
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jan 1987

LILY-A Generator for Compiler Frontends LILY-A Generator for Compiler Frontends

Thomas J. Sager

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sager, Thomas J., "LILY-A Generator for Compiler Frontends" (1987). Computer Science Technical
Reports. 10.
https://scholarsmine.mst.edu/comsci_techreports/10

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/10?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

LILY-A GENERATOR FOR COMPILER FRONTENDS

Thomas J. Sager

CSc-87-1

Department of Computer Science University of Missouri-Rolla Rolla, MO 65401 (314) 341-4491

LILY ~ A Generator for Comg i. J. er Front end s

Thomas J. Sager

In this paper, LILY, a generator for compiler frontends is
described. LILY uses a generator of minimal perfect hash
functions, MPHF , to create small fast compilers. The saliant
features of LILY are that:

1. LILY accepts multi-level grammars. That is, LILY accepts
frontend specifications that contain an arbitrary number of
grammars, such that the terminal symbols of the i t h grammar are
the goal symbols of the i-1th grammar. The output from LILY
contains a sequence of parsers. Each parser gets its input by
invoking the parser at the previous level. A source handler which
produces terminal symbols for the lowest level grammar should be
part of the frontend specification. Basically a compiler frontend
might be specified by two grammars, the lowest level being a
lexical analyzer and the highest a parser, although more levels
are possible.

3 . The grammars in L I L Y ’s input specification may be regular
right part grammars, that is the rightside of each production is
a finite automaton rather than a string of symbols.

3. Lily creates table driven parsers at each level. The tables
are organized as minimal perfect hash tables. That is the space
required for the tables is in a sense minimal and the speed of
access is in a sense maximal. All transitions are either default
or non-default. The non-default transitions are placed in a
transition table of minimal size and accessed by state and token
through the function:

h := (indstatetabCstatel + indtokentabCtoken!) mod tablesize;
Tablesize is exactly the number of non—default transitions. If a
non-default transition on a (state, token) pair exists then it is
at position h in the transition table. There is exactly one
default transition for each state which is placed in a default
table. This feature makes LILY truly unique among compiler
generators.

h. In order to create small tables, LILY expects the grammars in
its input specification to be LL(1). In the event that one is
not, LILY expects to be given disambiguating actions at each
point where the grammar supplied is not LL<1). These actions may
be anything that the user choses, but in particular may include:

a. lookahead.
b. lookback at the state of the parse stack.

1

c. information from the symbol table.

d. the state of user defined variables.

5. Semantic analysis and code generation may be performed
through attribute translation although it is possible to use less
formal methods also. Basically, for each grammar, we group the
goal symbols together as the start non— terminal. For each
nonterminal, the user may then declare variables as attributes of
that nonterminal and routines for translation and manipulation of
those attributes. These routines are invoked on specific (state,
token) transitions in the same manner as the disambiguating
act ions.

6. LILY is partially interactive in that on discovering certain
kinds of errors, LILY queries the user on how to fix the error.
If the user requests a fix, LILY makes the requested changes to
the source and continues to translate.

It is feature 3 above that makes LILY unique among compiler
generators. However, the author knows of no other compiler
generator that combines the other five features above in the
manner that LILY does.

LILY is currently under development. The design phase has
been completed and is described herein. Parts of LILY have been
coded and tested and results from these portions are encouraging.
A PASCAL frontend generated in part by LILY is described in C73.

In designing LILY the author drew heavily on experience with
YACC E33 and LEX 153. He was also influenced by the L L (1)
attributed parser generator VATS C13 and by Jullig and DeRemer’s
work on attributed regular right part grammars 1^3.

The input to LILY is a specification for a frontend. The
output is a source program in some programming language. The
prototype version currently under development generates Turbo
PASCAL source code. It is contemplated that subsequent versions
will be developed for C and for a somewhat more robust version of
PASCAL. These subsequent versions might require some minor
changes in the specification language. The Syntax for the
prototype version is given in BNF form in appendix 1. Appendix 2
contains a short example, a specification for an integer
c a 1culator.

Basically the input to LILY is a multilevel grammar, that is
a sequence of grammars, each one taking the set of goal symbols
from the previous grammar as its own terminal symbols and in its
turn producing goal symbols which become terminal symbols for the
next grammar. The output of LILY includes a sequence of parsers.
Each one, on invocation produces one of its own goal symbols
from terminal symbols obtained through invocations to the
previous parser. Traditionally compilers have been built on two
level, the lowest being called a lexical analyzer or scanner and

2

the highest a syntactic analyzer or parser. Because our method of
table generation is only practical up to a certain size,
approximately 512 non—default transitions, we include the
possibility of breaking up a grammar into more levels in order to
keep the size of the tables small for large languages. Also, we
make no distinction syntactica11y between the different levels.
If the spec ification for the lexical analyzer is a regular
grammar, which is most often the case, LILY will recognize this
and omit code for pushing and popping syntactic information.

For each parser the set of goal symbols is augmented by the
special goal symbols _eofile and _error. _eofile denotes that the
previous parser also produced _eofile. _error denotes that the
current parser was unable to find any of its goal symbols. After
the symbol _error in the specification a recovery sequence to be
activited in case of error may be declared. In addition each
parser may declare a special goal symbol XNULL which acts as a
token separator as its value is not returned to the calling
rout ine.

Each parser has an attribute part, a local declaration part
and parts for specifying sets of terminal symbols, goal symbols
and other non-terminal symbols.

The attribute part for each parser consists of declarations
for variables which are used for attribute information. These
attributes can be either initialized by the higher level parser
for the lower level parser, (inherited) or initialized by
routines within the lower level parser and returned to the higher
level parser, (synthesized). These attributes are set up as
global storage rather than passed parameters as it is often
necessary to save them from one invocation of the higher level
parser to the next. In addition, parser attributes may be saved
on a system generated semantic stack for later use.

The local declaration part may be used for any constants,
types, variables or routines that are needed for disambiguation
rules, semantic analysis or code generation.

In addition, attributes and local declarations may be
associated with each symbol declared in the nonterminal part.
Unlike the parser attributes, these nonterminal attributes are
coded as local to the pa r s e r . These attributes may be designated
with one of three keywords, %IN (inherited), */.OUT (synthesized)
or */.INOUT (bidirectional). On entering the start state associated
with a nonterminal, these attributes are automatically
initialized from their arguments. On returning from a final state
associated with a nonterminal, these attributes’ values are
returned to their appropriate arguments. Thus, these attributes
act as variable parameters, although they are coded as local
variables. Like the parser attributes, these attributes may be
placed on a system generated semantic stack. In order to avoid
conflicts between attributes to different nonterminals, these
identifiers are suffixed with the ordinal number of the
nonterminal to which they are associated.

3

Thus, in LILY, attributes are handled slightly differently
at the vertical interface between parsers than they are handled
within a parser. This is because invocations of the parsers are
for the most part system generated whereas invocations of
semantic routines must be specified by the user. In addition,
attributes are handled less formally in LILY than they might have
been. The author feels, however, that the method described above
allows for a good mix between formal structure and flexibility.

After the keyword V.SET, identifiers may be declared to
represent sets of terminal symbols, (goal symbols from the
previous parser). These set identifiers can then be used within
the specification of the rightside of a production to represent
transitions on each member of the set.

After the keyword V.GOAL , identifiers may be declared to
represent goal symbols. Along with each goal symbol a finite
automaton which represents the specification of the goal symbol
is given. After the keyword Y.NTRMNL, identifiers may be declared
to represent nonterminal symbols other than the start symbol.
Along with each nonterminal symbol, a finite automaton
representing the specification of the nonterminal is given. In
addition, attributes and local declarations may be specified here
as associated with a nonterminal.

A finite automaton is coded as a set of paths. At the
beginning and after each token in the path a state identifier may
be optionally specified. The state identifiers are unsigned
integers. The prefix, %, means is a final state. The tokens may
be terminals, terminal sets, non-termina1s or one of the two
special symbols # or S>. # denotes the empty string, whereas S>
denotes a default transition, that is, one that is taken on
terminals for which no other transition is specified. This can be
useful, for example, if one wishes to build multiple error states
into the specification.

It should be noted that the specifications of a finite
automaton in LILY include specifications equivalent to standard
BNF as well as to most of the common extentions of B N F . In most
cases BNF or a common extention will suffice for specifying the
rightside of a production, however the ability to specify a
general finite automaton is helpful in certain cases.

The lowest level set of goal symbols is declared after the
keyword Y.TRMNL, as a list of identifiers. Attributes of these
lowest level goal symbols and the function that produces them is
specified after the keyword /.SOURCE. Arbitrary source language
code can be written in the first and final sections of the
specification, after the ‘/.BEGIN and the ‘/.ENDPARSE keywords
respectively. These sections of source code are checked for
syntactic correctness in the target language and then copied
verbatim to the output. Thus, LILY can create an entire compiler
provided than the backend is included in these two sections.

A parser specification is translated into the short
procedure in figure 1 along with the four tables: indstatetab,
indtokentab, transitab and defltab. The first three tables along
with the statement labeled 1: form a M P H F . With the default table
and disambiguating actions they specify an entire parser.

In order to built the tables)
techniques to create a deterministic
each nonterminal. It then uses
techniques to describe transitions
nonterminal’s DFA. Where there is a
global error state is created. This
overriden by a user supplied disambiguating action. In addition*
error recovery can be included in the specification through the
use of special transitions for ad hoc error recovery or
transitions for more formal methods of error recovery.

LILY first uses standard
finite automaton* DFA, for
standard LL < 1> lookahead

to the start states of each
conflict, a transition to a
transition* however can be

defau1t

two
The transition set is partially optimized by the

techniques:
f o 11 owing

1. For each state* unless a default transition
is specified by the user, the non—shift transition to
performed on the largest set of terminal symbols becomes
default transition for that state.

be
the

2. Where a sequence of one or more transitions are uniquely
determined to follow a given transition, they are coded as a
single transition.

The tables are then produced by the mincycle algorithm for
generating M P H F ’s which is described in C63 and C73. In C73, a
parser for PASCAL containing 196 non-default transitions is
generated by the mincycle algorithm. It is shown in C23 that
these algorithms can be expected to produce the required tables,
even when the number of non—default transitions is as large as
512. Although to the authors knowledge no specific comparison
data exists, parsers generated in this manner will in general be
faster and smaller than parsers generated by other known
a 1gor i thms.

In order to translate properly, LILY contains a parser for
the target language. Thus, sections of the specification which
contain target language code are checked for syntactic
correctness by LILY.

Actions can be used for disambiguating syntactic conflicts,
semantic analysis, code generation or error recovery. Syntactic
conflicts occur wherever the language specifications are not
LL(1). The reason LL < 1) was chosen rather than S L R <1), LALR(l) or
some other subset of LR<1) was because of the desire to use
M P H F ’s to generate small fast table driven parsers. Since it was
desirable to keep the number of non-default transitions as small
as possible, L L <1) was a natural choice. Also, experience shows
that most programming languages can be put in a convenient almost
L L (1) form in which existing ambiguities can be resolved through

5

fairly simple disambiguating actions such as a symbol table
lookup or a lookahead of one symbol further.

In sum, the truly novel feature of LILY is its use of
minimal perfect hash functions to create small fast table driven
parsers. Other important features of LILY are:

1. The use of multi-level grammars.

2. The use of regular right part grammars.

3. The use of L L (1) parsing techniques with disambiguating
actions at all levels.

. An attributed method of semantic analysis and code
gener at ion.

5. A partial interactive capability.

6

F i g u r e 1 Target Language Parser
C N and NM1 stand far character strings representing !
£ level number and level number — 1 respectively >
£ All identifiers generated by LILY begin with >

const
_start
_return
_eof i1e
error

O* Cstate>
— 1 5 < state!
O ; £ token!

-1; C token!

C declarations for goal

maxtransN =
_maxstateN =
_max tokenN =
_maxparstackN =
_maxattstackN =

symbols 1

type
_transrec = record state, token, next: integer end;

var
_parstackN: array C O .._maxparstackN3 of integer *
_parstacktopN: integer;
_at tstac kN array CO.._maxattstackN] of integer *
_attstacktopN: i nteger;
_tokenN: i nteger *
_transi tabN: array C O .._maxtransN3 of _tr ansrec;
_def1tabN: array C0.._maxstateN3 of integer* £next!
_ i ndstatetabN: array CO.._maxstateN3 of integer *
_indtokentabN: array CO.._maxtokenN3 of i nteger;

£ parser attribute declarations !

function _parserN: i nteger;
var _state, _ h : i nteger;

£ local and nonterminal associated declarations 1
beg i n

_state := _start» £ start state !
repeat

1: _h := (_indstatetabNC_state3 + _ i ndtokentabNC __tokenN 3 > mod
<_maxtransN + 1);

if (_transitabNCh3.state = _state) and
(_transitabNCh3.token = _tokenN> then begin

_state := _transitabN[h].next;
case_ h of

£ actions* both user specified and system generated >
end £case 1 j
_tokenN := _parserNMlj

end else begin
_h := _state;
_state := _def1tabNC_state3;
case _h of

£ actions* both user specified and system generated 1
end lease!*

end £ if!;
until _state = _returni

end £_parserN!»

7

References

C1D Berg, A. et a l .: VATS — the visible attributed translation
system. Tech. Rep. BA— 19 Department of Computational
Science, Univ. of Saskatchewan, 198A.

C2D Hou, P.P. and Sager, T.J.: A Monte Carlo analysis of the
mincycle algorithm for generating minimal perfect hash
functions. Tech. Rep. CSc-Q5-3 Univ. Missouri—R o 11 a , 19B5.

C33 Johnson, S.C.: VACC: yet another compiler compiler.
Computing Services Tech. Rep. 32, Bell Labs, Murray Hill,
N.J., 1975.

CAD Jullig, R. and DeRemer, F.L.: Regular right part attribute
grammars. ACM Sigplan Notices, 1.9, &, June 198A (171 — 178).

C5D L e s k , M.E. and Schmidt, E.: Lex - A lexical analyzer
generator. Computing Services Tech, Rep. 39, Bell Labs,
Murray Hill, N.J., 1975.

C6D Sager, T.J.: A polynomial time generator for minimal perfect
hash functions. ACM Communications, 28, 5, May 1985, <523-
532) .

C7D Sager, T.J.: A technique for creating small fast compiler
frontends. ACM Sigplan Notices, 20, 10, October 1985, <87—
9A) .

8

Appendix il

Note: #
Note: —

<spec ification>

<parspart>
<parser>

<source_code>
< trmnlpart>
< tokenid1i st >
<attri bpart>
<vardec 1i st>
< vardec 1>
<localpart>
<b 1 ock >
< termsets>
<setdec1i st>
<setdec1>

<not>
<goalpart>
<goaIdee 1i st >
<goaIdee 1>
<ntrralpart>
<ntrmldeclist>
<ntrmldec1>

<ntattr ibpart>
<ntdec 1 i st >
<d i rec t ion>
<automaton>
<path1i st >
<path>
< term>
< f ac tor >
< token>

< argpar t >
<expr1i st >
<expr>
<action>
<stateid>
<final>
<stateno>
<postop>
< lbound>
<ubound>
<tokenid>

BNF Descrigtjon of 1 ngu t L^LY^

denotes the empty string;
to end of line is a comment

-> ‘/.BEGIN <source_code> ‘/.TRMNL <trmnlpart>
‘/.SOURCE <at tr i bpar t > <block>
<parspart> Y.ENDPARSE <source_code> ‘/.END

— > <parser> <parspart> ! #
-> '/.PARSER <attribpart> <localpart> <termsets>

<goal s> <nontrms>
-> C part of a target language program >
— > <tokenid> <tokenid1ist> ! <tokenid>
-> <tokenid> <tokenid1ist> ! #
-> <vardec 1> <vardeclist> ’)’ ! #
— > <vardecl> <vardeclist> ! #
— > C a target language variable declaration >
-> C a sequence of target language declarations >
— > i a target language block >
-> ‘/.SET <setdecl> <setdeclist> ! #
—> <setdecl> <setdeclist> ! #
— > <tokenid> ’= ’ <not> ’ ’ <tokenid> < tokeni d 1 i st >

’ > ’
-> ! #
-> ‘/.GOALS <goaldecl> <goaldec 1 i st> ! #
-> <goaldecl> <goaldec1ist> ! #
— > <tokenid> ’— > ’ <automaton>
— > V.NTRMLS <ntrmldecl> <ntrm 1 dec 1 ist> ! #
— > <r»trmldec 1> <ntrmnldec 1 i st > ! #
—> <tokenid> <ntattribpart> ’ ; ’ <localpart> ’—> ’

<automaton> ’;’
—> ’(7 <direction> <vardecl> <ntdeclist> ! #
— > *;’ <direction> <vardecl> <ntdeclist> ! #
- > y.iN ; ‘/.out : */,in o u t
— > <path> <pathlist> ! #
-> ’!’ <path> <path1i st > I #
-> <stateid> <term> <path> ! <stateid>
-> <factor> <postop>
-> ’t ’ <pathlist> ’> ’ ! <token> <argpart> <action>
-> <tokenid> ! — # denotes empty string
! ’0 ’ — 0 denotes default

-> ’<’ <expr > <expr1i st > ’)’ ! #
— > <expr> <exprlist> ! #
-> t any target language expression >
-> ’C ’ t a target language statement > ’1’ ! #
—> <final> <stateno>
-> 1 #
-> unsigned_integer ! #
-> i 1 bound ubound
-> unsigned_integer
-> uns i gned_ i nteger ! *«■’ — * means no up bound
-> C a target language identifier >

9

Appendix c?2 LILY Specification for art Integer Calculator .

•/.BEGIN

program calculator;
const

{ for integer values only >

starno = o ;
d i vno = l ;
modno = 2 ;
plusno = o ;
mi nusno = l ;
maxsymtab = 2 5 5 ;

type
str i ngn

var
symtab:

procedure

•/.TRMNL

= str i rtg [81;

array C O ..maxsymtab1 of
record str: strirtgrt; value: integer end;

initsymtab; ...» (initialize symbol table

letter, digit, pluschar, minchar, starchar, oparchar,
cparchar, colonchar, eqchar, blank, eoline

•/.SOURCE (char va 1 : char); < source handler >
C source function will be named _parserO

beg i n
if eof then _parser := _eofile
else if eoln then begin _parser := eoline;
else begin

read < charva1) ;
case charval of

9 > 9 r, > •a 9 ... > 2 :
begin _parser := letter; charval :=

’A ’ • 7 7 7 •■ a a 9 C— m _par ser : — letter;
’O ’ . 7 Q 7 •m m m J 7 m _parser • = digit;
9 9 _par ser ; — b 1ank ;
* + * _parser : = p 1uschar
7 — * _par ser • = minuschar;
7 * 7 _par ser s = starchar ;
’ (’ _par ser • = oparchar;
’) » _parser • = cparchar;

_par ser : = colonchar;
9 = 9 _parser : = eqchar ;
e 1 se _par ser s = _err o r ;

end (case);
end (i f >;

end (source);

readln; end

upcase(charva1>

>

end ;

lO

/.PARSER (b u f f : stringnj tokenvalue: integer); { lexical analyzer >

procedure rswdlkup;
beg i n

if buff = ’D I V ’ then begin
_par ser := m u 1 t o p ; tokenvalue := d i v n o ;

end else if buff = ’M O D ’ then begin
par ser : = multop; tokenvalue := modnoi

end { if > ;
end (rswdlkupl;

‘/.SET

letdigit = { letter » digit!

‘/.GOAL

‘/.NULL -> blank ;
i dent -> letter Ebuff := charva

{1etdigitEbuff := buff
5)C r swd 1 kup 3 ; — defaul

number -> digit Ctokenvalue := o
Etokenvalue := 10*toke

addop -> pluschar Etokenvalue
minuschar Etokenvalue

m u 1 top -> starchar Etokenvalue
opar -> oparchar;
cpar -> cparchar;
asgnop -> colonchar eqchar;
endmr k -> e o 1i n e ;

‘/.PARSER *

1 3
+ charval]}* — + is concatenate

t action to check for DIV, MOD
rd(charval) — o r d (’O ’)] {digit
nvalue+ord(charval)—o r d (’0 ’ > 3 >#•;
:= plusnol !
:= minusno 3;
:= starno 3;

var strng: stringnj values integer*

procedure symtabstore(strng: stringnj value: integer); ...j
function symtabretrv(strng: stringn): integer; ...;

procedure disp1ay_store<strng: stringnj value: integer);
beg in

writeln<strng* ’ <- value); symtabstore(s t rng, value);
end {disp1ay_store> j

‘/.SET

others = — {eoline* eofile!

‘/.GOAL

‘/.NULL ->
_error ->
asmt ->

gexpr ->

endmrk;
{others}* [wr iteln(’*** ERROR **#■’) 3 ; —
ident Estrng := buff 3 asgnop expr(value)
Edisp1ay_store(s t rng* value)3 eoline;
expr(value) [writeln(value)3 eoline;

f 1ush 1i ne

11

•XNTRMNL

expr('/,OUT value: integer)
var o p n o , tempval: integer;

function binaryop<x ,n ,y : integer): integer;
begin

case n of
plusno: binaryop : = x+y;
minusno: binaryop := x—y;

end (case)
end (binaryop);

function unaryop<n,x: integer): integer;
begin

if n = minusno then unaryop := — x else unaryop := x
end Cunar yop > *

— > sign(opno) term (v a 1u e)Cv a 1ue := unaryop<o p n o » value) ;3
C addop [opno := tokenvalue! term<tempval)
[value := b inaryop(value, opno > tempval>3 >*

term</40UT value: integer);
var opno* tempval: integer;

function binaryop(x ,n ,y : integer): integer;
beg i n

case n of
starno: b i naryop := x * y
d ivno: binaryop : = x d i v
m o dno: b i naryop := x mod

end (case)
end (binaryop);

— > fact(value) C m u 1 top[opno := tokenvalue) f a c t <tempval>
E value := binaryop<v a 1u e , opno » tempval) 3 >*•

fact(%OUT value)
— > oprn expr(value) cprn ! identC value := symtabretrv(b u f f) 3

sign(*/.OUT opno)
— > addop Copno := tokenvalue!
! # Copno := plusno!; — # means null string

•/.ENDPARSE

begin (calculator) C dr iver >
ini tsymtab;
_token1 := _parserO; c source handler >
_token2 := _parserl; c lexical analyzer >
while _parser2 <> _eofile do ; c parser >

end (calculator). *.

‘/.END

12

	LILY-A Generator for Compiler Frontends
	Recommended Citation

	tmp.1600974007.pdf.ZA7yR

