
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Mar 1988

Deduction of a Functional Dependency from a Set of Functional Deduction of a Functional Dependency from a Set of Functional

Dependencies Dependencies

James M. Richardson

Daniel C. St. Clair
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Richardson, James M. and St. Clair, Daniel C., "Deduction of a Functional Dependency from a Set of
Functional Dependencies" (1988). Computer Science Technical Reports. 13.
https://scholarsmine.mst.edu/comsci_techreports/13

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/13?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DEDUCTION OF A FUNCTIONAL DEPENDENCY FROM A
SET OF FUNCTIONAL DEPENDENCIES

J . M. R i c h a r d s o n * and D. C. S t . C l a i r

C S c - 8 8 - 2

D e p a r t m e n t o f C o m p u te r S c i e n c e

U n i v e r s i t y o f M i s s o u r i - R o l l a

R o l l a , M i s s o u r i 6 5401 (3 1 4) 3 4 1 - 4 4 9 1

*This report is substantially the M.S. thesis of the first
author, completed March, 1988.

ABSTRACT

This paper describes an algorithm called the Deduction Tracing Algorithm (DTA)
which utilizes basic properties of functional dependencies from database systems and a
modification of a tree search algorithm from artificial intelligence. The algorithm takes a
set of functional dependencies, F, along with a specific functional dependency L → R as
input and produces a list of functional dependencies from F that can be used to deduce
L → R. The resulting algorithm is easily automated to provide relational database users
with a tool for organizing their queries.

V

TABLE O F CONTENTS

Page

PUBLICATION THESIS OPTION.. ii

ABSTRACT.. iii

ACKNOWLEDGMENTS... iv

LIST OF ILLUSTRATIONS.. vi

Introduction... 1

Properties of Functional Dependencies.. 2

Combined AND/OR Trees... 5

Deduction Tracing Algorithm... 7

Example of the D TA .. 10

Features of the D T A ... 23

Conclusions... 26

References... 28

VITA 29

VI

LIST O F ILLUSTRATIONS

Figures Page

1. Combined AND/OR trees.. 6

2. Use of a combined AND/OR tree to represent a set of functional dependencies. . 8

3. DTA tree and stack prior to expansion at node b.. 11

4. Tree expansion stops at node d since d e {dq}... 12

5. To continue expanding the tree for dc -> b, the DTA returns to node b 13

6. DTA tree and stack prior to expansion at node c .. 13

7. Tree expanded from node c to node f using f c.. 14

8. Tree expanded from node f to node z by using z —> f 15

9. Since z g {dq} and the maximum tree depth is four, backtrack up the tree

to node f and remove z —» f from the stack.. 16

10. Tree and stack after the DTA backtracks to node a .. 17

11. Expansion of the tree from node a using gf —> a... 18

12. Expansion of the tree from node g using d r g... 19

13. DTA tree and stack prior to expansion at node r ... 20

14. Tree expansion stops at n = gn since q e {dq}.. 21

15. DTA tree and stack prior to expansion at node f . .. 22

16. Completed DTA tree and stack. The stack contains the desired trace................. 23

1

DEDUCTION OF A FUNCTIONAL DEPENDENCY FROM A SET OF
FUNCTIONAL DEPENDENCIES

Jim Richardson Daniel C. St. Clair
McDonnell Douglas University of Missouri- Rolla
Information Systems Group Graduate Engineering Center in St. Louis
St. Louis, Missouri 63166 St. Louis, Missouri 63385

Introduction

Relational database systems model functional dependencies between the attributes of
various entities. While normalization is a common approach used in database design to
reduce update and deletion anomalies,1'3 it does not help the database user with one very
fundamental problem. The problem consists of determining how to retrive information
from the database when the functional dependency o f interest is not contained in a single
relation.

More specifically, suppose a relational database models a set of functional
dependencies;

F = {Lj —> R^ L j —> R2, L^ —> Rk}

and that it is known that the functional dependency L -> R is deductible from F. The
problem is to determine how to use the elements of set F to deduce L —» R. The solution
of this problem is a list of functional dependencies from F that can be used to deduce
L —» R. For example, suppose F = {a —> b, b —> c} and one desires to determine how
a —> c can be deduced from F. The deduction trace, the chain of functional dependencies
which allow one to deduce c from a, is easy to see in this example. However, if F
contains many complex functional dependencies with many different attributes, the trace
will likely not be so obvious.

This paper describes an algorithm called the Deduction Tracing Algorithm (DTA)
which utilizes the basic properties of functional dependencies from database systems and a
modification of a tree search algorithm from artificial intelligence. The algorithm takes a
set of functional dependencies, F, along with a specific functional dependency L —»R as
input and produces a list of functional dependencies from F that can be used to deduce
L —»R. Before describing the DTA, it is important to establish several properties of
functional dependencies and to describe the modified AND/OR search tree structure.

2

Properties of Functional Dependencies

The DTA is based on several fundamental properties of functional dependencies. For
purposes o f discussion, let U be a set of universal attributes and let F denote the set of
functional dependencies;

F = {Lj —> Rj, 1̂ 2 —* 1̂ 2’ •••»

where Lj, Rj c U for i = l,...k. Note that Lj, R; contain elements of U which are
connected by conjunctions. For example, if U = {a,b,c,d,e}, F might contain the
functional dependency ab —> c.

The process of deducing L —> R from F is based on the set of inference rules known
as Armstrong’s axioms.4 Assuming a set of attributes U and a set of functional
dependencies F, Armstrong's Axioms describe how to move from one step of the
deduction to the next.

Armstrong's Axioms:

LetX, Y , Z ^ U ,

1. (reflexivity). If Y £: X U then X —> Y is logically implied by F.

2. (augmentation). If X -» Y and U then XZ -» YZ.

3. (transitivity). If X —> Y and Y -> Z then X -» Z.

The technique for determining whether L - » R can be deduced from F is based on
the well-known concept of closure.3,5

Closure The closure of X with respect to F, denoted CF(X), is the set of attributes

A c U ^ X —> A can be deduced from F by Armstrong's axioms.

If R £ Cp(L) then L —» R can be deduced from F using Armstrong's Axioms. Hence,
calculating Cp(L) should be done first to determine whether or not L —» R can be deduced
from F. An algorithm for calculating CF(X) for set X has been described by Ullman.5

3

Closure Algorithm:
1. LetX<°> = X

2. Calculate X<i+1> = X® u {A 13 (Y -» Z) e F, A c Z a n d Y c X®}

3. Repeat step 2 until X® = X^1+1\ at this point, CF (X) = X®.

Sets X and Y are said to be equivalent, X = Y, iff CF (X) = CF (Y).

It is now possible to formally define what it means to say a functional dependency

can be deduced from a set of functional dependencies F.

Deducibility: A functional dependency L -» R is deducible from (is logically implied by)

a set of functional dependencies F iff

R £ C f (L).

One last property of functional dependencies must be established before the DTA can
be described. The DTA requires that the set F be minimal. This is not a restriction of the
DTA since Ullman proves that every set of functional dependencies F is equivalent to a set
F that is minimal.5
Minimal Set of Functional Dependencies: A set F of functional dependencies is
minimal iff:

1. V (Lj —> Rj) e F, R; contains a single attribute, ie. IRJ = 1.

2. t 3 (X - i A) e F 3 F - { X A } h F. (Guarantees no redundant
dependencies in F.)

3. - 3 (X —> A) € F and Z c X 3 F - { X —»A } u { Z A } = F.
(Guarantees no extraneous attributes.)

Reducing F to a minimal set F requires use of the closure algorithm. Note that in
item 1, there is no loss in having IRI = 1 as the definition of a functional dependence
implies {ab -» cd} = {ab c, ab -» d}.

4

Item 2 suggests how to remove redundant functional dependencies from F. For each
Lj, i = find CD(L;) where D = F - {L; —» Rj}. If R; c Cd(Lj) the L; —> Rj is
redundant and should be removed from F. For example, consider the set o f functional
dependencies:

F = {a -» b, b -» c, ad -> c}.

Remove ad —> c from F and calculate CD({ad}) where D = F - {ad —» c). Using the
closure algorithm,

X<0> = {a,d},

X^>= {a,d,b}, and

X(2)= {a,d,b,c} =CD({ad}).

Since c e CD({ad}), ad -> c is redundant with respect to F and can be removed. In a
normal case, all functional dependencies in F would be removed and checked in this same
manner.

To insure that all left hand sides are minimal, proceed as suggested by item 3. For all
combinations of attributes Aj c Lj where i = l,...k, (L j -» R j)e F, calculate Cf(Aj). If
Rj c CF(Aj) for any Aj, then Lj - Aj is extraneous and can be removed. Set F is
modified so that F = F - (Lj —> Rj} u {Aj —> Rj }. This procedure is repeated for each
functional dependency in F. For example if:

F = {ab —» c, b —»a},

start by taking ab —» c and let A} = {b}, i.e. remove a from the left hand side. Applying
the closure algorithm gives CpCAj) = {b,a,c}. Since {c} c; Cf(Aj), a must be
extraneous in ab —> c. Hence set F becomes

F - {ab -» c} u {b -» c} = {b -> c, b —»a}.

The following theorem provides a result used to reduce computation in the DTA.

Theorem : Given the functional dependency L —> R where R cz L and the set of
functional dependencies F, then R £ CF(L) implies 3 a unique integer
j 3 R q X(J) but R g X ^ ' 1* where X ^ is produced by the closure algorithm.

5

Proof: Let R £L CF(L) and let X(0), X(1), X (s) = CF(X) denote the sets generated by
the closure algorithm. Since in the closure algorithm,

X(i+1> = X(i) u {A 13 Y Z e F, A c Z and Y c X®}
for i = 0,.... s-1, then X® c X(i+1\
Since R ^ L , then Rg:
Further since R £ CF(L) = X(s), it must be the case that all elements in set R become
elements of some set X®. (While all elements of R may not have entered the
sequence at the same step, the last group to enter the sequence did so at X®.) Hence
j is the value in [l..s] j R ^ X ® but R <£X®1)

QED.

Combined AND/OR Trees

The search structure used in the Deduction Tracing Algorithm (DTA) is a combined
AND/OR tree. This AND/OR tree is a variant of that described by Nilsson as a search
structure used in artificial intelligence applications.6

Fig* 1 shows the basic structure of a combined AND/OR tree. The root node is
denoted by n. Emanating from the root node are kn descendent groups dt. Each
descendent group di contains one or more descendent nodes g - where j = 1,... md ̂ y As
the diagram shows, the individual descendent groups are related to each other
disjunctively. The nodes within a single descendent group are related conjunctively.

The first group dp shown in Fig. 1 contains only a single node gn . Thus, if g}1
is true then descendent group d} is true. In descendent group d2, m ^) = 2 giving two
nodes g21 and g22. In this case both g2l and g22 must be true in order for descendent
group d2 to be true.

n

1 level

Fig. 1 Combined AND/OR trees

<T>

7

Fig. 2 illustrates how a combined AND/OR tree can be used to represent a set of
functional dependencies, each having identical right hand sides. Consider the functional
dependencies:

a b
cd —» b
ef-> b

ghk —> b

In this example, b is chosen as the root node. Note that b is the right hand side for all of
the functional dependencies listed. For instance, as a —> b contains only a single left hand
side attribute, only a is needed to reach b. The descendent group dj represents this
relationship. In the case of cd —> b since attributes c and d are related conjunctively, both
c and d are needed to reach b. This is shown in d2.

If descendant groups dj - d4 do not contribute to the the deduction trace, than node b
is also not a part of the deduction trace. If all g- in at least one descendant group dj - d4
contain goal attributes or are ancestors of descendant groups that contain goal attributes
than b may be part of the deduction trace.

Deduction Tracing Algorithm

The Deduction Tracing Algorithm (DTA) seeks to determine how the functional
dependency L -» R can be deduced from a minimal set of functional dependencies F by
searching a combined AND/OR tree. Without loss of generality, let R contain the single
attribute r e U. If R contained k > 1 attributes, the problem would be broken into k
subproblems.5

The DTA requires two basic structures. The first is a representation for the combined
AND/OR tree to be used to trace the dependencies. The second is a stack used to store each
functional dependency as it is traced in the tree. When a path in the tree is developed that
does not lead to part of the deduction, the functional dependencies from this path are
popped from the stack. When the algorithm terminates, the complete trace is found, on the
stack, in the order needed to deduce L —» R.

Fig. 2 Use of combined AND/OR tree to represent a set of functional dependencies.

oc

The following description of the DTA uses ti, dt, and g -shown in Fig. 1. The
functional dependency L —> r is being deduced from the minimal set F.
1. If r € Cf(L) then STOP, L —> r can NOT be deduced from F.

Else let s be the value of j from the Theorem where r e and r <s X(s l\
The sets X(s> and X ^ are from the closure algorithm.

2. Remove any extraneous attributes from L using the technique previously described
for producing minimal sets of functional dependencies.

3. Start by letting n = r be the root node of a modified AND/OR tree. Set c = 0 where
denotes the current level in the tree.

4. Let G = { Lj -» n | (Lj -> n) e F }
If G = {} then goto step 7.

5. Using the first (L; —> n) e G
a) Create a branch djof the combined AND/OR tree. (This produces leaves

% j =
b) Push Ly -» n onto the stack.
c) Set failed_path = false.
d) G = G - { L j ^ n }
e) Let n = gn .
f) c = c + 1.

6. While n L and c < s repeat steps 4 - 5 .

7. If n € L then failed_path = true.

8. a) If all attributes from L have been found and no partially resolved di remain, then
STOP. The deduction trace is on the stack.

Else

Return to the ancestor node of n (i.e. n = ancestor node of current n)
Let c = c -1 .

b) If failed_path then repeat
Pop the stack until the last functional dependency popped contains n on the right
hand side.

9. If g.j+1 exists and not failed_path then

L e t« = gjV+y

c = c + 1.
Else if G * {} then select an L; —» rc from G and create branch di+J from node n.

Push Lj -» n onto stack
Set failed_path = false
Let n = gi+j j
c = c + 1.

Else
If n is a parent node of a goal node then set failed_path = false.
Repeat steps 8 - 9 .

10. If c < s and n € L then
repeat steps 4 - 7.

Else
repeat steps 7 - 9 .

Example of the DTA

To illustrate the DTA, let

F = {b -» a, dc -» b, f - » c, gf - » a, dr —» g, dz -» r, q -» z, z -» f)

be a given set of functional dependencies. It can be verified that F is minimal. Let

dq a

be a functional dependency whose deduction trace is to be determined using the DTA.

In the first step, the calculation of Cp({dq}) gives the following results at each

iteration of the closure routine:

11

X<°>={d,q}

X(1>={d,q,z}

X(2)= {d,q,z,r,f}

X(3) = {d,q,z,r,f,c,g}

X(4)= {d,q,z,r,f,c,g,a}

As can be seen, a € X ^- Thus, a e CF({dq}) which implies that dq —> a is deducible

from F by Armstrong's Axioms. Since a e X(4̂ but a £ X®, s = 4.

The next step is to remove any existing extraneous attributes from the left hand side
of dq —> a. Since a g CF({d}) = {d} and a e CF({q}) = {q,z,f,c}, there are no
extraneous attributes in the left hand side of dq —> a.

Having determined that dq —> a is deducible from F, step 3 of the algorithm can be
performed by letting n = a and c = 0. This establishes a as the root node.

Step 4 is used to find all functional dependencies such that Lj —> a. These functional
dependencies are grouped into set G = {b -» a, gf -» a}. In step 5 branch d} is built
from b —> a,

b —> a is pushed on the stack,
failed_path = false,
G = G - {b ->a} = {gf -»a),
n = gu = b, and
c = 1.

The tree and stack are shown in FIG. 3.

Tree Stack

c = 0 a b -> a

c = 1
G = {gf -> a }

l failed_path = false

Fig. 3 DTA tree and stack prior to expansion at node b.

Since {dq} and c = l < s = 4 a s required in step 6, the process returns to step 4
to continue building the depth of the tree. With n = b and G = {dc —» b}, branch dj is
built from dc —» b in step 5,

dc -» b is pushed on the stack,
failed_path = false,
G = G - {dc -> b} = {},
n = g11 = d, and
c = 2.

The tree and stack are shown in Fig. 4.

Tree S -taaJs

c = 0

c = 1

dc -> b

b -> a

g = u

failed_path = false

Fig. 4 Tree expansion stops at node d since d € {dq}.

Since n - d and d € {dq} in steps 6-7, the process moves to step 8 and starts
developing the width of the tree at the current level 2. Not only does q need to be found,
dj is still only partially resolved. Accordingly, n is moved back to the ancestor node of d
and c is decremented to 1. The tree and stack are shown in Fig. 5.

T r ee S t a c k

c = 0 a dc -> b

◄--------- dj

d / \ ^ _ G = n
C ^12 failed_path = false

81J

Fig. 5 To continue expanding the tree for dc -> b, the
DTA returns to node b.

In step 9, since g12 exists and not failed_path is true, n= gJ2 = c. The counter c is
incremented to 2 giving the tree shown in Fig. 6.

oIIo

T r e e S-fcajSfr

a dc -> bj

c = 1 1

/ b -> a

: = 2
J

d

h — 1
\ G = n

\ failed_path = 1
c ◄— n - o

Fig. 6 DTA tree and stack prior to expansion at node c.

Since c = 2 < s = 4 and c e {dq}, step 10 instructs the process to return to step 4.
The tree will now be expanded from the node n = c. With n = c and G = {f -» c }, branch
dj is built from f —> c in step 5,

f —> c is pushed on the stack,
G = G - {f —> c} = {},
n - g u = f, and
c = 3.

The result is shown in Fig. 7.

2LELS.fi Stac-k

o11o a f -> c/ dc -> b

fHIIo b1 b -> a

c = 2
A

d c

/ + ~ d l
g = u

sl=_2 f ◄— n = q
s l l

failed_path = 1

Fig. 7 Tree expanded from node c to node f using f -> c.

Since c = 3 < s = 4 and f e {dq} as required in step 6, the process returns to step 4
and continues to search down the tree from n = f. With n = f and G = {z —> f}, branch
d} is built from z —* f in step 5,

z -» f is pushed on the stack,
failed_path = false,
G = G - {z —» f} = {},
n =gu =z, and
c = 4.

The tree and stack are shown in Fig. 8.

T r,e e, Stash
c = 0 a Z -> f

c = 1]
/

3

f -> C

dc -> b

2 / \
b -> a

c = 2 d C/
/

c = 3 f

/ *

/
G = {)

failed_path = false

Fig. 8 Tree expanded from node f to node z by using
z —> f.

Noting that c = 4 = s and z £ {dq}, the failed_path flag is set to true in step 7.
Since the search has failed, this branch of the search tree will be abandoned. The process
moves to step 8. The attribute q has not been found in the tree so n is set to f the ancestor
of z, and c = 3. Since the failed_path flag is true, z —» f is popped from the stack. The
tree and stack are shown in Fig. 9.

.Tree S-tA-CLk

f -> c

dc -> b

b -> a

c = 2 d

C =-3

c = 4 z

Fig. 9 Since z e {dq} and the maximum tree depth is
four, backtrack up the tree to node f and remove
z —> f from the stack.

As g12 does not exist and set G = {}, steps 8 and 9 are repeated. In this example,
there is no opportunity to expand the width of the tree until n is equal to the root node a,
hence the process continues repeating steps 8 and 9 popping the stack and moving n back
up the tree. The 8 - 9 sequence of steps terminate when n = a, the root node. At this point
the tree can be expanded, i.e. d2 can be created. After reaching the root node, the tree and
stack look as shown in Fig. 10.

A
c

G = n

failed_path = true

1 7

T.r. e e.

L = J i

c = 1

c = 2

c = 3

c = 4

a
S t e .C k

G = {}

failed_path = true

Fig. 10 Tree and stack after the DTA backtracks to node a.

Execution of step 10 leads to the repeating of steps 4 - 7 , with n - a, and
G = {gf —» a}. A new branch d2 is created from the root node and gf -» a is pushed on to
the stack. At the end of step 5, the tree and stack are as shown in Fig. 11.

1 8

c = 0

y = l

c = 2

c = 3

c = 4

Tree S t f r Sk

gf -> a

G = {}

failed_path = false

Fig. 11 Expansion of the tree from node a using gf -> a.

Step 6 returns the process to step 4 to start expanding the depth of the tree from node
g. With n = g and G = {dr g), branch dl is built from dr g in step 5,

dr —> g is pushed on the stack,
failed_path = false,
G = G - {dr- » g} = {},
n= gn = d, and
c = 2.

The tree and stack now shown in Fig. 12.

1 9

S.t.^.ck

c = 0 a

/ \
d r ->

g f ->

C=1 b
A

g f

A K
C = 2 d c

/

d r
/t i - p611CO

•'tf
II

II
o

o

G= { }
failed_path = false

Fig. 12 Expansion of the tree from node g using dr g.

As n = d and d e {dq} the process moves to step 8 and starts developing the width
of the tree at the current level 2. The attribute q has not been found so n is set to g which
is the ancestor node of d and c is decremented to 1. The tree now looks as shown in
Fig. 13.

2 0

c = 0

c = 1

c = 2

c = 3

c = 4

a
T r e e

/
z

d r - > g

g f - > a

S t a c k

G = { }

failecLpath = false

Fig. 13 DTA tree and stack prior to expansion at node r.

In step 9 since g12 exists, n is moved to g]2 = r and c is incremented to 2.

Continued application of the DTA from the node n = r expands the tree as shown in
Fig. 14. In this figure, execution of step 5 has just been completed.

21

c = 0

c = 1

c = 2

c = 3

c = 4

T r e e Stack
q -> z

dz -> r
dr -> g
gf -> a

G = 0

failed_path = false

Fig. 14 Tree expansion stops at n = gn since q s {dq}.

Since q e {dq} at step 6, the failed_path flag remains false at step 7 and the process
advances to step 8. Even though d and q have both been found, the AND relation formed
by gf —* a has not been fully resolved. As gi j+} does not exist for node q, z, or r and
G = {} at each of these nodes the process repeats steps 8 and 9 until n is back at the root
node where gJ2 = f still exists. At this point n is moved to node gJ2 = f and c = 1. Upon
entry into step 10, the tree looks as shown in Fig. 15.

2 2

c = 0

£L=_1

c = 2

c = 3

c = 4

Tc.ee S t a c k

Altr z

d z - > r

d r - > g

g f - > a

n = g'12

G= { }
failed_path = false

Fig. 15 DTA tree and stack prior to expansion at node f.

Step 10 returns the process to step 4 to start expanding the depth of the tree from
n = f. The DTA continues to expand this portion of the tree until the situation shown in
FIG. 16 is reached. Execution of step 5 has just been completed.

23

c = 0

c = 1

c = 2

c - 3

c = 4

Tr ee S t a c k

Fig. 16 Completed DTA tree and stack. The stack contains
the desired trace.

At this point all attributes from goal set {dq} have been found and there are no partially
resolved ^ remaining in the current tree. A deduction trace of dq —> a is given by the
contents of the stack and is represented by the set of functional dependencies;

{q -» z, z - » f, dz -» r, dr g, gf -> a} c F.

Features of the DTA

Each Xw in the closure calculation relates, in reverse order, to a level in the deduction
trace tree. The right hand side attribute, r, from (L —» r) e F is used as the root node of
the tree for the deduction trace and first shows up in X(s) in the calculation of Cp(L). Some

24

of the elements of L will appear in the search tree before level s is reached, however since s
is the smallest value for which r e X^s\ at least one of the attributes will require a search at
level s. On the other hand, the deduction trace can be solved with a maximum tree depth of
s. As in the above example for dq —> a, since a e X(4\ the maximum depth of the tree
required for a trace of dq —> a is s = 4.

For a given minimal set of functional dependencies, F, an upper bound of the number
of nodes which will be evaluated in constructing the AND/OR tree can be calculated. Let

R = { a I (L —» a) s F and a e U }.

Since the value of a given a may appear in more than one right hand side, it is highly likely
that IR! < IFI. For each a e R, let

Sa = { L I (L —> a) 6 F } .

Further, let

p = max ISJ for a e R.

Consider all L; 3 (L; —» e F for some i = 1...IFI. Let

q = max ILjl for i = 1...IFI.

At a given node, the maximum number of di branches which can be derived is p. The
maximum number of g -from any single d- branch is q. Hence, the maximum number of
gjj nodes resulting from the expansion of any node a is pq. Further, an upper bound on
the number of nodes in a combined AND/OR tree of depth s is:

s • f pq(1 - frq fi f , ,
Upper bound = £ (pqj = < 1 - pq tor pq * 1

1-1 L s forpq=l

To illustrate the calculation, again consider the example problem where,

R = {a,b,c,f,g,r,z},
|Ri = 7 < IFI = 8,

Sa ={{b},{gf} },
Sb= { (dc) }, and
Sc={ {f} }.

25

Since Sf, Sg, Sr, and Sz are all singleton sets, p = 2. Futher, it can be seen that the largest
number of attributes in any single left hand side is 2, so q = 2. Since the closure routine
requires a minimum of four iterations to determine that a e CF({dq}), then s = 4. Using
these numbers, an upper bound on the number of nodes generated by the DTA for this
example is:

pq(1 - (pq)S) = 1020 = ^

1 - pq 3

Hence, a maximum of 340 nodes would have to be searched to solve this problem. The
value is a liberal upper bound since the problem actually required that 15 nodes be
searched.

The tree produced by the DTA may not be unique. For example, applying the DTA to
the minimal set of functional dependencies,

F = {b -» a, gf —> a, jt -» a, dc -> b, f - » c, z —> f, dr —> g, dz —» r,
q -> z, d —»j, e —»t, h -» e, q h}

and letting

dq - » a

be a functional dependency whose deduction trace is to be determined by the DTA gives
either the deduction trace,

or the deduction trace,

26

q h

h -4 e
e -4 t

d j

j t a.

In both cases, s = 4. The solution produced by the DTA depends on the order in which the
AND/OR tree is constructed. Both solutions are correct.

The above example illustrates the fact that more than one solution may be found by
searching a maximum of s levels deep. However, searching more than s levels may
produce additional solutions. In the present example, searching five levels deep will yield
the solution,

q - 4 Z
z -4 f

f - 4 c
dc -4 b

b - 4 a.

If L —» r can be deduced from F, then r first shows up at least once in of CF(L).
The number of times that r can be deduced in X(s) directly relates to the number of
solutions to the DTA within a tree of maximum level s. In the above example
X(3) = {d,q,zj,h,c,f,r,g,t}5 in the calculation for X(4), gf -4 a, and ct -> a can both
be resolved so the number of solutions within a tree of depth 4 would be 2.

Conclusions

This paper describes an algorithm that will produce a deduction trace of L —> r over a
minimal set of functional dependencies F provided r € Cp(L). The depth o f the search tree
depends on the number of calculations required to determine that r e Cp(L). This
algorithm will show the first solution found in the search of the AND/OR tree. If more
than one solution exists, the order in which the tree is built will determine the solution
produced. Ordering the AND/OR tree so the di with the smallest number of g~ is evaluated
First may produce a more nearly optimal solution. It may be desirable to see all of the

27

possible solutions within a tree of level s. In order to do this, the algorithm would have to
be modified to store the number of possible solutions as calculated by the closure routine.
As long as more solutions exist, the algorithm can return to the root node after each
solution and start searching the next di emanating from the root node.

With computer generated tools to remove redundancies and extraneous left hand side
attributes from a list of functional dependencies, the process of creating relational databases
with minimal sets of functional dependencies has been simplified. With the addition of the
DTA to resolve dependencies not contained in a single relation, it will be easier for
relational database users to determine how to retrieve information from the database.

28

References

1. W. Kent, "A Simple Guide to Five Normal Forms in Relational Database Theory,"
Communications of the ACM, Febuary 1983, pp. 120-125.

2. S. Ceri and G. Gottlob, "Normalization of Relations and Prolog," Communications
of the ACM, June 1986, pp. 524-544.

3. Betty Salzberg, "Third Normal Form Made Easy," ACM SIGMOD Record,
December, 1986, pp. 2-18.

4. W. W. Armstrong, "Dependency Structures of Data Base Relations," Proc. 1974
IFIP Congress, North Holland, Amsterdam, pp. 580-583.

5. Jeffery D. Ullman, Principles of Database Systems, 2nd ed., Computer Science
Press, Rockville, Md., 1982.

6. Nils J.Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill
Book Company, New York, 1971.

29

VITA

James Morris Richardson was bom on July 11, 1945 in Benton Harbor, Michigan.
He received his primary and secondary education in Benton Harbor, Michigan and Toole,
Utah. He attended Austin Community College, in Austin, Texas. In May 1979 he
received an Associate of Arts degree in Liberal Arts from Meramec Community College in
Kirkwood, Missouri. He received a Bachelor of Science degree in Applied Mathematics
from the University of Missouri-Saint Louis, Saint Louis, Missouri in December 1980.
He has been enrolled in the Graduate School of the University of Missouri-Rolla since
September 1981. He is currently employed by McDonnell Douglas Information Systems
Group, Saint Louis, Missouri.

	Deduction of a Functional Dependency from a Set of Functional Dependencies
	Recommended Citation

	tmp.1600974007.pdf.9ASBw

