental step I, only linear analysis is
carried out by solving the linear part of the equation assum-
ing [N] as a null matrix.

[a] = (K17 [P] 6-13

From the knovn values of displacement vector [A], corresponding
in-plane forces Nx’ Ny and ny are calculated and the incre-
mental matrix [N] is forrmed. The effective stiffness matrix
[K]eff is used in iterative cycle II.

The iterative cycles are continued till convergence
is obtained for the nodal displacements and consequently the
incremental matrix [N] is consistent with the deforrmations,
It is found that for small incremental loads, convergence of
displacements is obtained within three or four cycles. An
incremental load é8p is applied on the modified effective stiff-
ness matfix and the increase in the displacements 8§ and A 1is
calculated by finding new values of the in-plane forces at the
end of the step II by the iteration as described before. The
analysis is continued by applying the increrment of the load &p
on the previously determined effective stiffness rmatrix.

Any sudden change in the load deflection curve be-
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tween any two load levels indicates_tho_occurrence of buckling.
In this method it is possible to. predict only.thg range within
which. the buckling occprs,;_Since_the solution neaf the un-
stable configuration is very sensitive, it is not possible to

- determine the exact point of buckling.

VI.6. QNUMERICAL RESULTS AND THEIR DISCUSSION

 Reissner5 ahalyzed'the case of a simply supported
isotropic hypar with edge members having infinite rigidity
along their axes but having zero stiffness in a plane tangent
to the shell surface. The saddle-shaped hypar, Struc. '1'
(Table IV-1) was analyzed:for these boundary conditions. The
déflection profiles at three points along the compression dia-
gonal bf are plotted for the load level of 0.20-0.50 kgms/cm2
increased by the interval of 0.1 kgm/cmz. The deflection pro-
files along the tension and the compression diagonals are shown
in Figs. 6.2, 6.3. The sudden change of deflection profiles
(Fips. 6.2, 6.3) between the loads 0.40 and 0.50 kgms/cmz,
clearly indicates that the buckling occurs between these two
limits of loads and moreover close to 0.40 kgms/cmz. The
analysis based on the curved element for the same structure,
also predicts the load between the same range though some dif-
ferences in the defléttion profiles are noted.

The load thus predicted is slightly higher than that
given by Reissner (0.38 kgms/cmz) but this is because of the
fact that Reissner used linearized membrane analysis. To ver-
ify this fatt,’anélysis‘was carried out where predetermined

membrane shearing force N#y'a 37%2 was used to establish the
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incremental matrix. From the deflection profiles not shown
herein, the buckling of the shell océurred between uniform
loads of 0.35-0.4 kgms/cm2 which is in the range of the loads
predicted by Reissner. One of the interesting points iéuthat
for the linear elastic analysis, the normal deflections W were
symmetrical about the lines bf, dh, ce and ag (Fig. 4.1).
Similar observations were also made by Deakls. However, afcay
the inclusion of the instability effects the symmetry of the
normal displacement is still retained about the diaponals bf
and dh but there is no symmetry about the lines ce and ag. This
is because of the readjustment of the effective stiffness due
to the in-plane tension and compressicn forces.

In order to assess the effect of edge deflection and
the stiffness of the edge members on the buckling of the hypar
deck, an umbrella shell with %g-ratio equivalent to that of
Struc. 'l' (Table IV-1) was analyzed for two different sizes
of edge members. For all edge members of size 6x3 cms. (18
sq.cm. cross-section area), it apbears (Fig. 6.4) that buckling
occurred between the loads 0.20 to 0.390 kgms/cmz, which is
nearly vne half that of the all-supported case discussed before.

28, the buckling of the hypar shell primarily

According to Leet
depends upon the axial stiffness of the edge members and not
on the edge deflections. The boundary conditions used in
Reissner's solution correspond to tﬁe infinite axial stiffness
of the edge member. To verify Leet's conclusions, the same

hypar was analyzed with the edge beams having the same proper-

ties as those of the 6x3 size beam except for the cross-sec-
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tional -arca, which was increased from 18 sq.cm! to 108‘sq{cm.
Though the.deflectioﬁ profiles did not show the buékiing very
clearly up to 0.50 kgms/cmz, there was a small deviation.in \
the deflection profile_at about 0.40 kgms/cm2 (Fig. 6;5). It
appears thatvthe‘buckling depends upon fhe‘cross-sectional area
of,thé edge member and not so much on the edge deflection. It
is believed that for thevstiff edge members used in Stfucs.'}ll'-
'13' the deck buckling load can be predicted by calculatinglfhe
buckline of a single quadrant of the umbrella shell with dlf-
supported edges. |

Two hypars, Struc. '13' with double 28-CG corrugated
decks and Struc. '12' with a single 24-G corrugated deck were
analyzed to determine the bucklihg load. In the Case of a
double deck structure, the deck buckling load is betﬁeén the
range 200 to 243 psf. (Fig. 6.6). Experimentally the struc-
ture was tested up-to 145 psf and no deck buckiing vas obser-
ved, though deck tearing along the lines’of connection waS'
noticed. |

Struc. '12' with a 24-G single deck was ahalyzed
using both curved and flat elements. The experimentally ob-
- served deck buckling load for this structure was in thevvicinity
of 75 psf, but from Figs. 6.7-6.9 both curved and flat ele-
ments analyses predict a lower buckling lbad, One of the pos-
sible reasons for this is that the pressurized canvas bags
used as loading devices, tend to offer some restraint to the
buckling of the shell. It is known that even a small external

restraint to the shell surface is adequate enough to raise the
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buckling load substantially. Comparing the deflection pro-
files in Figs. 6.7-6.9 it appears that the flat elements pre-
dict the load in the vicinity of about 46 ypsf whereas the curved
elements predict the load in the vicinity of 60 psf. As
pointed out in Chapter 1V, the curved and flat elements, for
hypérs with all edges supported give very close results for

the linear elastic analysis. It appears that the flat ele-
ments give very conserviative results for the buckling of single
decks. As pointed out in connection with Eq. 6-12 for the flat
elements, the transformation of the incremental matrix from
local to the global axes results in the modification of the
flexural as well as membrane stiffnesses. Since the in-plane
membrane stiffness for a corrugated deck is very small in the
weak direction, a premature buckling could possibly be trig-
gered by the reduction in the merbrane stiffness. As against
this, in the curved element formulation because of the
assumptions used in the analysis, the membrane stiffness is not
modified.

For a double deck or an isotropic deck, because of
high in-plane rigidity in both directions, hoth methods pre-
dict the buckling loads in the same range. As pointed out in
Chapter IV, the bending action is very dominant in the flat
portion of the shell. But in the buckling analysis, the curva-
ture of the hypar in the center of the quadrant may be more
critical. This fact occurs even more in the case of a single
deck and therefore the curved elerent, which accounts better

for this curvature effect, probably predicts a hircher load.
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Reissner5 in(his analysis of tuckling of isotropic
hypar shell, has‘iﬁdicéted that except for a difference in
ndmericai.coéfficients, the critical in-plane Shearing force
for the sﬂeli differs ffom that of a flat plate hy the fact
that a thitknéss‘sqﬁare factor is replaced by the produc;”of
shell thicknésé and shell rise. However, in the case of'éﬂ
orthofropic shell, fhe increase in the critical shearing force
does not appearito be as high as in the case of an isoteric
shell. 'Becausé of equal bending rigidities inboth directiéns,
the buckling load for a double deck hypar shell appears to be
three or four times larger than that of a single deck. This
is also observed in the case of thc critical sheariné stress
for a flat platec.

Struc. '12' was also analyzed using the idéntical
boundary conditions as the structure analyzed in Fig.‘6.7, but
allowing the edges to deflect. As pointed out previously,
though the exact point‘bf deck buckling is not known, the déck
buckling occurs between the loads of 43.0-50.0 psf. The in-
teresting point to note here is that even though the deck
buckled (Figs. 6.10, 6.11), the deflection 6f the edge members
was still quite linear. The same trend was also observed dur-
ing the experiment. The buckling also showed a similar trend
as wbserved in the case of an all-supported hypar. The deflec-
tion profile along the tension diagonal did not show any
buckling (Fig. 6.10). | -

It may not be convenient to gnalyze every structure

in practice by this load incrementation method. According to
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5

Reissner~, the buckling load for an isotropic hypar shell is

_ 2
., = 4(C/AB)® /D Et 6-14

where D is the bending rigidity and Et is the membrane stiff-

given as,

ness. In the case of a double deck, the bending rigidities of
the shell are equal in both the directions, however, the mem-
brane stiffness is affected by the shear rigidity factor a., If
the equivalent thickness in the formula 6-14 is replaced by

at, the estimated buckling load will be very conservative be-
cause of the fact that it will also underestimate the in-plane
axial stiffness. In order to eliminate this underestimation

of the axial stiffness the shear rigidity factor o is arbi-
trarily multiplied by 2(1+v) (the ratio of E/G for the parent

material).

- C 2 i
4cr Double Deck - 4 (AW J/Z Dy E(1+v)at 6-15

This formula is a conservative approximation of the buckling

load of hypars with double decks.
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VI.7. - DECK BUCKLING BY THE ENERGY METHOD

Tiie buckling of isotropic hyperbolic paraboloid shells

L]
Lo

was investigated in a classical paper by Reissners. He devell
oped the general shallow shell theory and reduced it to tWQ_@?f'
ferential equations in the displacement w and a stress funcfion
F. From these equations he studied the buckling[pf_simplyf
supported isotropic hypars under uniform loading. The assumed
displacement was a double sine series and the form for the
stress function F was assumed to be a double sine_géries with
an additional term containing xy. The substitution of these;"
series into the two equations result in homogene&us,algebraic
equations because the sine terms drop out. The condition of |
non-trivial solution yields the buckling load:

2.2

- 2E h”C
P - . 2 2 N 6"1@

Cr . L s o—————— o
V3(1-vé) AB

.This solution was possible because each of the_;wo dif-
ferential equations contained only one elastic consfant:_ E
in one equation and D in the other. Thus the sine terns couid
drop out.

In the case of orthotropic shells these equations contain
several elastic constants and therefore the sine terms would
not drop out. This means that one cannot use these shallow
shell equations to obtain reasonable buckling load. It may be
possible to find very simple assumed functiens for w and F but
the accuracy of such a solution would probably be very poor.

Another alternative approach uses energy principles. The

potential energy of an orthotropic hypar shell islg:
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v=lfb(a[Dw2+2D W W +D_ w % +4p._ w °
2 6?6 X XX 1 "xx Tyy y vy Xy Xy
2 2
+ 4 Geffh (C/AB) w~™ + Zny Wy wy] dxdy 6-17

The selection of an assumed buckling shape requires very
careful attention. A double sine series is very difficult to
use because of the complexity of the resulting arithmetic.
Furthermore, the direction of the buckles is at an angle with
the coordinate axes in the case of orthotropic shells and the
deflection function must contain a factor which accounts for
this fact. Several types of deflected shapes were tried. By

far the best results were obtained using the following shape:
w = sin E% sin [9% (x-sy)] 6-18

where the factor s represents the tangent of the angle of the
buckles measured from the y axis and n is the number of buckled
waves. This function was used by Timoshenko and Gere36 and by

Easley and McFarland48

for the buckling of shear diaphragms.

This deflection assumption corresponds to a simply sup-
ported shell (or diaphragm) where B (and the y axis) is measured
along the deformations (corrugations). Actually this expression
does not satisfy w = 0 along the y axis, but comparisons with
more exact analyses for the buckling of diaphragms showed48
that this discrepancy is not serious.

Substitution of the assumed w into the potential energy

expression and integration yields:
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V=%(Q1+Q2+Q3)

where Q1 = Dxa4 + 2D1a2b2 + 2D1a4s2 + Dyb4 + Dya4s4
2,2 2 C 4 2 .
+ 2Dya b®s” + 4nya s® + C
_ 2,22 2.2
Q2 = 4Dya b®s® + 4nya b
2
_ _ - Y
Q3 = °2nyazs a = n'lT/A, b = TT/B, C' - 4Geffh (AB)

Since V represents the change of potential energy under
a deflection w, the condition V = 0 corresponds to the buckling

load. Thus

Q +Q + Q=0

From the membrane theory ny pAB/2C, thus

- C 7y 2 2 2.2 2 2 4 2
P., = ABS (F) [Dxu + 2D1(1+u s%) + Dy(l/u + u®s’ + 6s7)
+ 4Dvy (1+szu2) + C/uZ] ' | 6-16
where
u =a/b =nB/A and c = C'b4 = 4Geffh(BC/A)2/1r4

This expression has to be minimized with respect to the
direction of the buckles (s) and the number of buckles (n).
This can easily be done by trial and error, using a computer.
The analysis of the single-layer 24-Gage structure (No.
12) gave 50 psf for the buckling load as compared with the
experimental value of about 75 psf and the finite element analy-
sis of about 60‘psf using curved elements. Minimum occurs for

n = 8 and the buckles form at an angle of 8.0 degrees with
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the y axis (Fig. 6.12). The tuckling load was not very sensi-
tive to n and therefore the prediction of the number of buckles
may not be accurate.

For structure No. 13 (double-layers, 28 Gage) the above
analysis resulted in a buckling load of 192 psf at n = 2 and
at an angle of 35.8 degrees. The finite element analysis gave
avout 200 psf and the test structure did not buckle up to a
load of 145 psf when loading was discontinued.

The main advantage of this energy analysis of the buckling
load is that it is very fast as compared with the finite element
analysis. Simple supports are assumed and therefore the actual
buckling load may be somewhat higher if some bending or in-plane
fixity is present. The deflection of the edge members is not
considered, but the finite element analysis showed (Section VI.6)
that edge member deflections do not affect the deck buckling
load appreciably. The deck buckling load is influenced by the
area of the edge members. If the edge members are very slender
then deflections will control; on the other hand, the above
analysis should give conservative results for structures with
heavy edge membters.

VI.7 STABILITY OF ISOLATED EDGE MEMBERS

The edge members of a hypar structure receive uniform axial
loads along their lengths from the deck. Some or all the edge
members are in compression. The loading remains axial during
the deformation of the edge merbers and therefore it constitutes
a non-conservative force field. To obtain an approximate value

of the buckling of the compression edge members, the membrane
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shear force was applied to isolated edge members with various
idealized boundary conditions. The buckling loads determined
in this manner are conservative since the stiffening effect of
the deck is neglected.

The marginal member was analyzed both as a fixed free and
a fixed pinned membef; The equation used to solve the non-
conservative force field problem was:

IV

EI,"" + S(L-x)y" + My = 0 6-20

where S = the shear force, L = the column length, M = mass per
unit length, y = deflection, and (') means differentiation
with respect to time.

The solution of the differential equation was obtained by
using Galerkin's Method for solving differential equations with
non-constant coefficients. The numerical solution for the fixed
free case was found in an article by V. H. Leipholz; "Die. Knick-
last des Einseitig Eingespannten Stabes mit Gleichmassig Ver-
tielter, Tangentialer LYngsbelastung', published in ZAMP, 13, 6,
1962.

The solution for the fixed pinned case was determined using
the same method as described above, but a computer program was
written to facilitate the trigonometric integrations and the
mathematical solution.

The numerical solutions are:

(ql)., = 40.7 EI/l2 for the fixed free case

(ql)cr = 122.6 EI/l2 for the fixed pinned case
where q = shear per unit length transferred from shell to
marginal member. These values and some comparison values are

given in Fig. 6.13.
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The results show that the buckling load of members loaded
by tangential shear forces is very much greater than that of
members under gravity load of constant direction parallel to
the original, undeflected axis of the member.

Thus, if case IV is compared with V, with loading and end
conditions the same except for the direction of the load, it
is seen that in the elastic range the edge member of a hypar
will buckle at a load (1.12/0.49)% = 5.2 times that which the
same member would carry under uniform gravity load. Similarly,
comparing cases VI and VII, it is seen that the corresponding
ratio is (0.436/0.284)% = 2.4.

If the total load which will make the edge member of a
hypar buckle, is compared with that which the same member,
loaded as a hinged-hinged Euler column (basic case) would carry,
it is seen that the edge member in the fixed-free condition
(case V) will carry (1/0.49)2 = 4,1 times the buckling load of
the basic Euler column, or, for the fixed-hinged condition
(case VII) (1/0.284)2 = 12.4 times the basic Euler load.

The above results do not represent a complete analysis of
the problem, which is really one of buckling interaction between
the edge member and the shell. However, if the shell action is
close to that of a membrane, as in the case of light-gage steel
hypars, the approximation should be reasonably good. This ap-
proximation shows that, while a buckling possibility exists,
these edge members are very much more stable than they would
be if they were part of ordinary framing subject to gravity

loads.
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CHAPTER VII

EXPERIMENTAL INVESTIGATION

VII.1 INTRODUCTION

An extensive experimental investigation was carried oﬁt.
The purpose of the testing program was twofold: (1) to study
the behavior of light gage steel hypar roofs subjected to verti-
cal loads and (2) to provide a comparison with analytical ap-
proaches.

The following tests were carried out:

" a) Sixteen flat shear tests - Properties and dimensions of

all the specimens are presented in Table VII-1 and a picture of
one is shown in Fig. 7.1. It was necessary to carry out these
tests to determine the shear rigidity G' of the decking used
for the hypar models. Twelve specimens were 6' x 6' in plan,
three were 5' x 5' in plan (all referred to as ''medium scale
tests’’), and one was 1' x 1' in plan (''small scale test").

b) Twelve saddle shaped hypar specimens - All of them were

5V x 5' in plan with various rises (Table VII-2-VII-3). A
picture of one is shown in Fig. 7.2. The specimens are desig-
nated by three numbers: the first one indicating the rise/span
ratio, the second the number of layers of decking, and the
third whether it is an original or duplicate. For example,
for test no. 512, 5" indicates a 1/5 rise/span ratio, "i“
indicates one layer of decking, and "2' indicates that it is

a duplicate test (each specimen was duplicated).

c) Three inverted umbrellas with very stiff edge beams -

Numbers 11, 12, 13 in Table IV-1. All were 12' x 12' in.plan
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with a 14.4" rise. A picture of one is shown in Figure 7.3.
They are referred to as ''medium scale inverted umbrellas with
very stiff edge beams'.

d) One small-scale inverted umbrella with véry flexible

edge beams. The modellwas 2' by 2' in plan with a 3" rise.

The edge members were made of 3/16" 0.D. and 0.014" thick brass
tubes, two were used for the interior compression beams. Two
layers of corrugated decking of 2 mil thickness formed the shell.
The deck was soldered at every valley to the edge members. A
picture of the model is shown in Figure 7.4.

e) One medium scale inverted umbrella with'very flexible

edge beams - The model was 12' x 12' in plan with a 14.4" rise,

structure number 9, Table IV-1. A picture of it is shown in
Figure 7.5.

The tests are described in the following sections.

VII.2 FLAT SHEAR TESTS

1. Introduction

A series of flat shear tests were conducted in order to
determine the shear rigidity G' of corrugated steel decking.

Luttrell45

investigated the shear behavior of light gage steel
diaphragms. Based on the results of numerous tests he concluded
that the primary variables influencing the shear rigidity are
length of diaphragm parallel to the corrugations and spacing of
connectors to the edge members in the direction perpendicular
to the corrugations. it was also determineé by Luttrell that

the only reliable means of determining the shear rigidity of a

given diaphragm with framw was by experiment.
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The formula for G' developed by Luttrell accounts for the
deflection due to shear alone by subtracting from the measured
deflection the bending deflection of the cantilevered structure
due to axial deformation of the edge members. The value of G'
obtained from a given test can be applied to the following
case: Any set-up with exactly the same spacing of diaphragnm to
edge member connec;ions perpendicular to the corrugations, and
‘the same diaphragm. The size of the edge members should have
little or no effect.

It may be applied with simple modifications to the follow-
ing céses:-(lj everything the same except diaphragm has differ-
ent thickness - G' is (approximately) directly proportional to
the thickness; (2) everything the same except length of frame
parallel to the corrugations is different - new G' may be ob-
tained from Figures 4-23 and 4-24 in Reference 45 for box-rib
and standard corrugated diaphragms, respectively.

2. Edge Member Frame

| For all tests except two the edge members were light gage

channels. Two different size channels were used. One, desig-
nated as "heavy frame", consisted of 6" x 1 1/2" x .1046% chan-
ﬁels and the other, designated "light frame', consisted of 6" x
3/4" x .1046' channels. For the other two tests, the frame was
made up of tubing.

3. Decking

All the medium scale tests employed standard corrugated
decking; including 24, 26, and 28 gage. Either one layer or

two layers, with the second layer placed with the corrugations
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perpendicular to those of the first layer, were used.

The small scale test had 2 mil corrugated steel foil.
This material was produced by United States Steel Corp. as a
reinforcing center for cardboard cartons. Two layers, running
transverse to each other, were used.

4. Connections

For the medium scale tests, #8 x 1/2' self-tapping screws
were used to connect adjacent sheets to each other along the
seams. #14 self-tapping screws with aluminum-backed neoprene
washers were used to connect the decking to the edge members.
For double layered decking, the second layer was attached to
the first layer around the perimeter only with #8 x 1/2" self-
tapping screws. The spacing of connections for each test is
given in Table VII.1.

In test no. 14, the effect of the relative positions of
the screws connecting the top layer to the bottom layer and
the screws connecting the bottom layer to the edge members was
noted. Referring to Figure 7.6, one possibility is shown in
(a) where the shear flow causes a region of compression between
screws 1 and 2 and the bottom layer distorts considerably be-
tween screws 2 and 3. The other possibility 1is shown in (b)
where the shear flow now causes a region of tension between
screws 1 and 2 and very little distortion of the bottom layer
occurs. However, in this case, because of the tendency of the
tensile region between screws 1 and 2 to flatten out, eventually
screw #1 tears out of the bottom layer.

For the small scale test, the top layer was soldered to

the bottom layer at every point of contact around the perimeter
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and the bottom layer was soldered to the edgé members at every
point of contact. One full panel was used for each layer.

5. Loading Apparatus

The medium scale frames were placed in a horizontal plane
and load was applied by méans of a 50 ton hydraulic jack. |
Vertical support along the loaded edge was provided by rollers
on beams. Reéétions were provided by a fixed wall beam to
which the frame was pihned. Steel bricks were placed on the
loaded edge to prevent out-of-plane warping.

The.sméll scale frame was attached to a wooden frame with
metal guides to prevent the specimen from warping out-of-plane.
The entire set-up was placed in the vertical position in a
Tinjius-Olsen hydraulic tesfing machine and load was applied by
the machine.

6. Deflection Measurement

For each test, deflections were measured by .001" dial
gages.. At first, .0001' gages were tried but it was discovered
that they are too sensitive because the readings obtained from
then were erratic. Sufficient accuracy was obtained with the
.001 gages. If possible the stem of the gage was placed in
contact with the specimen, otherwise a thread was used to at-
tach the stem of the gagé to the specimen.

7. Determination of Shear Rigidity G'

G' was determined by the use of the expression given by
Luttre1145. The initial linear portion of the load-deflection
curve was used to obtain the slope. Thevcustomary testing pro-
-~-cedure was to initially load the speciﬁén to a predetermined

value so as to seat all connections and then to conduct ‘as many
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loadingbcycles as necessary to get good agreement between the
load-deflection curves of successive cycles. Usually, only

two or three cycles were required. The dimensions, properties,
and the values of G' and of o = G'/Gnt for each test are pre-
sented in Table VII.1. The load-deflection curve for test #14
is skown in Fig. 7.7.

VII.3 SADDLE SHAPED HYPAR TESTS

1. Introduction

A series of light gage steel hypar models, 5' x 5' in plan,
with various curvatures were tested in an effort to determine
if the shear rigidity as determined by a flat shear test is
valid for the plate on elastic foundation approach. If an
exact analysis of light gage steel hypars were possible, then
it would appear that the experimental shear rigidity could be
used with validity in the analysis. However, the assumptions
which were introduced into the approximate plate on elastic
foundation approach may lead to errors in the results if the
shear rigidity as determined by a flat shear test is used in
the analysis. Better results may be obtained if a '"fictitious"
shear rigidity were calculated backwards from experimental de-
flections. Thus, it might be possible to determine the ficti-
tious shear rigidity as a function of the curvature.

For the above reasons, the only variable in this series
of tests was the rise, i.e. curvature. Three different rise/
span ratios were employed, 1/8, 1/5, and 1/3; one set for
single layer decking and the other for double layer. Two tests,
one a duplicate of the other, were carried out for each rise/

span ratio and number of layers of decking. The tests were
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designated ‘according. to the rise/span ratio, number of layers,
and first test or duplicate as explained in Section VII-1

2. Details of Test Specimens

The edge beam frames with supports were the same for all
the tests. They consisted of 3" O.D. x 1/4" wall thickness
cold rolled steel tubular members welded together to give the
correct rise/span ratio for each specimen; The diagonally op-
posite corners, two low and two high, albng“with the midpoints
of each side were rigidly supported in the:vertical direction
by steel bricks (Fig. 7.2). Ihis{supﬁorf'system tbgether with
the fact that the tules have a large benaing rigidity was con-
sidered to offer -continuous rigid supﬁoft‘in the vertical
direction, |

A tie bar, 2 1/2" x 1/4" in cross-section, was used to
limit the spreading of the two low corners due to the vertical
load. | -

The decking was made up_df 28‘gége Stan&ard corrugated
steel sheets with 2' cover. Thjee sheets'were used for each
layer, with the middle sheet cut to fit the 5' width. Single
layered decking was connected to the edge beams by #14 self-
tapping screws with aluminum-backed neoprene washers at 8"
spacing while the two seams were fastened together with #8 x
1/2"* self-tapping screws at 2 2/3" spacing. For the double
layered decks, the top layer was fastened to the bottom layer,
around the perimeter only, with #8 x 1/2" self-tapping screws
at 8" spacing. The two seams of the top layer were fastened

together exactly the same as those of the bottom laYer.
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Uniform vertical loading was achieved with sand held in
place by wooden sides and screeded to a uniform depth for each
400 1b. (about 15 psf) load increment.

For each one of the models, subsequent to the uniform load
test, a partial load covering an 8" x 12" area was applied at
the center of the same decking. These tests were designated
with a "C". 1In addition, for each one of the two duplicate
models with double layered decking and subsequent to the tests
with unconnected decks, the two layers were fastened together
with #8 x 1/2" self-tapping screws on an 8" square grid and
subjected to uniform loading first and then the partial load-
ing on an 8" x 12" area. These tests were designated with an
"I,

Deflections were measured with .001'" dial gages. Strains
were measured at the center of the decking with SR-4 strain
gages with 1' gage length. The strain gagés were placed in a
valley on the top side and on the adjacent crest on the bottom
side, and in the direction parallel to the corrugations . They
were also located at mid-length of the tie bar, top and bottom,
on some of the models. The purpose of the gages on the deck-
ing was to determine the axial and bending stresses at the
center of the deck and on the tie bar was to determine the
axial force in it.

The experimental deflections and stresses at 40 psf for
the saddle shaped hypar tests are presented in Tables VII-2
and VII-3. The method of determin{ng the shear rigidity versus

curvature (or rise/span ratio) by using the experimental
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deflections in the plate on elastic foundation approximation
Py n

is presented 1n Section VII.6. ° SRR

&

VII 4 MEDIUM SCALE INVERTED UMBRELLAS WITH.VERY STIFF EDGE BEAMS

1. Introductlon

Three medlum scale models (Structures 11, 12, 13, Table B
IV-1) were de51gned and ‘tested with the ma1n purpose being to
check the theory for the buckling of jerthotropic hypar shells'
Therefore, edge beams with' a large bending.rigidity were chosen
so as to remaln stable when the decking buckled. Vert1ca1 de-
flect1ons as well as strains vere measured for the decking and
the edge beams ‘

| The same edge beam frame was used-.for a11 three tests. It
con51sted of 3" 0.D. x 1/4" wall: thickness cold rolled steel
tubular members welded together. The dimensions of the full’
inverted umbrella were 12' x 12%-in plan, centerline to center-
line of the edge beams, with a 14.4" rise (1/5 rise/span ratio).
Each interior edge beam‘tonsistéd of,tyo,tubular members side
by side (spotnweided to@é%her?atnl:L42?¢intervals) so that deck-
ing could Bé”f&stene& to ore/ ‘of the. members in a given quadrant
and deckingﬁinigg adjacent ‘quadrant-could be fastened to the
adJacent member Therefore, the plan dimensions of each quad-
rant were 70 5" x 70. 5", centerline to centerline of the edge
beams | o o

2. Details of Test Specimens and Procedure

" Two of the models had one layer of standard corrugated
steel decking, 28 gage for-one model and 24 gage for the other.
The third model had two layers of 28 gage standard corrugated

steei‘decking; v
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For both of the models with one layer of decking, #14 self-
tapping screws at 8" spacing fastened the decking to the edge
beams and #8 x 5/8' self-tapping screws at 2 2/3' spacing fas-
tened the seams together. Three panels, each with 2' cover,
were used per qﬁadrant. For the model with two layers of deck-
ing, the bottom layer was attached to the edge beams exactly as
described above. The top layer was fastened to the bottom
layer, around the perimeter only, with #8 x 1/2" self-tapping
screws at 8" spacing. The seams for the top layer were fas-
tened together exactly the same as those in the bottom layer
as described above.

For all three models, uniform normal air pressure was ap-
plied to the inverted umbrella shape by four rubberized canvas
bags placed between the floor and the hypar in the inverted
position. A water manometer was used to measure the pressure.

Vertical deflections were measured by level sightings on
meter sticks held at each location. Strains in the decking were
measured with SR-4 gages with 1" gage length and those on the
edge beams with‘SR-4 gages with 1/2" gage length. The vertical
deflections, experimental axial stresses, and experimental
bending stresses at 40 psf normal pressure are presented in
Figs. 7.8-7.10.

VII.S INVERTED UMBRELLAS WITH VERY FLEXIBLE EDGE BEAMS

1. Introduction

Two models were tested with extremely flexible edge beams.
The purpose of these tests was to determine the mode of failure

as well as to check how closely the failure could be predicted
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by thLeory.
2. Small Scale Model

One of the inverted umbrellas with very flexible edge
beams (Fig. 7.4) had overall plan dimensions of 2' x 2', center-
line to centerline of the perimeter edge beams, with a 3" rise
(1/4 rise/span ratio).

The edge beam frame was made up of 3/16'" 0.D. x .014" wall
thickness brass tubes brazed together. The decking consisted
of two layers of 2 mil corrugated steel sheets soldered together
at each point of contact around the perimeter. The decking was
soldered to the brass tubes at each point of contact.

Uniform vertical loading was simulated by 64 discrete
weights (16 per quadrant) hung from strings passing through very
small holes in the decking and attached to 1' square pads.

Vertical deflections were measured with .001" dial gages.
The dial gages were positioned such that the stems did not
touch the shell. To fake a deflection reading, the stem of
the gage was pressed until contact with the deck was made;
avoiding the application of any force by the stem as much as
possible.

Experimental deflections at 40 psf load are presented in
Fig. 7.11.

Collapse of this model occurred at 73 psf. It was ini-
tiated by splitting of the decking alohg a row of holes through
which the weights were suspended. This splitting caused the
brass tubes to fail in bending very close to the central sup-

porting column,
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3. Medium Scale Model

The test set-up and procedure for this model were almost
the same as for the 12' x 12' inverted umbrella with two layers
of 28 gage decking descfibed in Section VII.4 except for the
size of thé edge beams. |

The edge beams were 1'" nominal diameter standard weight
black steel pipe with a 50 ksi yield point.

The vertical deflections were measured with .001" dial
gages. The stems of the gages were attached to the shell by
means of thread which was glued to the structure.

Experimental deflections and stresses at 40 psf load are
presented in Fig. 7.12.

VII.6 DISCUSSION OF EXPERIMENTAL RESULTS

1. Shear Rigidity G' of Standard Corrugated Decks

Comparison of the results for the flat shear tests, which
are presented in Table VII-1, reveals that the variable having
the largest effect on G' is the spacing of the connections to
the edge members. In particular, the sbacing transverse to the
corrugations has the nredominant effect whereas the spacing
along the corrugations has little or no effect on G'. For
exarple, screws at every third valley as in test no. 3 produce
a G' approximately one-third that for screws at every valley
(one-third the spacing) as in tests no. 1 and 2.

According to Luttrell45

, another variable which affects
the shear rigidity is the dimension along the corrugations; the
larger this dimension the larger the shear rigidity. From the
results presented in Table 3.1, it is not possible to verify

Luttrell's finding conclusively. ’For test no. 8, with plan
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dimensions of 5' x 5', G' is less than thaf for 6' x 6' test
no. 5 but'slightly more than that for 6' x 6' test no. 6. Thus,
it appears that scatter in the test results masks any effect of
the smallivariation in size. |

The spacing of seam connections and number of seams have no
discernable effeef on‘G' based on the resuits presented in Table
VII-1. Also, it appears, atﬁleast for a limited range of thick-
nesses of panels, that the shear rigidity increases linearly with
the fhiekness. For example, compare the results for tests no.
5 and 7. | |

Tests numbered 10 - 16 had two layers of deeking running
transverse to each other. In each case the top layer was con-
nected to the bottom layer along the edges, rather than being
connected directly to’ the edge members. The effect of this ar-
rangement of connections is to make the top layer less effec-
‘t1ve in shear than the bottom layer, which is attached directly
ﬁoﬁthe edge members. The reason for this is that any shear
deformation which occurs in the bottom layer along the edge
members occurs also in connections for the top layer which in
turn reduces the effective shear stiffness of the top layer
below that obtained by connecting the top layer directly to the
edge beams; From Table VII-1, tests no. 10 and 11 versus 1 and
2; 12 and 13 versus 4, 5, and é; and 15 versus 8 and 9 show that
the shear rigidity for the double layer tests is less than twice
that for the corresponding single layer tests. It appears that
connecting the second layer in this manner results in only a 33%
increase in G' over that of the 51ng1e layer, although as men-

tioned previously the relative p051tions of the screws appear to
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affect the shear rigidity. If all the connections between the
two layers were such as to create the condition shown in Fig.
7.6(b) then the shear rigidity should be larger than for the
case shown in Fig. 7.6(a).

Fig. 7.7 shows the load-deflection curve for test no. 14.
The linear portion extends to about 1800 1bs. load which corre-
sponds to a shear ny = 25 1bs. per inch. Beyond this point,
the curve indicates that the shear rigidity decreases with in-
creasing load.

Figs. 7.8 and 7.9 indicate that the shear rigidity of
standard corrugated steel decked hypars with a rise/span ratio
> 1/5 is somewhat (20 - 30%) less than that of the same flat
deck. However, as mentioned briefly in Section VII.2, this in-
formation may be misleading because of the approximate plate on
elastic foundation approach used in conjunction with the experi-
mental deflections to obtain these curves., Two factors were
omitted in the theory used to obtain Figs 7.8 and 7.9, the in-
clusion of which indicate that the shear rigidity obtained from
a flat shear test may be valid for the hypar shell. One of the
factors omitted was the middle-surface deformations u and v.
The other was the spreading of the low corners of the saddle
shaped models. Even though a tie bar connected the low corners,
tension in the tie bar caused by the shear forces resulted in
its elongation. Duplicate tests no. 521 and 522 were chosen to
illustrate the effect of these two factors. If the u, v dis-
placements are included then the resulting o is .046 instead of

.042 as shown in Fig., 7.9 for the 12" rise. If, in addition,
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the spreading of the low corners is included by introducing

the stiffness of the tie bar into the analysis then the result-
~ing o is approximately .05 which is the same as that obtained
from the flat shear teét. These results for only one example
are not meant to be conclusive but the indication is that the
shear rigidity in a warped element is not much different from
that determine& from a flat shear test.

2. Hypar Deflections

a) Saddle Shape Supported All Around

Table VII-2 presents the maximum deflections at 40 psf for
the models tested in this investigation. The results reveal
the decrease in maximum deflection with increasing rise as: well
as the fact that the maximum deflection of a given model with
two layers of decking is more than half that of the correspond-
ing model with one layer of decking; the reason being, as men-
tioned previously, that since the top layer is connected only
to the bottom layer it is not as effective in shear as the bot-
tom layer and thus the rigidity of the single layered deck is -
more than half that of the double layered deck.

Table VII-2(b) shows the effect of interconnecting two
layers all over and not just around the perimeter. Test numbers
with an "'I'" indicate interconnected layers. The reduction in
naximum deflection due to interconnecting is seen to be only
10 - 20%. However, it appears that interconnecting would be
necessary in practice to prevent chatter.

Table VII-3 presents the maximum deflection due to a partial
load covering an 8" x 12“ area in the center. A comparison of

the maximum deflection due'to’a 100 1b. load on a single layered
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deck with that due to a 200 1b. load on a double layered deck
reveals that a double layered deck is more than twice as rigid
as a single layered deck for carrying a concentrated load; the
reason being that a concentrated load on a single layer is car-
ried mainly by a few beam strips whereas on the double layer it
is spread out and thus carried by more beam strips in each layer.
For all the models tested, the maximum deflection due to a 100
1b. load on a double layered deck is approximately one-third
that for a single layered deck.

b) Inverted Umbrellas With Very Stiff Edge Beams

Figs. 7.10(a), 7.11(a), and 7.12(a) show the measured verti-
cal deflection at 40 psf normal pressure for three inverted um-
brellas tested at Cornell. It is seen that difficulty in obtain-
ing symmetry was experienced. The lack of symmetry was probably
due to unequal air pressures in the rubberized canvas bags. The
bags were not entirely air tight so that unequal rates of leak-
age from the bags could have caused relatively large percentage
variations in the pressures.

c) Inverted Umbrellas with Very Flexible Edge Beams

Figs. 7.13 and 7.14(a) show the measured deflections at
40 psf for the 2 ft by 2 ft small-scale test and test No. 9,
respectively. Fig. 7.13 reveals that rotation about one diagonal
apparently occurred during testing of the small scale model. Fig.
7.14(a) shows that a reasonably good condition of symmetry was
obtained for the medium scale model. For both models, it is
apparent that the deflection at the free corners is much larger

than that at the center of each quadrant.
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3. Hypar Stresses

a): Saddle Shape Supported all Around

The -experimental stresses presented in Table VII-2 reveal
the difference in structural action between a very flat hypar-
(rise/span = 1.8) and one with a much larger curvature (rise/
span = 1/3). -The bending stresses in the models with a 1/8 rise/
span ratio are much greater than those in the models with a 1/3
rise/span ratio. The decrease in bending with increasing rise/
span ratio is accompanied by an increase in membrane action as
seen in—the last column of Table VII-2. The expefimental force
in the tie bar for the models with a 1/8 rise/span ratio is much
less than -that given by membrane theory whereas the force in the
tie bar for the models with a 1/3 rise/span ratio is almost as
large as that given by the membrane theory. Thus, it is demon-
‘strated experimentally that for very flat hypars, shear stresses
are much smaller than predicted by the membrane theory and that
‘bending constitutes the major part of the structural action
whereas for deep hypars (rise/span-i 1/3) membrane stresses pre-
dominate with values close to those given by membrane theory and
bending stresses are insignificant. The axial stresses in the
deck, for all models, are seen to:be insignificant.

Table VII-3 shows that a concentrated load produces signif-
icant bending stresses, especially in the flat hypars, but very
"little membrane action.

b) Inverted_Umbrellas with Very Stiff Edge Beams

Figs. 7.10(b), 7.11(b), and 7.12(b) show the axial and bend-

ing stresses obtained from strain measurements at 40 psf load
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for the three models tested at Cornell. The axial stresses in
the strong direction of the corrugated decking are seen to be
quite erratic and do not indicate any consistent behavior. It
appears that their magnitudes are too small to give reliable
results.

The bending stresses in the decking at the quadrant centers
vary from 6200 to 10200 psi for the 28 gage single layer, from
4800 to 5700 psi for the 24 gage single layer, and from 5100 to
10200 psi in the bottom layer of the 28 gage double layer decking.
The wide range of these values for each model indicates a con-
siderable departure from symmetry which was probably caused by
unequal pressures applied to each quadrant.

Experimental edge team axial and bending stresses as well
as edge beam axial stresses from the membrane theory are also
shown in Figs. 7.10(b), 7.11(b), and 7.12(b). It is difficult
to observe consistent trends in the experimental axial stresses
in the edge beams. In some locations they are very close to
those values given by the membrane theory while at other loca-
tions the difference is quite large. It is to be expected that
the experimental axial stresses would be less than those given
by the membrane theory because of the fact that part of the load
is carried by bending. However, the results for the three models
do not give any indication as to whether or not this is the
case.

Again, referring to Figs. 7.10(b), 7.11(b), and 7.12(b),
the bending stresses at the mid-lengths of the perimeter beams

for the two models with one layer of decking are larger in the
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beams parallel to the weak direction of the decking. This is

to be.expected bécause the bending which occurs in the decking
transmits a vértical shear loading to these edge beams. The
bending stresses in the interior edge beams for all three models
are small although the strains in these beams at points of maxi-

mum stress near the column were not measured.



-145-
CHAPTER VIII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The behavior of thin steel hypars was studied experimental-
ly and analytically to determine the stresses, deflections, and
buckling loads of such structures under various conditions.

The experimental program consisted of tests on: a) Five
inverted umbrella type hypar structures, b) Sixteen flat shear
tests which were made to determine the shear rigidity of cor-
rugated steel decks used on the hypar models, c) Twelve saddle-
shaped hypars with different rises and with rigid edge supports
wﬁich were tested in order to evaluate the effect of rise or
warping on the shear rigidity of decks.

Several small-scale and single-quadrant exploratory tests
preceded the above tests. The results are not included in this
feport because of experimental difficulties or uncertainties
experienced with those models.

Two different approaches based on the finite element method
were used in the analysis of hypars. These approaches basically
differ in the stiffness formulation for individual elements. In
the first, a curved element rectangular in plan was developed
on the basis of shallow shell theory. The displacements u, v,
and w used in the formulation of this element are measured along
the tangents and normal to the surface. In the second approach,
the actual shell surface was approximated by a series of flat
plates assembled in the global coordinate system. The stiff-
ness matrices for the eccentrically connected edge members were

developed. The effect of a tension tie rod and a column support
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was 1ncorporated in the analy51s by replac1ng the physical struc-
tural members by 1deallzed equivalent sprlngs (see Sectlon ITI-2F).
Computer programs were developed for the ana1y51s of thin-steel
hypar structures |

The linear elast1c analy51s is appllcable for various types
of hynar structures (e g. umbrella shell, saddle-shape, etc.)
and also for different loading conditions such as uniformly dis-
tributed load, unsymmetrical load and the load due to edge member
weight. Deflections and stresses for both deck and edge members
were calculated. | |

The linear elastic analysis was further extended to include
the instability effect introduced due to the in-plane forces Nx’

b Y

dy and ny. ‘The load incrementation method was used to predict
the deck buckling and the overall (edge member) buckling of the
structure. |

The solutions available in the literature for both the linear
elastic analysis (Refs. 17, 19, 20, 21) and for the instability
analysis5 were compared w1th the solutions obtained in this study
(Figs. 4.6, 4.8 and 6.2). The analytlcal results were further
compared with the experimental work conducted at Cornell and
also with test results available in the litetature elsewhere33’65.

Based on the finite element analysis of several structures
and the comparison of analyses with available experimental and
analytical results, the following observations evolved:

In the case of bypars'nith all edges fully supported, and
for hypars with very stlff edge members (Figs. 4.6, 4.8 and 4.33)

the results of curved and flat elements show excellent correla-

tion. However, in the case of hypars with flexible edges (Fig.
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4.23), the curved element formulation tends to underestimate

the bending in the f1at portion of the shell (e.g. frée corner
of an umbrella shell). In fhe case of a uniformly loaded hypar,
the fully compatible 16-term Hermitian polynomial used for the
nofmal displacement w, does not show any improvement  over a 12-
term non-compatible polynomial displacement field.

The relative stiffness of the edge members to the decks is
quite important from the point of view of behavior of shells.

In the case of moment-free connections between the deck and the
edge members, the type primarily investigated in this work, for
very stiff edge members the deck tends to bend freely between

the opposite sides. In the case of umbrella shells with flexible
edge members, the deck supports the edge member at the free cor-
ner. The change in behavior of shells with stiff and flexible
edge members is quite noticeable from the deflection profiles

for Strucs. '9' and '13' (Table IV-1).

The in-plane shearing rigidity of a hypar shell is of ut-
moét importance in its behavior. The effective value of the
“shear modulus of the corrugated decks is given by Geff = aG.
Depending upon the rise to span ratio of the hypar surface, the
value of o, determined by the flat shear test needs modification.
It is recommended that o as obtained from a flat test be reduced
by 25% for single deck structures whereas it should be reduced
by 20% for a double deck (Figs. 2.7-2.8). Since the deflections
and the stresses of the hypar shell primarily depend upon the
value of o, the conservative estimation of its value will provide

a significant factor of safety for the structure.
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H Since a part of the vertical load is‘carried by bending
aétion, the valﬁe of the membrane shearing force given by the
membrane theory is on the conservative side. vHowever, the
anélysis of.several structures (Chapter IV)‘tends to indicate
that oVer a major portion of the shell the value of the in-plane
shear is very close to and at places somewhat higher than the
membrane shear (Figs. 4.19, 4,.28). Connections between the ad-
joining panels designed on the basis of the membrane shear, are
consideréd adequate.

The éxialﬁfofces calculated in the edge member on the basis
of the membrane theoryvare on the conservative side (see Table
V-Z), The axial stresses form a relatively small porfion of the
tp;allstresses (axial + bénding) in the edge members. Therefore
the éomputation of the axial stresses in the edge membér on the
basis of the membrane theory neglecting the bending stresses,

cannot be considered as conservative.

The eccentric‘éonhections of the edge members to the deck
have a pronouncéd effeét on the deflections of the shell (Figé.
4.13, 4.17). With a propéf choice of the eccentricity, the iﬁ-
fluence of the eccehtric connection can bé used to advantage
(see Chapter V) td reduce deflections.
| As indicated in the analysis of Struc. '8’ (Tablé IV-1)
unsymmetrical loading in an umbrella roof produces considerably
larger deflections and stresses (Fig. 4.20) than uniform loading.
The unsymmetrical load due to wind or drifting of snow should be
given due coﬁsideration in selection ofvdecks and edge ﬁémﬁer

sizes.
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The weight of the edge members is partly carried by the
shell action. To average it over the whole surface of the shell
will underestimate the bending stresses in the edge members (Figs.
5.3, 5.4). The effect of the edge member weight on the behavior
of the shell will depend upon the construction procedure.

The effect of the amount of restraint against spreading of
the low corners of saddle-shaped hypars on the deflection of the
center of the shell was studied by means of numerical examples.

It was found that a tie bar connecting the points of support is
very effective in restraining the outward movement of the supports
and thus in reducing the center deflections. Edge members with
large bending rigidity in a horizontal plane also restrain the
spreading of the supports effectively.

Partial loading on hypars was studied to a very limited
extent experimentally. Loads were applied on an 8 in. by 12 in.
area in the center of the saddle-shaned models with rigid supports
around the perimeter. It was found that such a loading on a
single layer of corrugated decking produces a maximum deflection
three times that for two layers of corrugated decking. There-
fore, two layers of decking are recommended for hypars which will
be subjected to significant loads on small areas.

The linear elastic analysis adequately represents the be-
havior of the shell for low levels of loads. However, as the
load level increases it is necessary to incorporate the effects
of instability in the analysis.

The buckling in hypar shells using a 1light gage corrugated
open deck is manifested in three différenf forms. The individual

plate elements composing the deck may show local buckling when
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subjected to in-plane shearing or axial forces. This however,
can be prevented by a proper choice of thickness to width ratio
fer each plate element. Deck buckling takes place when the deck
acting as a unit buckles along the compression arch (Chapter VI)
while the edge members are still stable. Overall buckling of
the shell is defined as the one when the edge members along with
the deck buckle simultaneously. For practical sizes of edge
members there is only a Very remote possibility of overall
bucklinglg.

Though the magnitude of the deck stresses is quite low,
the possibility of the deck buckling must not be overlooked.
Two decks placed perpendiculer to each other for the same geomet-
ric configuration of the shell will increase the deck buckling
load roughly three to four times compared with that for a single
deck. From the analysis it appears that the axial stiffness of
the edge members is more important than the defleetions of the
edges as far as deck buckling is concerned. It also appears
that the deck buckling load is roughly proportional to the area
of the edge members. |

The membrane action in the shell increases and the bending
action decreases with increase in the rise to span ratio, thick-
ness t, and shear rigidity factor ao. A non-dimensionalized param-
eter 9%%9 can be used as a good index for the behav1or of the
shell. A h1gHer value of this non- d1men51onallzed parameter
indicates reduction in the vert1ca1 deflection as well as in the

bending stresses for both the deck and the edge members. Further-

more, it will increase the buckllng load
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Though this investigation resulted in acceptable and re-
liable methods of analysis, the following recommendations can
be made for future analytical work:

The computer program using flat elements for the stiffness
analysis gave consistent resuits. It is not clearly established
as to whether the deficiency of the curved elements in predict-
ing deflections and bending stresses near the flat free corher
of an umbrelldtshell is due to element stiffness formulation or
whether its due to the use of stifféning eccentric edge members.
As‘forfthe response of the structure, for the variations of dif-
ferent parameters (rise to span ratio, a, etc.) both curved and
flat eléments in general give the same pattern.

- The ‘assumption of shallowness of the shell surface is used
in ébﬁlying'boundary conditions. This limitation can be elimi-
nated by a suitable choice of local coordinate axes along the
boundaries. This will need additional computer programming.

The computer program can incorporate the beams built along
the lineé of geﬁerators. However, their influence on improving
the shear rigidity and reducing the deflection of the shell is
not studied. The local release of forces such as hinge connec-

tion (moment-free) was not incorporated in the solution.
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APPENDIX A
DECK PROPEPTIES

- 'The elastic properties along principal directions of
orthotfopy are given for both closed and open decks. A detailed
computation of the elastic constants for an orthotropic deck

are reported in Refs. 34, 35, 36, 37, 40, 41, 46, 47, 48.

~A-T CORPUGATED OPEN DECK
' Fig. Al(a) shows an'arbitrary cross-section of unit
length, in y-direction, for an open deck.

A-Ia YMembrane Constants

E, = The extensional eclastic constant for the equi-
Vaient qrthotropic plate, is obtained by equating the extension
A, between the physical and the idealized system.

From Fig. Al(a),

tS
M, = PZ; mg = 23 I0 = 13 A-1
For constant thickness t of the deck,
2
PL [ 2°t
A, = & / ds A-2
x  Ltl g 2
S ,2
Z°t
S == ds = 1" A-3
o * Y
where Iy' is the moment of inertia of the cross-section, per

unit length, about the line of action of load P, which coin-
cides with the x-axis.

For the equivalent flat plate, (Fig. Al(b)),
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Pe
A, = — A4
X Ext
Equating equations A-2, A-3 and A-4, we get
I
B, = v F C(A-S
y

The other membrane constants are given in Table A-I.

A-Ib Bending Rigidities

Bending rigidities for the x and y-directions are
given in Table A-I. The method of determining the constants is
gi&en in Pef. 35. For the orthotropic plate, the twisting con-
stants ny and Dyx are not equal and hence the average values
of these constants are used in the analysisss. Yinor devia-
tions in the properties of Py and ny are noted in Pefs. 48,54,

however, the small deviations in these relatively unimportant

properties are considered of no consecuence at all.

A-I1 CELLULAR CLOSEL DECK

The Fig. A3 shows a typical ccllular deck where a
trapezoidal hat section is connected to the base plate.

A-IJa Vembrane Constants

The principle for the computation of membrane con-
stants for the closed decks is the same as that for the open
decY. However, because of the continuous base plate, certain
modifications in the constants, such as Ex and v

y yx’
quired. Ey - Assuming full fixity between the base plate and

are re-

the hat (Fig. A3), for BC,

Pl + PZ = P A-6

From Eq. A-5, Exh’ the elastic extensional constant, for the

hat only,
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E ., = —23% A-7

I*' is the moment of inertia of the hat portion about the base

plate. By compatibility,
' Ey
Pz = Pl ( E )( —) A-8

The equivalent orthotropic plate is assumed to be of the thick-
ness tys

] = ' E -
EX ( 3. c A-9

+ Ej
"‘“‘) (——))

R (14 (

For all practical .purposes, the denominator of the above equa-
tion (A-9) is equal to unity.

Ex = E A-10

EY and Vyx - If the full cross-section in Fig. A3 is effective

in resisting the axial force along the y-axis then,

EA
E = XL A= 2ty . A-11

where Ay is the cross-sectional area of the section sh:wn in

Fig. AS' By the !'axwell-Betti reciprocal theoren,
| VLX = Vyx Ey A-12

Ax ,
Vyx = VK; A-13

The shear rigidity for the closed deck can be considered equal
to that of the base plate which is usually directly connected
to the edge merbers. Even a thin plate interconnecting the

free hat portions will increase the effective shear rigidity of
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the section. However, the cost of construction will have to be
taken into consideration in this approach.

A-IIb Bending Properties

These properties are given in the Table A-I.

A-IIc Torsional Rigidity

Here again the values of ny and Dyx are not equal.

As shown in Fig. A

5» the value of ny is negligibly small as
compareﬁ to that of Dyx' The value of Dyx can be obtained by
using Brendt's formula46.

4Ac2 1
Dyx = B*zRT L& ' 1 A-14
T, 0ty

where Ac is equal to the area enclosed by the cellular hat
portion.

.However, the magnitude of Dyx tacitly assumes that
the shape of the deck does not deform (dotted lines in Fig. A4)47.
The in-plane shear forces set up due to the twisting, produce
secondary bending moments in the individual plates. Besides,
the bending of the overhanging plate, outside the cellular
portion, further adds flexibility to the cellular section.

In order to account for this reduction in torsional
stiffness, an effective torsional rigidity of the cellular deck
is defined as the torsional rigidity of the ideal system (shown
by the dotted lines in Fig. A4), free from individual plate
flexural defofmations. The work of the deformations due to the
torsion of an idealized system is equated with the work due

to torsion and secondary flexure. The modified twisting

rigidity can be given as,
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aA 2 .
- D s 1'C R
yX {iﬁ%ﬁﬂ_l + %—} red
2 1

A-15

2| =

The reduction factors given in Ref. 47 were checked. The

method of calculating the reduction factors is given in the

49

Ref. 46. As pointed out in Chapter II, the warping stiffness

for both closed and open form'decké is neglected in the analysis.
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TABLE A-1
PROPEPTY : DECKS
CPEN ~ CELLULAR ISOTPOPIC
Membrane
- 1
E, E TQT E 13
y
A
S Y
F F 2 F ~ R
y L Ax
\)xy AV AV Vv
I A
o & X
v Ve = V o AV
T.75 K
yx y y
1
Eq VE 12+ VE VE
y
2 “x 2
'Vyxvxy = 1.0 1-v K; 1-v
Exy aC al: C
Bending
.3
5 &EEE Ety | Et2
x 125 12(1-v%) 12 (1-v2)
N
. vrt3e , 12(1%v )
1 128 | VEt
12(1-v%)
5 cI 0 Bt®
Xy 24(1+V)
eI S aa %G 3
- o c Et
“yx ) ds’ 24 (1+v)
Rreate)2
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APPENDIY. B
STIFENESS !.ATRICES .

The stiffness of the curved elerent is given in three
parts: I: Illembrane Stiffness (u,v, displatements);'II: Bend-

6...): IITI: The coupled terms of

i tiff Ty 0 R
ing Stiffness (v y Xy

x,
u, v and w.

I: MEMBRAME STIFFNESS IMATRIX [K]n

TARPLE B-I
Term  Cxt E1t Eyt Exyt
b a
% 33 - %5
. 1 ) 1
P 7 3
¢ - 1 . .1
3 4 4
b a
4 " T2 il b
, —5 : : —
¢ 6a b
b . _ _a
%6 6a 1)
. . a W
¢y 35 3a
' _ _ a _ b
¢g Gb 33
. . . a _ b
2 ) 6a
o) . . _a b
10 ® - 6a

=D a_ g
e.g. 91 = 33 Byt * 3% Exyt
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I1: BENDING STIFENESS MATPIX [K]y, + [Kly,

E 2
= _Xyt C
C1 = 1275 * (gaxEs)

All terms multiplied by C, are resulted because
~shear strain depends upon the w terms as well (see Eq. 3-%c).
These terms follow the same pattern as the bending stiffness

terms derived from the Eq. 3-17.

TABLE B-I1I
Coeff. DX Dy ny 11 C1
156 w 156 a 143 1 72 1
By 353 T35 .3 3% ab 7% ab 676 ab
. 22 b2 78 a_ 121 361 286 .2
2 35 3 35 2 7% 3 % a 3
; B S A S N S 5 W 1 T WO
3 5T 7 35 3 AR AR 3
a b
6 11 b* 11 a° 1 11 121 2,2
4 T2 35,2 75 50 5
156 b 57 a . 144 1 72 1
Bs 35 3 35 .3 2T ab " 7% ab 234 ab
3
22 b 27 a 121 361
Be T35 3 35 7 75 a 75 a 33 ab
a b :
0 _78b 13a® | 121 | 61 169 2,
7 35 2 35 3 75 b 25 b 3 2
a b
. 1wl | 1342 1 3 143 2,2
8 35 2 70 2 75 75 1
_S4b _ 54 a 144 1 72 1
Bg 35 3 35 .3 75 ab 75 ab €1 ab
. 13b2 27a 121 | 61 _ 217 ,2
10 35 a3 35 b2 25 a 725 a G
A _27b_ . 13 af 121 61 217 .2,
11 25 ;7 35 .3 25 b 25 b 6

Continued
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. Continued
Coeff. Dy D, ,ny“ Dy Cy
; 13b° 1325 1 1 169 2,2
12 70 2 70 2 25 50 36
54 b . 156 a_ 144 I . 72 I
B13 35 37 735 3 25.ab 25 ab 234 ab
5 132 78a o 121 61 . 169 .2
" 14 35 3. 35,2 25 a 75 a 3
. b , |
27 b 22 a 12 1 36 1 2
"15 3.7 35,3 I5b  25h 33 ab
; 132 12t 1 3 _ 143 2,2
16 70 2 35 .2 25 25 18
. 4b> " s52a 16b 8D 52 03
17 35, 35 b 25 a 25 a 3 &
. 11 52 11 a® 1
5 1 b _ 11a° _ 1 _ 61 121 2,2
18 35 2 - 35,2 25 50 o
- a’ b
. 2 b>. 22 at 4, 4, 22 2,3
19 '35 2 T05 b 75 25 92
iy 45 18a _ 16b _ 8b 5 a3
20 523 35 b 25 a 75 a a
. 25> 13 a° 4y 2, . 13 2.3
21 35 2 105 b 75 75 g @
- 3> 9a 4k 2b 9 .3
22 35 3 35 b 25 a 25 a 22
o 3b> _ 138> _ b _ b 13 2.3
23 70 2 210 b~ 75 150 12
3 -~ T
. g2 26a _ 4Db  _ 2Zb 3
P24 35 3 35 D 75 a 75a - 13ab
. 3 -
- 3D 2
[£ 2 11 a® _ b _ b .11 2.3
25 T2 s b 75 75 5 a’b
8 52b 4 a® 16 a Sa 52 3,
26 35 a 35 3 25 b 25 b 32
) 3 ‘ )
22 b . _2a> . 4, _ 4 22 a’b
Br9 105 a 35,2 75 @ ma - %5

Continued
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Continued
Coeff. Dx DY ny Tl C1
. 26 b . 32> . 4a . 2a .53
28 3T a 35 .3 75 b 5% b A3t
; _1bpt 32 _a a 11 3,2
29 195 a 70 2 75 75 6
A 9B 32> 4a 2a . 9.3
B2 ) 35 3 AR 7T b 5 a’b
. 13 % 3 a0 _a _a . 13,32
31 510 a 70 2 7% 150 17 @t
] 18b _ 4a> _ 16a _ 38a 6 a3b
32 3T & 35 3 55 b 7% b
. 13b% . za> . 4 2 13 3,2
33 105 2 35 2 75 @ 75 @ 9
3 3
4 b 4 a 16 3 4 3.3
Bza 105 a~ 105 b 775 @b 557 ab g ab
. 2 o o1 a2, %]
35 105 a 35 b 775 775 3
3 3
1b 1 a 1 1 1 3.3
Bsg T a T 70 b 775 @b zzp @b g 2b
B S hi - ﬂi - oot ab - 5st oab - a’p’
37 35 3 105 b 775 775 3

IIT: COUPLING MATRIX [K],

These terms are formed due to the coupling of u, v

and w displacements (see LEq. 3-9¢)

S C
C, = nyt Svviah

he stiffness matrix for the curved element can be
reduced to that of a flat plate by putting c=c; whereby C1=o
and C2=o. The schematic representation of these two matrices

is shown in Eqs. 3-20 and 3-21.
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TABLE B-III

Coeff. C, [Coeff. c, Coeff. C, Tcoett. c,
0, 58 O E% 2 69 7p b ®13 '3% b
62 Tf% ab 66 Z% aB 610 7% b2 614 f?% ab
85 -5 at | e, . a® | e ‘TT% ab?
0, 175 a°b| €y ~pgr a’b| 6, oo b




'u;‘i; V4 Wy | By,| By Ex uy| vy | a6y Os | gy Yo | Vu | o4 | OnylOyy Gy
4’ 4)2_ 6,] 6, 6, %5'%1 65~ 6 97'92 ‘P @, 83|-6,4 3
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APPENDIX C

DECX STPESSES

A typical deck element 1-2-3-4 rectangular in plan is
shown in Fig. C,. The deck forces and the deck moments with
notations shown in Figs. 3.2 and 3.3 are calculated at the center
point o. ' The deck in-plane forces and moments are calculated
for a Eurved element using the strain displacement relationships
civen in Eqs. 3-9 and 3-10. The forces for the flat elements
can be deduced from the expressions given below. The two major
differences are: (a) c=o0:; (b) The local nodal displacements

in the local axes for each element are to be used.

M T Bxe Wox Y Ppe v
E E
= Xt . - 1t . . ]
= =57 [-upruytuz-u,l + =5 [-v -V +vgty,] c-1
Jy = Elt u,, t Eyt Vsy'
E E
- 1t _ . Vt _ .
= 723 [uptuprugeuyl + oy [V vytvatvyd C-2
B = (u + v -2 _C___ W) T
' 'xY ? b A *X AR 7 Xyt
th{( u 2+u3+u4)/ b+ (-v +V2+v 4)/23
¢ b
- " [(w +y s )/7+(6 +6 -0 -8 ) b
AR "2 3 4 1 xz x3 X4 g
a ab
+ (-e +9 ) — (e ..e +8 -9 )—’__ C-3
Y1 Yz Y3 Y4 8 XYy Xy, XYz "Xy, 371}

Woxx [(eyl'eyz'ey3+ey4)/za+(-exy1+exy2 exy3+exy4)§31 C-4

W,

- - - a_
vy T L8y Uyt Oy 38, 0) /204 (-8, 1% 65y 2 " Oxy3¥ 04y a) 7] C-5
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The moments per unit length can be obtained

A
1}

~[De, g *+ D ] C-6

1" yy

M= -[Dlw,xx + Dyw’yy

] c-7
Fig. C2 shows the bending stresses which could be
intrcduced due to the local bending of each individual plate

elements. These stresses are not calculated here.
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APPENDIX D

INCREMENTAL MATRIX FOR THE DECK

For simplicity, the matrix is split un into two
parts. [N]1 vhich contains the terms corresponding to the in-
plane forces Hx and Ny whereas the matrix [N]2 contains the

terms corresponding to the shearing force

-

Xy
[N] = [N], + [N, n-1
TABLE D-I
Coeff. Nx Ny Coeff. Ax Nv
6 /8 b 78a oy 27k 78 a
1 17% a 175 b 13 175 a 175 b
11p® 13 . 13 b2 13
%) 175 a 350 %14 350 a 350
o133, 11 a? _ 9, 11 a%
¢ 350 " 175 5 | %15 700 - 175 b
11 2 11 2 13 .2 11 2
4 7100 D 7190 @ | %16 7700 ° 3100 2
_ 78 b 27 a _2h 26 o
¢5 175 a 175 5 | %17 175 a 525
2
11 b2 9 11 .2 11 .2
%6 175 a~ 750 2 | %18 5Th0 P 7190 2
5
13 13 a 1.3 11 2
¢, 350 D 350 b | %19 1950 P 1575 @ b
3
11,2 13 2 ] 2 B> 3
¢g 7100 P 7700 & | %20 175 a 175 @b
27 b . 27 a 1.3 17 2
%9 175 a 175 b 21 1050 ©° - 3750 2 P
_1_3.1_)_2_ ..._ga ) __1}_33 - ._.._.S_ab
%10 350 a 700 22 350 a 707
7
] 9 .13 a% ) 1.3 13 2
%11 700 D 350 b | 923 T400 ©° 17600 2 P
q
13,2 13 2 ) 3RS 13
12 7500 ° 7700 & | %24 350 4 1050 2b

Continued
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Continued
Coeff. N NY Coeff Nx Ny
Ty 1T 2 = 7 &%
b2z 1400 ° g300 2 ° ¢ 175 2P 175 b
3
26 2 a 13 .2 1 3
%26 T75 ab 175 5~ ¢33 3159 2P 1050 2
11 2 i3 73 73
%27 " Tg7g @7 - 1pgg @ 43 1575 ab 1575 @b
3 .
13 3 a 13 1 3
%28 "~ Tos0 2 - 3TH b ¢33 375 2P 105y @ P
S ) T3 13 T3
%29 6300 2  TApn & %3¢ 1700 2P 1700 2 P
3
3 3 a 1 .3 1 3
3 750 2P 350 5~ 937 1550 2P 37Eg @ P
13 2 T3
31 17600 20  T1anp 2
TARLE D-11
Coeff. N N . T
3 Coeff ny_ Coeff, ny
1. a 2
0 1 .a a
1 ) 6, 10 6, i)
2 2
o gtl a’b b
2 50 ®s 300 % 50
b akl: 2,2
3 10 €6 300 9 1800
N__ab
) _ 11 2, 11 ., .2
e-g. N(1,4) = yigs nt? + ;v 3



v % ezl exyl 02 6y2 exy2 Vs 03 e;” Txy3 Y4 ®a 6)'4 6xy4
03 9 03 4y %6 %7 % %9 %0 %11 %12 %13 %14 %15 %6 W1
917 %18 %19 %920 "%g %1 "b19  Pp b1y b3 094 9yy 916 Va5 Oyg
926 %27 % 95 %5 g "0y 9y f3n b3 05 0 035 933 O
034 021 %20 935 byp 3 tbgy 936 ~lyg  Gy5 P33 035 Oyyg
Oy Oz 0y %13 %14 %15 %15 %9 919 911 "9 W
%17 %18 %19 P14 %24 916 % %10 %22 %12 93 %%
%2¢ %7 %15 %16 939 %33 031 "%y %39 937 Oo
934 P16 95 935 937 9y O3 03y Bzp Oy
O 70, 05 by 05 bg 0, by VW3
SYI'ETRIC o137 %18 %19 9% %9 %5 91 O
b6 %27 %y 95 0yg 039 Oy3
034 05 051 99 35 Oxy3
TABLE D-IT1 B! 'zz ?}3 *‘24 le ‘
Y17 %1 x4
[4], VATRIX 12 ¢22 _ ¢2: o
¢)34 exy4
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APPENDIX E

STIFFNESS AND INCREMENTAL !'ATRICES FOR A
FULLY COMPATIBLE ECCENTRIC STIFFEMED

INTRODUCTION

In the case of light gage hypars the orthotropic deck
is connected at discrete points to the supporting edge member.
Because of this discrete connection, there is a certain amount
of non-compatibility between the edge members and the deck. The
stiffness matrix used in Chapter III was developed by the use
of direct co-ordinate transformation. The co-ordinate trans-
formation assumes that the neutral plané of bending for the
original beam cross-section rerains unaltered. 'ith the type
of connections used for the light-gage hypars, the assumption
made above represents the ¢y behavior.

However, in the case of stiffeners which are rigidly
connected to a plate or a shell or a monolithically cast con-
crete beam, therc is full compatibility between the strains at
the junction of the deck and the beam. In this compatible casec.
a part of the deck also acts along with the stiffener (effective
width concept). The interaction of the deck and the stiffener
results in the adjustment of the neutral axis of the section.

To account for this change of neutral axis, the bending property
of the stiffener will have to be rodified by arbitrarily assum-
ing the effective width of the deck actine along with the beam

(see discussion on Struc. '6', Section IV-S5P). Derending upon
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the relative stiffness of che plate, this kind of arbitrary
adjustment in the stiffener.proper;y will present a problem.
This arbitrariness 1is removed‘by'formulating the compatible

stiffener element.

STIFFNESS 1MATRIX

A typical ec;entric merter is shown in Fig. 3.10.
It is assumed that the.member is uniform in size and its local
axes X, y and z, through the shear center and the centroid, are
parallel to the global axes x, y and z. Let UC be the avefage
axial deformation of the section measured at the cehtroid of
the sectien (C.G.) and Vs and Ws te the behding defofmations‘
measured at the shear center (S.C.).

Assuming a.rigid connection between the stiffener énd
the reference structural node points, the dlsplacements at the

shear center and the centroid can be expressed as follows

- gw,
Uo = u -z (5 (ax) o E-la
' Vs = v - zse : ~ E-1b
Ws = w + Yse .E-lc
where 6 = %%. The total strain energy of the beam elemeht can
be given as _
2
EA aU 2 EI a 3°w_ 2
b y . _ S
U, = —— I (— ) dx + J (—-70 dx
b 2 o] 2 0 aX _
, ) :
EI a 3°v_ 2 a a
+ z ( >) ax + l~CJ / ezdx‘+ 1 ET r e"zdx E-2
S 2 2 2
o] 9xX o] 0

All the member properties are expressed with refer-

ence to their local principal axes. The displacement fields
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for u, v, w and 6 are given by Equations 3-26; 3-27. The
stiffness matrix (neglecting the in-plane rotation 621 is given
in Table E-I. Though not tested on the hypar structure, the
element when checked for simple cases such as simple and canti-
lever beams, cvonverged to the cbrrect results. The element.can
be used for a rigidly connected eccentric member and correctly
locates its own neutral axis under different types of loading.

It may be worthwhile to note that because of the
coupling of the u, v and w displacements, the resulting displace-
ments for u are no longer linear. The use of a Hermitian
polynomial of the same order as used for the v and w displace-
ments will give more rapid convergence characteristic than with
a linear u displacement field. It was not possible to use u as
non-linear because of the lack of a corresponding degree of
freedom in the formulation for a plate or a shell element.
Similar stiffness matrices are reportec in Refs. 70, 71, whereas
the theory of the element is developed in detail in Refs. 72,
73.

INCREI'ENTAL MATRIX FCR UNTFORI'LY CCI'PPESSEL
ECCENTRIC STIFFLNER

The load acting on a fiber whose cross-sectional
area is dA, is oc¢2 and the change in the distance between the
end point of a fiber is ¢iven by Au. The increase in the po-
tential energy due to the change of fiber is riven by

SV = - [ ochAudA E-3

A

For the section which shov's both modes of buckling (flexural
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as well as twisting), the change in the length of a fiber is

given by57, (Fig. E])
2 , 2

M 4 yory + (2L - z6') }dx E-4

. |
Au-—z—f{( X

For the uniformly loaded section, o is the constant

quantity and cA = P. Therefore the change in the potential

energy
a . 2
_ 1 1 v OV, OV ny
§V = 2 P dr (ax) * (ax) * ZYC (ax)e
' 12 2 .
Z. ( )e + 0'“p~ldx E-5

where ZC'and YC are the distances of the centroid of the sec-
tion (Fig. 3.10) and p is the radius of gyration for the polar
moment of inertia of the cross section about the point o.

2

of= XL (22« v2y an -6

{1

4

The incremental matrix can be obtained by integrating
the expression E-5-.and then obtaining the second derivative of
the total change in’ the potential energy. The incremental
matrix (8x8) is given ir Table T-1I.

The stiffness and the incremental matrices for the
eccentric stif feners can be used to predict the buckling 1lcad
for the stiffened;p;ate. Becauseﬁof.the non-availability of a
large-order eigenvalue solution routine, the formulation could
not be checked with other available solutions. IHowever a
simple case of .twist-buckling of column section about the
forced shear center for a T-section and T-section was compared

with the classical solution for hinged end condition given by
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Bleich56.
2 Z 2 I +T 2
. ®°E S y b G a"Jd
9. = —3 [ My s E-7
a pc wE “pc
IpC = Polar moment of inertia about the forced shear center 0.

The only difference for both the cases is that the T-section
has Pb = o0 whereas Pb for the I-section is 1590 inch®. 1In
both the cases, for simply supported ends, the twist buckling
load was within <<1% in error, from the values given by the
classical solutions. A negligible error is observed in one
element solution. The buclling stress predicted with

2 and 4 number of elements showed an 2lmost insignificant im-

provement. "’
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x1 yl xyl 2 x2 y2 xy2
6 6 . a a -6 6 a_ 2oy
5 56 " 10 19 © 5 56, - 19 10 61 W1
6 a a _ 6 ) a a
56,1756 1€ T G 5C 16 1% °x
2 2 ~ a_ 1 1 2
538 "152a58 33 10 °1 ~ 302 302 61 Oy
2
2 _a a a 1 2
is2C "1n 15 %2 35 ©1 302 G2 %y1
6 6 a a
SYMMETPIC 3 t 61 1o 10 61 ¥
617 Y e a_g¢ 2_G. o
I 22 10 ™ 10 72 x2
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2 A 5 - 9
3= a £ _a“C., o
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™ . ; Ty ,e , 2 2
TABLE E-II INCPEMEMTAL I'ATRIY FOR Tea’G, exyz
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APPLIIDIX F

COMPUTE" PROGRAMS

Computer programs were written for linear stiffness
and instability analysis using both curved and flat elements
('ethod 'a' and "ethod 'b'). Since the irput data for both
curved and flat elements 1is nearly the same, a general des-
cription of both stiffness and instability programs is given
here. All informatijon given in this appendix, is pertinent to
IBY 360/65 model availahle at the Cornell University. Double

precision is used in all programs.

STIFFVESS AULAYSIS

Hypars have mostly been analyzed for a uniform grid
size 8x8 (64 elements). Deperding upon the availatkle core
storage and required accuracy of the solution, the grid size
can be varied. For the flat plate elerents, the program re-
quires a core size 365K and has a compiling time roughly of 55
secs. The computation time for one problem is roughly 70
secs. The time requirement for the curved element program is
somewhat less.

The input information can bte categorized as follows:

1. Properties of the Deck

Properties of decls showvn in Fig. 2.2a, b and c can
be calculated by a subroutine "PDEC" in which the geometrical
properties such as thickness and other physical parameters can

be specified. For decks other than those rentioned above,
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elastic constants Ex’ E etc., are to be calculated and

y?
read in as input data. Besides the type of deck, the orien-
tation and number of decks also need to be specified. The
geometrical properties calculated on the basis of shape can
be further modified by the use of coefficients determined ex-

perimentally.

2. Geometry of the Surface

The geometry of the surfacc is defined by specifying
the number of hypar quadrants and the property of each guadrant

X. and

C.
i’ 71

in terms of its rise, spans, local origin (Ai, Bi’
ii, Chapter III). The grouping of the elements in each quadrant
also needs to be specified. Structural shapes other fhan
umbrella shell, can be handled with ease.

3. Spring Tata

As pointed out in Chapter ITI, in order to retain
the close-bandedness of the stiffness matrix, members such as
a supporting column and tension tie rod are idealized by
springs having equivalent stiffnesses. The number of such
stiffness constants has to be specified.

4. Bear Tata

Beams can be added along any lines of generators.
The beam data is given in the usual way with its location
specified by the start and end points and their co-ordinates.
Beam pfoperties such as afea, moment of inertia, warping con-
stant, eccentricities and distance of extreme fiters for the

calculation of stresses are required.
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5. Loading

The solution can be obtained for threé different
loading cases or any combination of the three. The three
cases of loading are: a. uniformly distributed load over the
whole surface: b. weigﬁt of the edge member; c. discretely

applied forces at any nodal points.

OUTPUT

The output is given in the following order:
(i) Six components of displacements at each node point

0 8..).

Yy’ xy
(ii) Axial,bending and total stresses for heam.

(u, v, w, 0.,
(iii) Deck forces per unit length (Nx’ N

) -

, ny, “x’ and

(iv) Reaction forces in each idealized spring.

INSTABILITY ANALYSIS

Instability analysis is done only for uniformly dis-
tributed loading for the grid size of £x6 with 36 elements
though results can be obtained for any general type of loading.
As pointed out in the stiffness analysis, the grid size can be
varied to meet the requirements. The compiling tire is roughly
50 secs, whereas the time for individual iterative cycle
ranges along 20 to 50 secs.

The input stream is basically the same as that for
the stiffness analysis, the additional information needed here
is the starting load point (First increment, see Chapter VI)

subsequent incremental loads and the number of iteration
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cycles required at each step.

The output gives only the loac level and the corres-
ponding displacements at all node points.

The program using the flat plates can bhe easily
modified to solve any shallow shell problems by defining the

equation of the shell surface in the global co-ordinates.
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TABLE II-1

SINGLE DECK

EXPT. AVERAGE THEORETICAL
- \f
ngT 60 INCH 60 INCH a 60 INCH ainterpolated
811 1.14 0.07 1.23
812 1.14 1.14 405 1.45 0.077
511 0.80 0.06 0.68
512 0.77 0.78 o5 04 | o0.87 0.050
311 0.33 0.06 0.28
312 0.32 0.32 .04 | 0.38 0.052
TABLE II-2
DOUBLE DECK '
Tie 2 1/2" x
1/14"
TEST EXPT. AVERAGE THEORETICAL
No. 60 INCH 60 INCH a 60 INCH ainterpolated
821 0.86 0.07 0.71
822 0.65 0.75  9.06 | 0.77 0.080
0.05 0.84
821(I) 0.65 0.04 0.93
521 0.59 0.58 0.06 0.38 0.040
522 0.58 0.04 0.48
521(I) 0.48
321 0.24 0.06 0.14
322 0.32 0.26 4 040 | 0.20 0.037
321(1) 0.21
Test No. 521(I) means:
5 = The curvature of the hypar, same as that of a
quadrant having rise/span ratio of 1/5.
2 = Two decks.
1 = Test No.1l
(I) = Both top and bottom decks were interconnected.
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I11I-1

COMPARISON OF CLASSICAL AMND FINITE

ELEMENT SOLUTIONS FOR SI'PLY-SUPPCPTED

AND UNTFORMLY LOADED 28-G

OPTHOTROPIC PLATE

FINITE ELEMENT SOLUTION
DOUBLE SINE
LOCATION GRID SIZE SERIES SCLUTION
6x6 12x°2
8§ INCH § INCH § INCH
& 4] 0 0
1/6 6.117 6.106 6.31
1/3 7.397 7.397 7.36
1/2 7.137 7.139 7.00
2/3 6.961 6.962 6.96
5/6 6.944 6.944 .98
B 6.952 6.952 6.97

See Figs.

3-4c and 3-5.
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TABLE I11-4

ROTATIONAL TRANSFOPMATION MATRIX

FOR A BEA;’ ELENENT®®
[A] 0 (A1, o
[T]p = [A] =
0 [A] 0 [A1,
_ c,

y Z

/2 2
Co + C 2 2
X y4 Cx + Cz

-CqucosB-C251nB Ci+CicosB -C.C cosB+Cx51nB

[>‘]1:
C._C_sint-C_cosB C.C_sinB+C_cosB
Xy Z - [cé+Cfsing L Z X_.
2 2 X z 7 2
Cx + CZ Cx + Cz
L
B 7]
Cx Cy 0

-C C cosB-C s1n8

4/———————~ /Ci+C§cosB 0
[A],=

0 CYCzs1n8+CxcosB
2 2
L. Cx + Cz
X, - X
_ 2 1
Cx B L
Yo =Y
c = 2 1
y L
Z, - Z
_ 2 1
....Cz = e




TABLE 1Vv-1

STRUCTURES ANALYZED

o . | - ROUNDARY | LOA:
RUCTURE GEOIETRY DECK EDGE MEMBEPS  |conpITIONd I
6

Al fc Ne. oF| THICKNESS|  lya Fx10 . 5 e | pst

JTYPE |[1scii|1ncH |IncH [TYPE| DECKS | INCH TNCEY/INCH| o | LBS/TINCH2| v 1 2 ‘

X
I [Xso X500 *10 I 1 0.80 - 1.0 28.%  o.40] - ; 1 10.!
6.46 6.46 1.304 * ’ 0.25 - . 0.5 0.39] - - I1 144
; 30 30 var- | II 1 28-G 0.00047 var-  29.5 0.30(3"0.D. 3"0.D. ITI 40
ies 0.0149 ies L"Thk &' Thk
pipe pipe
T -~:| ? i 2 T 13 ] t IR 12] re t
. IV |360 600 100. | IV 1 See 1.532. 1.0 ' v |14 wr 14 wF d 80
69 Fig. 43 68
4.3
o ITI 24 24 6 I 1 0.25 - ' 2.77 0.15|«See Fig. IV 4G
4.5 3 o
4 . [ ' 1 ti Tt t: " e T 1 1: i4
f —_: | K T 183 1" ¥ i 17 i *

' ’ VIII 2t
&
o II 72 72 14.4] II 2 28G 0.00047 0.04 29.5 0.30]17¢ 2-1"¢ v 4c

0.0149 - - Std std VI

pipe pipe
T i ‘; 13. 1 T " v i ' 1 1 " 1" §i
80




TABLE IV-1 CONTINUED

. - BOUNDARY | LOA'
STRUCTURE | © CGEOMETRY DECK EDGE MENBERS |CONDITIONY IN
. ’ - ~’. . G
A |B |c NO. OF|THICKNESS| lya |Ex10 ;
90. | TYPE |Tick |TvcH |INCH [TYPE|DECKS | INCH  |INCH*/INCH | o |UBS/INCHZ| v By B, TYPE | PSF
11 II 7272 14, [II: 1 28¢ ' 0.00047 © 0.06 29.5 0.3 |3"C.D. 2-3"0.D. v 40
- 0| 0.0149 S | LUThk  %"Thk VI |
L ) ‘ pipe  pipe |
12 - L " 24G 0.000753 "o A " VI "
. 9.0239 :
13- Ir f v v LI S § SR 286 0.00047 0.05 . : " " .
: X S . 0.0149 |
13? t .:’? 1] " 3] 1 " ] t? 0-06 ? " t Y " ' ‘
14 1240 240 48 | " 16G 0.00192 " ’ vl 12140 2-12 0 v "
- j , 0.060 : [40
15 |12, 12, s5.216] I 1 0.25 - 1.0  0.50- 0.39| <NO BEAMS+ v 14 |
©2 92 A - ;
) i
L !
x Dimensions are in cms
+ gm/ém2 

*’ldﬁly talf the structure was loaded

* Two 1cad1ng conditions are analyzed:
1 With 40 psf only

For types of structures see Figs.

2 40 psf + weight of the edge members.

4.1 - 4.5.
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TABLE 'IV-2

DECKS
I = Isotropic deck of uniform thickness
IT = Corrugated sine-form. Fig. 2-2a.
III = Corrugated trapezoidal. Fig. 2-2b.
IV = Cellular traﬁezoidal &e;k. Fig. 2-2c.
BOUNDARY CONDITIONS~

I = Edges x = + A and y = + B are fixed,
IT = Edges x = + A and y = + B Knife-edge supported.
IIT = T, = 0 for edge members along x = + A and y =+ B,

F
(i) w = o along x = +Aand y = + B

(ii) a tension bar connects low corners. (f and b -
Structure I and a and ¢ = Structure 1V).

IV =Ty =1 and T, = 1. For all edge members. For the

F
eccentric locations of edge member with respect to the
deck, see Fig. 4-5.

(i) x =y =0 Lines of symmetry.

(ii) x =+ A and y = + B Free edges.

(1ii) y o rigid support.

X
V = TF =0 TH = 1 for all edge members. For the eccentric

connection of edge members see Fig. 4-2, For

(i) x =0 u = o.

(ii) y =0 v = o. ,
(iii) eya = exya = eYh = 6xyh = O = exyc = Opg =
) = 0,

(iv) x=y =o0 rigid‘Suppﬁff;'”
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VI = Boundary conditioﬁs idehfiéél’With V except Ty = 0

for all edge members.

VII - &F‘=:0 TH:=£1 for all edge mémbérs.l'Edge members are
" connected con;entrically. Boundary’conditions (1),

“(1i) and (iii) are same as in the case V.,

VIIT Bdgnqéry and fixity conditions. Same as given in IV.
The_line‘cf (y=o, Fig. 4.2) is the only line of symmetry,.

Also. see Fig. 4.20.
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TABLE IV-3

COMPARISON OF DELLECTIONS BY
IXETHODS 'a' and 'b'; FOR STPUCTURES 1 and_2

STRUCTURE 1 " STRUCTURE 2
LOCATION Tethod ‘a’' Method 'b' lethod 'a' Method 'b'
10 %cms ,19-2cms_-1 10" 35uch - 10 3inch.
c " i.228 1.235  5.50  5.552
2.352 2.384 © 8.398 - 8.466
2.574 2.602 9.149 9.262
0 2.531 2.551 9.196 9.322
B - - - -
0.742 0.750 3.271 3.251
2.218 2.248 7.526 7.561
2.613 2.647 9.081 9.184
0 2.531 2.551 9.196 9.322

NOTE: See Figs. 4-6 and 4-8.
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TABLE IV-4

DECK STRESSES- IN PSI AT THE CENTER
OF A QUADRANT (Point e in Fig. 4.2)

'| BENDING
AXIAL STRESSES oTRESSpS  |TOTAL STRESSES

STRUCTURE EXPERI-| CALCU- | pypr | CALCU{ pyon | cALCU-
NO. DESCRIPTION |MENTAL | LATED LATED LATED

9 28-G
Double Deck 832 848 1460 1870 2292 2718

11 28-G
Single Deck 890 62 6820 10700 7710 10762

12 24-G :

Single Deck - 69 5600 6200 - 6269

13 28-G
Double Deck 2780 22 6505 4510 9385 4532

For the Structure numbers, refer to Table IV-1.



-202-

TABLE IV-5

DEFLECTIONS IN INCHES OF INVERTED UMBRELLA
SHELL WITH STIFF EDGE }EMBERS

- EXPERIMENTAL

LOCATION | ANALYTICAL] AVEPAGE | MAXIMUM |MINTMUM

STRUCTURE 11

s 0,133 .20 0.26  0.15

0
8y 0.29 0,20 . 0.48 018 o
§. 0.16 0.15 0.15  0.15
. D.91 0

.70 0.92 0.59

~ STRUCTURE 12

o5, 0,12 0.11  0.180  0.04

&y 0.26 0.23 0.26  0.32
'sc 0.13 0.095 0.150 0.040

8 0.57 0.42 0.62 0.26
STRUCTURE 13 o o
5, 0.18 - - 0.15  0.26 0.040
8, 0.31  0.31 0.55 0.15
8 0.18 ~ 0,15  0.26 0.040
8 0.56 0.54  0.92 0.26

See Fig. 4.2.
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TABLE IV-6

EDGE BEAM STRESSES FOR INVEPTED UMBPELLA SHELL
. WITH STIFF EDGE MCMBERS (q = 40 PSF)

| AXIAL BENDING TOTAL (Absolute)

| LOCATION EXPT. ANALYTICAL EXPT. ANALYTICAL EXPT. ANALYTICAL

1 STRUCTURE 11 28-G Single Deck «a=0.06

a 2440 1070 4850 4481 7290 5551
b 1400 456 31290 3990 4520 4446
- C - 580 - 586 1660 1167 2240 1753
d - Lo = 900 2320 2496 - 3396
e 1620 . 8556 3020 3050 4640 3908
2 STRUCTURE 12 24-G Single Deck 0=0.06 ‘
a 1740 1093 4140 4385 5880 5478
b 530 420 3500 3801 4030 4221
o ~-1060 - 609 540 955 1600 1564
- d -1070 -1075 1100 2165 2170 3240
e - 1100 874 2300 2668 3400 3542
3 STRUCTURE 13 28-G Double lDeck a=0.05
a 2250 435 4110 42228 6360 4663
b 930 435 5260 4228 6190 4663
c ~ 900 - 518 2040 1650 2940 2168
d - 560 - 734 2020 2106 2580 2840
e 1110 357 2320 2561 3430 2918

All stresses are in psi

3™
d e







TABLE V-1

SELECTED EXAMPLES SHOWING THE EFFECTS OF CHANGE OF

STRUCTURAL PARAMETERS

DEFLECTIONS EDGE MEMBER STRESSES PSI
VARIABLE IN INCHES MAX. AXIAL
fStructure
Type Value Ga 6b Gc e oa ocC ab bc
. .ee 14,40  0.38 1.57 0.38  0.69  -5329  -5329 2747 - 2747
9610  Rise 'C' —qytgpw—p1 1.69 0.41 _0.75 -5518 -5518 2752 275
13 § 13a Shear — 0.05 __0.18 0.31 0.18 0.56 - 856 - 856 a3% 438
Rigidity ~0.06 — 0.15 0.28 0.15 0.48 - 881 - 881 481 481
factor o
28C
11 8§ 12 Thick- 0.0149 0.13 0.29 0.16 0.91 -1129 - 802 456 1070
ness 246G
0.0239 0.116 0.26 0.13 0.57 -1150 - 870 420 1093
No Single
11 & 138 of Deck 0.13 0.29 0.16 0.91 -1129 - 802 456 1070
Double
Deck Deck 0.15 0.28 0.15 0.48 - 881 - 881 481 481
EDGE MEMBER STRESSES PSI BENDIggchRESS
MAX. BENDING
*Structure ghear fgrceNat
PSI ent?T orT Xy
oc ab bc 1bs/inch
18,357 18,357 17,144 17,144 1,870 52.75
9§ 10 — 19077 19077 18.179 18,179 3130 5456
13 § 13a 6,648 6,648 4,228 4,228 4,510 50.0
S, 899 5,890 4,008 4,005 3,780 51.28
5,225 4,634 3,990 4,480 10,700 36.96
11 & 12 1,723 3.974 T 801 7385 5700 37,75
11 & 13 5,225 4,634 3,990 4,480 10,700 36.96
a 5 899 5,899 4,095 3,005 7,780 5T.:8
For locations of deflections and stresses see Fig. 4-2.

®* For the type of structure according to number see Table IV-1.
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TABLE V-2

THE COVPARISON OF AXTAL STRESSES IN THE EDGE !MEMBER AS GIVEN

B IM"EI'BRANE THEORY AND BY ANALYSIS

i ; A '
MEMBRANE ANALYTICAL PSI $ OF MEMBRANE THEORY
THEORY
STRUCTURE STRESS
NO. PS1 oa oc ab bc oa oc ab bc
SINGLE DECK
] :
S 1.0 *#19660 10700 ap70 0440 11940 54.4 48, 50.6 56.1
18640
11 0.06 1570 1129 8n2 45¢ 1070 71.8 51. 29, 68.2
12 2.06 1570 1150 870 420 1003 73.2 55. 26.7 69.6
DOUBLE DECK
8 0.04 7100 5329 5329 2747 2747 75.2 75. 38.8 38.8
13 0.05 1570 856 856 435 435 54.40 54, 27.7 27.7
13a 0.66 1570 881 881 481 481 56.2 56. 31.30 31.3
14 0.06 3420 1673 1673 1575 1575 49.0 40 46.0 46.0

* ]lember sizes are different, see Table IV-1

-205-




-206-

TABLE VI-1

STIFFENED PLATE BUCKLING PROBLEMS - -

- DIMENSIONS
LOADING a-inch b-inch t-inch y - § K $ Error
108 108 5/8 - - 4.0
108 108"~ 5/8 5 0.10 11.¥0
] |
> | 108 - 108 - 5/8 - - - 4.0 | |
b ‘ : <0.2
2 108 108 5/8 5 0.10 20.5
a/2 '
b 108 54 5/8 - - 4.0
21 108 54 5/8 5 0.10 7.69
4a/2
4———a4—_.
T ib 16 16 0.10 - - 9.34 4.65
—
a
A e .
1 1 24-G : :
b 70.5 - 70.5 - - 0670 7.46
1 1 0.0239 |
——  ——



TABLE VII-1 Froperties and Dimensions of Flat Shear Tests

Test Dimensions Steel Edge - No, of Sean Deck - EZdre G
No. (fe) Decking l{embers Panels Connections Connections c (15/ia)
— . : A
1. 6xb6 26G S.C, . 6"x1k'x,1046" 3 screws @ 8" screws @ every .163 33100
’ .1 layer channels valley and @ 4"
2 6x6 26G S.C. 6"x3 /4% 1046% 3 screws @ 8" screws @ every  .159 32300
s 1 layer channels valley and @ &%
3 . 6 x6 266G S.C. 6"x3/4'x.1046" 3 screws @ 8" screws @ every .056 11400
! 1 layer channels 3rd valley and @8" .
&4 6 x6 28G S.C. 6"x1%"#.10&6" 4 screws @ 8" screws @ every .071 12000
1 layer channels 3rd valiley and @s%
3 6x6 28G s.C. - 6%1k"x,1046" 3 screws scraws @ every .077 13060
’ 1 layer channels @ 2-2/3" 3Td valley and @8"
6 6 x6 28G S.C. 6"x1%"x,1046" 3 screvs screws @ every .066 11200
1 layer channels @ 2-2/3" 374 valley and @8"
7 6x6 24G S.C,  6%1X"x.1046" 3 screws  screws @ every  .078 . 21100
1 layer channels @ 2-2/3"  3rd yajley and @8"
8 SxS5 . 28 s.C, 6"x1%"x,1046" 3 screvs scrows @ evary .068 11500
1 layer channels @ 2-2/3" 3rd valley and @8"

* Standard Corrugated

-L02-



TABLE VII-1 continued

Test Dinensions Steel Zdge No. oI Scan Jdeck ~ Edge G!
No. (ft) Decking ‘lembers . Panels Conneetions Connecctions o (1b/in)
9 5x5 286 S.C.  6"x1lkix,1046" 3 screws screws @ every .08 11500
1 layer channels @ 2-2/3" 3rd valley and @8§"
10 6 x6 26G S.C. 6%x1%'x.1046" 3 screws screws @ every .098 39800
2 layers channels - @ 8" valley and @ 4"
11 6 x 6 26G S.C. 6'"x3/4%x,10456' 3 screws screws @ every 114 46300
1 2 layers channels @ 8" valley and @ 4"
12 6 x6 28G S.C. 6%"x1k%"x,1046¥ 4 screvs scraws @ every .056 18900
) 2 layers channels @ 8" 3rd valley and @s" :
13 6 x6 25G S.,C.  6"x1k"¢,1046Y 3 screws screws @ every . L040 13500
2 layers channels @ 2-2/3" 3rd valley and @8"
14 6 x6 28G S.C. 1" std weight 3 screvs screws @ every 045 15200
! 2 layers pipe @ 2-2/3" 3rd valley and @8"
15 5x35 28G S.C. 6"x1%"x.1046" 3 screwvs screws @ every 050 15400
‘ 2 layers channels @ 2-2/3% 3rd valley and @8"
16 1x1 . 2mil corr. 3/16"CDX,014% 1 — soldered @ every  .030 1360

2 layers -

rass tubes

valley and cont,

-80Z-
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TABLE VII-2 f£xperimental Results for Saddle Shaped Hypars

Supported ALl Around (q == 40 psf)

(a) One Layer of Decking

Test W,y in Stress at Center in Strong Dir. Axial Force in
No. inches  Bending (psi) Axlal (psi) Tie Bar (1bs)
811 1.14 20800 -660 1320 (5660)*"

312 1,14 19100 «1700 1630

511 0,80 14700} — -

512 0,77 15900 - -

311 0,33 2500 1260 —

312 0,32 3560 810 1710 (2120)

(v) Two layers of Decking
Test  wax in Stress at Center in Strong Dir. Axial Force
Noe. inches Pending (psi) Axial (psi) in Tie Bar
Bot. lLayer Top Layer Bot. lLayer Top layer (lbs)

321 0,86 12400 10000 =290 1810 1560
822 0.65 13000 13000 -820 740 1310
8211 0.65 10300 7600 -680 1750 - 1250

521 0.59 11300 7700 1660 650 —

522 0.58. 11000 7300 1380 360 ——

5221 0,48 10000 5200 80 2060 -

321 0.24 4000 4500 570 920 1720

322 0,32 5560 2310 =560 1220 1570
3221 0.21 3990 640 -310 1670 1570

* . .
Based on one strain gage at extreme fiber, axial stress
assunmed to be zero,

el Value in ( ) is calculated from membrane theory.
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TABLE VII1-3 rxperinental Results for Saddle Shaped Hypars
Supported All Around (8" x 12" area loaded)
(a) One layer of Decking, Load = 100 1b.
Test w4 in Stress at Center in Strong Dir, Axial Force in
No, inches  DBending (psi) Axial (psi) Tie Bar (1bs)
BIIC 0463 17000 4300 150
812Cc 0.67 17400 2300 130
:)]_2C Oo()l - — —
311C 0.39 13900 1990 —
312C 0.37 12400 2050 0
(b) Two Layers of Decking, Load = 200 1lb.
Test Wha in Stress at Center in Strong Dir. Axial Force
No. inches nending (psi) Axial (psi) . in Tie Bar
L Bot. Layer Top lLayer Bot. Layer Top layer  (1bs)
s21C 0,50 13400 20000 -160 -1380 470
822C 0.42 11300 17000 -400 210 530
3211C 0,39 13600 10900 -1650 -1300 390
521C 0.44 14000 16500 1060 -1090 —
522C 0.41 15300 11300 460 360 —
5221C 0,32 13000 9300 860 -350 —
321C 0.24 15700 10100 1220 750 140
322C 0.28 10200 9900 10 ~40 180
3221C 0,17 6800 7700 1060 =340 110
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——— X o —X g D
x’"x
S El ’ Xy
A D1 ,ny
§ J‘. ’
E
y Y, y? D)’
2-1 Typical Orthotropic Deck
a) Sinusoidal
Corrugated
S —
b) Trapezoidal
v ]
/ \ H'/——_-\l ¢) Cellular
L
| |
I ]
d) Stiffened
I 1 i __L_ Panel
r—- —-——&—-——--J
e 4
I L]
| e) Box-type
' DR,
Fig. 2-2 Section S-S Showing Different Types of Decks
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Effective Width
Varies

Fig. 2-3 Effective Cross-Sectional Area
of a Hat for Axial Force

Max.
Stress

—

Mean Stress

¢/2 e/2

[n -1 -*—”'] Effective Width

Ay
¥

Fig. 2-4 Effective Width of Compression
Flange in Bending
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\\\__Principal Directions

ery,c

y' ,ey'.oy'

Fig. 2-5 An Arbitrarily Oriented Orthotropic Deck

——

vf“‘Connectors Upper Deck

Deck

1 A

Edge Member _ . [

Fig. 2-6 Edge Member and Decks Comnection



taq! Shear Rigidity Factor

\
— 0.10 \
\
\\ ——e—— Present Study
\ A Ref. 19
—0.08
A
Flat
0.06 Shear
Test
o 2
A AN
— 0.04 L§'-0" o
5t-0"
\
— 0.02 X
| \ -
N‘] | C
C in 1inches '
4 8 12 16 20 24 28
0 [ t L 1 | ! ! ! -
Fig. 2-7 Shear Rigidity Factor 'a' Vs Hypar Curvature

(One Layer of Decking)
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'a' Shear Rigidity Factor

. 0.10

\ —*—— Present Study
—0.08 A Pef. 19
A
~— 0.06
- 0.04 .
Flat Shear Test - 5'-0

C in inches
4 8 12 16 20 24
0 ) 1 | ] 1 ]

AY
~ 0.02 ’ 5'°0'\\\N\jc

28

Fig. 2-8 Shear Rigidity Factor 'a' Vs Hypar Curvature
(Double Layer of Decking)
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Fig. 3-1 Nodal Displacements
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Fig. 3-2 TIn-plane Forces
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Fig. 3-3 Moments
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Fig. 3-4 Plate Bending Problems

|
|
b/2 S-S
..???" B —— i No.
(Full Plate)
b/2 8p
|

b)

b = 80 inches
0.05 inch
29.5x10%1bs/inch?
0.30

1 psi

of Elements = 64

. 0.00406qga"

D

96 dnches

144 inches

5.0 inch

3x10%1bs/

inch?

v = 0.30

q = 200 1bs/ft?

No. of Elements
= 18 (Half

Plate)

0.0064a"
Ty

R 32 Ke B v ol )
LI ]

GB =

b = 70.50 inches
0.0149 inch

Std. Corrugated
Deck ’
29.5x10%1bs/inch?
6.3 .

Q.30 psi

of Elements

Varies (Quadrant)

: L



Deflection in Inches

Fig.

3-5

Deflection Profile Across Corrugations
(see Fig. 3-4C) for Uniformly Loaded
simply Supported 28G Standard
Corrugated Steel Deck

q = 0.30 psi

Deflection of
Beam Strip
= 6.96"

—eo— Present Study

A Series Solution

1(3 1{2 2{3 5/6 1

-
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C.G S.C,

_J

(b)

3-6 Typical Cross-Secfions of Beams

i S-C.

X,u ﬁ
Z,W

Fig. 3-7 An Arbitrary Cross-Section of a Beam

S.( ]'\) 2 C'Jr‘) X
6
6 1 X1 ey 5
Y -}/ 0 \F/ z2
r/ zl
v V 1
1 2
Y1 exyl War exyZ

Fig. 3-8 Nodal Bending Displacements
: of a Typical Beam Element
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Fig. 3-9 Typical Eccentric Edge Member

< -v’] :——Plate

‘—?&\“BraCket ]
(a)

(b)

Fig. 3-10 Eccentric Connections



-223-

.

16 WF 40 -7
(a) Case 1 (b) Case IIa and IIb

Fig. 3-11 Loading on Eccentric Edge Members

s
-Q

— % Error in

0 f 4y :
No. of Elements

Fig. 3-12 Convergence Characteristics for Vertical Deflection
'8q' for Case I (Fig. 3-1la)
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Fig. 3-13a Effect of Restrained Warping on
Vertical Deflection 'GQ'
Es.o
— 6.0
~
(@]
ol SR
M .
L
— 2.0
0

No. of Elements

Fig. 3.13b Convergence Characteristics for
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X,u

j Column

K
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“Fig. 3.14a A Cantilever Column

BZ

Fig. 3.14b 1dealized Spring System
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A =A =A =A4=.l\
B,=B,=B,=B,=B
3-C4=C

x1=x2=x =X =C

‘}1:';72:)-73:)-74:0

g&é,‘B,O)

x2=x3= -A
V17Y,7B

93=§4='B

Fig. 3-15 Geometrical Definition of a Hypar Surface
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p' Q'
pr A X g R
pva = R'S' = PQ+RS
Y
y/ R P'S!' = Q'R' = PS+QR
(a) (b)

Fig. 3-16 Element Size

(a) (b)

Fig. 3-17 Co-ordinate Transformation
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Xo1Y2123

Xl ,yl y 2

/// Fig. 3-18 C(Co-ordinate Transformation for
a Beam Element

Fig. 3-19 Boundary Conditions in Global Co-ordinates



-229-

‘\\\vﬁ_Edge

Member

(a) Moment-Free (b) Sliding-Connection
Connection

Fig. 3-20 Deck and Edge Member Connections

Fig. 3-21 Twisting of an Eccentric Edge Member for T_=0

F



-230-

o - [Half Band Width « -

: em e e T
s X

(a) Stiffness Matrix [K] (b) Vertically (c) Stiffness Matrix
Stored Half- with Sparse entries
Band

Fig. 3-22 Solutions of Equations

S “/13'” ot
/
v
v,
(a) .
P ) ‘_wc"vP
x1 ’{“ __“”,“F:) _le
Pos M{ — P, IM_ = 0
oQ - -
(b) Mop * (Prp Pyi)ig
- M(—JQ = )
p - - Ma =
x1 ?XZ 7 Mop MOQ = (PX]-PXZ) ZS
(c) Maq * Mg

Fig. 3-23 Computation of Forces in Eccentric Edge Members



-231-

Fig. 4-1 Structure Type 1

" Fig. 4-2 Structure Type II
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Figure 6.14 Photo of buckled hypar deck (Test No. 11).



P PP ?

&\ L ‘ $ { h :: \\‘ &‘
' : ; } ; ‘ 3 }‘
\ \ #
' ; ; 4 / g4 ;.
| / ' Il A 1 ” ‘I !
A T !
I ,’ ' i| 4 Y | /
] | JQ i
{ 1 i { {

l

é L A { i |

H
=]
=
5
N
=

Case Equation k
1 P = WPE/(k1)2 1.0
cr 2 2
11 P = WEl/(k1l) 2.0
Cr 2
111 P, = ﬂzEI/(kl) 0.699
1V (qU)__ = w1/ (k1)2 1.122
v (q1) = w2E1/(k1)2 0.492
cr 2 2
VI (ql) = w'E1/(kl) 0.436
cr 2 2
Vil (q1)cr = WELI/(k1l) 0.284

Fig. 6-13 Follower Force Buckling of Iselated Edge Members



-285-

Figure 7.1 Flat shear test

Figure 7.2 Saddle shaped hypar test no. 821
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Figure 7.3(a) Umbrella Shell No. 11

Figure 7.3(b) Test No. 11 in inverted position
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Figure 7.12(b) Experimental Stresses in psi at 40
psf Load for Umbrella Test No. 13.
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Axial stresses are directly above bending strosses,
Deck stresses in bottom layer are to the left of those

in top layer.

+5320 +6450 +3550
+18000 +16000 +5970
I uNL =
T Ll
+210 . ¢ - L ¥1280 +1780 - - =
w920 : - «570t 42060 o,
; P by
NESSESRAERE R T
B AR OO A O O
: . L ' L . ‘ v . ' ;<i-‘
-2400 =3900" . ~3620  =2930 . ¢ i,
+~1420 +390 1110000 +1010 . ' L.
et Pl eimat S Sasmmmees )| = 2 4= -
- ~3900 . . ;
- +2900 i
#4630 +420 LT S1140 0 +570 .44l
+1460 11420 o w2860142270 -y
S T R I LA
AN
: iy L Lo
| o ' ‘ i i !
j i ! Do
. — RN PR [P ]_-“,. ] -
+4000  +49200 +064L50
+5470 8580 17200 ]

Figure 7.14(b)

Experimental Stresses in psi at

psf, Umbrella Test No. 9.
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