
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jan 1989

A Color-Exchange Algorithm for Exact Graph Coloring A Color-Exchange Algorithm for Exact Graph Coloring

Thomas J. Sager

Shi-Jen Lin

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sager, Thomas J. and Lin, Shi-Jen, "A Color-Exchange Algorithm for Exact Graph Coloring" (1989).
Computer Science Technical Reports. 16.
https://scholarsmine.mst.edu/comsci_techreports/16

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/16?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A COLOR-EXCHANGE ALGORITHM FOR
EXACT GRAPH COLORING

Thomas J. Sager and Shi-Jen Lin

C Sc-89-4

Department o f Computer Science

U n iversity o f M isso u ri-R o lla

R o lla , M issouri 65401 (3 1 4)3 4 1 -4 4 9 1

A Color-Exchange Algorithm For Exact
Graph Coloring

DEXCH, a color-exchange exact graph coloring algorithm is presented. On
many classes of graphs, DEXCH can, in the mean, find the chromatic number
of a graph considerably faster than the DSATUR algorithm. The improvement
over DSATUR stems from the ability to reorganize the subset of colored vertices
and to detect in certain instances the existence of a complete subgraph of
cardinality equal to the number of colors used in the best coloring found so far.
The mean improvement over DSATUR is greatest on high edge-density graphs
attaining the value of 42% on random graphs of edge-density 0.7 on 64 vertices.

1 Introduction
The graph coloring problem can be stated as: Given an undirected graph, G = (V, E),
with no loops or multiedges, find a function f : V —» l..k, for some positive integer
k, such that if (v, w) £ E then f (v) f (w). Such a function / is called a coloring
function. If k is minimal over all of G’ 's coloring functions, then / is called an exact
coloring function and k is called the chromatic number. An algorithm which, given a
graph G, guarantees an output which is an exact coloring function is called an exact
graph coloring algorithm. An algorithm whose output is a coloring function which is
not necessarily exact is called a heuristic graph coloring algorithm.

Exact graph coloring is known to be A'P-Complete. In fact, heuristic graph color­
ing within a factor of 2 of the chromatic number is also A ’P-Complete [2]. General!}',
because it can be quite time-consuming to find the chromatic number of large graphs,
graphs of more than 60 or 70 vertices are colored with heuristic algorithms.

Graph coloring can be applied to solve scheduling problems with constraints of
the form: events e and t' can not be scheduled together. One such problem is the
examination scheduling problem: “Find the minimum number of periods in which a
set of examinations can be scheduled under the constraint that examinations v and

Thomas J. Sager Shi-Jen Lin
Department of Computer Science
Chung-Yung University
Chung-Li, Taiwan

Department of Computer Science
University of Missouri-Rolla
Rolla, Missouri 65401 USA
email: tomsager@cs.umr.edu

Keywords: algorithms, branch-and-bound, chromatic number, graph-coloring,
N P -Complete, scheduling.

Abstract

1

mailto:tomsager@cs.umr.edu

w can not be scheduled in the same period if at least one person must, sit for both
exams.” Here V is the set of examinations and (v,u>) £ E iff h(v)f]h (w) 0, where
h(v) is the set of people who will take examination v.

Exact graph coloring algorithms have been studied by Korman [5] and Kubale
and Jackowsky [6]. Both studies found that vertex sequential exact algorithms which
use dynamic reordering of vertices usually give the best performance in practice.

Exact graph coloring algorithms can be used by themselves to color small graphs
or as components of certain heuristic algorithms which can color large graphs. One
such heuristic algorithm, XRLF [3], was found to outperform other known heuristic
graph coloring algorithms on some classes of graphs. Thus, an improved exact graph
coloring algorithm can yield improved heuristic graph coloring as well.

XRLF uses a color sequential algorithm based on the work of Leighton [7] and
Johri and Matula [4] to reduce a graph to manageable size and then uses the DSATUR
algorithm to finish the coloring. Although originally presented by Brelaz [1] as a
heuristic algorithm, a branch-and-bound version of DSATUR. has come to represent
a de facto standard among exact graph coloring algorithms. The branch-and-bound
version, which we will refer to simply as DSATUR, is a vertex sequential algorithm
with dynamic reordering of vertices.

In [9] we presented an exact graph coloring algorithm DS\VA P which improved
on the DSATUR algorithm by reorganizing the colored vertex subset according to
a procedure which we called swap. In [10] we showed that most of the gain from
swap comes from the portion of the algorithm which prunes the search tree and that
furthermore as the size of a graph grows, the swap algorithm becomes more and more
erratic with respect to DSATUR. We hypothesized the existence of a procedure for
reorganizing the colored vertex set which would represent a significant improvement
over DSATUR, but would not behave erratically as the size of the vertex set increased.

In this paper we present the DEXCH (DSATUR COLOR-EXCHANGE) algo­
rithm. Unlike DSWAP, its behavior does not become erratic as the size of the vertex
set increases. Also unlike DSWAP, on graphs of high edge-density and large vertex
size, the colored vertex set reorganization component of the algorithm represents a
significant part of the total improvement over DSATUR.

In section 2, we describe the DEXCH algorithm. Section 3 describes the method­
ology employed to compare the algorithms and the results of our comparisons.

2 The DEXCH Algorithm
In the folowing discussion, the vertices of a graph are named originally 1 ,2 ,3 ,....
As colors are created, the colored vertices are named — 1, —2, —3,. ... A completely
colored graph contains only colored vertices. A partially colored graph may contain
both colored and uncolored vertices. We let C be the set of colored vertices and W
(white) be the set of uncolored vertices, cadj(v) is the set of colored vertices adjacent
to v and cdegree(v) is the cardinality of cadj(i'). Similarly, wadj(v) is the set of
uncolored vertices adjacent to v and wdegree(v) is the cardinality of wadj(v).

2

A partially colored graph always has the following properties: first, there is never
more than one vertex of a particular color and second, the set of colored vertices,
C = —k.. — 1, always forms a complete subgraph.

As we color a graph, we merge pairs of non-adjacent vertices together until we
arrive at a complete graph. In order to keep track of the vertices that have been
merged together, we introduce the function vertices from V' to V (V) where V' is the
vertex set of a partially colored graph and V(V) is the power set of the vertex set of
the original graph before beginning the coloring process.

In the following discussion, let G = (l7, E) be a partially colored graph with the
set of colored vertices C = —k.. — 1 . Also let v and w be uncolored vertices of G,
c be a colored vertex of G and x , y and 2 be vertices of G. Four procedures for
transforming partially colored graphs are shown in Figure 1.

The DEXCH algorithm is based on the DSATUR algorithm but contains two
additional components: a tree-pruning component and a colored vertex subset reor­
ganization component. Pseudo-code for DEXCH is given in Figure 2. DEXCH with
the colored vertex reorganization component removed will be referred to as algorithm
DPRUNE. DEXCH with both the tree-pruning and colored vertex reorganization
components removed is equivalent to DSATUR. The differences in behavior among
the three algorithms are depicted in Figure 3.

The tree pruning component is based on the observation that if there exists v, w
and c with (v, w) £ E and cadj(v) = cadj(w) = C \ {c} then G contains a complete
subgraph of cardinality | C | +1, namely G \{c} U{^% '<’}• Therefore, G is not colorable
with fewer than | C | +1 colors. The tree-pruning component is invoked whenever
the current partially colored graph contains exactly one color fewer then the best
coloring found so far. If three vertices with the above attributes are found, then the
subtree rooted at the current partially colored graph is pruned since it cannot contain
a completely colored graph using fewer colors than the best coloring found so far.

procedure renam e(G , vertices, y, ^);
vertices(z) <— vertices(y); vertices(y) <— undefined;
E <- E \ | (y,.r) £ E) \{ (y.x) \ x £ V }; V - V [J{z} \ {.</};

procedure neu:color(G, vertices, t>);
rename(G, vertices, v, —(k + 1)); {Create a new colored vertex.}
E <— -E1 U{(Ci —(A’ + 1) | c £ —k.. — 1}: {Ensure C is still a. complete subgraph.}

procedure m erge(G , vertices, u.c);
vertices(c) <— verticts(c)\J vertices(v); vertices(v) <— undefined;
E _ £U{(c,u.) | (»,*) € E) \ {(e,.r) | * € V}; V' - V - M ;

procedure exch(G , vertices, v,c)\
Let ,r 0 V; rename(G, vertices, v, x);
rtnam e(G , vertices, c, v); rename(G, vertices, x, c);

Figure 1: Four operations on partially colored graphs.

3

algorithm DEXCH;
input: G = (V,E): graph;
output: x(G): positive integer; {Chromatic number}

exactcf function: V —*■ l..\(G'); {Exact coloring function}

procedure color(G = (V, E): a partially colored graph;
vertices: function: V —> 'P(L.oo));

if G is completely colored then {In which case V — C }
if | V |< ncolors then

ncolors <—| V |;
Vj G V’- Vi G vertices(j), exactcf(i) <------j ;

else
if 3u G V | cadj(v) = C then

if | C |< ncolors — 1 then
choose v G V \ cadj(?■) = C and wdegree(v) is maximal among all

v' G V | cadj(v') — C
new col or (G , vertices, u); col or {G , vertices);

else if | G |= ncolors — 1 and 3 distinct u, u> and c G V | (u, w) £ E and
cadj(v) = cadj(w) = C \ {c } then return {Pruning Component}

else if 3u G W and c G C \ cadj(v) = C \ {c } and wdegret(v) > iodegree(c)
then {Reorganization Component}

choose v G V and c G C \ cadj(v) — C \ {c } and wdegree(v) — wdegree(c)
is maximal among all v' G V and cJ G C \ cadj(v') = C \ {c '};

exch(v, c);
else

choose v G V \ cdegree(v) is maximal and wdegree(v) is maximal
among all v' G V \ cdcgree(v') is maximal;

Vc G C | c ^ cadj(v),
if | C |< ncolors then

G' <— G ; vertices' <— vertices;
m erge(G vertices ', c, c); color(G', vertices');

if| C |< ncolors — 1 then
new color (G , vertices, c); col or {G , vertices);

ncolors <— oo; Vu G V,verticts(v) <— { c }:
COLOR(G, vertices); \(G) <— ncolors;

Figure 2: The DEXCH algorithm.

The colored vertex reorganization component is based on the desireability of hav­
ing as many edges as possible incident to the colored vertex subset. DSATLR at­
tempts to maximize this attribute by choosing at each step an uncolored vertex with
maximal wdegree among those uncolored vertices with maximal cdegree. DEXCH,
in addition, will attempt to maximize this attribute by searching for two vertices, v
and c such that cadj(v) = C \ {c } and wdegree(v) > wdegree(c). If such a pair is
found, DEXCH replaces c by v in the colored vertex subset.

4

Since wdegree(3) > rrtax(tudegree(l). wdegree(2)), DSATUR merges ver­
tex 3 into vertex —3.

If the best coloring so far uses 4 colors. DPRUNE detects the complete
subgraph { —3, —2,1 ,2 } and prunes the search tree; otherwise DPRUNE merges
vertex 3 into vertex —3.

If the best coloring so far uses more than 4 colors, DEXCH reorganizes the
colored vertex set as { —2, —1,3}; otherwise DEXCH prunes the search tree.

Figure 3: Behavior of three algorithms.

We note that all three algorithms indeed find an exact coloring function through
exhaustive search. Each instantiation of the procedure color either increases the
number of colored vertices (newcolor), increases the number of edges incident to the
set of colored vertices (earch) or decreases the number of uncolored vertices (merge),
color calls itself recursively until its argument is either completely colored or contains
no fewer colored vertices than the best coloring found so far.

3 Methodology and Results
All three algorithms, DSATUR, DPRUNE and DEXCH, were programmed in Turbo
Pascal using a similar programming style and degree of optimization. For each of
the vertex sizes: 32, 40, 48, 54 and 64; and for each of the edge densities: 0.1, 0.3,
0.5, 0.7 and 0.9; 100 random graphs were generated using Park and Miller's minimal
standard random number generator [8]. Each algorithm was executed on a PC AT
computer to produce an exact coloring function for all 100 random graphs except for
densities of 0.5 and 0.7 on 64 vertices where, because of the time involved, an exact
coloring for only the first 30 random graphs generated and the first 10 random graphs
generated respectively was produced. Execution times of the three algorithms were
compared with the paired t test. Mean execution times and the results of the paired
t test at the 95% confidence level are shown in Table 1.

We found that both DEXCH and DPRUNE are consistently faster than DSATUR
at the 95% confidence level for all graphs of between 40 and 64 vertices and all densities
between 0.3 and 0.9. In addition, we found that DEXCH performs significantly faster
than DPRUNE on most classes of graphs of high density (0.7 and 0.9) on 40 through
64 vertices. The relative improvement of DEXCH over DSA TUR reaches its maximum

5

32 40
VERTICES

48 56 64
D\ 1.86E-1 D\ 3.47E-1 Pm f 5.11 E-1 D *| 5.88E-1 E 1.02

0.1 P\ 1.87E-1 P\ 3.48E-1 D\ 5.22E-1 P\ 6.04E-1 P 1.06
E 2.07E-1 E 3.74E-1 E 5.42 E-l E 6.33E-1 D 1.14
P »f 4.19E-1 Pm 1.56 Em 9.89 Pmf 3.22E1 Pm 7.14E2

D 0.3 D 4.42E-1 Em 1.57 Pm 1.03E1 Em 3.38E1 Em 7.37E2
E E 4.44E-1 D 1.77 D 1.20E1 D 3.91E1 D 8.54E2
N Pm 1.40 Em* 9.89 Em 9.93E1 Pm 7.09E2 Em 3.91E3
S 0.5 Em 1.46 Pm 1.08E1 Pm 1.01E2 Em 7.25E2 Pm 4.58E3
I D 1.60 D 1.31E1 D 1.24E2 D 8.81E2 D 5.81E3
T Em* 1.70 Em* 7.90 Em* 1.21E2 Em 1.54E3 Em* 1.29E4
Y 0.7 Pm 1.88 Pm 1.01 El Pm 1.46E2 Pm 1.63E3 Pm 1.72E4

D 2.23 D 1.24E1 D 1.84E2 D 2.09E3 D 2.21E4
Pmf 3.89E-1 Em 9.82E-1 Em* 5.68 Em* 5.34E1 Em* 3.76E2

0.9 D 4.12E-1 Pm 1.01 Pm 6.39 Pm 7.24E1 Pm 4.91E2
E 4.21E-l D 1.15 D 7.59 D 8.65E1 D 5.88E2

D DSATUR algorithm. P DPRUNE algorithm.
E DEXCH algorithm. yEx means y * 10r .

• faster than DSATUR algorithm at 95% confidence level.
★ faster than DPRUNE algorithm at 95% confidence level.
| faster than DEXCH algorithm at 95% confidence level.

Table 1: Mean execution time in seconds.

value of 42% on graphs of density 0.7 on 64 vertices, the most time-consuming class
of graphs to color. On graphs of moderate density (0.3 and 0.5) on 40 through 64
vertices, both DEXCH and DPRUNE appear equally good. On most classes of low
density (0.1) or small (32 vertices) graphs, DEXCH Is outperformed by at least one
of the other two algorithms. The relative performance of the three algorithms with
DSATUR normalized at 1.0 is depicted graphically in Figure 4.

References
[1] Brelaz, D.: New methods to color vertices of a graph. Comm. ACM , 22, 4, Apr.

1979, pp251-256.

[2] Garey, M.R. and D.S. Johnson: The complexity of near-optimal graph coloring.
J. ACM , 23, 1, Jan. 1976, PP43-49.

[3] Johnson, D.S., C.R. Aragon, L.A. McGeoch and C. Schevon: Optimization by
simulated annealing: an experimental evaluation, Part II (graph coloring and
number partitioning). Manuscript, 1989.

6

:z
>m

g
dW

N
|-|

fi
>

2^
0

2

[4] Johri, A. and D.W. Matula: Probabilistic bounds and heuristic algorithms for
coloring large random graphs. Tech. Rep. 82-CSE-6, Southern Methodist Uni­
versity, Dallas, Tex., June 1982.

[5] Korman, S.M.: The graph coloring problem. In Combinatorial Optimization,
Eds. N. Christofides et al., Wiley, New York, 1979, pp211-235.

[6] Kubale, M. and B. Jackowski: A general implicit enumeration algorithm for
graph coloring. Comm. ACM , 28, 4, April 1985, pp412-418.

[7] Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J.
Res. Nat. Bur. Standards, 84, 6, Nov. 1979, pp489-506.

[8] Park, S.K. and K.W. Miller: Random number generators: good ones are hard
to find. Comm. ACM , 31, 10, Oct. 1988, ppl 192-1201.

[9] Sager, T.J. and S.J. Lin: An improved exact graph coloring algorithm. Tech.
Rep. CSc-89-1, University of Missouri-Rolla, Rolla, Missouri, April 1989.

[10] Sager, T.J. and S.J. Lin: A pruning procedure for exact graph coloring. Tech.
Rep. CSc-89-3, University of Missouri-Rolla, Rolla, Missouri, October 1989.

7

	A Color-Exchange Algorithm for Exact Graph Coloring
	Recommended Citation

	tmp.1600974007.pdf.EnMZt

