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ABSTRACT

This paper describes an algorithm called the Deduction Tracing Algorithm (DTA) 
which utilizes basic properties of functional dependencies from database systems and a 
modification of a tree search algorithm from artificial intelligence. The algorithm takes a 
set of functional dependencies, F, along with a specific functional dependency L → R as 
input and produces a list of functional dependencies from F that can be used to deduce 
L → R. The resulting algorithm is easily automated to provide relational database users 
with a tool for organizing their queries.
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DEDUCTION OF A FUNCTIONAL DEPENDENCY FROM A SET OF 
FUNCTIONAL DEPENDENCIES

Jim Richardson Daniel C. St. Clair
McDonnell Douglas University of Missouri- Rolla
Information Systems Group Graduate Engineering Center in St. Louis
St. Louis, Missouri 63166 St. Louis, Missouri 63385

Introduction

Relational database systems model functional dependencies between the attributes of 
various entities. While normalization is a common approach used in database design to 
reduce update and deletion anomalies,1'3 it does not help the database user with one very 
fundamental problem. The problem consists of determining how to retrive information 
from the database when the functional dependency o f interest is not contained in a single 
relation.

More specifically, suppose a relational database models a set of functional 
dependencies;

F = {Lj —> R^ L j —> R2, L^ —> Rk}

and that it is known that the functional dependency L -> R is deductible from F. The 
problem is to determine how to use the elements of set F to deduce L —» R. The solution 
of this problem is a list of functional dependencies from F that can be used to deduce 
L —» R. For example, suppose F = {a —> b, b —> c} and one desires to determine how 
a —> c can be deduced from F. The deduction trace, the chain of functional dependencies 
which allow one to deduce c from a, is easy to see in this example. However, if F 
contains many complex functional dependencies with many different attributes, the trace 
will likely not be so obvious.

This paper describes an algorithm called the Deduction Tracing Algorithm (DTA) 
which utilizes the basic properties of functional dependencies from database systems and a 
modification of a tree search algorithm from artificial intelligence. The algorithm takes a 
set of functional dependencies, F, along with a specific functional dependency L —»R as 
input and produces a list of functional dependencies from F that can be used to deduce 
L —»R. Before describing the DTA, it is important to establish several properties of 
functional dependencies and to describe the modified AND/OR search tree structure.
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Properties of Functional Dependencies

The DTA is based on several fundamental properties of functional dependencies. For 
purposes o f discussion, let U be a set of universal attributes and let F denote the set of 
functional dependencies;

F = {Lj —> Rj, 1̂ 2 —* 1̂ 2’ •••»

where Lj, Rj c  U for i = l,...k. Note that Lj, R; contain elements of U which are 
connected by conjunctions. For example, if U = {a,b,c,d,e}, F might contain the 
functional dependency ab —> c.

The process of deducing L —> R from F is based on the set of inference rules known 
as Armstrong’s axioms.4 Assuming a set of attributes U and a set of functional 
dependencies F, Armstrong's Axioms describe how to move from one step of the 
deduction to the next.

Armstrong's Axioms:

LetX, Y , Z ^ U ,

1. (reflexivity). If Y £: X U then X —> Y is logically implied by F.

2. (augmentation). If X -»  Y and U then XZ -»  YZ.

3. (transitivity). If X —> Y and Y -> Z then X -»  Z.

The technique for determining whether L - » R can be deduced from F is based on 
the well-known concept of closure.3,5

Closure The closure of X with respect to F, denoted CF(X), is the set of attributes

A c U  ^ X —> A can be deduced from F by Armstrong's axioms.

If R £  Cp(L) then L —» R can be deduced from F using Armstrong's Axioms. Hence, 
calculating Cp(L) should be done first to determine whether or not L —» R can be deduced 
from F. An algorithm for calculating CF(X) for set X has been described by Ullman.5
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Closure Algorithm:
1. LetX<°> = X

2. Calculate X<i+1> = X® u  {A 13 (Y -»  Z) e F, A c Z a n d Y c  X®}

3. Repeat step 2 until X® = X^1+1\  at this point, CF (X) = X®.

Sets X and Y are said to be equivalent, X = Y, iff CF (X) = CF (Y).

It is now possible to formally define what it means to say a functional dependency 

can be deduced from a set of functional dependencies F.

Deducibility: A functional dependency L -» R is deducible from (is logically implied by) 

a set of functional dependencies F iff 

R £ C f (L).

One last property of functional dependencies must be established before the DTA can 
be described. The DTA requires that the set F be minimal. This is not a restriction of the 
DTA since Ullman proves that every set of functional dependencies F is equivalent to a set 
F  that is minimal.5
Minimal Set of Functional Dependencies: A set F of functional dependencies is 
minimal iff:

1. V (Lj —> Rj) e F, R; contains a single attribute, ie. IRJ = 1.

2. t 3 (X - i  A) e F 3 F - { X A } h F. (Guarantees no redundant
dependencies in F.)

3. - 3  (X —> A) € F and Z c X  3 F - { X —»A } u  { Z A  } = F.
(Guarantees no extraneous attributes.)

Reducing F to a minimal set F  requires use of the closure algorithm. Note that in 
item 1, there is no loss in having IRI = 1 as the definition of a functional dependence 
implies {ab -»  cd} = {ab c, ab -» d}.
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Item 2 suggests how to remove redundant functional dependencies from F. For each 
Lj, i = find CD(L;) where D = F - {L; —» Rj}. If R; c  Cd(Lj) the L; —> Rj is 
redundant and should be removed from F. For example, consider the set o f functional 
dependencies:

F = {a -»  b, b -»  c, ad -> c}.

Remove ad  —> c from F and calculate CD({ad}) where D = F - {ad —» c). Using the 
closure algorithm,

X<0> = {a,d},

X^>= {a,d,b}, and 

X(2)= {a,d,b,c} =CD({ad}).

Since c e  CD({ad}), ad -> c is redundant with respect to F and can be removed. In a 
normal case, all functional dependencies in F would be removed and checked in this same 
manner.

To insure that all left hand sides are minimal, proceed as suggested by item 3. For all 
combinations of attributes Aj c  Lj where i = l,...k, ( L j -» R j )e  F, calculate Cf(Aj). If 
Rj c  CF(Aj) for any Aj, then Lj - Aj is extraneous and can be removed. Set F is 
modified so that F = F - (Lj —> Rj} u  {Aj —> Rj }. This procedure is repeated for each 
functional dependency in F. For example if:

F = {ab —» c, b —»a},

start by taking ab —» c and let A} = {b}, i.e. remove a from the left hand side. Applying 
the closure algorithm gives CpCAj) = {b,a,c}. Since {c} c; Cf(Aj), a  must be 
extraneous in ab —> c. Hence set F becomes

F - {ab -»  c} u  {b -»  c} = {b -> c, b —»a}.

The following theorem provides a result used to reduce computation in the DTA.

Theorem : Given the functional dependency L —> R where R cz L and the set of 
functional dependencies F, then R £  CF(L) implies 3 a unique integer 
j  3 R q  X(J) but R g X ^ ' 1* where X ^  is produced by the closure algorithm.
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Proof: Let R £L CF(L) and let X(0), X(1), X (s) = CF(X) denote the sets generated by 
the closure algorithm. Since in the closure algorithm,

X(i+1> = X(i) u  {A 13 Y Z e  F, A c  Z and Y c  X®} 
for i = 0,.... s-1, then X® c  X(i+1\
Since R ^ L ,  then Rg:
Further since R £  CF(L) = X(s), it must be the case that all elements in set R become 
elements of some set X®. (While all elements of R may not have entered the 
sequence at the same step, the last group to enter the sequence did so at X®.) Hence 
j is the value in [l..s] j R ^ X ®  but R <£X®1)

QED.

Combined AND/OR Trees

The search structure used in the Deduction Tracing Algorithm (DTA) is a combined 
AND/OR tree. This AND/OR tree is a variant of that described by Nilsson as a search 
structure used in artificial intelligence applications.6

Fig* 1 shows the basic structure of a combined AND/OR tree. The root node is 
denoted by n. Emanating from the root node are kn descendent groups dt. Each 
descendent group di contains one or more descendent nodes g - where j = 1,... md ̂ y  As 
the diagram shows, the individual descendent groups are related to each other 
disjunctively. The nodes within a single descendent group are related conjunctively.

The first group dp shown in Fig. 1 contains only a single node gn . Thus, if g}1 
is true then descendent group d} is true. In descendent group d2, m ^ )  = 2  giving two 
nodes g21 and g22. In this case both g2l and g22 must be true in order for descendent 
group d2 to be true.



n

1 level

Fig. 1 Combined AND/OR trees

<T>
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Fig. 2 illustrates how a combined AND/OR tree can be used to represent a set of 
functional dependencies, each having identical right hand sides. Consider the functional 
dependencies:

a b 
cd —» b 
ef-> b 

ghk —> b

In this example, b is chosen as the root node. Note that b is the right hand side for all of 
the functional dependencies listed. For instance, as a —> b contains only a single left hand 
side attribute, only a is needed to reach b. The descendent group dj represents this 
relationship. In the case of cd —> b since attributes c and d are related conjunctively, both 
c and d are needed to reach b. This is shown in d2.

If descendant groups dj - d4 do not contribute to the the deduction trace, than node b 
is also not a part of the deduction trace. If all g- in at least one descendant group dj - d4 
contain goal attributes or are ancestors of descendant groups that contain goal attributes 
than b may be part of the deduction trace.

Deduction Tracing Algorithm

The Deduction Tracing Algorithm (DTA) seeks to determine how the functional 
dependency L -»  R can be deduced from a minimal set of functional dependencies F by 
searching a combined AND/OR tree. Without loss of generality, let R contain the single 
attribute r e  U. If R contained k > 1 attributes, the problem would be broken into k 
subproblems.5

The DTA requires two basic structures. The first is a representation for the combined 
AND/OR tree to be used to trace the dependencies. The second is a stack used to store each 
functional dependency as it is traced in the tree. When a path in the tree is developed that 
does not lead to part of the deduction, the functional dependencies from this path are 
popped from the stack. When the algorithm terminates, the complete trace is found, on the 
stack, in the order needed to deduce L —» R.



Fig. 2 Use of combined AND/OR tree to represent a set of functional dependencies.

oc



The following description of the DTA uses ti, dt, and g -shown in Fig. 1. The 
functional dependency L —> r is being deduced from the minimal set F.
1. If r € Cf(L) then STOP, L —> r  can NOT be deduced from F.

Else let s be the value of j from the Theorem where r e  and r <s X(s l\
The sets X(s> and X ^  are from the closure algorithm.

2. Remove any extraneous attributes from L using the technique previously described 
for producing minimal sets of functional dependencies.

3. Start by letting n = r be the root node of a modified AND/OR tree. Set c = 0 where 
denotes the current level in the tree.

4. Let G = { Lj -»  n | (Lj -> n) e  F }
If G = {} then goto step 7.

5. Using the first (L; —> n) e  G
a) Create a branch djof the combined AND/OR tree. (This produces leaves

%  j =
b) Push Ly -»  n onto the stack.
c) Set failed_path = false.
d )  G = G - { L j ^ n }
e )  Let n = gn .
f) c = c  + 1.

6. While n L and c < s repeat steps 4 - 5 .

7. If n € L then failed_path = true.

8. a) If all attributes from L have been found and no partially resolved di remain, then
STOP. The deduction trace is on the stack.

Else

Return to the ancestor node of n (i.e. n = ancestor node of current n)
Let c = c -1 .



b) If failed_path then repeat
Pop the stack until the last functional dependency popped contains n on the right 
hand side.

9. If g.j+1 exists and not failed_path then

L e t« = gjV+y 

c = c + 1.
Else if G *  {} then select an L; —» rc from G and create branch di+J from node n.

Push Lj -» n onto stack 
Set failed_path = false 
Let n = gi+j j  
c = c + 1.

Else
If n is a parent node of a goal node then set failed_path = false.
Repeat steps 8 - 9 .

10. If c < s and n € L then
repeat steps 4 - 7.

Else
repeat steps 7 - 9 .

Example of the DTA

To illustrate the DTA, let

F = {b -»  a, dc -» b, f - » c, gf - » a, dr —» g, dz -» r, q -» z, z -» f) 

be a given set of functional dependencies. It can be verified that F is minimal. Let

dq a

be a functional dependency whose deduction trace is to be determined using the DTA. 

In the first step, the calculation of Cp({dq}) gives the following results at each

iteration of the closure routine:
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X<°>={d,q}

X(1>={d,q,z}

X(2)= {d,q,z,r,f}

X(3) = {d,q,z,r,f,c,g} 

X(4)= {d,q,z,r,f,c,g,a}

As can be seen, a € X ^- Thus, a e  CF({dq}) which implies that dq —> a is deducible 

from F by Armstrong's Axioms. Since a  e  X(4̂  but a  £ X®, s = 4.

The next step is to remove any existing extraneous attributes from the left hand side 
of dq —> a. Since a g CF({d}) = {d} and a e  CF({q}) = {q,z,f,c}, there are no 
extraneous attributes in the left hand side of dq —> a.

Having determined that dq —> a is deducible from F, step 3 of the algorithm can be 
performed by letting n = a and c = 0. This establishes a as the root node.

Step 4 is used to find all functional dependencies such that Lj —> a. These functional 
dependencies are grouped into set G = {b -»  a, gf -»  a}. In step 5 branch d} is built 
from b —> a,

b —> a is pushed on the stack, 
failed_path = false,
G = G - {b ->a} = {gf -»a), 
n = gu  = b, and 
c = 1.

The tree and stack are shown in FIG. 3.

Tree Stack

c = 0 a b -> a

c = 1
G = {gf -> a } 

l failed_path = false

Fig. 3 DTA tree and stack prior to expansion at node b.



Since {dq} and c = l < s = 4 a s  required in step 6, the process returns to step 4 
to continue building the depth of the tree. With n = b and G = {dc —» b}, branch dj is 
built from dc —» b in step 5,

dc -» b is pushed on the stack, 
failed_path = false,
G = G - {dc -> b} = {}, 
n = g11 = d, and 
c = 2.

The tree and stack are shown in Fig. 4.

Tree S -taaJs

c = 0

c = 1

dc -> b 

b -> a

g  = u

failed_path = false

Fig. 4 Tree expansion stops at node d since d € {dq}.

Since n -  d and d € {dq} in steps 6-7, the process moves to step 8 and starts 
developing the width of the tree at the current level 2. Not only does q need to be found, 
dj is still only partially resolved. Accordingly, n is moved back to the ancestor node of d 
and c is decremented to 1. The tree and stack are shown in Fig. 5.



T r ee S t a c k

c = 0 a dc -> b

◄---------  dj

d / \ ^ _  G = n
C ^12 failed_path = false

81J

Fig. 5 To continue expanding the tree for dc -> b, the 
DTA returns to node b.

In step 9, since g12 exists and not failed_path is true, n= gJ2 = c. The counter c is 
incremented to 2 giving the tree shown in Fig. 6.

oIIo

T r e e  S-fcajSfr 

a dc -> bj

c = 1 1

/  b -> a

: = 2
J

d

h — 1
\  G = n

\  failed_path = 1 
c  ◄— n - o

Fig. 6 DTA tree and stack prior to expansion at node c.

Since c = 2 < s = 4 and c e {dq}, step 10 instructs the process to return to step 4. 
The tree will now be expanded from the node n = c. With n = c and G = {f -» c }, branch 
dj is built from f —> c in step 5,



f —> c is pushed on the stack, 
G = G - {f —> c} = {}, 
n - g u  = f, and 
c = 3.

The result is shown in Fig. 7.

2LELS.fi Stac-k

o11o a f -> c/ dc -> b

fHIIo b1 b -> a

c = 2
A

d c

/ + ~ d l
g  = u

sl=_2 f  ◄— n = q
s l l

failed_path = 1

Fig. 7 Tree expanded from  node c to node f  using f  -> c.

Since c = 3 < s = 4 and f e  {dq} as required in step 6, the process returns to step 4 
and continues to search down the tree from n = f. With n = f  and G = {z —> f}, branch 
d} is built from z —* f in step 5,

z -» f is pushed on the stack, 
failed_path = false,
G = G - {z —» f} = {}, 
n =gu =z, and 
c = 4.

The tree and stack are shown in Fig. 8.



T r,e e, Stash
c = 0 a Z -> f

c = 1 ]
/

3

f -> C 

dc -> b

2 / \
b -> a

c = 2 d C/
/

c = 3 f  

/ *

/
G = {)

failed_path = false

Fig. 8 Tree expanded from node f to node z by using 
z —> f.

Noting that c = 4 = s and z £ {dq}, the failed_path flag is set to true in step 7.
Since the search has failed, this branch of the search tree will be abandoned. The process 
moves to step 8. The attribute q has not been found in the tree so n is set to f the ancestor 
of z, and c = 3. Since the failed_path flag is true, z —» f is popped from the stack. The 
tree and stack are shown in Fig. 9.



.Tree S-tA-CLk

f -> c 

dc -> b

b -> a

c = 2 d

C =-3

c = 4 z

Fig. 9 Since z e {dq} and the maximum tree depth is 
four, backtrack up the tree to node f and remove 
z —> f from the stack.

As g12 does not exist and set G = {}, steps 8 and 9 are repeated. In this example, 
there is no opportunity to expand the width of the tree until n is equal to the root node a, 
hence the process continues repeating steps 8 and 9 popping the stack and moving n back 
up the tree. The 8 - 9  sequence of steps terminate when n = a, the root node. At this point 
the tree can be expanded, i.e. d2 can be created. After reaching the root node, the tree and 
stack look as shown in Fig. 10.

A
c

G = n

failed_path = true
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T.r. e e.

L = J i

c = 1

c = 2 

c = 3 

c = 4

a
S t e .C k

G = {}

failed_path = true

Fig. 10 Tree and stack after the DTA backtracks to node a.

Execution of step 10 leads to the repeating of steps 4 - 7 ,  with n -  a, and 
G = {gf —» a}. A new branch d2 is created from the root node and gf -»  a  is pushed on to 
the stack. At the end of step 5, the tree and stack are as shown in Fig. 11.
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c = 0

y = l

c = 2

c = 3 

c = 4

Tree S t f r Sk 

gf -> a

G = {}

failed_path = false

Fig. 11 Expansion of the tree from node a using gf -> a.

Step 6 returns the process to step 4 to start expanding the depth of the tree from node 
g. With n = g and G = {dr g), branch dl is built from dr g in step 5, 

dr —> g is pushed on the stack, 
failed_path = false,
G = G - {dr- » g} = {}, 
n= gn  = d, and 
c = 2.

The tree and stack now shown in Fig. 12.
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S.t.^.ck

c = 0 a

/ \
d r  ->  

g f  ->

C=1 b
A

g f

A K
C = 2 d  c  

/

d r
/t i -  p611CO 

•'tf 
II 

II 
o 

o

G= { }
failed_path = false

Fig. 12 Expansion of the tree from node g using dr g.

As n = d and d e  {dq} the process moves to step 8 and starts developing the width 
of the tree at the current level 2. The attribute q has not been found so n is set to g which 
is the ancestor node of d and c is decremented to 1. The tree now looks as shown in 
Fig. 13.



2 0

c = 0

c = 1

c = 2

c = 3

c = 4

a
T r e e

/
z

d r  - >  g 

g f  - >  a

S t a c k

G = { }

failecLpath = false

Fig. 13 DTA tree and stack prior to expansion at node r.

In step 9 since g12 exists, n is moved to g]2 = r and c is incremented to 2.

Continued application of the DTA from the node n = r expands the tree as shown in 
Fig. 14. In this figure, execution of step 5 has just been completed.
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c = 0

c = 1

c = 2

c = 3 

c = 4

T r e e Stack
q -> z 

dz -> r 
dr -> g 
gf -> a

G = 0

failed_path = false

Fig. 14 Tree expansion stops at n = gn since q s  {dq}.

Since q e  {dq} at step 6, the failed_path flag remains false at step 7 and the process 
advances to step 8. Even though d and q have both been found, the AND relation formed 
by gf —* a has not been fully resolved. As gi j+} does not exist for node q, z, or r and 
G = {} at each of these nodes the process repeats steps 8 and 9 until n is back at the root 
node where gJ2 = f still exists. At this point n is moved to node gJ2 = f and c = 1. Upon 
entry into step 10, the tree looks as shown in Fig. 15.



2 2

c = 0

£L=_1

c = 2

c = 3 

c = 4

Tc.ee S t a c k

Altr z

d z  - > r

d r  - > g

g f  - > a

n = g'12

G= { }
failed_path = false

Fig. 15 DTA tree and stack prior to expansion at node f.

Step 10 returns the process to step 4 to start expanding the depth of the tree from 
n = f. The DTA continues to expand this portion of the tree until the situation shown in 
FIG. 16 is reached. Execution of step 5 has just been completed.
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c = 0

c = 1

c = 2

c -  3

c = 4

Tr ee  S t a c k

Fig. 16 Completed DTA tree and stack. The stack contains 
the desired trace.

At this point all attributes from goal set {dq} have been found and there are no partially 
resolved ^  remaining in the current tree. A deduction trace of dq —> a is given by the 
contents of the stack and is represented by the set of functional dependencies;

{q -» z, z - » f, dz -» r, dr g, gf -> a} c  F.

Features of the DTA

Each Xw in the closure calculation relates, in reverse order, to a level in the deduction 
trace tree. The right hand side attribute, r, from (L —» r) e F is used as the root node of 
the tree for the deduction trace and first shows up in X(s) in the calculation of Cp(L). Some
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of the elements of L will appear in the search tree before level s is reached, however since s 
is the smallest value for which r e  X^s\  at least one of the attributes will require a search at 
level s. On the other hand, the deduction trace can be solved with a maximum tree depth of 
s. As in the above example for dq —> a, since a e X(4\  the maximum depth of the tree 
required for a trace of dq —> a is s = 4.

For a given minimal set of functional dependencies, F, an upper bound of the number 
of nodes which will be evaluated in constructing the AND/OR tree can be calculated. Let

R = { a I (L —» a) s  F and a e  U }.

Since the value of a given a may appear in more than one right hand side, it is highly likely 
that IR! < IFI. For each a e R, let

Sa = { L I (L —> a) 6 F } .

Further, let

p = max ISJ for a e R.

Consider all L; 3 (L; —» e  F for some i = 1...IFI. Let

q = max ILjl for i = 1...IFI.

At a given node, the maximum number of di branches which can be derived is p. The 
maximum number of g -from  any single d- branch is q. Hence, the maximum number of 
gjj nodes resulting from the expansion of any node a is pq. Further, an upper bound on 
the number of nodes in a combined AND/OR tree of depth s is:

s • f  pq( 1 - frq fi f , ,
Upper bound = £  (pqj = < 1 - pq tor pq *  1

1-1 L s forpq=l

To illustrate the calculation, again consider the example problem where,

R = {a,b,c,f,g,r,z},
|Ri = 7 < IFI = 8,

Sa ={{b},{gf}  },
Sb= { (dc) }, and 
Sc={ {f} }.
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Since Sf, Sg, Sr, and Sz are all singleton sets, p = 2. Futher, it can be seen that the largest 
number of attributes in any single left hand side is 2, so q = 2. Since the closure routine 
requires a minimum of four iterations to determine that a e CF({dq}), then s = 4. Using 
these numbers, an upper bound on the number of nodes generated by the DTA for this 
example is:

pq( 1 - (pq)S) = 1020 = ^

1 - pq 3

Hence, a maximum of 340 nodes would have to be searched to solve this problem. The 
value is a liberal upper bound since the problem actually required that 15 nodes be 
searched.

The tree produced by the DTA may not be unique. For example, applying the DTA to 
the minimal set of functional dependencies,

F = {b -» a, gf —> a, jt -» a, dc -> b, f - » c, z —> f, dr —> g, dz —» r, 
q -> z, d —»j, e —»t, h -» e, q h}

and letting

dq - » a

be a functional dependency whose deduction trace is to be determined by the DTA gives 
either the deduction trace,



or the deduction trace,
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q h

h -4 e
e -4 t

d j

j t a.

In both cases, s = 4. The solution produced by the DTA depends on the order in which the 
AND/OR tree is constructed. Both solutions are correct.

The above example illustrates the fact that more than one solution may be found by 
searching a maximum of s levels deep. However, searching more than s levels may 
produce additional solutions. In the present example, searching five levels deep will yield 
the solution,

q - 4 Z
z -4 f

f - 4 c
dc -4 b

b - 4 a.

If L  —» r can be deduced from F, then r first shows up at least once in of CF(L). 
The number of times that r can be deduced in X(s) directly relates to the number of 
solutions to the DTA within a tree of maximum level s. In the above example 
X(3) = {d,q,zj,h,c,f,r,g,t}5 in the calculation for X(4), gf -4 a, and ct -> a can both 
be resolved so the number of solutions within a tree of depth 4 would be 2.

Conclusions

This paper describes an algorithm that will produce a deduction trace of L —> r  over a 
minimal set of functional dependencies F provided r € Cp(L). The depth o f the search tree 
depends on the number of calculations required to determine that r e Cp(L). This 
algorithm will show the first solution found in the search of the AND/OR tree. If more 
than one solution exists, the order in which the tree is built will determine the solution 
produced. Ordering the AND/OR tree so the di with the smallest number of g~ is evaluated 
First may produce a more nearly optimal solution. It may be desirable to see all of the
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possible solutions within a tree of level s. In order to do this, the algorithm would have to 
be modified to store the number of possible solutions as calculated by the closure routine. 
As long as more solutions exist, the algorithm can return to the root node after each 
solution and start searching the next di emanating from the root node.

With computer generated tools to remove redundancies and extraneous left hand side 
attributes from a list of functional dependencies, the process of creating relational databases 
with minimal sets of functional dependencies has been simplified. With the addition of the 
DTA to resolve dependencies not contained in a single relation, it will be easier for 
relational database users to determine how to retrieve information from the database.
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