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LILY ~ A Generator for Comg i. J. er Front end s 

Thomas J. Sager

In this paper, LILY, a generator for compiler frontends is 
described. LILY uses a generator of minimal perfect hash 
functions, MPHF , to create small fast compilers. The saliant 
features of LILY are that:

1. LILY accepts multi-level grammars. That is, LILY accepts 
frontend specifications that contain an arbitrary number of 
grammars, such that the terminal symbols of the i t h grammar are 
the goal symbols of the i-1th grammar. The output from LILY 
contains a sequence of parsers. Each parser gets its input by 
invoking the parser at the previous level. A source handler which 
produces terminal symbols for the lowest level grammar should be 
part of the frontend specification. Basically a compiler frontend 
might be specified by two grammars, the lowest level being a 
lexical analyzer and the highest a parser, although more levels 
are possible.

3 . The grammars in L I L Y ’s input specification may be regular 
right part grammars, that is the rightside of each production is 
a finite automaton rather than a string of symbols.

3. Lily creates table driven parsers at each level. The tables 
are organized as minimal perfect hash tables. That is the space 
required for the tables is in a sense minimal and the speed of 
access is in a sense maximal. All transitions are either default 
or non-default. The non-default transitions are placed in a 
transition table of minimal size and accessed by state and token 
through the function:

h := (indstatetabCstatel + indtokentabCtoken!) mod tablesize;
Tablesize is exactly the number of non—default transitions. If a 
non-default transition on a (state, token) pair exists then it is 
at position h in the transition table. There is exactly one 
default transition for each state which is placed in a default 
table. This feature makes LILY truly unique among compiler 
generators.

h. In order to create small tables, LILY expects the grammars in 
its input specification to be LL(1). In the event that one is 
not, LILY expects to be given disambiguating actions at each 
point where the grammar supplied is not LL<1). These actions may 
be anything that the user choses, but in particular may include:

a. lookahead.
b. lookback at the state of the parse stack.
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c. information from the symbol table.

d. the state of user defined variables.

5. Semantic analysis and code generation may be performed 
through attribute translation although it is possible to use less 
formal methods also. Basically, for each grammar, we group the 
goal symbols together as the start non— terminal. For each 
nonterminal, the user may then declare variables as attributes of 
that nonterminal and routines for translation and manipulation of 
those attributes. These routines are invoked on specific (state, 
token) transitions in the same manner as the disambiguating 
act ions.

6. LILY is partially interactive in that on discovering certain 
kinds of errors, LILY queries the user on how to fix the error. 
If the user requests a fix, LILY makes the requested changes to 
the source and continues to translate.

It is feature 3 above that makes LILY unique among compiler 
generators. However, the author knows of no other compiler 
generator that combines the other five features above in the 
manner that LILY does.

LILY is currently under development. The design phase has 
been completed and is described herein. Parts of LILY have been 
coded and tested and results from these portions are encouraging. 
A PASCAL frontend generated in part by LILY is described in C73.

In designing LILY the author drew heavily on experience with 
YACC E33 and LEX 153. He was also influenced by the L L (1) 
attributed parser generator VATS C13 and by Jullig and DeRemer’s 
work on attributed regular right part grammars 1^3.

The input to LILY is a specification for a frontend. The 
output is a source program in some programming language. The 
prototype version currently under development generates Turbo 
PASCAL source code. It is contemplated that subsequent versions 
will be developed for C and for a somewhat more robust version of 
PASCAL. These subsequent versions might require some minor 
changes in the specification language. The Syntax for the 
prototype version is given in BNF form in appendix 1. Appendix 2 
contains a short example, a specification for an integer 
c a 1culator.

Basically the input to LILY is a multilevel grammar, that is 
a sequence of grammars, each one taking the set of goal symbols 
from the previous grammar as its own terminal symbols and in its 
turn producing goal symbols which become terminal symbols for the 
next grammar. The output of LILY includes a sequence of parsers. 
Each one, on invocation produces one of its own goal symbols 
from terminal symbols obtained through invocations to the 
previous parser. Traditionally compilers have been built on two 
level, the lowest being called a lexical analyzer or scanner and

2



the highest a syntactic analyzer or parser. Because our method of 
table generation is only practical up to a certain size, 
approximately 512 non—default transitions, we include the 
possibility of breaking up a grammar into more levels in order to 
keep the size of the tables small for large languages. Also, we 
make no distinction syntactica11y between the different levels. 
If the spec ification for the lexical analyzer is a regular 
grammar, which is most often the case, LILY will recognize this 
and omit code for pushing and popping syntactic information.

For each parser the set of goal symbols is augmented by the 
special goal symbols _eofile and _error. _eofile denotes that the 
previous parser also produced _eofile. _error denotes that the 
current parser was unable to find any of its goal symbols. After 
the symbol _error in the specification a recovery sequence to be 
activited in case of error may be declared. In addition each 
parser may declare a special goal symbol XNULL which acts as a 
token separator as its value is not returned to the calling 
rout ine.

Each parser has an attribute part, a local declaration part 
and parts for specifying sets of terminal symbols, goal symbols 
and other non-terminal symbols.

The attribute part for each parser consists of declarations 
for variables which are used for attribute information. These 
attributes can be either initialized by the higher level parser 
for the lower level parser, (inherited) or initialized by 
routines within the lower level parser and returned to the higher 
level parser, (synthesized). These attributes are set up as 
global storage rather than passed parameters as it is often 
necessary to save them from one invocation of the higher level 
parser to the next. In addition, parser attributes may be saved 
on a system generated semantic stack for later use.

The local declaration part may be used for any constants, 
types, variables or routines that are needed for disambiguation 
rules, semantic analysis or code generation.

In addition, attributes and local declarations may be 
associated with each symbol declared in the nonterminal part. 
Unlike the parser attributes, these nonterminal attributes are 
coded as local to the pa r s e r . These attributes may be designated 
with one of three keywords, %IN (inherited), */.OUT (synthesized) 
or */.INOUT (bidirectional). On entering the start state associated 
with a nonterminal, these attributes are automatically 
initialized from their arguments. On returning from a final state 
associated with a nonterminal, these attributes’ values are 
returned to their appropriate arguments. Thus, these attributes 
act as variable parameters, although they are coded as local 
variables. Like the parser attributes, these attributes may be 
placed on a system generated semantic stack. In order to avoid 
conflicts between attributes to different nonterminals, these 
identifiers are suffixed with the ordinal number of the 
nonterminal to which they are associated.
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Thus, in LILY, attributes are handled slightly differently 
at the vertical interface between parsers than they are handled 
within a parser. This is because invocations of the parsers are 
for the most part system generated whereas invocations of 
semantic routines must be specified by the user. In addition, 
attributes are handled less formally in LILY than they might have 
been. The author feels, however, that the method described above 
allows for a good mix between formal structure and flexibility.

After the keyword V.SET, identifiers may be declared to 
represent sets of terminal symbols, (goal symbols from the 
previous parser). These set identifiers can then be used within 
the specification of the rightside of a production to represent 
transitions on each member of the set.

After the keyword V.GOAL , identifiers may be declared to 
represent goal symbols. Along with each goal symbol a finite 
automaton which represents the specification of the goal symbol 
is given. After the keyword Y.NTRMNL, identifiers may be declared 
to represent nonterminal symbols other than the start symbol. 
Along with each nonterminal symbol, a finite automaton 
representing the specification of the nonterminal is given. In 
addition, attributes and local declarations may be specified here 
as associated with a nonterminal.

A finite automaton is coded as a set of paths. At the 
beginning and after each token in the path a state identifier may 
be optionally specified. The state identifiers are unsigned 
integers. The prefix, %, means is a final state. The tokens may 
be terminals, terminal sets, non-termina1s or one of the two 
special symbols # or S>. # denotes the empty string, whereas S> 
denotes a default transition, that is, one that is taken on 
terminals for which no other transition is specified. This can be 
useful, for example, if one wishes to build multiple error states 
into the specification.

It should be noted that the specifications of a finite 
automaton in LILY include specifications equivalent to standard 
BNF as well as to most of the common extentions of B N F . In most 
cases BNF or a common extention will suffice for specifying the 
rightside of a production, however the ability to specify a 
general finite automaton is helpful in certain cases.

The lowest level set of goal symbols is declared after the 
keyword Y.TRMNL, as a list of identifiers. Attributes of these 
lowest level goal symbols and the function that produces them is 
specified after the keyword /.SOURCE. Arbitrary source language 
code can be written in the first and final sections of the 
specification, after the ‘/.BEGIN and the ‘/.ENDPARSE keywords 
respectively. These sections of source code are checked for 
syntactic correctness in the target language and then copied 
verbatim to the output. Thus, LILY can create an entire compiler 
provided than the backend is included in these two sections.



A parser specification is translated into the short 
procedure in figure 1 along with the four tables: indstatetab, 
indtokentab, transitab and defltab. The first three tables along 
with the statement labeled 1: form a M P H F . With the default table 
and disambiguating actions they specify an entire parser.

In order to built the tables) 
techniques to create a deterministic 
each nonterminal. It then uses 
techniques to describe transitions 
nonterminal’s DFA. Where there is a 
global error state is created. This 
overriden by a user supplied disambiguating action. In addition* 
error recovery can be included in the specification through the 
use of special transitions for ad hoc error recovery or 
transitions for more formal methods of error recovery.

LILY first uses standard 
finite automaton* DFA, for 
standard LL < 1> lookahead 

to the start states of each 
conflict, a transition to a 
transition* however can be

defau1t

two
The transition set is partially optimized by the 

techniques:
f o 11 owing

1. For each state* unless a default transition
is specified by the user, the non—shift transition to 
performed on the largest set of terminal symbols becomes 
default transition for that state.

be
the

2. Where a sequence of one or more transitions are uniquely 
determined to follow a given transition, they are coded as a 
single transition.

The tables are then produced by the mincycle algorithm for 
generating M P H F ’s which is described in C63 and C73. In C73, a 
parser for PASCAL containing 196 non-default transitions is 
generated by the mincycle algorithm. It is shown in C23 that 
these algorithms can be expected to produce the required tables, 
even when the number of non—default transitions is as large as 
512. Although to the authors knowledge no specific comparison 
data exists, parsers generated in this manner will in general be 
faster and smaller than parsers generated by other known 
a 1gor i thms.

In order to translate properly, LILY contains a parser for 
the target language. Thus, sections of the specification which 
contain target language code are checked for syntactic 
correctness by LILY.

Actions can be used for disambiguating syntactic conflicts, 
semantic analysis, code generation or error recovery. Syntactic 
conflicts occur wherever the language specifications are not 
LL(1). The reason LL < 1 ) was chosen rather than S L R <1), LALR(l) or 
some other subset of LR<1) was because of the desire to use 
M P H F ’s to generate small fast table driven parsers. Since it was 
desirable to keep the number of non-default transitions as small 
as possible, L L <1) was a natural choice. Also, experience shows 
that most programming languages can be put in a convenient almost 
L L (1) form in which existing ambiguities can be resolved through
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fairly simple disambiguating actions such as a symbol table 
lookup or a lookahead of one symbol further.

In sum, the truly novel feature of LILY is its use of 
minimal perfect hash functions to create small fast table driven 
parsers. Other important features of LILY are:

1. The use of multi-level grammars.

2. The use of regular right part grammars.

3. The use of L L (1) parsing techniques with disambiguating 
actions at all levels.

. An attributed method of semantic analysis and code 
gener at ion.

5. A partial interactive capability.
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F i g u r e  1 Target Language Parser
C N and NM1 stand far character strings representing ! 
£ level number and level number — 1 respectively > 
£ All identifiers generated by LILY begin with >

const
_start 
_return 
_eof i1e 
error

O* Cstate> 
— 1 5 < state!
O ; £ token!

-1; C token!

C declarations for goal

maxtransN = 
_maxstateN =
_max tokenN =
_maxparstackN = 
_maxattstackN = 

symbols 1

type
_transrec = record state, token, next: integer end;

var
_parstackN: array C O .._maxparstackN3 of integer *
_parstacktopN: integer;
_at tstac kN array CO.._maxattstackN] of integer *
_attstacktopN: i nteger;
_tokenN: i nteger *
_transi tabN: array C O .._maxtransN3 of _tr ansrec;
_def1tabN: array C0.._maxstateN3 of integer* £next!
_ i ndstatetabN: array CO.._maxstateN3 of integer *
_indtokentabN: array CO.._maxtokenN3 of i nteger;

£ parser attribute declarations !

function _parserN: i nteger;
var _state, _ h : i nteger;

£ local and nonterminal associated declarations 1
beg i n

_state := _start» £ start state ! 
repeat

1: _h := (_indstatetabNC_state3 + _ i ndtokentabNC __tokenN 3 > mod
<_maxtransN + 1);

if (_transitabNCh3.state = _state) and
(_transitabNCh3.token = _tokenN> then begin 

_state := _transitabN[h].next; 
case_ h of

£ actions* both user specified and system generated > 
end £case 1 j
_tokenN := _parserNMlj 

end else begin 
_h := _state;
_state := _def1tabNC_state3; 
case _h of

£ actions* both user specified and system generated 1 
end lease!* 

end £ if!;
until _state = _returni 

end £_parserN!»
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Appendix il

Note: #
Note: —

<spec ification>

<parspart> 
<parser>

<source_code>
< trmnlpart>
< tokenid1i st > 
<attri bpart>
<vardec 1i st>
< vardec 1> 
<localpart>
<b 1 ock >
< termsets> 
<setdec1i st> 
<setdec1>

<not>
<goalpart>
<goaIdee 1i st > 
<goaIdee 1> 
<ntrralpart> 
<ntrmldeclist> 
<ntrmldec1>

<ntattr ibpart> 
<ntdec 1 i st >
<d i rec t ion> 
<automaton> 
<path1i st > 
<path>
< term>
< f ac tor >
< token>

< argpar t >
<expr1i st > 
<expr>
<action>
<stateid>
<final>
<stateno>
<postop>
< lbound> 
<ubound> 
<tokenid>

BNF Descrigtjon of 1 ngu t L^LY^

denotes the empty string; 
to end of line is a comment

-> ‘/.BEGIN <source_code> ‘/.TRMNL <trmnlpart>
‘/.SOURCE <at tr i bpar t > <block>
<parspart> Y.ENDPARSE <source_code> ‘/.END 

— > <parser> <parspart> ! #
-> '/.PARSER <attribpart> <localpart> <termsets> 

<goal s> <nontrms>
-> C part of a target language program >
— > <tokenid> <tokenid1ist> ! <tokenid>
-> <tokenid> <tokenid1ist> ! #
-> <vardec 1> <vardeclist> ’ )’ ! #
— > <vardecl> <vardeclist> ! #
— > C a target language variable declaration >
-> C a sequence of target language declarations >
— > i a target language block >
-> ‘/.SET <setdecl> <setdeclist> ! #
—> <setdecl> <setdeclist> ! #
— > <tokenid> ’= ’ <not> ’ ’ <tokenid> < tokeni d 1 i st >

’ > ’
-> ! #
-> ‘/.GOALS <goaldecl> <goaldec 1 i st> ! #
-> <goaldecl> <goaldec1ist> ! #
— > <tokenid> ’— > ’ <automaton>
— > V.NTRMLS <ntrmldecl> <ntrm 1 dec 1 ist> ! #
— > <r»trmldec 1> <ntrmnldec 1 i st > ! #
—> <tokenid> <ntattribpart> ’ ; ’ <localpart> ’—> ’ 

<automaton> ’;’
—> ’(7 <direction> <vardecl> <ntdeclist> ! #
— > *;’ <direction> <vardecl> <ntdeclist> ! #
- >  y.iN ; ‘/.out  : */,in o u t
— > <path> <pathlist> ! #
-> ’!’ <path> <path1i st > I #
-> <stateid> <term> <path> ! <stateid>
-> <factor> <postop>
-> ’t ’ <pathlist> ’> ’ ! <token> <argpart> <action>
-> <tokenid> ! —  # denotes empty string
! ’0 ’ —  0 denotes default

-> ’<’ <expr > <expr1i st > ’)’ ! #
— > <expr> <exprlist> ! #
-> t any target language expression >
-> ’C ’ t a target language statement > ’1’ ! #
—> <final> <stateno>
-> 1 #
-> unsigned_integer ! #
-> i 1 bound ubound
-> unsigned_integer
-> uns i gned_ i nteger ! *«■’ —  * means no up bound
-> C a target language identifier >
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Appendix c?2 LILY Specification for art Integer Calculator .

•/.BEGIN

program calculator; 
const

{ for integer values only >

starno = o ;
d i vno = l ;
modno = 2 ;
plusno = o ;
mi nusno = l ;
maxsymtab = 2 5 5 ;

type
str i ngn 

var
symtab: 

procedure 

•/.TRMNL

= str i rtg [81;

array C O ..maxsymtab1 of
record str: strirtgrt; value: integer end; 

initsymtab; ...» ( initialize symbol table

letter, digit, pluschar, minchar, starchar, oparchar, 
cparchar, colonchar, eqchar, blank, eoline

•/.SOURCE (char va 1 : char); < source handler >
C source function will be named _parserO

beg i n
if eof then _parser := _eofile
else if eoln then begin _parser := eoline;
else begin

read < charva1) ; 
case charval of

9 > 9 r, > •a 9 ... > 2 :
begin _parser := letter; charval :=

’A ’ • 7 7 7 •■ a a 9 C—  m _par ser : — letter;
’O ’ . 7 Q 7 •m m m J 7 m _parser • = digit;
9 9 _par ser ; — b 1ank ;
* + * _parser : = p 1uschar
7 — * _par ser • = minuschar;
7 * 7 _par ser s = starchar ;
’ ( ’ _par ser • = oparchar;
’ ) » _parser • = cparchar;

_par ser : = colonchar;
9 =  9 _parser : = eqchar ;
e 1 se _par ser s = _err o r ;

end (case); 
end (i f >; 

end (source);

readln; end

upcase(charva1>

>

end ;
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/.PARSER (b u f f : stringnj tokenvalue: integer); { lexical analyzer >

procedure rswdlkup; 
beg i n

if buff = ’D I V ’ then begin
_par ser := m u 1 t o p ; tokenvalue := d i v n o ; 

end else if buff = ’M O D ’ then begin
par ser : = multop; tokenvalue := modnoi 

end { if > ; 
end (rswdlkupl;

‘/.SET

letdigit = { letter » digit!

‘/.GOAL

‘/.NULL -> blank ;
i dent -> letter Ebuff := charva 

{1etdigitEbuff := buff 
5)C r swd 1 kup 3 ; —  defaul

number -> digit Ctokenvalue := o 
Etokenvalue := 10*toke

addop -> pluschar Etokenvalue 
minuschar Etokenvalue

m u 1 top -> starchar Etokenvalue
opar -> oparchar;
cpar -> cparchar;
asgnop -> colonchar eqchar;
endmr k -> e o 1i n e ;

‘/.PARSER *

1 3
+ charval]}* —  + is concatenate 

t action to check for DIV, MOD 
rd(charval) — o r d ( ’O ’ )] {digit 
nvalue+ord(charval)—o r d ( ’0 ’ > 3 >#•; 
:= plusnol !
:= minusno 3;
:= starno 3;

var strng: stringnj values integer*

procedure symtabstore(strng: stringnj value: integer); ...j 
function symtabretrv(strng: stringn): integer; ...;

procedure disp1ay_store<strng: stringnj value: integer); 
beg in

writeln<strng* ’ <- value); symtabstore(s t rng, value);
end {disp1ay_store> j

‘/.SET

others = — {eoline* eofile! 

‘/.GOAL

‘/.NULL ->
_error ->
asmt ->

gexpr ->

endmrk;
{others}* [wr iteln( ’*** ERROR **#■’) 3 ; —
ident Estrng := buff 3 asgnop expr(value) 
Edisp1ay_store(s t rng* value)3 eoline; 
expr(value) [writeln(value)3 eoline;

f 1ush 1i ne
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•XNTRMNL

expr('/,OUT value: integer)
var o p n o , tempval: integer;

function binaryop<x ,n ,y : integer): integer; 
begin

case n of
plusno: binaryop : = x+y;
minusno: binaryop := x—y; 

end (case) 
end (binaryop);

function unaryop<n,x: integer): integer; 
begin

if n = minusno then unaryop := — x else unaryop := x 
end Cunar yop > *

— > sign(opno) term (v a 1u e )Cv a 1ue := unaryop<o p n o » value) ;3 
C addop [opno := tokenvalue! term<tempval)
[value := b inaryop(value, opno > tempval>3 >*

term</40UT value: integer);
var opno* tempval: integer;

function binaryop(x ,n ,y : integer): integer; 
beg i n

case n of
starno: b i naryop := x * y
d ivno: binaryop : = x d i v
m o dno: b i naryop := x mod

end (case) 
end (binaryop);

— > fact(value) C m u 1 top[opno := tokenvalue) f a c t <tempval>
E value := binaryop<v a 1u e , opno » tempval) 3 >*•

fact(%OUT value)
— > oprn expr(value) cprn ! identC value := symtabretrv(b u f f ) 3

sign(*/.OUT opno)
— > addop Copno := tokenvalue!
! # Copno := plusno!; —  # means null string

•/.ENDPARSE

begin (calculator) C dr iver >
ini tsymtab;
_token1 := _parserO; c source handler >
_token2 := _parserl; c lexical analyzer >
while _parser2 <> _eofile do ; c parser >

end (calculator). *. 

‘/.END
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