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PREFACE 
This edition of the LRFD Cold-Formed Steel Design Manual is based on the March 16, 

1991 Edition of the Load and Resistance Factor Design Specificationfor Cold-Formed Steel 
Structural Members. The Manual includes the following sections: 

Part I -Specification 

Part II-Commentary 

Part III-Supplementary Information 

Part IV-Illustrative Examples 

Part V -Charts and Tables 

Part VI-Computer Aids 

Part VII-Test Procedures 

The Specification and the Commentary are both also available as separately bound 
booklets. 

American Iron and Steel Institute gratefully acknowledges the time and effort devoted 
to the preparation of the Manual by the Committee on Specifications for the Design of Cold
Formed Steel Structural Members and its working subcommittees. A special thanks go to 
the following: the Cold-Formed Steel Design Manual Subcommittee-Po A. Seaburg, Chair
man; R. E. Brown, C. R. Clauer, E. R. diGirolamo, E. R. Estes, J. M. Fisher, R. S. Glauz, 
M. Golovin, R. B. Haws, R. E. Hodges, M. Johanningsmeler, D. L. Johnson, H. Klein, 
R. A. LaBoube, T. M. Murray, J. N. Nunnery, R. M. Schuster, and W. W. Yu; the Editorial 
Subcommittee-C. W. Pinkham, Chairman, C. R. Clauer, D. A. Cuoco, J. M. Fisher, and 
T. B. Pekoz; Clauer Associates, and R. J. Schrader. 

American Iron and Steel Institute 
December 1991 
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PREFACE 
The American Iron and Steel Institute allowable stress design specification has long been 

used for the design of cold-fonned steel structural members. The Load and Resistance Fac
tor Design (LRFD) Specification has recently been developed from a research project spon
sored by AISI at the University of Missouri-Rolla under the direction of Wei-Wen Yu with 
consultation of T.V. Galambos and initial contribution of M.K. Ravindra. In this LRFD 
Specification, separate load and resistance factors are applied to specified loads and nominal 
resistance to ensure that the probability of reaching a limit state is acceptably small. These 
factors reflect the uncertainties of analysis, design, loading, material properties and fabrica
tion. They are derived on the basis of the first order probabilistic methodology as used for the 
development of the AISC Load and Resistance Factor Design Specification for Structural 
Steel Buildings. 

This Specification contains six chapters of the LRFD recommendations for cold-fonned 
steel structural members and connections. The background infonnation for the design crite
ria is discussed in the Commentary and other related references. 

AISI acknowledges the devoted efforts of the members of the Committee on Specifica
tions for the Design of Cold-Fonned Steel Structural Members. This group, comprised of 
consulting engineers, researchers, designers from companies manufacturing cold-fonned 
steel members, components, assemblies, and complete structures, and specialists from the 
steel producing industry, has met two to three times per year since its establishment in 1973 . 
Its current members, who have made extensive contributions of time and effort in developing 
and reaching consensus on this LRFD Specification are: 

R. L. Brockenbrough, Chainnan K. H. Klippstein* 
R.B. Haws, Secretary R.A. LaBoube 
R.E. Albrecht J.N. Macadam 
R. B jorhovde R.R. McCluer 
R.E. Brown W.R. Midgley 
C.R. Clauer T.J. Morris 
D.A. Cuoco J.A. Moses 
D. S. Ellifritt T.M. Murray 
S.1. Errera * G.G. Nichols 
E.R. Estes, Jr. IN. Nunnery 
J.M. Fisher T.B. Pekoz 
T.V. Galambos C.W. Pinkham 
M. Golovin P.G. Schurter 
W.B. Hall R.M. Schuster 
G.S. Harris P.A. Seaburg 
R.B. Heagler F.V. Slocum 
N.lwankiw D .L. Tarlton 
A.L. Johnson D.S. Wolford* 
D.L. Johnson W.W.Yu 
T.1. Jones A.S. Zakrezewski 
H. Klein 

*Past Chainnan 
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The activities of the Committee are sponsored by AISI's Light Construction Subcommit
tee of the Construction Marketing Committee. The Specification is issued under the auspices 
of AISI' s Committee on Construction Codes and Standards. 

Users of the Specification are invited to continue to offer their valuable comments and 
suggestions. The cooperation of all involved, the users as well as the writers, is needed to 
continue to keep the Specification up to date and a useful tool for the designer. 

American Iron and Steel Institute 
March 16, 1991 
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SYMBOLS AND DEFINITIONS 

Symbol Definition Section 

A Full unreduced cross-sectional area of the member C3.1.1, C3.1.2, C4, C6.2, 04.1 

Ab bit + As, for transverse stiffeners at interior support and under B6.1 
concentrated load, and b2t + As, for transverse stiffeners at end 

support 

Ab Gross cross-sectional area of bolt E3.4 

Ac 18t2 + As, for transverse stiffeners at interior support and B6.1 
under concentrated load, and 10t2 + As, for transverse 

stiffeners at end support 

Ae Effective area at the stress Fn C4, C6.2, D4.1 
An Net area of cross section C2, E3.2 
As Cross-sectional area of transverse stiffeners B4, B4.1, B4.2, B6.1 
A's Effective area of stiffener B4, B4.1, B4.2 
As, Gross area of shear stiffener B6.2 
Awn Net web area E4 
AI Bearing area E5.1 
A2 Full cross sectional area of concrete support E5.1 
a Shear panel length of the unreinforced web element. Fora B6.2, C3.2 

reinforced web element, the distance between transverse 
stiffeners 

a Length of bracing interval 03.2 
B Stud spacing 04,04.1 
Be Tenn for detennining the tensile yield point of comers A5.2.2 
b Effecti ve design width of compression element B2.1, B2.2, B2.3, B3.1, B3.2, 

B4.1, B4.2, B5 

b Flange width, Z-section D3.2.1 
bd Effective width for deflection calculation B2.1, B2.2 
be Effective design width of sub-element or element A 1.2, B2.3, B5 
bo See Figure B4. 1 B4, B4.1, B5 
C For flexural members, ratio of the total comer cross A5.2.2 

-sectional area of the controlling flange to the full cross 
-sectional area of the controlling flange 

Cb Bending coefficient dependent on moment gradient C3.1.2 
Cm End moment coefficient in interaction fonnula C5 

• 

• -
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

Cms Coefficient for lateral bracing of Z-section 
Cmx End moment coefficient in interaction formula 
Cmy End moment coefficient in interaction formula 
Cp Correction Factor 
Cs Coefficient for lateral torsional buckling 
CTF End moment coefficient in interaction formula 
Cth Coefficient for lateral bracing of Z-sections 
Ctr Coefficient for lateral bracing of Z-sections 
Cv Shear stiffener coefficient 
Cw Torsional warping constant of the cross-section 
Cy Compression strain factor 
Co Initial column imperfection 
Cl Term used to compute shear strain in wall board 
C2 Coefficient as defined in Figure B4-2 
Cr Amount of curling 
D Outside diameter of cylindrical tube 
D Overall depth of lip 
D Shear stiffener coefficient 
D Nominal dead load 
Do Initial column imperfection 
d Depth of section 

d Width of arc seam weld 
d Visible diameter of outer surface of arc spot weld 
d Diameter of bolt 
da Average diameter of the arc spot weld at mid-thickness of t 
da A verage width of seam weld 
de Effecti ve diameter of fused area 
de Effective width of arc seam weld at fused surfaces 
dh Diameter of standard hole 
ds Reduced effective width of stiffener 
d's Actual effective width of stiffener 
dwc Coped web depth 
E Modulus of elasticity of steel (29.5x 103 ksi) 

Section 

D3.2.1 
C5 
C5 
Fl 
C3.1.2 
C3.1.2 
D3.2.1 
D3.2.1 
B6.2 
C3.1.2 
C3.1.1 
D4.1 
B4, B4.1, D4.2 
B4, B4.2 
B1.1b 
C6, C6.1, C6.2, 04.2 
B1.1,B4,01.1 
B6.2 
A5.1.4 
04.1 
B LIb, B4, C3.1.1, C3.1.3, 
D1.1, D3.2.1, D4, 04.1 

E2.3 
E2.2 
E3, E3.1, E3.2, E3.4 
E2.2 
E2.3 
E2.2 
E2, E2.3 
B2.2, E3.1, E4 

B4, B4.2 
B4, B4.2 
E4 
B1.1b, B2.1, B6.1, C3.1.1, 
C3.2, C3.5, C4, 
C4.1, C5, C6.1, 01.2,04.1, 
04.2, E2.2 

1-9 
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SYMBOLS AND DEFINITIONS 

Symbol De'fini'tion Section 

E Nominal earthquake load A5.1.4 

Eo Initial column imperfection; a measure of the initial twist of D4.1 
the stud from the initial, ideal, unbuckled location 

E1 Term used to compute shear strain in wallboard D4.1 
E' Inelastic modulus of elasticity D4.1 

e The distance measured in the line of force from the center E3.1 
of a standard hole to the nearest edge of an adjacent hole 
or to the end of the connected part toward which the force is 
directed 

emin Minimum allowable distance measured in the line of force E2.2 
from the centerline of a weld to the nearest edge of an 
adjacent weld or to the end of the connected part toward which 
the force is directed 

ey Yield strain = Fy/E C3.1.1 
F Loads due to fluids A5.1.4 
Fe Elastic buckling stress C4, C4.1, C4.2, C4.3, C6.2, 

D4.1 

Fm Mean value of the fabrication factor Fl 
Fn Nominal buckling stress C4, C6.2, D4.1 
Fnt Nominal tensile strength of bolts E3.4 
Fnv Nominal shear strength of bolts E3.4 
F'n! Nominal tensile strength for bolts subject to combination E3.4 

of shear and tension 

Fsy Yield point as specified in Sections A3.1 or A3.2 A3.I, A3.2, A3.3.2, E2.2, E3.1, 
E3.2 

Fu Tensile strength as specified in Sections A3.1 or A3.2, A3.1, A3.2, A3.3, A3.3.2, E2.2, 
or as reduced for low ductility steel E2.3, E2.4,E2.5, E3.1, E3.2, 

E3.3,E4 

Fuv Tensile strength of virgin steel specified by A3, A5.2.2, E2.2, F3.3 
Section A3 or established in accordance with Section F3.3 

Fwy Yield point for design of transverse stiffeners B6.I • FlO( Strength level designation in A WS electrode classification E2.2, E2.3, E2.4, E2.5 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

Fy Yield point used for design, not to exceed the specified 
yield point or established in accordance with Section F3, 
or as increased for cold work of forming in Section 
A5.2.2 or as reduced for low ductility steels in Section 
A3.3.2 

Fya A verage yield point of section 
Fyc Tensile yield point of comers 
Fyf Weighted average tensile yield point of the flat portions 
Fys Yield point of stiffener steel 
Fyv Tensile yield point of virgin steel specified by Section 

A3 or established in accordance with Section F3.3 

f Stress in the compression element computed on the basis 
of the effective design width 

fay Average computed stress in the full, unreduced flange 
width 

fc Stress at service load in the cover plate or sheet 
f' c Specified compression stress of concrete 
fd Computed compressive stress in the element being 

considered. Calculations are based on the effective 
section at the load for which deflections are determined. 

fdl, fd2 Computed stresses f1 and f2 as shown in Figure B2.3-1. 
Calculations are based on the effective section at the load 
for which deflections are deteremined 

fd3 Computed stress f3 in edge stiffener, as shown in Figure 
B4-2. Calculations are based on the effective section at 
the load for which deflections are detennined 

fv Computed shear stress on a bolt 

f1, f2 Web stresses defined by Figure B2.3-1 

f3 Edge stiffener stress defined by Figure B4-2 
G Shear modulus of steel (11,300 ksi) 
G' Inelastic shear modulus 
g Vertical distance between two rows of connections 

nearest to the top and bottom flanges 

Section 

Al.2, A3.3, A5.2.1, A5.2.2, 
B2.1, B5, B6.1, C2, C3.1, 
C3.1.1, C3.1.3, C3.2, C3.5, 
C4, C6.1, C6.2, D 1.2, D4, D4.2, 
E2 

A5.2.2 
A5.2.2 
A5.2.2, F3.2 

B6.1 
A3, A5.2.2, F3.3 

B2.1, B2.2, B3.2, B4, B4.1 

B1.1b 

D1.2 
E5.1 
B2.1, B2.2, B3.1, B4.1, B4.2 

B2.3 

B3.2 

E4 
B2.3 
B3.2 
C3.1.1, D4.l 
D4.1 
D1.1 
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SYMBOLS AND DEFINITIONS 

~ 
Symbol Definition Section 

H Loads due to the weight and lateral pressure of soil and A5.1.4 

water in soil 

h Depth of flat portion of web measured along the plane of web B1.2, B6.2, C3.2, C3.4 

la Adequate moment of inertia of stiffener so that each B 1.1, B4, B4.1, B4.2 

component element will behave as a stiffened element 

Ib Moment of inertia of the full unreduced section about the C5 
bending axis 

Is Actual moment of inertia of the full stiffener about its own B1.1, B4, B4.1, B4.2, B5 
centroidal axis parallel to the element to be stiffened 

Isf Moment of inertia of the full area of the multiple stiffened B5 
element, including the intermediate stiffeners, about its 
own centroidal axis parallel to the element to be stiffened 

lx, Iy Moment of inertia of full section about principal axis 01.1,03.2.2 
Ixy Product of inertia of full section about major and minor 03.2.2,04.1 

centroidal axes 

lye Moment of inertia of the compression portion of a section C3.1.2 
about the centroidal axis of the entire section parallel to 
the web, using the full unreduced section 

J St. Venant torsion constant C3.1.2 
j Section property for torsional-flexural buckling C3.1.2 
K Effective length factor C3.1.2, C4, C4.1, C5 
K' A constant 03.2.2 
Kb Effective length factor in the plane of bending C5 
Kt Effective length factor for torsion C3.1.2 
Kx Effective length factor for bending about x-axis C3.1.2 
Ky Effective length factor for bending about y-axis C3.1.2 
k Plate buckling coefficient B2.1, B2.3, B3.1, B3.2, B4 

B4.1, B4.2 

kv Shear buckling coefficient B6.2, C3.2 
L Full span for simple beams, distance between inflection B1.1c, 03.2.1 • points for continuous beams, twice the length of cantilever 

beams 
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SYMBOLS AND DEFINITIONS 

Symbols Defini'lion Section 

L Length of seam weld not including the circular ends E2.3 
L Length of fillet weld E2.4, E2.5 
L Unbraced length of member C3.1.2, C4.l, D 1.1, D4, 

04.1 

L Nominal live load A5.1.4 
Lr Nominal roof live load A5.1.4 

Lst Length of transverse stiffener B6.1 
Lt Unbraced length of compression member for torsion C3.1.2 

Lx Unbraced length of compression member for bending C3.1.2 
about x-axis 

Ly Unbraced length of compression member for bending C3.1.2 
about y-axis 

Me Critical moment C3.1.2 

Me Elastic critical moment C3.1.2 

~ 
Mm Mean value of the material factor Fl 
Mn Nominal flexural strength C3.l, C3.1.1, C3.1.2, C3.1.3, 

C6.1 

Mnx,Mny Nominal flexural strengths about the centroidal axes C5 
determined in accordance with Section C3 

Mnxo. Nominal flexural strengths about the centroidal axes C3.3, C3.5, D4.2, D4.3 

Mnyo determined in accordance with Section C3.1 excluding 
the provisions of Section C3.1.2 

Mu Required flexural strength C3.3, C3.5 

Mux Required flexural strength about x-axis C5 

Muy Required flexural strength about y-axis C5 

My Moment causing a maximum strain ey B2.1, C3.1 

Ml Smaller end moment C3.1.2, C5 

M2 Larger end moment C3.1.2, C5 

m Distance from the shear center of one channel to the D1.1, D3.2.2 

mid-plane of its web 

N Actual length of bearing D3.6 

n Number of holes E4 

n Number of tests Fl 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

np Number of parallel purl in lines 

P Loads, forces, and effects due to ponding 
PE 1t2EIb/(KbLb)2 

PL Force to be resisted by intennediate beam brace 

Pm Mean value of the tested-to--predicted load ratios 

Po Nominal axial strength of member 

Po Nominal strength of connection component 

Poo Nominal axial strength of member detennined in accordance 
with Section C4 for L = 0 

Pp Nominal bearing capacity on concrete 

Ps Concentrated load or reaction based on factored loads 
Pu Required axial strength 

Q Design shear rigidity for sheathing on both sides of the 

wall assembly 

Qi Load effect 

q Unifonnly distributed factored load in the plane of the web 

q Design shear rigidity for sheathing per inch of stud spacing 

qo Factor used to detennine design shear rigidity 

R Reduction Factor 
R Coefficient 
R Inside bend radius 

Ro Nominal resistance 

Rp A verage value of all test results 
Rr Nominal roof rain load 

r Radius of gyration of full unreduced cross section 

r Force transmitted by the bolt or bolts at the section 

considered, divided by the tension force in the member at 
that section 

rey 

rr 

Radius of gyration of one channel about its centroidal 
axis parallel to web 

Radius of gyration of I-section about the axis perp

pendicular to the direction in which buckling would 

occur for the given conditions of end support and 
intennediate bracing 

Section 

D3.2.1 

A5.1.4 

C5 

D3.2.1 
Fl 
C4, C6.2 

E2, E2.2, E2.3, E2.4, E2.5 
C5 

E5.1 

D1.1 
C5 

D4.1 

Fl 
D1.1 

D4.1 

D4.1 

C3.1.3 

C4, C6.2 

A5.2.2, C3.4 

Al.2, Fl 
Fl 
A5.1.4 

C3.1.1, C4, C4.1 
E3.2 

Dl.l 

D1.1 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

ro Polar radius of gyration of cross section about the shear 
center 

rx, ry 

S 

S 
Sc 

Se 

Sf 

Smax 

s 
s 

s 
Tn 
Ts 

t 

t 

Radius of gyration of cross section about centroidal 
principal axis 

1. 28..JE / f 

Nominal snow load 
Elastic section modulus of the effective section calculated 
at a stress MelSf in the extreme compression fiber 

Elastic section modulus of the effective section calculated 
with extreme compression or tension fiber at Fy 

Elastic section modulus of full, unreduced section for the 
extreme compression fiber 

Maximum pennissible longitudinal spacing of welds or 
other connectors joining two channels to fonn an 
I-section 

Fastener spacing 
Spacing in line of stress of welds, rivets, or bolts connecting 
a compression coverplate or sheet to a non-integral 
stiffener or other element 

Weld spacing 
Nominal tensile strength 
Design strength of connection in tension 
Base steel thickness of any element or section 

Total thickness of the two welded sheets 
Thickness of thinnest connected part 
Equivalent thickness of a multiple-stiffened element 

Effective throat of weld 
Coefficient of variation of the fabrication factor 
Coefficient of variation of the material factor 

Section 

C3.l.l, C4.2, 04.1 

C3.l.l 

B4, B4.l 

A5.1.4 
C3.l.l, C3.l.2, C4 

C3.1.1, C3.1.3 

C3.1.1, C3.1.2, C6.l 

Dl.l 

01.2, D4.1 
E3.2 

D1.1 
C2 
D1.1 
A1.2, A3.4, A5.2.l, B1.1, 
Bl.lb, B1.2, B2.1, B4, B4.1, 
B4.2, B5, B6.1, C3.1.1., 
C3.2, C3.4, C3.5, C4, C6.l, 
C6.2, D 1.2, D4, E2.4, E2.5 

E2.2 
E2.2, E3.l, E4 
B5, B6.1 
E2.4, E2.5 
Fl 
Fl 
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SYMBOLS AND DEFINITIONS 

Symbol Definition Section 

Vo Nominal shear strength B6.2, C3.2, C3.3 
Vp Coefficient of variation of the tested-to-predicted load ratios FI 
VQ Coefficient of variation of the load effect FI 
Vu Required shear strength C3.3 
W Factored load supported by all purlin lines being restrained D3.2.1 
W Nominal wind load A5.1.4 
w Flat width of element exclusive of radii A1.2, B1.I, B2.I,B2.2, B3.1, 

B4, B4.1, B4.2, B5, C3.1.I, 
C4, D1.2 

w Flat width of the beam flange which contacts the C3.5 
bearing plate 

Wf Width of flange projection beyond the web or half the Bl.lc 
distance between webs for box- or U-type sections 

Wr Projection of flanges from inside face of web Bl.lb, Dl.I 
WI Leg on weld E2.4 
W2 Leg on weld E2.4 
x Distance from concentrated load to brace D3.2 
xo Distance from shear center to centroid along the principal C3.1.1, C4.2, D4.1 

x-axis 

Y Yield point of web steel divided by yield point of B6.2 
stiffener steel 

l/aox, Magnification factors C5 
l/aoy 

~ Coefficient C4.2, D4.1 
~o Target reliability index FI 
y Actual shear strain in the sheathing D4.1 
y Permissible shear strain of the sheathing D4.1 
~ Load factor FI e Angle between web and bearing surface >45 0 but no C3.4 

more than 900 

e Angle between the vertical and the plane of the web of 
the Z-section, degrees 

D3.2.1 

~' 
0 Stress related to shear strain in sheathing D4.1 
OCR Theoretical elastic buckling stress D4.1 
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SYMBOLS AND DEFINITIONS 

Symbol Definition Section 

O'ex (1t2~)/(lCx~xlrx)2 C3.1.2, C4.2 
(1t2~)/(~/rx)2 04.1 

O'exy (1t2~Ixy)/(~2) 04.1 
O'ey (1t2~)/(lCy~y/ry)2 C3.1.2 

(1t2~)/(~/ry)2 04.1 

O't Torsional buckling stress C3.l.l, C4.2, 04.1 

P Reduction factor B2.1 
A,~ Slenderness factors B2.l, C3.5 

'V f2/fl B2.3 
q, Resistance factor A5.l.5, ~2, ~2.l, ~2.2, 

~2.3, ~2.4, ~2.5, ~2.6, 

~3.1, ~3.2, ~3.3, ~3.4, 

~,Fl 

q,b Resistance factor for bending strength A5.1.5, C3, C3.1.1, C3.1.2, 

~ C3.l.3, C3.3, C3.5, C5, C6.1, 
C6.3, 04.2, 04.3 

q,c Resistance factor for concentrically loaded compression A3.3.l, A5.1.5, B6.l, C4, C5, 
member C6.2, C6.3, 04.1, 04.3 

q,c Resistance factor for bearing strength ~5.l 

q,t Resistance factor for tension member C2 

<I>v Resistance factor for shear strength B6.2, C3.2, C3.3 

q,w Resistance factor for web crippling strength C3.4, C3.5 
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LOAD AND RESISTANCE FACTOR DESIGN 
SPECIFICATION FOR COLD-FORMED STEEL 
STRUCTURAL MEMBERS 

A. GENERAL PROVISIONS 

A 1 Limits of Applicability and Terms 

A 1.1 Scope and Limits of Applicability 

This Load and Resistance Factor Design Specification is an alternate to the Speci
fication for the Design of Cold-Formed Steel Structural Members of the American Iron 
and Steel Institute. 

This Specification shall apply to the design of structural members cold~formed to 
shape from carbon or low-alloy steel sheet, strip, plate or bar not more than one inch in 
thickness and used for load~arrying purposes in buildings. It may also be used for struc
tures other than buildings provided appropriate allowances are made for thermal and/or 
dynamic effects. 

A1.2 Terms 

Where the following terms appear in this Specification they shall have the mean
ing herein indicated: 

(a) Stiffened or Partially Stiffened Compression Elements. A stiffened or partially stiff
ened compression element is a flat compression element (i.e., a plane compression 
flange of a flexural member or a plane web or flange of a compression member) of 
which both edges parallel to the direction of stress are stiffened either by a web, 
flange, stiffening lip, intermediate stiffener, or the like. 

(b) Unstiffened Compression Elements. An unstiffened compression element is a flat 
compression element which is stiffened at only one edge parallel to the direction of 
stress. 

(c) Multiple-Stiffened Elements. A multiple-stiffened element is an element that is 
stiffened between webs, or between a web and a stiffened edge, by means of inter
mediate stiffeners which are parallel to the direction of stress. A sub-element is the 
portiop between adjacent stiffeners or between web and intermediate stiffener or be
tween edge and intermediate stiffener. 

(d) Flat-Width-to-Thickness Ratio. The flat width of an element measured along its 
plane, divided by its thickness. 

(e) Effective Design Width. Where the flat width of an element is reduced for design 
purposes, the reduced design width is termed the effective width or effective design 
width. 

(0 Thickness. The thickness, t, of any element or section shall be the base steel thick
ness, exclusive of coatings. 

(g) Torsional-Flexural Buckling. Torsional-flexural buckling is a mode of buckling in 
which compression members can bend and twist simultaneously. 

(h) Point-Symmetric Section. A point-symmetric section is a section symmetrical 
about a point (centroid) such as a Z-section having equal flanges. 
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(i) Yield Point. Yield point, Fy or Fsy, as used in this Specification shall mean yield 
point or yield strength. 

(j) Stress. Stress as used in this Specification means force per unit area. 

(k) Confirmatory Test. A confirmatory test is a test made, when desired, on members, 
connections, and assemblies designed according to the provisions of Sections A 
through E of this Specification or its specific references, in order to compare actual 
versus calculated performance. 

(1) Performance Test. A performance test is a test made on structural members, con
nections, and assemblies whose performance cannot be detennined by the provi
sions of Sections A through E of this Specification or its specific references. 

(m) Virgin Steel. Virgin steel refers to steel as received from the steel producer or ware
house before being cold worked as a result of fabricating operations. 

(n) Virgin Steel Properties. Virgin steel properties refer to mechanical properties of 
virgin steel such as yield point, tensile strength, and elongation. 

(0) Specified Minimum Yield Point. The specified minimum yield point is the lower 
limit of yield point which must be equalled or exceeded in a specification test to 
qualify a lot of steel for use in a cold-formed steel structural member designed at 
that yield point. 

(p) Cold-Formed Steel Structural Members. Cold-fonned steel structural members are 
shapes which are manufactured by press-braking blanks sheared from sheets, cut 
lengths of coils or plates, or by roll forming cold- or hot-rolled coils or sheets; both 
forming operations being performed at ambient room temperature, that is, without 
manifest addition of heat such as would be required for hot forming. 

(q) LRFD (Load and Resistance Factor Design). A method of proportioning structural 
components (members, connectors, connecting elements and assemblages) such 
that no applicable limit state is exceeded when the structure is subjected to all appro
priate load combinations. 

(r) Design Strength. Factored resistance or strength (force, moment, as appropriate), 
<l>Ro, provided by the structural component. 

(s) Required Strength. Load effect (force, moment, as appropriate) acting on the struc
tural component determined by structural analysis from the factored loads (using 
most appropriate critical load combinations). 

A1.3 Units of Symbols and Terms 

The Specification is written so that any compatible system of units may be used 
except where explicitly stated otherwise in the text of these provisions. 

A2 Non-Conforming Shapes and Construction 

The provisions of the Specification are not intended to prevent the use of alternate 
shapes or constructions not specifically prescribed herein. Such alternates shall meet the 
provisions of Section F of the Specification and be approved by the appropriate building 
code authority. 

A3 Material 

A3.1 Applicable Steels 

This Specification requires the use of steel of structural quality as defined in gen
eral by the provisions of the following specifications of the American Society for Testing 
and Materials: 

1-19 
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ASTM A36/ A36M, Structural Steel 
ASTM A242/A242M, High-Strength Low-Alloy Structural Steel 

ASTM A441M, High-Strength Low-Alloy Structural Manganese Vanadium Steel 

ASTM A446/A446M (Grades A, B, C, D, & F) Steel, Sheet, Zinc-Coated (Galvanized) 
by the Hot-Dip Process, Structural (Physical) Quality 

ASTM A500, Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in 
Rounds and Shapes 

ASTM A529/A529M, Structural Steel with 42 ksi Minimum Yield Point 0/2 in. Maxi
mum Thickness) 

ASTM A570/A570M Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural Quality 

ASTM A572/A572M, High-Strength Low-Alloy Columbium-Vanadium Steels of 
Structural Quality 

ASTM A588/ A588M, High-Strength Low-Alloy Structural Steel with 50 ksi Minimum 
Yield Point to 4 in. Thick 

ASTM A606 Steel, Sheet and Strip, High Strength, Low Alloy, Hot-Rolled and Cold
Rolled, with Improved Atmospheric Corrosion Resistance 

ASTM A607 Steel Sheet and Strip, High Strength, Low Alloy, Columbium or Vana
dium' or both, Hot-Rolled and Cold-Rolled 

ASTM A611 (Grades A, B, C, & D) Steel, Sheet, Carbon, Cold-Rolled, Structural Qual
ity 

ASTM A 715 (Grades 50 and 60) Sheet Steel and Strip, High-Strength, Low-Alloy, Hot
Rolled, With Improved Formability 

ASTM A 792 (Grades 33, 37, 40 & 50) Steel Sheet, Aluminum-Zinc Alloy-Coated by 
the Hot-Dip Process, General Requirements 

A3.2 Other Steels 

The listing in Section A3.1 does not exclude the use of steel up to and including 
one inch in thickness ordered or produced to other than the listed specifications provided 
such steel conforms to the chemical and mechanical requirements of one of the listed 
specifications or other published specification which establishes its properties and suit
ability, and provided it is subjected by either the producer or the purchaser to analyses, 
tests and other controls to the extent and in the manner prescribed by one of the listed 
specifications and Section A3.3. 

A3.3 Ductility 

Steels not listed in Section A3.1 and used for structural members and connections 
shall comply with one of the following ductility requirements: 

A3.3.1 The ratio of tensile strength to yield point shall not be less than 1.08, and the 
total elongation shall not be less than 10 percent for a two-inch gage length or 7 per
cent for an eight-inch gage length standard specimen tested in accordance with 
ASTM A370. If these requirements cannot be met, the following criteria shall be sat
isfied: (1) local elongation in a 1/2 inch gage length across the fracture shall not be less 
than 20%, (2) uniform elongation outside the fracture shall not be less than 3%*. 
When material ductility is determined on the basis of the local and uniform elongation 
criteria, the use of such material is restricted to the design of purlins and girts** in 

* Further information on the test procedures should be obtained from the Commentary. 
** Horizontal structural members which support roof deck or panel covering and applied loads principally by bending. 

r 
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accordance with Sections C3.1.1 (a), C3.1.2, and C3.1.3. For purlins and girts subject 
to cornbined axial load and bending moment (Section C5), Pu/<1>cPn shall not exceed 
0.15. 

A3.3.2 Steels conforming to ASTM A446 Grade E and A611 Grade E and other steels 
which do not meet the provisions of Section A3.3.1 may be used for particular con
figurations provided (1) the yield strength, Fy, used for design in Chapters B, C and D 
is taken as 75 percent of the specified minimum yield point or 60 ksi, whichever is less 
and (2) the tensile strength, Fu, used for design in Chapter E is taken as 75 percent of 
the specified minimum tensile stress or 62 ksi, whichever is less. Alternatively, the 
suitability of such steels for the configuration shall be demonstrated by load tests in 
accordance with Section Fl. Design strengths based on these tests shall not exceed 
the strengths calculated according to Chapters B through E, using the specified mini
mum yield point, Fsy, for Fy and the specified minimum tensile strength, Fu. 

Design strengths based on existing use shall not exceed the strengths calcu
lated according to Chapters B through E, using the specified minimum yield point, 
Fsy, for Fy and the specified minimum tensile strength, Fu. 

A3.4 Delivered Minimum Thickness 

The uncoated minimum steel thickness of the cold-formed product as delivered to 
the job site shall not at any location be less than 95 percent of the thickness, t, used in its 
design; however, lesser thicknesses shall be permitted at bends, such as comers, due to 
cold-forming effects. 

A4 Loads 

A4.1 Dead Load 

The dead load to be assumed in design shall consist of the weight of steelwork and 
all material permanently fastened thereto or supported thereby. 

A4.2 Live or Snow Load 

The live or snow load shall be that stipulated by the applicable code or specifica
tion under which the structure is being designed or that dictated by the conditions in
volved. 

A4.3 Impact Load 

For structures carrying live loads which induce impact, the assumed live load shall 
be increased sufficiently to provide for impact. 

A4.4 Wind or Earthquake Loads 

Wind or earthquake load shall be that stipulated by the applicable code or specifi
cation under which the structure is being designed or that dictated by the conditions in
volved. 

A4.5 Pondlng 

Unless a roof surface is provided with sufficient slope toward points of free drain
age or adequate individual drains to prevent the accumulation of rainwater, the roof sys-
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tem shall be investigated by rational analysis to assure stability under ponding condi
tions. 

AS Structural Analysis and Design 

AS.1 Design Basis 

This Specification is based on the Load and Resistance Factor Design concept. 
Load and Resistance Factor Design is a method of proportioning cold-formed steel 
structural components (i.e., members, connectors and connections) such that any appli
cable limit state is not exceeded when the structure is subjected to any appropriate load 
combination. 

Two types of limit states are to be considered: 1) the limit state of the strength re
quired to resist the extreme loads during the intended life of the structure, and 2) the limit 
state of the ability of the structure to perform its intended function during its life. These 
limit states will be called the Limit State of Strength and the Limit State of Serviceability, 
respectively, in these criteria. 

AS.1.1 Limit State - Strength 

The design meets this Specification when the required strengths, as deter
mined from the assigned nominal loads which are multiplied by appropriate load fac
tors, are smaller than or equal to the design strength of each structural component. 

The design strength is equal to <l>Ro, where <I> is a resistance factor and Ro is the 
nominal strength determined according to the formulas given in Chapter C for mem
bers, in Chapter D for structural assemblies and in Chapter E for connections. Values 
of resistance factors <I> are given in Section A5.1.5 for the appropriate limit states gov
erning member and connection strength. 

A5.1.2 Limit State - Serviceability 

Serviceability is satisfactory if a nominal structural response (e.g. live load 
deflection) due to the applicable nominal loads is less than or equal to the appropriate 
acceptable or allowable value of this response. 

A5.1.3 Nominal Loads 

The nominal loads shall be the minimum design loads stipulated by the appli
cable code under which the structure is designed or dictated by the conditions in
volved. In the absence of a code, the loads and load combinations shall be those stipu
lated in the American Society of Civil Engineers Standard, ANSI/ASCE 7-88, Mini
mum Design Loads for Buildings and Other Structures. For design purposes, the 
loads stipulated by the applicable code shall be taken as nominal loads. 

A5.1.4 Load Factors and Load Combinations· 

The structure and its components must be designed for the appropriate most 
critical load combination. The following load combinations of the factored nominal 
loads shall be used in the computation of the required strengths: 

1. 1.4 D + L 
2. 1.2 D + 1.6 L + 0.5(Lr or S or Rr) 
3. 1.2 D + (1.4 Lr or 1.6 S or l.6 Rr) + (0.5 Lor 0.8 W) 

* For roof and floor construction, recommended load combinations for dead load, weight of wet concrete, and construction 
load including equipment, workmen and formwork are given in Section A5.1 of the Commentary. 
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4. 1.2 D + 1.3 W + 0.5 L + 0.5(Lr or S or Rr) 
5. 1.2 D + 1.5 E + (0.5 Lor 0.2 S) 
6. 0.9 D - (1.3 W or 1.5 E) 

where D = nominal dead load 
E = nominal earthquake load 
L = nominal live load 
L = nominal roof live load 
Rr = nominal roof rain load 
S = nominal snow load 
W = nominal wind load (Exception: For wind load on individual purlins, 

girts, wall panels and roof decks, multiply the load factor for W by 0.9) 

Exception: The load factor for L in combinations (3), (4), and (5) shall be equal to 1.0 
for garages, areas occupied as places of public assembly, and all areas where the live 
load is greater than 100 psf. 

When the structural effects of F, H, P or T are significant, they shall be con-
sidered in design as the following factored loads: 1.3F, 1.6H, 1.2P, and 1.2T, where 

F = loads due to fluids with well-defined pressures and maximum heights 

H = loads due to the weight and lateral pressure of soil and water in soil 

P = loads, forces, and effects due to ponding 

T =self-straining forces and effects arising from contraction or expansion 
resulting from temperature change, shrinkage, moisture changes, creep in 
component materials, movement due to differential settlement, or 
combinations thereof. 

A5.1.5 Resistance Factors 

The resistance factors to be used for detennining the design strengths, <l>Rn, of 
structural members and connections shall be taken as follows: 

Type of Strength 

(a) Stiffeners 

Resistance 
Factor, <I> 

Transverse stiffeners .................................. 0.85 
Shear stiffeners* ..................................... 0.90 

(b) Tension members .................................... 0.95 
(c) Flexural members 

Bending strength 
For sections with stiffened or partially stiffened 
compression flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.95 
For sections with un stiffened compression flanges ........ 0.90 

Laterally unbraced beams .............................. 0.90 
Beams having one flange through-fastened to deck or 
sheathing (C- or Z-sections) . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.90 
Web design 

Shear strength* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.90 
Web Crippling 

For single unreinforced webs ...................... 0.75 
For I-sections .................................. 0.80 

*When hit ~ ~Ekv / Fy ,$ = 1.0 
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Resistance 
Factor, <p 

(d) Concentrically loaded compression members . . . . . . . . . . . . . .. 0.85 
(e) Combined axial load and bending 

<pc for compression ................................. 0.85 
<Pb for bending 

Using Section C3.I.l ....................... 0.90 -0.95 
Using Section C3.l.2 ............................ 0.90 

(f) . Cylindrical tubular members 
Bending strength ..................................... 0.95 
Axial compression .................................... 0.85 

(g) Wall studs and wall stud assemblies 
Wall studs in compression ........................... 0.85 
Wall studs in bending 

For sections with stiffened or partially stiffened 
compression flanges ............................. 0.95 
For sections with unstiffened compression flanges 0.90 

(h) Welded connections 
Groove welds 

Tension or compression .......................... 0.90 
Shear (welds) .................................. 0.80 
Shear (base metal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.90 

Arc spot welds 
Welds ........................................... 0.60 
Connected part ............................... 0.50 -0.65 
Minimum edge distance . . . . . . . . . . . . . . . . . . . . . . .. 0.60 -0.70 

Arc seam welds 
Welds ........................................... 0.60 
Connected part .................................... 0.60 

Fillet welds 
Longitudinal loading (connected part) ............. 0.55 - 0.60 
Transverse loading (connected part) ................... 0.60 
Welds ........................................... 0.60 

Flare groove welds 
Transverse loading (connected part) ................... 0.55 
Longitudinal loading (connected part) .................. 0.55 
Welds ........................................... 0.60 

Resistance Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.65 
(i) Bolted connections 

Minimum spacing and edge distance .............. 0.60 -0.70 
Tension strength on net section 

With washers 
Double shear connection ....................... 0.65 
Single shear connection ........................ 0.55 

Without washers ................................ 0.65 
Bearing strength 

See Tables E3.3-l and E3.3-2 ................ 0.55 -0.70 
Shear strength of bolts .............................. 0.65 
Tensile strength of bolts. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.75 

(j) Shear rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.75 
(k) Connections to other materials (Bearing) .................. 0.60 
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AS.2 Yield Point and Strength Increase from Cold Work of Forming 

AS.2.1 Yield Point 

The yield point used in design, Fy, shall not exceed the specified minimum 
yield point of steels as listed in Section A3.1 or A3.2, as established in accordance 
with Chapter F, or as increased for cold work of forming in Section A5.2.2, or as re
duced for low ductility steels in Section A3.3.2. 

AS.2.2 Strength Increase from Cold Work of Forming 

Strength increase from cold work of forming shall be permitted by substitut
ing Fya for Fy, where Fya is the average yield point of the full section. Such increase 
shall be limited to Sections C3.1 (excluding Section C3.1.1(b», C4, C5, C6 and D4. 
The limitations and methods for determining Fya are as follows: 
(a) For axially loaded compression members and flexural members whose propor

tions are such that the quantity p for load capacity is unity as determined accord
ing to Section B2 for each of the component elements of the section, the design 
yield stress, Fya, of the steel shall be determined on the basis of one of the follow
ing methods: 

(1) full section tensile tests [see paragraph (a) of Section F3.1] 

(2) stub column tests [see paragraph (b) of Section F3.1] 

(3) computed as follows: 
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Fya = CFyc + (1 - C) Fyf (Eq. A5.2.2-1) 

where 

Fya = Average yield point of the steel in the full section of compression 
members or full flange sections of flexural members 

C = For compression members, ratio of the total comer cross-sectional 
area to the total cross-sectional area of the full section; for flexural 
members, ratio of the total corner cross-sectional area of the control
ling flange to the full cross-sectional area of the controlling flange 

Fyf = Weighted average tensile yield point of the flat portions established in 
accordance with Section F3.2 or virgin steel yield point if tests are not 
made 

Fyc = BcFyv/(R/t)m, tensile yield point of comers. This formula is (Eq. A5.2.2-2) 
applicable only when Fuv/Fyv ~ 1.2, Rlt :::;;; 7, and minimum included 
angle ~ 1200 

Be = 3.69 (Fuv/Fyv) - 0.819 (Fuv/Fyv)2 - 1.79 
m = 0.192 (Fuv/Fyv) - 0.068 
R = Inside bend radius. 

(Eq. A5.2.2-3) 
(Eq. A5.2.2-4) 

Fyv = Tensile yield point of virgin steel * specified by Section A3 or estab
lished in accordance with Section F3.3 

Fuv = Ultimate tensile strength of virgin steel * specified by Section A3 or 
established in accordance with Section F3.3 

(b) For axially loaded tension members the yield point of the steel shall be deter
mined by either method (1) or method (3) prescribed in paragraph (a) of this Sec
tion. 

• Virgin steel refers to the condition (Le., coiled or straight) of the steel prior to the cold-forming operation. 
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(c) The effect of any welding on mechanical properties of a member shall be deter
mined on the basis of tests of full section specimens containing within the gage 
length, such welding as the manufacturer intends to use. Any necessary allow
ance for such effect shall be made in the structural use of the member. 

A5.3 Durability 

A structure shall be designed to perform its required functions during its expected 
life for durability considerations. 

A6 Reference Documents 

The following documents are referenced in this Specification: 

1. American Society of Civil Engineers, ANSI/ ASCE 7-88, "Minimum Design Loads 
in Buildings and Other Structures," American Society of Civil Engineers (ASCE), 
345 East 47th Street, New York, N.Y. 10017 

2 American Institute of Steel Construction, "Load and Resistance Factor Design 
Specification for Structural Steel Buildings", American Institute of Steel Construc
tion (AISC), One East Wacker Drive, Suite 3100, Chicago, Illinois 60601-2001, 
September 1, 1986 

3 American Welding Society, AWS 01.3-89, "Structural Welding Code - Sheet 
Steel," American Welding Society (A WS), 550 N.W. Lejeune Road, Miami, Flor
ida 33135 

4. American Welding Society, A WS C 1.1-66, "Recommended Practices for Resis
tance Welding," American Welding Society (AWS), 550 N.W. Lejeune Road, Mi
ami, Florida 33135 

5. American Welding Society, AWS C1.3-70, "Recommended Practices for Resis
tance Welding Coated Low Carbon Steels," American Welding Society (AWS), 
550 N.W. Lejeune Road, Miami, Florida 33135 

6. American Society for Testing and Materials (ASTM), 1916 Race Street, Philadel
phia, Pennsylvania 19013: 

ASTM A36/A36M-84a, Structural Steel 

ASTM A194-88, Carbon and Alloy Steel Nuts for Bolts for High-Pressure and 
High-Temperature Service 

ASTM A242/A242M-85, High-Strength Low-Alloy Structural Steel 

ASTM A307-84 (Type A), Carbon Steel Externally and Internally Threaded Stan
dard Fasteners 

ASTM A325-84, High Strength Bolts for Structural Steel Joints 

ASTM A354-84 (Grade BD), Quenched and Tempered Alloy Steel Bolts, Studs, 
and Other Externally Threaded Fasteners (for diameter of bolt smaller than 1/2 
inch) 

ASTM A370-77 Mechanical Testing of Steel Products 

ASTM A441M-85, High-Strength Low-Alloy Structural Manganese Vanadium 
Steel 

ASTM A446/A446M-85 (Grades A, B, C, D, & F) Steel, Sheet, Zinc-Coated (Gal
vanized) by the Hot-Dip Process, Structural (Physical) Quality 

ASTM A449-84a, Quenched and Tempered Steel Bolts and Studs (for diameter of 
bolt smaller than 1/2 inch) 
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ASTM A490--84, Quenched and Tempered Alloy Steel Bolts for Structural Steel 
Joints. 

ASTM A500--84, Cold-Formed Welded and Seamless Carbon Steel Structural 
Tubing in Rounds and Shapes 

ASTM A529/A529M-85, Structural Steel with 42 ksi Minimum Yield Point (ih in. 
Maximum Thickness) 

ASTM A563-88a, Carbon and Alloy Steel Nuts 

ASTM A570/A570M-85 Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural 
Quality 

ASTM A572/A572M-85, High-Strength Low-Alloy Columbium-Vanadium 
Steels of Structural Quality 

ASTM A588/A588M-85, High-Strength Low-Alloy Structural Steel with 50 ksi 
Minimum Yield Point to 4 in. Thick 

ASTM A606-85 Steel, Sheet and Strip, High Strength, Low Alloy, Hot-Rolled and 
Cold-Rolled, with Improved Atmospheric Corrosion Resistance 

ASTM A607-85 Steel Sheet and Strip, High Strength, Low Alloy, Columbium or 
Vanadium, or both, Hot-Rolled and Cold-Rolled 

ASTM A611-85 (Grades A, B, C, & D) Steel, Sheet, Carbon, Cold-Rolled, Struc
tural Quality 

ASTM A715-85 (Grades 50 & 60) Sheet Steel and Strip, High-Strength, Low-Al
loy, Hot-Rolled, With Improved Formability 

ASTM A 792-85a (Grades 33, 37, 40 & 50) Steel Sheet, Aluminum-Zinc Alloy-
Coated by the Hot-Dip Process, General Requirements 

ASTM F436-86, Hardened Steel Washers 

ASTM F844-83(1988), Washers, Steel, Plain (Flat), Unhardened for General Use 

ASTM F959-85, Compressible Washer-Type Direct Tension Indicators for Use 
with Structural Fasteners 
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B. ELEMENTS 

81 Dimensional Limits and Considerations 

81.1 Flange Flat-Width-to-Thickness Considerations 

(a) Maximum Flat-Width-to-Thickness Ratios 
Maximum allowable overall flat-width-to-thickness ratios, wIt, disregarding inter

mediate stiffeners and taking as t the actual thickness of the element, shall be as fol

lows: 

(1) Stiffened compression element having one longitudinal edge connected to a 
web or flange element, the other stiffened by: 

Simple lip 60 

Any other kind of stiffener 
having Is > Ia and D/w < 0.8 
according to Section B4.2 90 

(2) Stiffened compression element 
with both longitudinal 
edges connected to other 
stiffened elements 500 

(3) Unstiffened compression element 
and elements with an edge stiffener having 
Is < Ia and D/w $; 0.8 according 
to Section B4.2 60 

Note: Unstiffened compression elements that have wIt ratios exceeding approximately 

30 and stiffened compression elements that have wIt ratios exceeding approxi

mately 250 are likely to develop noticeable deformation at the full design 

strength, without affecting the ability of the member to develop required 

strength. 

Stiffened elements having wIt ratios larger than 500 can be used with adequate 
design strength to sustain the required loads; however, substantial deformations 

of such elements usually will invalidate the design formulas of this Specifica

tion. 

(b) Flange Curling 
Where the flange of a flexural member is unusually wide and it is desired to limit the 

maximum amount of curling or movement of the flange toward the neutral axis, the 
following formula applies to compression and tension flanges, either stiffened or 
unstiffened: 

where 
Wf= Width of flange projecting beyond the web; 

or half of the distance between webs for box- or U-type beams 

t = Flange thickness 

d =Depth of beam 

(Eq. Bl.l-l) 
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Cf =Amount of curling* 
fav=Average stress in the full, unreduced tlange width. (Where members are 

designed by the effective design width procedure, the average stress equals 
the maximum stress multiplied by the ratio of the effective design width to 
the actual width.) 

(c) Shear Lag Effects - Short Spans Supporting Concentrated Loads 
Where the span of the beam is less than 30Wf (Wf as defined below) and it carries one 
concentrated load, or several loads spaced farther apart than 2Wf, the effective de
sign width of any flange, whether in tension or compression, shall be limited to the 
following: 

TABLE B1.1(c) 

SHORT, WIDE FLANGES 
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MAXIMUM ALLOWABLE RATIO OF EFFECTIVE DESIGN WIDTH TO ACTUAL WIDTH 

L/Wf Ratio L/Wf Ratio 

30 1.00 14 0.82 
25 0.96 12 0.78 
20 0.91 10 0.73 
18 0.89 8 0.67 
16 0.86 6 0.55 

where 
L = Full span for simple beams; or the distance between inflection points for 

continuous beams; or twice the length of cantilever beams. 
Wf = Width of flange projection beyond the web for I-beam and similar sec

tions or half the distance between webs of box or U-type sections. 

For flanges of I-beams and similar sections stiffened by lips at the outer 
edges, Wf shall be taken as the sum of the tlange projection beyond the 
web plus the depth of the lip. 

81.2 Maximum Web Depth-to-Thickness Ratio 

The ratio, hIt, of the webs of flexural members shall not exceed the following limi
tations: 

(a) 
(b) 

For unreinforced webs: (h/t)max = 200 
For webs which are provided with transverse stiffeners satisfying the 
requirements of Section B6.1 : 

( 1) When using bearing stiffeners only, (h/t )max = 260 

(2) When using bearing stiffeners and intennediate stiffeners, (h/t)max = 300 

In the above, 
h = Depth of flat portion of web measured along the plane of web 

'" The amount of curling that can be tolerated will vary with different kinds of sections and must be established by the 
designer. Amount of curling in the order of 5 percent of the depth of the section is usually not considered exces
sive. 
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t = Web thickness 
Where a web consists of two or more sheets, the hit ratio shall be com

puted for the individual sheets. 

82 Effective Widths of Stiffened Elements 

82.1 Uniformly Compressed Stiffened Elements 

(a) Load Capacity Determination 
The effective widths, b, of uniformly compressed elements shall be determined 

from the following formulas: 
b =w when 'A ~ 0.673 
b = pw when 'A > 0.673 

where 
w = Flat width as shown in Figure B2.1-1 
p =(1 - 0.22/'A )/'A 
A is a slenderness factor determined as follows: 

A = 1.052 (w) (f 
-Jk t ~E 

where 
t = Thickness of the uniformly compressed stiffened elements, and 
f for load capacity determination is as follows: 

For flexural members: 

(I) If Procedure I of Section C3.1.1 is used, f = Fy if the initial yielding is in com
pression in the element considered. 
If the initial yielding is in tension, the compressive stress, f, in the element 
considered shall be determined on the basis of the effective section at My 
(moment causing initial yield). 

(2) If Procedure II of Section C3.1.1 is used then f is the stress in the element con
sidered at Mn determined on the basis of the effective section. 

(3) If Section C3.1.2 is used, then f is the stress Me as described in that Section 
in detennining Se. Sf 

For compression members f is taken equal to Fn as determined in Section C4 or D4.1 
as applicable. 

E = Modulus of elasticity 
k = Plate buckling coefficient 

= 4 for stiffened elements supported by a web on each longitudinal edge. 
Values for different types of elements are given in the applicable sec
tions. 

(b) Deflection Determination 

The effective widths, bd, used in computing deflection shall be determined from the 
following fonnulas: 

bd = w when A ~ 0.673 
bd = pw when A > 0.673 

where 

(Eq. B2.1-l) 
(Eq. B2.l-2) 

(Eq. B2.1-3) 

(Eq. B2.1-4) 

(Eq. B2.1-5) 
(Eq. B2.1-6) 
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w D
---------~f 

_________ L-J 

(I I) ~---------~ 

I~ ~I I 
I Actual Element 

I 
I 

Effective Element, b, and Stress, f, 
on Effective Elements 

Figure 82.1-1 Stiffened Elements 

w = Flat width 
p =Reduction factor determined by either of the following two procedures: 

(1 ) Procedure I. 
A low estimate of the effective width may be obtained from Eqs. B2.1-3 

and B2.1-4 where fd is substituted for f where fd is the computed compres
sive stress in the element being considered. 

(2) Procedure II. 
For stiffened elements supported by a web on each longitudinal edge an 
improved estimate of the effective width can be obtained by calculating p 

as follows: 

P =1 when A ~ 0.673 
P =(1.358 - 0.461/A)!A when 0.673 < A < Ac 
p = (0.41 + 0.59 ~Fy / fd - 0.22/A)/A when A ~ Ac 

p shall not exceed 1.0 for all cases. 
where 

Ac =0.256 + 0.328 (w/t)~Fy / E 
and A is as defined by Eq. B2.1-4 except that fd is substituted for f. 

82.2 Uniformly Compressed Stiffened Elements with Circular Holes 

(a) Load Capacity Determination 
The effective width, b, of stiffened elements with uniform compression having cir

cular holes shall be determined as follows: 

for 0.50 ~ ~ ~ 0, and w ~ 70 
w t 

center-to--center spacing of holes> 0.50w, and 3dh, 

b =W - dh when A ~ 0.673 

b shall not exceed w - dh 

where 

(Eq. B2.1-7) 
(Eq. B2.l-8) 
(Eq. B2.l-9) 

(Eq. B2.l-10) 

(Eq. B2.2-l) 

(Eq. B2.2-2) 
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w = Flat width 

dh =Diameter of holes 

A is as defined in Section B2.1. 

(b) Deflection Determination 
The effective width, bd, used in deflection calculations shall be equal to b deter

mined in accordance with Procedure I of Section B2.2a except that fd is substituted 

for f, where fd is the computed compressive stress in the element being considered. 

82.3 Effective Widths of Webs and Stiffened Elements with Stress Gradient 

(a) Load Capacity Determination 

The effective widths, bi and b2, as shown in Figure B2.3-I shall be determined from 
the following formulas: 

bl = be/(3 - 'II) 
For 'II ~ - 0.236 

bz= be/2 
bi + b2 shall not exceed the compression portion of the web calculated on the 
basis of effective section 

For'll> - 0.236 

(Eq. B2.3-I) 

(Eq. B2.3-2) 

b2=be - bi (Eq. B2.3-3) 
where 

be =Effective width b determined in accordance with Section B2.1 with fl sub-

stituted for f and with k determined as follows: 

k =4 + 2(1 - 'II )3 + 2(1 - 'II) (Eq. B2.3-4) 

'" =f2/f1 
fl, f2 = Stresses shown in Figure B2.3-I calculated on the basis of effective sec-

tion. 

f\ is compression (+) and fz can be either tension (-) or compression. In case fl 
and f2 are both compression, fl ~ f2 

(b) Deflection Determination 

The effective widths in computing deflections at a given load shall be determined in 

accordance with Section B2.3a except that fdi and fd2 are substituted for fl and f2, 

where fdl, fd2 = Computed stresses f\ and fz as shown in Figure B2.3-1. Calculations 

are based on the effective section at the load for which deflections are determined. 

83 Effective Widths of Unstiffened Elements 

83.1 Uniformly Compressed Unstiffened Elements 

(a) Load Capacity Determination 

Effective widths, b, of un stiffened compression elements with uniform compres

sion shall be determined in accordance with Section B2.1 a with the exception that k 
shall be taken as 0.43 and w as defined in Figure B3.1-1. 

(b) Deflection Determination 

The effective widths used in computing deflections shall be determined in accor

dance with Procedure I of Section B2.1 b except that fd is substituted for f and k = 
0.43. 
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f 2 (tension) 

Actual Element 

Effective Elements and Stresses on 
Effective Elements 

::(j---

Figure 82.3-1 Stiffened Elements with Stress Gradient and Webs 

w 

(I 

Actual Element 

~I 
Stress f ~I .... ___ ........ 1 ~ ~ ~ ~ ~ J 

Effective Element and Stress 
on Effective Element 

Figure 83.1-1 Unstlffened Element with Uniform Compression 

83.2 Unstiffened Elements and Edge Stiffeners with Stress Gradient 

(a) Load Capacity Determination 
Effective widths, b, of unstiffened compression elements and edge stiffeners with 
stress gradient shall be determined in accordance with Section B2.1a with f = f3 as in 

Figure B4-2 in the element and k = 0.43. 

(b) Deflection Determination 
Effective widths, b, of unstiffened compression elements and edge stiffeners with 

I 33 
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stress gradient shall be determined in accordance with Procedure I of Section B2.1 b 

except that fd3 is substituted for f and k = 0.43. 

84 Effective Widths of Elements with an Edge Stiffener or One Intermediate 
Stiffener 

The following notation is used in this section. 
S = 1. 28-VE If (Eq. B4-1) 
k = Buckling coefficient 
bo = Dimension defined in Figure B4-1 
d, w, D = Dimensions defined in Figure B4-2 
ds = Reduced effective width of the stiffener as specified in this section. ds, cal-

culated according to Section B4.2, is to be used in computing the overall 
effective section properties (see Figure B4-2) 

d's = Effective width of the stiffener calculated according to Section B3.1 (see 
Figure B4-2) 

Cl, C2 = Coefficients defined in Figure B4-2 
As = Reduced area of the stiffener as specified in this section. As is to be used in 

la 

computing the overall effective section properties. The centroid of the stiff
ener is to be considered located at the centroid of the full area of the stiffen
er, and the moment of inertia of the stiffener about its own centroidal axis 
shall be that of the full section of the stiffener. 

= Adequate moment of inertia of stiffener, so that each component element 
will behave as a stiffened element. 

Is, A's = Moment of inertia of the full stiffener about its own centroidal axis parallel 
to the element to be stiffened and the effective area of the stiffener, respec
tively. For edge stiffeners the round comer between the stiffener and the 
element to be stiffened shall not be considered as a part of the stiffener. 

Is 
A's 

For the stiffener shown in Figure B4-2: 

= (d3t sin28)/12 
= d'st 

84.1 Uniformly Compressed Elements with an Intermediate Stiffener 

(a) Load Capacity Determination 
Case I: bolt:::; S 

la =0 (no intermediate stiffener needed) 
b =W 

As =A's 
Case II: S < bolt < 3S 

lalt4 = [50(bo/t)/S] - 50 
b and As are calculated according to Section B2.la where 

k =3(ls/la)I!2+ 1 :::; 4 
As=A's(ls/la) ~ A's 

Case III: bolt ~ 3S 

Ialt4 = [128(bo/t)/S] - 285 
b and As are calculated according to Section B2.l a where 

k = 3 (ls/la) 1/3 + 1:::;4 
As=A's (Is/la) ~ A's 

(b) Deflection Determination 

Effective widths shall be determined as in Section B4.1 a except that fd is substituted 
for f. 

(Eq. B4-2) 
(Eq. B4-3) 

CEq. B4.1-l) 

CEq. B4.l-2) 
CEq. B4.1-3) 
(Eq. B4.l-4) 
(Eq. B4.l-5) 

(Eq. B4.l-6) 

(Eq. B4.1-7) 
(Eq. B4.1-8) 

(Eq. B4.1-9) 

(Eq. B4.1-10) 
(Eq. B4.1-11) 

, 



--

Cold-Fonned LRFD Specification - March 16, 1991 I 35 

Actual Elements 

Stress f 
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Stiffener Section 

Effective Elements and Stress 
on Effective Element 

Figure 84-1 Elements with Intermediate Stiffener 

84.2 Uniforrrily Compressed Elements with an Edge Stiffener 

Ca) Load Capacity Determination 
Case I: wit ~ S/3 (Eq. B4.2-1) 

Ia =0 (no edge stiffener needed) CEq. B4.2-2) 

b =w CEq. B4.2-3) 

ds =d's for simple lip stiffener CEq. B4.2~) 
As = A's for other stiffener shapes CEq. B4.2-5) 

Case II: S/3 < wit < S 
Ialt4 =399{ [Cw/t)/S] - 0.33}3 CEq. B4.2-6) 

n =1/2 
C2 =Is/la ~ 1 CEq. B4.2-7) 

CI =2- C2 CEq. B4.2-8) 

b shall be calculated according to Section B2.1 where 
k =[4.82 - 5(D/w)](ls/la)n + 0.43 ~ 5.25 - 5CD/w) CEq. B4.2-9) 

for 0.8 ~ D/w > 0.25 
k =3.57(1s/la)n + 0.43 ~ 4.0 CEq. B4.2-10) 

for (D/w) ~ 0.25 
ds = d's CIs/la) ~ d's (Eq. B4.2-11) 

for simple lip stiffener 
As=A's (ls/la) ~ A's CEq. B4.2-12) 

for other stiffener shape 

Case III: wit ~ S 

Ialt4 =[115 Cw/t)/S] + 5 CEq. B4.2-13) 

Cl, C2, b, k, ds, As are calculated per Case II with n = 1/3. 

Cb) Deflection Determination 
Effective widths shall be determined as in Section B4.2a except that fd is substituted 

forf. 
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Effective Element and Stress on Effective Element 

Figure 84-2 Elements with Edge Stiffener 

Effective Stiffener 
used for Calculating 
Overall Section 
Properties 

85 Effective Widths of Edge Stiffened Elements with Intermed iate Stiffeners 
or Stiffened Elements with More Than One Intermediate Stiffener 

For the determination of the effective width, the intermediate stiffener of an edge stiff
ened element or the stiffeners of a stiffened element with more than one stiffener shall be 
disregarded unless each intermediate stiffener has the minimum Is as follows: 

Imi• = [3.66~((W It)2 -(O.!36E)1 Fy)}4 (Eq. BS-l) 

but not less than 18.4 t4 
where 

w/t= Width-thickness ratio of the larger stiffened sub--element 
Is = Moment of inertia of the full stiffener about its own centroidal axis parallel to the 

element to be stiffened 
(a) If the spacing of intermediate stiffeners between two webs is such that for the sub

element between stiffeners b < w as determined in Section B2.1, only two interme
diate stiffeners (those nearest each web) shall be considered effective. 

(b) If the spacing of intermediate stiffeners between a web and an edge stiffener is such 
that for the sub-element between stiffeners b < w as determined in Section B2.1, 
only one intermediate stiffener, that nearest the web, shall be considered effective. 

(c) If intermediate stiffeners are spaced so closely that for the elements between stiffen
ers b = w as determined in Section B2.1, all the stiffeners may be considered effec
tive. In computing the flat-width to thickness ratio of the entire multiple-stiffened 
element, such element shall be considered as replaced by an "equivalent element" 
without intermediate stiffeners whose width, bo, is the full width between webs or 
from web to edge stiffener, and whose equivalent thickness, is, is determined as fol-

, 

r 
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lows: 

where 

Isf = Moment of inertia of the full area of the multiple-stiffened element, including 
the intermediate stiffeners, about its own centroidal axis. The moment of inertia of 
the entire section shall be calculated assuming the "equivalent element" to be lo
cated at the centroidal axis of the multiple stiffened element, including the interme
diate stiffener. The actual extreme fiber distance shall be used in computing the sec
tion modulus. 

(d) If wIt> 60, the effective width, be, of the sub-element or element shall be deter
mined from the following formula: 

~ = E.-0.10[w -60] 
t t t 

where 
w/t=f1at-width ratio of sub-element or element 
b =effective design width determined in accordance with the provisions of 

Section B2.1 

be =effective design width of sub-element or element to be used in design 
computations 

For computing the effective structural properties of a member having compression 
sub-elements or element subject to the above reduction in effective width, the area of 
stiffeners (edge stiffener or intermediate stiffeners) shall be considered reduced to an ef
fective area as follows: 

For 60 < wIt < 90: 
Aef=aAst 

where 

IX = (3 - 2be / w) - 3~ [1- ~ I 7 ] 
For wIt ~ 90: 

Aef= (be/w) Ast 
In the above expressions, Aef and Ast refer only to the area of the stiffener section, 

exclusive of any portion of adjacent elements. 
The centroid of the stiffener is to be considered located at the centroid of the full 

area of the stiffener, and the moment of inertia of the stiffener about its own centroidal 
axis shall be that of the full section of the stiffener. 

86 Stiffeners 

86.1 Transverse Stiffeners 

Transverse stiffeners attached to beam webs at points of concentrated loads or re
actions, shall be designed as compression mernbers. Concentrated loads or reactions 
shall be applied directly into the stiffeners, or each stiffener shall be fitted accurately to 
the flat portion of the flange to provide direct load bearing into the end of the stiffener. 
Means for shear transfer between the stiffener and the web shall be provided according to 
Chapter E. Required strengths for the concentrated loads or reactions shall not exceed 
the design strength, cpcPn, where cj)c = 0.85 and Pn is the smaller value given by (a) and (b) 
as follows: 
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CEq. B5-2) 

(Eq. B5-3) 

(Eq. B5-4) 

(Eq. B5-5) 

(Eq. B5-6) 
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(a) Pn =FwyAc (Eq. B6.1-l) 
(b) Pn =Nominal axial strength evaluated according to Section C4(a) with Ae replaced 

by Ab 
where 

Ac = 18t2 + As, for transverse stiffeners at interior support and under concentrated (Eq. B6.1-2) 
load 

Ac = 1 Ot2 + As, for transverse stiffeners at end support 
Fwy=Lower value of beam web, Fy or stiffener section, Fys 
Ab =blt + As, for transverse stiffeners at interior support and under concentrated 

load 

Ab = b2t + As, for transverse stiffeners at end support 
As =Cross sectional area of transverse stiffeners 
bl =25t [0.0024(LsJt) + 0.72] ::; 25t 
b2 = 12t [O.0044(LsJt) + 0.83] ::; 12t 
Lst = Length of transverse stiffener 
t = Base thickness of beam web 

The wits ratio for the stiffened and un stiffened elements of cold-fonned steel 

transverse stiffeners shall not exceed 1.28 ~(E I Fys) and 0.37~(E I Fys), respectively, 
where Fys is the yield stress, Fy, and ts the thickness of the stiffener steel. 

86.2 Shear Stiffeners 

Where shear stiffeners are required, the spacing shall be such that the required 
shear strength shall not exceed the design shear strength, <Pv V n, pennitted by Section 
C3.2, and the ratio a/h shall not exceed [260/(h/t)]2 nor 3.0. 

The actual moment of inertia, Is, of a pair of attached shear stiffeners, or of a single 
shear stiffener, with reference to an axis in the plane of the web, shall have a minimum 
value of 

Ismin = 5ht3[h/a - 0.7(a/h)] ~ (h/50)4 
The gross area of shear stiffeners shall be not less than 

Ast = 1-C v [~ _ (a I h )2 ]YDht 
2 h (a/h)+~I+(a/h)2 

where 
45,000k v 

Cv = ( )2 when Cv < 0.8 
Fy hit -

Cv = 190 ( ~J when C v > 0.8 
hit ~F; 

kv = 4.00+ 5.34 when a/h::; 1.0 
(a I h)2 

kv = 5.34+ 4.00 when a/h> 1.0 
(a I h)2 

a = Distance between transverse stiffeners 

Y = Yield point of web steel 
Yield point of stiffener steel 

D = 1.0 for stiffeners furnished in pairs 

(Eq. B6.1-3) 

(Eq. B6.1-4) 

(Eq. B6.1-5) 

(Eq. B6.1-6) 
(Eq. B6.1-7) 

(Eq. B6.2-1) 

(Eq. B6.2-2) 

(Eq. B6.2-3) 

(Eq. B6.2-4) 

(Eq. B6.2-5) 

(Eq. B6.2-6) 
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D = 1.8 for single-angle stiffeners 
D = 2.4 for single-plate stiffeners 
t and h are as defined in Section B 1.2 

86.3 Non-Conforming Stiffeners 

The design strength of members with transverse stiffeners that do not meet the re
quirements of Section B6.1 or B6.2, such as stamped or rolled-in transverse stiffeners 
shall be determined by tests in accordance with Chapter F of this Specification. 
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1-40 Cold-Formed LRFD Specification - March 16, 1991 

c. MEMBERS 

C1 Properties of Sections 

Properties of sections (cross-sectional area, moment of inertia, section modulus, radius 
of gyration, etc.) shall be determined in accordance with conventional methods of structural 
design. Properties shall be based on the full cross section of the members (or net sections 
where the use of net section is applicable) except where the use of a reduced cross section, or 
effective design width, is required. 

C2 Tension Members 

For axially loaded tension members, the design tensile strength, <\>tTn, shall be deter
mined as follows: 

<\>1 = 0.95 
Tn = AnFy CEq. C2-1) 

where 
Tn = Nominal strength of member when loaded in tension 
<\>1 = Resistance factor for tension 
An = Net area of the cross section 
Fy = Design yield stress as determined in Section A5.2.1 

For tension members using bolted connections, the design tensile strength shall also be 
limited by Section E3.2. 

C3 Flexural Members 

C3.1 Strength for Bending Only 

The design flexural strength, <\>bMn, shall be the smallest of the values calculated 
according to Sections C3.I.I, C3.1.2, and C3.I.3. 

C3.1.1 Nominal Section Strength 

The design flexural strength, <\>bMn, shall be determined with q,b = 0.95 for sections 
with stiffened or partially stiffened compression flanges and 0.90 for sections with 
unstiffened compression flanges, and the nominal section strength, Mn, calculated 
either on the basis of initiation of yielding in the effective section (Procedure I) or on 
the basis of the inelastic reserve capacity (Procedure II) as applicable. 

(a) Procedure I - Based on Initiation of Yielding 
Effective yield moment based on section strength, Mn, shall be determined as 
follows: 

where 

Fy = Design yield stress as determined in Section A5.2.1 

Se = Elastic section modulus of the effective section calculated with the 
extreme compression or tension fiber at Fy 

(b) Procedure II - Based on Inelastic Reserve Capacity 
The inelastic flexural reserve capacity may be used when the following condi
tions are met: 

CEq. C3.1.1-1) 

, 
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( 1) The member is not subject to twisting or to lateral, torsional, or torsional
flexural buckling. 

(2) The effect of cold forming is not included in detennining the yield point Fy. 
(3) The ratio of the depth of the compressed portion of the web to its thickness 

does not exceed AI. 
(4) The shear force does not exceed 0.35Fy times the web area, ht. 
(5) The angle between any web and the vertical does not exceed 30 degrees. 

The nominal flexural strength, Mn, shall not exceed either 1.25 SeFy determined 
according to Procedure I or that causing a maximum compression strain of Cyey 
(no limit is placed on the maximum tensile strain). 

where 

ey = Yield strain = FyIE 
E = Modulus of elasticity 
Cy = Compression strain factor determined as follows: 

(a) Stiffened compression elements without intermediate stiffeners 
Cy = 3 for wIt S Al 

Cy = 3 - 2( wIt - AI) for Al < w < A2 
A2 - Al t 

Cy = 1 for w It ~ A2 
where 
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At = 1.11 
~Fy IE 

A2 = 1.28 
~Fy IE 

(Eq. C3.1.1-2) 

(b) Unstiffened compression elements 
Cy = 1 

(c) Multiple-stiffened compression elements and compression elements 
with edge stiffeners 
Cy = 1 

When applicable, effective design widths shall be used in calculating section prop
erties. Mn shall be calculated considering equilibrium of stresses, assuming an ideally 
elastic-plastic stress-strain curve which is the same in tension as in compression, as
suming small deformation and assuming that plane sections remain plane during 
bending. Combined bending and web crippling shall be checked by provisions of 
Section C3.5. 

C3.1.2 Lateral Buckling Strength 

The design strength of the laterally unbraced segments of singly-, doubly-, and 
point-symmetric sections* subject to lateral buckling, cpbMn shall be detennined with 
<Pb = 0.90 and Mn calculated as follows: 

Me 
Mn=Se-

Sf 

where 

(Eq. C3.1.1-3) 

(Eq. C3.1.2-l) 

* The provisions of this Section apply to 1-, Z-, C- and other singly-symmetric section flexural members (not 
including multiple-web deck, U- and closed box-type members. and curved or arch members). The provi
sions of this Section do not apply to laterally unbraced compression flanges of otherwise laterally stable sec
tions. Refer to C3.I.3 for C- and Z-purlins in which the tension flange is attached to sheathing. 
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Sf = Elastic section modulus of the full unreduced section for the extreme com
pression fiber 

Se = Elastic section modulus of the effective section calculated at a stress Me / Sf 
in the extreme compression fiber 

Me = Critical moment calculated according to (a) or (b) below: 

(a) For singly-, doubly-, and point-symmetric sections: 

For Me > O.5My 

Me =My(l-~J 
4Me 

For Me:S O.5My 

Me = Me 
where 

My = Moment causing initial yield at the extreme compression fiber 
of the full section 

(Eq. C3.1.2-2) 

(Eq. C3.1.2-3) 

=Sf Fy (Eq. C3.1.2-4) 
Me =Elastic critical moment computed by the following equations: 

Me =CbroA~creycrt for bending about the symmetry axis. For (Eq. C3.1.2-5) 

Me 

Cs 

Cs 

aex 

aey 

at 

singly-symmetric sections, x-axis is the axis of symmetry 
oriented such that the shear center has a negative x-coordinate. 
For point-symmetric sections, use 0.5 Me. 

Alternatively, Me can be calculated using the formula for dou
bly-symmetric I-sections or point-symmetric sections given in 
(b) 

= CsAaex r j + Cs ~ j2 + r; (crt / a ex ) ] / CTF for bending about the (Eq. C3.1.2-6) 
centroiJal axis perpendicular to the symmetry axis for singly 
-symmetric sections only 

= + 1 for moment causing compression on the shear center side of 
the centroid 

=-1 for moment causing tension on the shear center side of the 
centroid 

1t2E = 

(KyLy / ry)2 

= _1_[GJ + 1t
2
ECw ] 

Ar; (K t L t )2 
= Full cross-sectional area 
= Bending coefficient which can conservatively be taken as unity, 

or calculated from 
= 1.75 + 1.05(Ml/M2) + 0.3 (Ml/M2) 2:s 2.3 
where 

M 1 is the smaller and M2 the larger bending moment at the ends 
of the unbraced length, taken about the strong axis of the mem
ber, and where Ml/M2, the ratio of end moments, is positive 

(Eq. C3.1.2-7) 

(Eq. C3.1.2-8) 

(Eq. C3.1.2-9) 

, 
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when Ml and M2 have the same sign (reverse curvature bend
ing) and negative when they are of opposite sign (single curva
ture bending). When the bending moment at any point within 
an unbraced length is larger than that at both ends of this length, 
and for members subject to combined axial load and bending 
moment (Section C5), Cb shall be taken as unity. 

E = Modulus of elasticity 
CTF =0.6 - 0.4 (MI/M2) 

where 
Ml is the smaller and M2 the larger bending moment at the ends 
of the unbraced length, and where M 11M2, the ratio of end mo
ments, is positive when Ml and M2 have the same sign (reverse 
curvature bending) and negative when they are of opposite sign 
(single curvature bending). When the bending moment at any 
point within an unbraced length is larger than that at both ends 
of this length, and for members subject to combined axial load 
and bending moment (Section C5), CTF shall be taken as unity. 

ro = Polar radius of gyration of the cross section about the shear cen-
ter 
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=~r: +r; +x~ (Eq. C3.1.2-10) 
rx, ry =Radii of gyration of the cross section about the centroidal prin-

cipal axes 
G = Shear modulus 
Kx, Ky, K t =Effective length factors for bending about the x- and y-axes, 

and for twisting 
Lx, Ly, L t = Unbraced length of compression member for bending about the 

x- and y-axes, and for twisting 
Xo =Distance from the shear center to the centroid along the princi-

pal x-axis, taken as negative 
J =St. Venant torsion constant of the cross section 

Cw 

j 

=Torsional warping constant of the cross section 

= _1_[ r x3dA + J xy2dA]- Xo 
2Iy JA A 

(b) For 1- or Z-sections bent about the centroidal axis perpendicular to the web (x

axis): 
In lieu of (a), the following equations may be used to evaluate Me: 

For Me ~ 2.78My 

Me = My 

For 2.78My > Me > 0.56My 

M = 10 M (l_IOMy
) 

c 9 y 36Me 

For Me ~ O.56My 

where 

(Eq. C3.1.2-11) 

(£q.C3.1.2-12) 

(£q. C3.1.2-13) 

(Eq.C3.1.2-14) 
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Me = Elastic critical moment determined either as defined in (a) above or 
as follows: 

for doubly-symmetric I-sections 

for point-symmetric Z-sections 

d = Depth of section 
L = Unbraced length of the member 
lye = Moment of inertia of the compression portion of a section about the 

gravity axis of the entire section parallel to the web, using the full un
reduced section 

Other tenns are defined in (a). 

C3.1.3 Beams Having One Flange Through-Fastened to Deck or 
Sheathing 

This section does not apply to a continuous beam for the region between inflection 
points adjacent to a support, or to a cantilever beam. 

The design flexural strength, <pbMn, of a Channel or Z-section loaded in a plane 
parallel to the web, with the tension flange attached to deck or sheathing and with the 
compression flange laterally unbraced shall be determined with <Pb = 0.90 and the 
nominal flexural strength, Mn, calculated as follows: 

(Eq. C3.1.2-15) 

(Eq. C3.1.2-16) 

Mn = RSeFy (Eq. C3.1.3-l) 

where 

R =0.40 for simple span C sections 
=0.50 for simple span Z sections 
=0.60 for continuous span C sections 
=0.70 for continuous span Z sections 

Se and Fy are defined in Section C3.1.1 

The reduction factor, R, shall be limited to roof and wall systems meeting the fol-
lowing conditions: 

( 1) Member depth less than 11.5 inches 
(2) The flanges are edge stiffened compression elements 
(3) 60 ~ depth/thickness ~ 170 
(4) 2.8 ~ depth/flange width ~ 4.5 
(5) 16 ~ flat width/thickness of flange ~ 43 
(6) For continuous span systems, the lap length at each interior support in each 

direction (distance from center of support to end of lap) shall not be less 
than: 

1.5d for Zee sections 
3.0d for Channel sections 

(7) Member span length no greater than 33 feet 
(8) For continuous span systems, the longest member span shall not be more 

than 20% greater than the shortest span 
(9) Both flanges are prevented from moving laterally at the supports 
(10) Roof or wall panels shall be steel sheets, minimum of 0.0 19 in. coated thick

ness, having a minimum rib depth of 1 in., spaced a maximum of 12 in. on 

, 

, 
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centers and attached in a manner to effectively inhibit relative movement 
between the panel and purlin flange 

(11) Insulation shall be glass fiber blanket 0 to 6 inches thick compressed be
tween the member and panel in a manner consistent with the fastener being 
used 

(12) Fastener type: minimum No. 12 self-drilling or self-tapping sheet metal 
screws or 3/16 - in. rivets, washers 1/2 in. diameter 

(13) Fasteners shall not be standoff type screws 
(14) Fasteners shall be spaced not greater than 12 in. on centers and placed near 

the center of the beam flange 

If variables fall outside any of the above stated limits, the user must perform full 
scale tests in accordance with Section F1 of the Specification, or apply another ra
tional analysis procedure. In any case, the user is pennitted to perform tests, in accor
dance with Section Fl, as an alternate to the procedure described in this section. 

C3.2 Strength for Shear Only 

The design shear strength, <IN V n~ at any section shall be calcuated as follows: 

(a) For hit ~ ~Ekv / Fy 

<pv = 1.0 

V n =O.577Fyht 

(b) For ~Ekv / Fy < hit ~ 1.415~Ekv / Fy 

<t>v =0.90 

Vn=O.64t2~ 

(c) For hit > 1.415~Ekv / Fy 

where 

<pv =0.90 

V n =0.905Ekvt3/h 

<pv = Resistance factor for shear 
Vn =Nominal shear strength of beam 
t =Web thickness 
h = Depth of the flat portion of the web measured along the plane of the web 

kv = Shear buckling coefficient detennined as follows: 

1. For unreinforced webs, kv = 5.34 
2. For beam webs with transverse stiffeners satisfying the requirements of 

Section B6 
when alb ~ 1.0 

kv = 4.00+ 5.34 
(a / h)2 

when alb > 1.0 

34 
4.00 

kv=5. + 2 
(a/ h) 

where 
a =the shear panel length for unreinforced web element 

=distance between transverse stiffeners for reinforced web elements. 

I~5 

(Eq. C3.2.-1) 

(Eq. C3.2-2) 

(Eq. C3-2.3) 

(Eq. C3.2-4) 

(Eq. C3.2-5) 
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For a web consisting of two or more sheets, each sheet shall be considered as a 
separate element carrying its share of the shear force. 

C3.3 Strength for Combined Bending and Shear 

For beams with unreinforced webs, the required flexural strength, Mu, and the re
quired shear strength, V u, shall satisfy the following interaction equation: 

( Mu J2 (lJ2 < 1 0 (Eq. C3.3-l) 
<hMnxo + <\>v Vn -. 

For beams with transverse web stiffeners, the required flexural strength, Mu, and 
the required shear strength, V u, shall not exceed <\>bMn and <\>v V n, respectively. When 
MU/(<\>bMnxo) > 0.5 and Vu/(<\>v Vn) > 0.7, then Mu and Vu shall satisfy the following interac
tion equation: 

In the above: 
<Pb = Resistance factor for bending (See Section C3.1) 

<pv = Resistance factor for shear (See Section C3.2) 

Mn = Nominal flexural strength when bending alone exists 
Mnxo = Nominal flexural strength about the centroidal x-axis determined in accor

dance with Section C3.1 excluding the provisions of Section C3.1.2 

Vn = Nominal shear strength when shear alone exists 

C3.4 Web Crippling Strength 

These provisions are applicable to webs of flexural members subject to concen
trated loads or reactions, or the components thereof, acting perpendicular to the longitu
dinal axis of the member, and in the plane of the web under consideration, and causing 
compressive stresses in the web. 

To avoid crippling of unreinforced flat webs of flexural members having a flat 
width ratio, hit, equal to or less than 200, the required strength for the concentrated loads 
and reactions shall not exceed the values of <j>wPn, with <j>w = 0.75 and 0.80 for single un
reinforced webs and I-sections, respectively, and Pn given in Table C3.4-1. Webs of 
flexural members for which hIt is greater than 200 shall be provided with adequate means 
of transmitting concentrated loads and/or reactions directly into the webs. 

The formulas in Table C3.4-1 apply to beams when Rlt ~ 6 and to deck when Rlt ~ 
7, Nit ~ 210 and Nih ~ 3.5. 

Pn represents the nominal strength for concentrated load or reaction for one solid 
web connecting top and bottom flanges. For two or more webs, Pn shall be computed for 
each individual web and the results added to obtain the nominal load or reaction for the 
multiple web. 

For built-up I-sections, or similar sections, the distance between the web connec
tor and beam flange shall be kept as small as practical. 

(Eq. C3.3-2) 

, 

, 
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TABLE C3.4-1 
Pn 

Shapes Having 
Single Webs 

Stiffened or 
Partially Unstiffened 
Stiffened Flanges 
Flanges 

Opposing Loads End Reaction(3) Eq. C3.4-1 Eq. C3.4-2 
Spaced> I.5h(2) Interior Reaction(4) Eq. C3.4--4 Eq. C3.4-4 

Opposing Loads End Reaction(3) Eq. C3.4-6 Eq. C3.4-6 
Spaced::; 1.5h(s) Interior Reaction(4) Eq. C3.4-8 Eq. C3.4-8 

Footnotes and Equation References to Table C3.4-1 : 

I-Sections or 
Similar Sections(,) 

Stiffened, 
Partially Stiffened 
and Unstiffened 
Flanges 

Eq. C3.4-3 

Eq. C3.4-5 

Eq. C3.4-7 

Eq. C3.4-9 

(I) I-sections made of two channels connected back to back or similar sections which 

provide a high degree of restraint against rotation of the web (such as I-sections 

made by welding two angles to a channel). 
(2) At locations of one concentrated load or reaction acting either on the top or bottom 

flange, when the clear distance between the bearing edges of this and adjacent oppo

site concentrated loads or reactions is greater than 1.5h. 
(3) For end reactions of beams or concentrated loads on the end of cantilevers when the 

distance from the edge of the bearing to the end of the beam is less than 1.5h. 
(4) For reactions and concentrated loads when the distance from the edge of bearing to 

the end of the beam is equal to or greater than 1.5h. 
(5) At locations of two opposite concentrated loads or of a concentrated load and an op

posite reaction acting simultaneously on the top and bottom flanges, when the clear 
distance between their adjacent bearing edges is equal to or less than 1.5h. 
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Equations for Table C3.4-I: 
t2kC3C4Ce[33I-O.61(h/t)] [I +O.OI(N/t)] 
t2 kC3C4Ce[217 - 0.28(h/t)] [I + 0.0 I (N/t)] 

(Eq. C3.4-I) 
(Eq. C3.4-2) 

When N/t > 60, the factor [I + O.OI(N/t)] may be increased to [0.71 + 0.015(N/O] 

t2FyC6( 10.0 + 1. 25-JNTt) (Eq. C3.4-3) 

t2 kC,C2Ce[538 - 0.74(h/t)] [I + 0.007(N/t)] (Eq. C3.4-4) 
When N/t > 60, the factor [I + 0.007(N/t)] may be increased to [0.75 + 0.011 (N/OJ 

t2FyCs(0.88+0.12m)( 15.0 + 3. 25-JNTt) (Eq. C3.4-5) 

e kC3C4Ce[244 - 0.57(h/t)] [I + 0.01 (N/t)] (Eq. C3.4-6) 

eFyC8(0.64+0.31 m) (10.0 + 1. 25-JNTt) (Eq. C3.4-7) 

t2 kC,C2Ce[771 - 2.26(h/t)] [1 + 0.0013(N/t)] (Eq. C3.4-8) 

t2FyC7(0.82+0.15m) (15.0 + 3. 25-JNTt) (Eq. C3.4-9) 

In the above-referenced formulas: 
<pw =Resistance factor for web crippling 
Pn =Nominal strength for concentrated load or reaction per web 

C, =0.22 - 0.22k) 
C2 =(1.06 - 0.06R/t) ~ 1.0 

(Eq. C3.4-10) 

(Eq. C3.4-Il) 
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C3 = (1.33 - 0.33k) 
C4 =(1.15 - 0.15R/t) $; 1.0 but not less than 0.50 

C5 =(1.49 - 0.53k) ~ 0.6 

C6 = 1 + (h / t J when hit $; 150 
750 

= 1.20, when hit > 150 
C7 = 11k, when hit $; 66.5 

= [1.10 - h / t] ~ when hit> 66.5 
665 k' 

Cs =[0.98- hit]! 
865 k 

Ce =0.7 + 0.3 (8/90)2 
Fy = Design yield stress of the web, see Section A5.2.1 
h = Depth of the flat portion of the web measured along the plane of the web 

k =Fy/33 
m =t/0.075 
t = Web thickness, inches 
N = Actual length of bearing, inches. For the case of two equal and opposite con

centrated loads distributed over unequal bearing lengths, the smaller value of 
N shall be taken 

R =Inside bend radius 
8 = Angle between the plane of the web and the plane of the bearing surface ~ 45°, 

but not more than 90° 

C3.S Combined Bending and Web Crippling Strength 

Unreinforced flat webs of shapes subjected to a combination of bending and con
centrated load or reaction shall be designed to meet the following requirements: 

(a) For shapes having single unreinforced webs: 

Exception: At the interior supports of continuous spans, the above formula is not 
applicable to deck or beams with two or more single webs, provided the compression 
edges of adjacent webs are laterally supported in the negative moment region by continu
ous or intermittently connected flange elements, rigid cladding, or lateral bracing, and 
the spacing between adjacent webs does not exceed 10 inches. 

(b) For shapes having multiple unreinforced webs such as I-sections made of two chan

nels connected back-to-back, or similar sections which provide a high degree of 

restraint against rotation of the web (such as I-sections made by welding two angles 
to a channel); 

Exception: When hit $; 2.331 ~(Fy / E) and A.:s;; 0.673, the nominal concentrated 
load or reaction strength may be detennined by Section C3.4. 

(Eq. C3.4-12) 

(Eq. C3.4-13) 
(Eq. C3.4-14) 

(Eq. C3.4-15) 

(Eq. C3.4-16) 
(Eq. C3.4-17) 

(Eq. C3.4-18) 

(Eq. C3.4-19) 

(Eq. C3.4-20) 

(Eq. C3.4-21) 

(Eq. C3.4-22) 

(Eq. C3.5-l) 

(Eq. C3.5-2) 

, 
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In the above fonnulas: 
G>b =Resistance factor for bending (See Section 3.1) 
G>w =Resistance factor for web crippling (See Section C3.4) 
Pu =Required strength for the concentrated load or reaction in the presence of 

bending moment 
Pn =Nominal strength for concentrated load or reaction in the absence of bend-

ing moment detennined in accordance with Section C3.4 
Mu = Required flexural strength at, or immediately adjacent to, the point of appli

cation of the concentrated load or reaction Pu 

Mnxo =Nominal flexural strength about the centroidal x-axis detennined in accor-
dance with Section C3.1 excluding the provisions of Section C3.1.2 

w = Flat width of the beam flange which contacts the bearing plate 
t =Thickness of the web or flange 
A =Slenderness factor given by Section B2.1 

C4 Concentrically Loaded Compression Members 

This section applies to members in which the resultant of all loads acting on the member 
is an axial load passing through the centroid of the effective section calculated at the stress, 
Fn, defined in this section. 

(a) The design axial strength, G>cPn, shall be calculated as follows: 
G>c = 0.85 
Pn = AeFn 

where 
Ae = Effective area at the stress Fn. For sections with circular holes, Ae shall be deter

mined according to Section B2.2a, subject to the limitations of that section. If the 
number of holes in the effective length region times the hole diameter divided by 
the effective length does not exceed 0.015, Ae can be detennined ignoring the 
holes. 

Fn is determined as follows: 
For Fe > Fy/2 Fn = Fy (1 - Fy/4Fe) 
For Fe S; Fy/2 Fn = Fe 
Fe is the least of the elastic flexural, torsional and torsional-flexural buckling 
stress detennined according to Sections C4.1 through C4.3. 

(b) For C- and Z-shapes, and single-angle sections with unstiffened flanges, Pn shall be 
taken as the smaller of Pn calculated above and Pn calculated as follows: 

A1t2E 
Pn = 2 

25. 7(w / t) 
where 

A = Area of the full, unreduced cross section 
w = Flat width of the unstiffened element 
t = Thickness of the unstiffened element 

(c) Angle sections shall be designed for the required axial strength, Pu, acting simultane
ously with a moment equal to PuL/l ()()() applied about the minor principal axis causing 
compression in the tips of the angle legs. 

(d) The slenderness ratio, KL/r, of all compression members preferably should not exceed 
200, except that during construction only, KL/r preferably should not exceed 300. 
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(Eq. C4-l) 

(Eq. C4-2) 
(Eq. C4-3) 

(Eq. C4-4) 
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C4.1 Sec'lions Not Subject to Torsional or Torsional-Flexural Buckling 

For doubly-symmetric sections, closed cross sections and any other sections 
which can be shown not to be subject to torsional or torsional-flexural buckling, the elas

tic flexural buckling stress, Fe, shall be determined as follows: 

Fe = (KL / r)2 
where 

E = Modulus of elasticity 
K = Effective length factor* 
L = Unbraced length of member 

r = Radius of gyration of the full, unreduced cross section 

C4.2 Doubly- or Singly-Symmetric Sections Subject to Torsional or Tor
sional-Flexural Buckling 

For sections subject to torsional or torsional-flexural buckling, Fe shall be taken as 
the smaller of Fe calculated according to Section C4.1 and Fe calculated as follows: 

(Eq. C4.1-l) 

Fe = 2
1
13 [( cr .. + cr,) - ~( cr .. + crt}2 - 413crexcr, ] (Eq. C4.2-l) 

Alternatively, a conservative estimate of Fe can be obtained using the following 
equation: 

F - O'tO'ex 
e-

o O't + O'ex 
where O't and O'ex are as defined in C3.1.2(a) : 

For singly-symmetric sections, the x-axis is assumed to be the axis of symmetry. 

C4.3 Nonsymmetric Sections 

For shapes whose cross sections do not have any symmetry, either about an axis or 
about a point, Fe shall be determined by rational analysis. Alternatively, compression 
members composed of such shapes may be tested in accordance with Chapter F. 

C5 Combined Axial Load and Bending 

The required strengths Pu, Mux, and Muy shall satisfy the following interaction equa
tions: 

* [n frames where lateral stability is provided by diagonal bracing, shear walls, attachment to an adjacent struc
ture having adequate lateral stability, or floor slabs or roof decks secured horizontally by walls or bracing sys
tems parallel to the plane of the frame, and in trusses, the effective length factor, K, for compression members 
which do not depend upon their own bending stiffness for lateral stability ofthe frame or truss, shall be taken as 
un ity, unless analysis shows that a smaller value may be used. In a frame which depends upon its own bending 
stiffness for lateral stability, the effective length, KL, of the compression members shall be determined by a 
rational method and shall not be less than the actual unbraced length. 

(Eq. C4.2-2) 

(Eq. C4.2-3) 

(Eq. C5-l) 

(Eq. C5-2) 

, 

-, 

, 



~ 

Cold-Fonned LRFD Specification - March 16, 1991 

When Pu/<\>cPn~ 0.15, the following fonnula may be used in lieu of the above two fonnu-
las: 

where 
Pu = Required axial strength 
Mux and Muy = Required flexural strengths with respect to the centroidal axes of the effective 

section detennined for the required axial strength alone. For angle sections, 
Muy shall be taken either as the required flexural strength or the required 
flexural strength plus PuL/I000, whichever results in a lower value of Pn. 

Pn =Nominal axial strength determined in accordance with Section C4 
Pno =Nominal axial strength detennined in accordance with Section C4, with Fn = 

Fy 
Mnx and Mny =Nominal flexural strengths about the centroidal axes detennined in accor

dance with Section C3 
II a nx, 1/ any = Magnification factors 
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(Eq. C5-3) 

= 1/[1-~] (Eq. C5-4) 
<\>cPE 

<\>b 

<\>c 

PE 

h 

Lb 
Kb 
Cmx, Cmy 

=0.95 and 0.90 for bending strength (Section C3.1.1) or 
0.90 for laterally unbraced beam (Section C3.1.2) 

=0.85 

1t2Eh 

(KbLb)2 
= Moment of inertia of the full, unreduced cross section about the axis of bend-

ing 
=Actual unbraced length in the plane of bending 
=Effective length factor in the plane of bending 
=Coefficients whose value shall be taken as follows: 

1. For compression members in frames subject to joint translation (sides
way) 

Cm = 0.85 

(Eq. C5-5) 

2. For restrained compression members in frames braced against joint trans
lation and not subject to transverse loading between their supports in the 
plane of bending 

Cm = 0.6 - 0.4 (MI/M2) (Eq. C5-6) 

where 

MI/M2 is the ratio of the smaller to the larger moment at the ends of that 
portion of the member under consideration which is unbraced in the plane 
of bending. MI/M2is positive when the member is bent in reverse curva
ture and negative when it is bent in single curvature. 

3. For compression members in frames braced against joint translation in the 
plane of loading and subject to transverse loading between their supports, 
the value of Cm may be determined by rational analysis. However, in lieu 
of such analysis, the following values may be used: 

(a) for members whose ends are restrained, Cm = 0.85, 
(b) for members whose ends are unrestrained, Cm = 1.0. 
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CS Cylindrical Tubular Members 

The requirements of this Section apply to cylindrical tubular members having a ratio of 
outside diameter to wall thickness, D/t, not greater than 0.441 E/Fy. 

CS.1 Bending 

For flexural members, the required flexural strength uncoupled from axial load, 
shear, and local concentrated forces or reactions shall not exceed <pbMn, where <Pb = 0.95 
and Mn is calculated as follows: 
For D/t ~ 0.070 E/Fy 

Mn = 1.25 FySf (Eq. C6.1-1) 
For 0.070 E/Fy < D/t ~ 0.319 E/Fy 

Mn =[ O.970+0.020(~/~ )]FySr (Eq. C6.1-2) 

For 0.319 E/Fy < D/t ~ 0.441 E/Fy 

Mn = [0.328E/(D/t)]Sf (Eq. C6.1-3) 
where 

Sf = Elastic section modulus of the full, unreduced cross section 

CS.2 Compression 

The requirements of this Section apply to members in which the resultant of all 
loads and moments acting on the member is equivalent to a single force in the direction of .., 
the member axis passing through the centroid of the section. " . 

The design axial strength, <pcPn, shall be calculated as follows: 
$c = 0.85 

Pn = FnAe (Eq. C6.2-1) 
In the above equation, 

For Fe> Fy/2 

Fn = Flexural buckling stress 

= Fy [1 - Fy/4Fe] (Eq. C6.2-2) 

Fe = The elastic flexural buckling stress determined according to Section C4.1 

Ae = [1 - (1 - R2)(l - Ao/A)]A (Eq. C6.2-3) 

R = ~Fy /2Fe (Eq. C6.2-4) 

Ao = [000i
7 +O'667lA~A for D ~0.441~ (Eq. C6.2-5) 

__ y t Fy 
tE 

A = Area of the unreduced cross section 
For Fe ~ Fy/2 

Fn = Fe 

Ae = A 

C6.3 Combined Bending and Compression 

Combined bending and compression shall satisfy the provisions of Section C5. 
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D.STRUCTURAL ASSEMBLIES 

01 Built-Up Sections 

01.1 I - Sections Composed of Two Channels 

The maximum permissible longitudinal spacing of welds or other connectors, Smax, 

joining two channels to form an I-section shall be 

(a) For compression members: 
Lrey 

Smax =--
2rI 

where 
L = Unbraced length of compression member 
r, = Radius of gyration of the I-section about the axis perpendicular to the direc

tion in which buckling would occur for the given conditions of end support 
and intermediate bracing 

rey = Radius of gyration of one channel about its centroidal axis parallel to the 
web 

(b) For flexural members: 
Smax= L / 6 
In no case shall the spacing exceed the value 

2gTs 
Smax =--

where 
L 
Ts 
g 

q 

m 

mq 

= Span of beam 
= Design strength of connection in tension (Section E) 
= Vertical distance between the two rows of connections nearest to the top 

and bottom flanges 
= Intensity of factored load on the beam (For methods of determination, see 

below) 
= Distance from the shear center of one channel to the mid-plane of its web. 

For simple channels without stiffening lips at the outer edges, 

m = wi 
2wr+d/3 

For channels with stiffening lips at the outer edges, 
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(Eq.01.1-1) 

(Eq.01.1-2) 

(Eq.01.1-3) 

(Eq.Ol.1-4) 

m = wfdt[Wrd+20(d_ 40
2 J] (Eq.01.1-5) 

4Ix 3d 

Wr = Projection of flanges from the inside face of the web (For channels with 
flanges of unequal width, Wr shall be taken as the width of the wider flange) 

d = Depth of channel or beam 
D = Overall depth of lip 
Ix = Moment of inertia of one channel about its centroidal axis normal to the 

web. 
The intensity of factored load, q, is obtained by dividing the magnitude of factored 

concentrated loads or reactions by the length of bearing. For beams designed for a uni
formly distributed load, q shall be taken equal to three times the intensity of the uniformly 
distributed factored load. If the length of bearing of a concentrated load or reaction is 
smaller than the weld spacing, s, the required design strength of the welds or connections 
closest to the load or reaction is 

Ts = Psm/2g (Eq.01.1-6) 
where Ps is a concentrated load or reaction based on factored loads. 
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The required maximum spacing of connections, Smax, depends upon the intensity 
of the factored load directly at the connection. Therefore, if unifonn spacing of connec
tions is used over the whole length of the beam, it shall be detennined at the point of maxi
mum local load intensity. In cases where this procedure would result in uneconomically 
close spacing, either one of the following methods may be adopted: (a) the connection 
spacing may be varied along the beam according to the variation of the load intensity; or 
(b) reinforcing cover plates may be welded to the flanges at points where concentrated 
loads occur. The design shear strength of the connections joining these plates to the 
flanges shall then be used for Ts, and g shall be taken as the depth of the beam. 

01.2 Spacing of Connections in Compression Elements 

The spacing, s, in the line of stress, of welds, rivets, or bolts connecting a cover 
plate, sheet, or a non-integral stiffener in compression to another element shall not ex
ceed 

(a) that which is required to transmit the shear between the connected parts on the basis 
of the design strength per connection specified elsewhere herein; nor 

(b) 1.16t ~ (E I fc ), where t is the thickness of the cover plate or sheet, and fc is the stress 
at service load in the cover plate or sheet; nor 

(c) three times the flat width, w, of the narrowest unstiffened compression element 

tributary to the connections, but need not be less than 1.11 t ~ (E I Fy ) if 

wit < 0.50 ~(E I Fy), or l.33t ~(E I Fy) if wit ? 0.50~(E / Fy), unless closer spacing 
is required by (a) or (b) above. 

In the case of intennittent fillet welds parallel to the direction of stress, the spacing 
shall be taken as the clear distance between welds, plus one-half inch. In all other cases, 
the spacing shall be taken as the center-to-center distance between connections. 

Exception: The requirements of this Section do not apply to cover sheets which 
act only as sheathing material and are not considered as load-carrying elements. 

02 Mixed Systems 

The design of members in mixed systems using cold-fonned steel components in con
junction with other materials shall confonn to this Specification and the applicable Specifi
cation of the other material. 

03 Lateral Bracing 

Braces shall be designed to restrain lateral bending or twisting of a loaded beam or col
umn, and to avoid local crippling at the points of attachment. 

03.1 Symmetrical Beams and Columns 

Braces and bracing systems, including connections, shall be designed considering 
strength and stiffness requirements. 

03.2 Channel-Section and Z-Section Beams 

The following provisions for bracing to restrain twisting of channels and Z-sec
tions used as beams loaded in the plane of the web, apply only when (a) the top flange is 
connected to deck or sheathing material in such a manner as to effectively restrain lateral 
deflection of the connected flange * , or (b) neither flange is so connected. When both 
flanges are so connected, no further bracing is required. 

* Where the Specification does not provide an explicit method for design, further information should be ob
tained from the Commentary. 
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03.2.1 Anchorage of Bracing for Roof Systems Under Gravity Load With 
Top Flange Connected to Sheathing 

For channels and Z-sections designed according to Section C3.1.1, and having 
deck or sheathing fastened directly to the top flanges in such a manner shown to effec
tively inhibit relative movement between the deck or sheathing and the purl in flange, 
provisions shall be made to restrain the flanges so that the maximum top flange lateral 
displacements with respect to the purl in reaction points do not exceed the span length 
divided by 360. If the top flanges of all purl ins face in the same direction, anchorage 
of the restraint system must be capable of satisfying the requirements of Sections 
D3.2.I(a) and D3.2.I(b). If the top flanges of adjacent lines of purl ins face in opposite 
directions, the provisions of Section D3.2.I(a) and D3.2.I(b) do not apply. 

Anchored braces need to be connected to only one line of purlins in each purl in bay 
of each roof slope if provision is made to transmit forces from other purlin lines 
through the roof deck and its fastening system. Anchored braces shall be as close as 
possible to the flange which is connected to the deck or sheathing. Anchored braces 
shall be provided for each purl in bay. 

For bracing arrangements other than those covered in Sections D3.2.I(a) and 
D3.2.1 (b), tests in accordance with Chapter F shall be performed so that the type and/ 
or spacing of braces selected are such that the test strength of the braced Z-section 
assembly is equal to or greater than its nominal flexural strength, instead of that re
quired by Chapter F. 

(a) Channel Sections 
For roof systems using channel sections for purl ins with all compression 
flanges facing in the same direction, a restraint system capable of resisting 
0.05W, in addition to other loading, shall be provided where W is the factored 
load supported by all purlin lines being restrained. Where more than one brace 
is used at a purl in line, the restraint force 0.05W shall be divided equally be
tween all braces. 

(b) Z-Sections 
For roof systems having a diaphragm stiffness of at least 2,000 lb/in., having 
four to twenty Z-purlin lines with all top flanges facing in the direction of the 
upward roof slope, and with restraint braces at the purl in supports, midspan or 
one-third points, each brace shall be designed to resist a force determined as 
follows: 

(1) Single-Span System with Restraints at the Supports: 

P 0 5[ 
0.220bJ.50 . e]w 

L = . -sm 
n~' 72d 0. 9Ot O.60 

(2) Single-Span System with Third-Point Restraints: 

PL = 0.5[ 0.474b1.
22 

Sine]W 
n~·57do.89to.33 

(3) Single-Span System with Midspan Restraint: 

PL = sIne W 
[ 

O.224b1.32 .] 
ng·65d 0.83tO.50 

(4) Multiple-Span System with Restraints at the Supports: 
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(Eq. D3.2.1-1) 

(Eq. D3.2.l-2) 

(Eq. D3.2.1-3) 
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with 
Cn- =0.63 for braces at end supports of multiple-span systems 
Cn- =0.87 for braces at the first interior supports 
Cn- =0.81 for all other braces 

(5) Multiple-Span System with Third-Point Restraints: 

Pt. = Cth SInS W 
[

0.I81b1.l5LO.25 . ] 

ng·54d 1.11tO.29 

with 
Cth=0.57 for outer braces in exterior spans 
Cth =0.48 for all other braces 

(6) Multiple-Span System with Midspan Restraints: 

Pt. = Cms - SInS W 
[

O.116b1.32LO.18 . ] 
n O.7od l.00tO.50 

with P 

Cms = 1.05 for braces in exterior spans 
Cms =0.90 for all other braces 

where 
b = Flange width, in. 
d = Depth of section, in. 
t =Thickness, in. 
L = Span length, in. 
S = Angle between the vertical and the plane of the web of the Z-section, 

degrees 
np =Number of parallel purlin lines 
W =Total factored load supported by the purlin lines between adjacent 

supports, pounds 

The force, PL, is positive when restraint is required to prevent movement of the 
purlin flanges in the upward roof slope direction. 

For systems having less than four purl in lines, the brace force can be determined 
by taking 1.1 times the force found from Equations D3.2.1-1 through D3.2.1--6, with 
np = 4. For systems having more than twenty purlin lines, the brace force can be deter
mined from Equations D3.2.1-1 through D3.2.1--6, with np = 20. 

03.2.2 Neither Flange Connected to Sheathing 

Each intermediate brace, at the top and bottom flange, shall be designed to resist a 
required lateral force, PL, determined as follows: 

(a) For uniform loads, PL = I.5K' times the factored load within a distance 0.5a 
each side of the brace. 

(b) For concentrated loads, PL = I.OK' times each concentrated load within a dis
tance 0.3a each side of the brace, plus I.4K' (I-x/a) times each factored con
centrated load located farther than O.3a but not farther than I.Oa from the brace. 

In the above formulas: 

(Eq. D3.2.1-4) 

(Eq. D3.2.1-5) 

(Eq. D3.2.1--6) 

, 
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For channels and Z-sections: 
x = Distance from the concentrated load to the brace 
a = Distance between center line of braces 

For channels: 
K' =m/d 

where 
m =Distance from the shear center to the mid-plane of the web, as specified in 

Section D 1.1 
d = Depth of channel 

For Z-sections: 
K' =Ixy/lx 

where 
Ixy =Product of inertia of the full section about centroidal axes parallel and per

pendicular to the web 

Ix = Moment of inertia of the full section about the centroidal axis perpendicular 
to the web 

Braces shall be designed to avoid local crippling at the points of attachment to the 
member. 

Braces shall be attached both to the top and bottom flanges of the sections, at the 
ends and at intervals not greater than one--quarter of the span length, in such a manner 
as to prevent tipping at the ends and lateral deflection of either flange in either direc
tion at intermediate braces. If one-third or more of the total factored load on the beam 
is concentrated over a length of one-twelfth or less of the span of the beam, an addi
tional brace shall be placed at or near the center of this loaded length. 

Exception: When all loads and reactions on a beam are transmitted through mem
bers which frame into the section in such a manner as to effectively restrain the section 
against rotation and lateral displacement, no other braces will be required. 

03.3 Laterally Unbraced Box Beams 

For closed box-type sections used as beams subject to bending about the major 
axis, the ratio of the laterally unsupported length to the distance between the webs of the 
section shall not exceed 0.086 E/Fy. 

04 Wall Studs and Wall Stud Assemblies 

The design strength of a stud may be computed on the basis of Section C (neglecting 
sheathing and using steel only) or on the basis that sheathing (attached to one or both sides of 
the stud) furnishes adequate lateral and rotational support to the stud in the plane of the wall, 
provided that the stud, sheathing, and attachments comply with the following requirements: 

Both ends of the stud shall be braced to restrain rotation about the longitudinal stud axis 
and horizontal displacement perpendicular to the stud axis; however, the ends mayor may 
not be free to rotate about both axes perpendicular to the stud axis. The sheathing shall be 
connected to the top and bottom members of the wall assembly to enhance the restraint pro
vided to the stud and stabilize the overall assembly. 

~ When sheathing is utilized for stability of the wall studs, the sheathing shall retain ade-
... quate strength and stiffness for the expected service life of the wall and additional bracing 

shall be provided as required for adequate structural integrity during construction and in the 
completed structure. 
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(Eq. D3.2.2-1) 

(Eq. D3.2.2-2) 
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The equations given are based on solid-web steel studs and are applicable within the 
following limits: 

Yield point, Fy ~ 50 ksi 
Section depth, d ~ 6.0 in. 
Thickness, t ~ 0.075 in. 
Overall length, L ~ 16 ft. 
Stud spacing, B, not less than 12 in. nor greater than 24 in. 
Studs with perforations shall be designed using the results of stub column tests 
and/or rational analysis. 

04.1 Wall Studs in Compression 

For studs having identical sheathing attached to both flanges, and neglecting any 
rotational restraint provided by the sheathing* , the design axial strength, <pcPn, shall be 
calculated as follows: 

<pc = 0.85 
Pn =AeFn 

where 
<pc = Resistance factor for axial compression 

Ae =Effective area detennined at Fn 
Fn =The lowest value detennined by the following three conditions: 

(a) To prevent column buckling between fasteners in the plane of the wall, Fn shall be 
calculated according to Section C4 with KL equal to two times the distance between 
fasteners. 

(b) To prevent flexural and/or torsional overall column buckling, Fn shall be calculated 
in accordance with Section C4 with Fe taken as the smaller of the two O'CR values 
specified for the following section types, where O'CR is the theoretical elastic buck
ling stress under concentric loading. 

( 1) Singly-symmetric channels and C-Sections 

O'CR = 0' ey + Qa 

O"CR = 21~ [( O"e< + 0" IQ) - ~( O"e< + °" ,d - (4 13cre< 0" IQ) ] 

(2) Z-Sections 

(Eq.04.1-1) 

(Eq.04.1-2) 

(Eq.04.l-3) 

O'CR= O't+Qt (Eq.04.1-4) 

O"CR = H (O"e< + 0" 'Y + Q, )- [ ( 0" e< + 0" 'Y + Q, ) 
2 

- 4( 0" e<0" 'Y + O"e< Q, - 0"2 e<y ) ] } (Eq. 04.1-5) 

(3) I-Sections (doubly-symmetric) 

O'CR = O'ey + Qa 

O'CR = O'ex 

In the above fonnulas: 
1t2E 

Oex =---
(L/fx)2 

O'exy= (n2EIxy) / (AL2 ) 

*Studs with sheathing on one flange only. or with unidentical sheathing on both flanges, or having rotational 
restraint that is not neglected, or having any combination of the above. shall be designed in accordance with 
the same basic analysis principles used in deriving the provisions of this Section. 

(Eq.04.1-6) 
(Eq. 04.1-7) 

CEq. 04.1-8) 

(Eq.04.1-9) 

, 

, 

, 
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(c) 

(Eq.04.1-10) 

(Eq.04.1-11) 

crtQ = crt + Qt (Eq. 04.1-12) 

Q = q B = Design shear rigidity for sheathing on both sides of the wall assembly 

q = Design shear rigidity for sheathing per inch of stud spacing (see Table D4) 
B = Stud spacing 
- -
Qa = QI A 
A = Area of full unreduced cross section 
L = Length of stud 

Qt = (Qd 2 )1 (4Ar;) 
d = Depth of section 
Ixy = Product of inertia 

To prevent shear failure of the sheathing, a value of Fn shall be used in the fol
lowing equations so that the shear strain of the sheathing, "(, does not exceed the 

permissible shear strain, y. The shear strain, "(, shall be determined as follows: 
y = (1t /L) [CI + (EI d/2)] 

where 

CI and El are the absolute values of Cl and El specified below for each section 

type: 

(1) Singly-Symmetric Channels and C-Sections 

(Eq.04.1-13) 

(Eq.04.1-14) 

(Eq.04.1-15) 

CI = (FnCo)/(crey -Fn+Qa) (Eq.04.l-16) 

E 
_ Fn[(crex -Fn)(r;Eo -xoDo)-Fnxo(Do -xoEo)] 

I - 2 (Eq.04.1-17) 
(crex -Fn)r;(crtQ -Fn)-(FnXo) 

(2) Z-Sections 

CI = Fn[Co(crex -Fn)-DoOexy] 

(crey - Fn + Qa)( crex - Fn) - O';xy 
El = (Fn Eo) I (OtQ - Fn ) 

(3) I-Sections 

Cl = (Fn Co)1 (crey - Fn + Qa ) 

EI = 0 
where 
Xo = distance from shear center to centroid along principal x-axis, in. (absolute 

value) 
<:;0, Eo, and Do are initial column imperfections which shall be assumed to be at 

least 
Co = L/350 in a direction parallel to the wall 
Do = LnOO in a direction perpendicular to the wall 
Eo = L/(d x 10,000), rad., a measure of the initial twist of the stud from 

the initial, ideal, unbuckled shape 

If Fn > 0.5 Fy, then in the defmitions for O'ey, Oex, Oexy and O'tQ, the parameters 
E and G shall be replaced by E' and G', respectively, as defined below 

E' =4EFn (Fy - Fn )IFi 
G' =G (E/IE) 

(Eq.04.1-18) 

(Eq.04.1-19) 

(Eq.04.1-20) 

(Eq.04.1-21) 
(Eq.04.1-22) 

(Eq.04.1-23) 

(Eq.04.1-24) 
(Eq.04.1-25) 



1-60 Cold-Fonned LRFD Specification - March 16. 1991 

Sheathing parameters qo and y may be determined from representative full
scale tests, conducted and evaluated as described by published documented 
methods (see Commentary), or from the small-scale-test values given in Table 
D4. 

TABLE 04 
Sheathing Parameters(1) 

-(3) 
qo 

Sheathing(2) klin. 

3/8 to 5/8 in. thick gypsum 2.0 
Lignocellulosic board 1.0 
Fiberboard (regular or impregnated) 0.6 
Fiberboard (heavy impregnated) 1.2 

-
"( 

in./in. 

0.008 

0.009 
0.007 

0.010 

(1) The values given are subject to the following limitations: 
All values are for sheathing on both sides of the wall assembly. 
All fasteners are No.6, type S-12, self-drilling drywall screws with pan or bugle 
head, or equivalent, at 6-- to 12-inch spacing. 

(2) All sheathing is 1/2-inch thick except as noted. 

(3) 'I = '10 (2-s/12) (Eq.D4.1-26) 

where s = fastener spacing, in. 

For other types of sheathing, qo and y may be determined conservatively from rep
resentative small-specimen tests as described by published documented methods 
(see Commentary). 

04.2 Wall Studs in Bending 

For studs having identical sheathing attached to both flanges, and neglecting any 
rotational restraint provided by the sheathing, * the design flexural strengths are q,bMnxo 

and <pbMnyo 

where 
<Pb = 0.95 for sections with stiffened or partially stiffened compression flanges 

= 0.90 for sections with unstiffened compression flanges 

Mnxo and Mnyo =Nominal flexural strengths about the centroidal axes detennined in ac
cordance with Section C3.1, excluding the provisions of Section C3.1.2 
(lateral buckling) 

04.3 Wall Studs with Combined Axial Load and Bending 

The required axial strength and flexural strength shall satisfy the interaction equa
tions of Section C5 with the following redefmed tenns: 

Pn =Nominal axial strength detennined according to Section 04.1 

Mnx and Mny in Equations C5-1, C5-2 and C5-3 shall be replaced by nominal flexural 
strengths, Mnxo and Mnyo, respectively. 

* Studs with sheathing on one flange only, or with unidentical sheathing on both flanges, or having rotational 
restraint that is not neglected, or having any combination of the above, shall be designed in accordance with 
the same basic analysis principles used in deriving the provisions of this Section. 
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E. CONNECTIONS AND JOINTS 

E1 General Provisions 

Connections shall be designed to transmit the maximum forces resulting from the fac
tored'loads acting on the connected member. Proper regard shall be given to eccentricity. 

E2 Welded Connections 

The following LRFD design criteria govern welded connections used for cold-formed 
steel structural members in which the thickness of the thinnest connected part is 0.18 in. or 
less. For welded connections in which the thickness of the thinnest connected part is greater 
than 0.18 in., refer to the AISC's "Load and Resistance Factor Design Specification for 
Structural Steel Buildings". 

Except as modified herein, arc welds on steel where at least one of the connected parts is 
0.18 inch or less in thickness shall be made in accordance with the A WS 0-1.3 (Reference 3 
of Section A6) and its Commentary. Welders and welding procedures shall be qualified as 
specified in AWS 01.3. These provisions are intended to cover the welding positions as 
shown in Table E2. 

Resistance welds shall be made in conformance with the procedures given in A WS 
e1.1, "Recommended Practices for Resistance Welding" or AWS C1.3, "Recommended 
Practice for Resistance Welding Coated Low Carbon Steels." 

TABLE E2 
Weldin~ Position 

Square Fillet Flare-
Groove Arc SJ'0t Arc Seam Weld, Bevel Connection Butt Weld WeI Weld Lap orT Groove 

F - F F F 
Sheet to H - H H H 
Sheet V - - V V 

OR - - OR OR 

Sheet to - F F F F 
Supporting - - - R R 
Member - - - V V 

- - - OR OR 

(F = flat, H = horizontal, V = vertical, OH = overhead) 

The required strength on each weld shall not exceed the design strength, <l>Pn, 
where 

I(;are-V 
roove 

Weld 

F 
H 

V 
OR 

-

-

-

-

<I> = Resistance factor for arc welded connections defined in Sections E2.1 through E2.5. 
Pn = Nominal strength of welds determined according to Sections E2.1 through E2.5. 

E2.1 Groove Welds in Butt Joints 

The design strength, <l>Pn, of a groove weld in a butt joint, welded from one or both 
sides, shall be determined as follows: 

(a) Tension or compression normal to the effective area or parallel to the axis of the 
weld 
<I> = 0.90 

1--61 
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Pn = LteFy 

(b) Shear on the effective area 
cp = 0.80 

where 

Pn = Lte(0.6Fxx); and 
cp = 0.90 

Pn = Lte(Fy /..J3) 

cp = Resistance factor for welded connections 
Pn = Nominal strength of a groove weld 
Fxx = Strength level designation in A WS electrode classification 
Fy = Specified minimum yield point of the lower strength base steel 
L = Length of weld 
te = Effective throat dimension for groove weld 

E2.2 Arc Spot Welds 

Arc spot welds pennitted by this Specification are for welding sheet steel to 
thicker supporting members in the flat position. Arc spot welds (puddle welds) shall not 
be made on steel where the thinnest connected part is over 0.15 inch thick, nor through a 
combination of steel sheets having a total thickness over 0.15 inch. 

Weld washers, Figures E2.2(A) and E2.2(B), shall be used when the thickness of 
the sheet is less than 0.028 inch. Weld washers shall have a thickness between 0.05 and 
0.08 inch with a minimum prepunched hole of 3/8 - inch diameter. 

Arc Spot Weld 

Figure E2.2A Typical Weld Washer 

(Eq. E2.1-1) 

(Eq. E2.1-2) 

(Eq. E2.1-3) 
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Optional Lug , , 
............ ,'; 
~, , Washer 

, , , , 
~..,..,.... , , , 

Figure E2.2B Arc Spot Weld Using Washer 

Arc spot welds shall be specified by minimum effective diameter of fused area, de. 
Minimum allowable effective diameter is 3/8 inch. 

The design shear strength, <l>Pn, of each arc spot weld between sheet or sheets and 
supporting member shall be determined by using the smaller of either 

(a) <p =0.60 

Pn =0.589 de2 Fxx ; or 

(b) For (dJt) ~ 0.815 ~'-(E-/-Fu-): 
<p =0.60 
Pn =2.20 t da Fu 

For 0.815~(E / Fu) < (dJt) < 1.397 ~(E / Fu) : 

<p =0.50 

Pn =0. 280[1 + 5.59 -JETF: ]tdaFu 
d a / t 

For (dJt) ~ 1.397 ~(E / Fu) : 
<p =0.50 
Pn= 1.40 t da Fu 

where 
<p = Resistance factor for welded connections 
Pn = Nominal shear strength of an arc spot weld 
d = Visible diameter of outer surface of arc spot weld 
da = Average diameter of the arc spot weld at mid-thickness of t where da = (d - t) 

for a single sheet, and (d - 2t) for multiple sheets (not more than four lapped 

sheets over a supporting member) 

de = Effective diameter of fused area 

I"'{)3 

(Eq. E2.2-1) 

(Eq. E2.2-2) 

(Eq. E2.2-3) 

(Eq. E2.2-4) 

de = 0.7d - 1.5t but ~ 0.55d (Eq. E2.2-5) 
t = Total combined base steel thickness (exclusive of coatings) of sheets involved 

in shear transfer 
Fxx = Stress level designation in A WS electrode classification 
Fu = Tensile strength as specified in Section A3.1 or A3.2 or as reduced for low duc-

tility steel. 

Note: See Figures E2.2(C) and E2.2(D) for diameter definitions 
The distance measured in the line of force from the centerline of a weld to the 

nearest edge of an adjacent weld or to the end of the connected part toward which 

the force is directed shall not be less than the value of emin as given below: 
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d a= d - t 

d e= O.7d - 1.5t ~ O.5~d 

(C) Arc Spot Weld-Single Thickness of Sheet 

d a=d-2t 

d e= O.7d - 1.5t ~ O.55d 

(D) Arc Spot Weld-Double Thickness of Sheet 

Figure E2.2 C, 0 Arc Spot Welds 

<I> = Resistance factor for welded connections 
=0.70 when FulFsy ~ 1.15 
=0.60 when FulFsy < 1.15 

Pu = Required strength transmitted by weld 
t = Thickness of thinnest connected sheet 
Fsy = Yield point as specified in Sections A3.1 or A3.2 

(Eq. E2.2-6) 

Note: See Figures E2.2(E) and E2.2(F) for edge distances of arc welds. 

In addition, the distance from the centerline of any weld to the end or boundary 
of the connected member shall not be less than 1.5d. In no case shall the clear 
distance between welds and the end of member be less than 1.0d. 

, 
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(E) Single Sheet 

(F) Double Sheet 

Figure E2.2 E, F Edge Distances for Arc Spot Welds 

The design tensile strength, q,Pn, on each arc spot weld between sheet and support
ing member, shall be determined as follows: 

q, = 0.65 

Pn = 0.7 t da Fu 

The following additional limitations for use in Eq. 2.2-7 shall apply: 

emin ~ d 
Fxx ~ 60 ksi 
Fu $; 60 ksi 
t ~ 0.028 in. 

If it can be shown by measurement that a given weld procedure will consistently 

give a larger effective diameter, de, or average diameter, da, as applicable, this larger di
ameter may be used providing the particular welding procedure used for making those 

welds is followed. 

'_ E2.3 Arc Seam Welds 
Arc seam welds [Figure E2.3(A)] covered by this Specification apply only to the 

following joints: 

1-65 

(Eq. E2.2-7) 
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(a) Sheet to thicker supporting member in the flat position. 
(b) Sheet to sheet in the horizontal or nat position. 
The design shear strength, <\>Pn, of arc seam welds shall be determined by using the 

smaller of either 
(a) <\> = 0.60 

Pn = 
[

1td
2 

] -t+Lde 0.75Fxx;or 

(b) <\> = 0.60 
Pn = 2.5 tFu(0.25L + 0.96 da) 

where 
<\> = Resistance factor for welded connections 
Pn = Nominal shear strength of an arc seam weld 
d = Width of arc seam weld 
L = Length of seam weld not including the circular ends 

(For computation purposes, L shall not exceed 3d) 
da = A verage width of seam weld 

where 
da =(d - t) for a single sheet, and 

(d - 2t) for a double sheet 

de = Effective width of arc seam weld at fused surfaces 
de = 0.7d - 1.5t 
and Fu and Fxx are defined in Section E2.2. The minimum edge distance shall be as 
determined for the arc spot weld, Section E2.2. See Figure E2.3(B). 

(Eq. E2.3-l) 

(Eq. E2.3-2) 

(Eq. E2.3-3) 
(Eq. E2.3-4) 

(Eq. E2.3-5) 

Jd LWidth 

Figure E2.3A Arc Seam Welds - Sheet to Supporting Member In Flat Position 

, 
~-
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Figure E2.38 Edge Distances for Arc Seam Welds 

E2.4 Fillet Welds 

Fillet welds covered by this Specification apply to the welding of joints in any po
sition, either 
(a) Sheet to sheet, or 
(b) Sheet to thicker steel member. 

The design shear strength, <l>Pn, of a fillet weld shall be detennined as follows: 
(a) For longitudinal loading: 

For LIt < 25: 
<I> =0.60 

1-67 

P. = (1- O.~IL }LFu (Eq. E2.4-1J 

For LIt ~ 25: 
<I> =0.55 
Pn =0.75 tLFu 

(b) For transverse loading: 
<I> =0.60 
Pn =tLFu 

where t = Least value of tt or t2, Figure E2.4 

In addition, for t > 0.150 inch the design strength detennined above shall not ex

ceed the following value of <l>Pn : 
<I> = 0.60 
Pn = 0.75 twLFxx 

where 
<I> = Resistance factor for welded connedtions 
Pn = Nominal strength of a fillet weld 
L = Length of fillet weld 
tw = Effective throat = 0.707 WI or 0.707 W2, whicheveris smaller. A larger effective 

throat may be taken if it can be shown by measurement that a given welding 
procedure will consistently give a larger value providing the particular welding 
procedure used for making the welds that are measured is followed. 

WI and W2 = leg on weld (see Figure E2.4). 
Fu and Fu are dermed in Section E2.2. 

(Eq. E2.4-2) 

(Eq. E2.4-3) 

(Eq. E2.4-4) 
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(A) Lap Joint (8) T-Joint 

Figure E2.4 Fillet Welds 

E2.5 Flare Groove Welds 

Flare groove welds covered by this Specification apply to welding of joints in any 
position, either: 
(a) Sheet to sheet for flare-V groove welds, or 
(b) Sheet to sheet for flare-bevel groove welds, or 
(c) Sheet to thicker steel member for flare-bevel groove welds. 

The design shear strength, ct>Pn, of a flare groove weld shall be determined as fol
lows: 
(a) For flare-bevel groove welds, transverse loading [see Figure E2.5(A)]: • 

<t> =0.55 .,.,-
Pn=0.833tLFu (Eq. E2.5-l) 

(b) For flare groove welds, longitudinal loading [see Figures E2.5(B), E2.5(C), and 
E2.5(D)]: 
(1) For t ~ tw < 2t or if the lip height is less than weld length, L: 

ct> = 0.55 
Pn = 0.75tLFu (Eq. E2.5-2) 

(2) For tw ~ 2 t and the lip height is equal to or greater than L: 
q, = 0.55 
Pn = 1.50tLFu (Eq. E2.5-3) 

In addition, if t > 0.15 inch, the design strength determined above shall not exceed the 
following value ofq,Pn : 

ct> = 0.60 
Pn = 0.75twLFxx (Eq. E2.5-4) 
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Figure E2.SA Flare-Bevel Groove Weld 

(B) Flare Bevel Groove 

p 

(C) Flare V-Groove 

(0) Throat 

Figure E2.S B, C, 0 Shear In Flare Groove Welds 
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E2.6 Resistance Welds 

The design shear strength, <l>Pn, of spot welding shall be determined as follows: 

<I> =0.65 
Pn =Tabulated value given in Table E2.6 

TABLE E2.6 
Nominal Shear Strength Of Spot Welding 

Thickness of Nominal Shear Thickness of Nominal 

Thinnest Outside Strength per Thinnest Outside Shear Stength 

Sheet, in. Spot, kips Sheet, in. per Spot, kips 

0.010 0.13 0.080 3.33 
0.020 0.48 0.090 4.00 
0.030 1.00 0.100 4.99 
0.040 1.42 0.110 6.07 
0.050 1.65 0.125 7.29 
0.060 2.28 0.190 10.16 
0.070 2.83 0.250 15.00 

E3 Bolted Connections 

The following LRFD design criteria govern bolted connections used for cold-formed 
steel structural members in which the thickness of the thinnest connected part is less than 3/16 

inch. For bolted connections in which the thickness of the thinnest connected part is equal to 
or greater than 3/16 inch, refer to AISC's "Load and Resistance Factor Design Specification 
for Structural Steel Buildings", September 1, 1986. 

Bolts, nuts, and washers shall generally conform to one of the following specifications: 

ASTM A 194 Carbon and Alloy Steel Nuts for Bolts for High-Pressure and High-Tem
perature Service 

ASTM A307(Type A), Carbon Steel Externally and Internally Threaded Standard Fas
teners 

ASTM A325 High Strength Bolts for Structural Steel Joints 
ASTM A354 (Grade BD), Quenched and Tempered Alloy Steel Bolts, Studs,and Other 

Externally Threaded Fasteners (for diameter of bolt smaller than 1/2 inch) 
ASTM A449 Quenched and Tempered Steel Bolts and Studs (for diameter of bolt smaller 

than liz inch) 
ASTM A490 Quenched and Tempered Alloy Steel Bolts for Structural Steel Joints 
ASTM A563 Carbon and Alloy Steel Nuts 
ASTM F436 Hardened Steel Washers 
ASTM F844 Washers, Steel, Plain (Flat), Unhardened for General Use 
ASTM F959 Compressible Washer-Type Direct Tension Indicators for Use with Struc

tural Fasteners 

When other than the above are used, drawings shall indicate clearly the type and size of 
fasteners to be employed and the nominal strength assumed in design. 

Bolts shall be installed and tightened to achieve satisfactory performance of the connec
tions involved under usual service conditions. 

I 
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The holes for bolts shall not exceed the sizes specified in Table E3, except that larger 
holes may be used in column base details or structural systems connected to concrete walls. 

TABLE E3 
Maximum Size of Bolt Holes, Inches 

Nominal Standard Oversized Short-Slotted Long-Slotted 
Bolt Hole Hole Hole Hole 

Diameter, d Diameter, dh Diameter, dh Dimensions Dimensions 
in. in. in. in. in. 

< 1/2 d+ 1132 d+ 1/16 (d + 1/32) by (d + 1/4) (d + 1/32) by (2 l/2d) 
~1/2 d + Ih6 d + I/S (d + Ih6) by (d + 1/4) (d + Ih6) by (2 Ihd) 

Standard holes shall be used in bolted connections, except that oversized and slotted 
holes may be used as approved by the designer. The length of slotted holes shall be nonnal to 
the direction of the shear load. Washers or backup plates shall be installed over oversized or 
short-slotted holes in an outer ply unless suitable perfonnance is demonstrated by load tests 
in accordance with Section F. 

E3.1 Spacing and Edge Distance 

The design shear strength, <\>Pn, of the connected part along two parallel lines in the 
direction of applied force shall be detennined as follows: 
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Pn=teFu (Eq. E3.1-1) 

(a) When Fu/Fsy ~ 1.15: 
<\>=0.70 

(b) When FulFsy < 1.15: 
<\>=0.60 

where 
<l> = Resistance factor 
Pn =Nominal resistance per bolt 
e = The distance measured in the line of force from the center of a standard hole to the nearest 

edge of an adjacent hole or to the end of the connected part 

t =Thickness of thinnest connected part 
Fu = Tensile strength of the connected part as specified in Section A3.1 or A3.2 

or as reduced for low-ductility steel 
Fsy = Yield point of the connected part as specified in Section A3.1 or A3.2 or 

as reduced for low-ductility steel 

In addition, the minimum distance between centers of bolt holes shall provide suf
ficient clearance for bolt heads, nuts, washers and the wrench but shall not be less than 3 
times the nominal bolt diameter, d. Also, the distance from the center of any standard 
hole to the end or other boundary of the connecting member shall not be less than 11/2 d. 

For oversized and slotted holes, the distance between edges of two adjacent holes 
"....... and the distance measured from the edge of the hole to the end or other boundary of the 
~ connecting member in the line of stress shall not be less than the value of e-(dtJ2), in 

which e is the required distance computed from the applicable equation given above, and 
dh is the diameter of a standard hole defined in Table E3. In no case shall the clear dis-



I 72 Cold-Fonned LRFD Specification - March 16, 1991 

tance between edges of two adjacent holes be less than 2d and the distance between the 
edge of the hole and the end of the member be less than d. 

E3.2 Tension in Connected Part 

The design tensile strength, <l>Pn, on the net section of the connected part shall be 
determined as follows: 

(a) Washers are provided under both the bolt head and the nut 
Pn =(1.0 - 0.9r + 3rd/s) FuAn:S; FuAn 

<I> =0.65 for double shear connection 

<I> =0.55 for single shear connection 

(b) Either washers are not provided under the bolt head and nut, or only one washer is 
provided under either the bolt head or nut 

where 

c!> =0.65 
Pn =(1.0 - r + 2.5rd/s) FuAn ~ FuAn 

In addition, the design tensile strength shall not exceed the following values: 
c!> =0.95 
Pn =FyAn 

An = Net area of the connected part 

r = Force transmitted by the bolt or bolts at the section considered, divided by 

the tension force in the member at that section. If r is less than 0.2, it may 
be taken equal to zero. 

s = Spacing of bolts perpendicular to line of stress. 

In the case of a single bolt, s = Width of sheet 

Fu = Tensile strength of the connected part as specified in Section A3.1 or A3.2 
or as reduced for low-ductility steel 

Fy = Yield point of the connected part 

d and t are defined in Section E3.1 

E3.3 Bearing 

The design bearing strength, c!>Pn, shall be detennined by the values of <I> and Pn 
given in Tables E3.3-1 and E3.3-2 for the applicable thickness and Fu/Fsy ratio of the 
connected part and the type of joint used in the connection. 

In Tables E3.3-1 and E3.3-2, the symbols <1>, Pn, d, Fu and t were previously de
fined. For conditions not shown, the design bearing strength of bolted connections shall 
be detennined by tests. 

(Eq. E3.2-1) 

(Eq. E3.2-2) 

(Eq. E3.2-3) 

, 
-------
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Thickness of 
Connected Part 

in. 

~0.024 

but < 3h6 

~ 3/16 

Thickness of 
Connected Part 

in. 

~ 0.036 
but < 3/16 

~ 3/16 

TABLE E3.3-1 
Nominal Bearing Strength for Bolted Connections 

with Washers under Both Bolt Head and Nut 

Resistance 
Type of joint Fu/Fsy ratio of Factor 

Connected Part cp 

Inside sheet of ~ 1.15 0.55 
double shear 
connection < 1.15 0.65 

Single shear 
and outside 
sheets of No limit 0.60 
double shear 
connection 

See AISC LRFD Specification 

TABLE E3.3-2 
Nominal Bearing Strength for Bolted Connections 
Without Washers Under Both Bolt Head and Nut, 

or With Only One Washer 

Fu/Fsy ratio of 
Resistance 

Type of joint Factor 
Connected Part cp 

Inside sheet of double ~ 1.15 0.65 
shear connection 

Single shear and 

outside sheets ~ 1.15 0.70 
of double shear 
connection 

See AISC LRFD Specification 

E3.4 Shear and Tension In Bolts 

The required bolt strength in shear or tension shall not exceed the design strength, 

CPPo, detennined as follows: 
cp = Resistance factor given in Table E3.4-1 
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Nominal 
Resistance 

Po 

3.33 Fudt 

3.00 Fudt 

3.00 Fudt 

Nominal 
Resistance 

Po 

3.00 Fudt 

2.22 Fudt 

Po = AbFo (Eq. E3.4-1) 

where 
Ab = Gross cross-sectional area of bolt 
Fo is given by FDV or FDt in Table E3.4-1. 
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TABLE E3.4-1 
Nominal Tensile and Sh S ear trena or 0 th f B It s 

Tensile Strength Shear Strel!&th* 

Description of Bolts Resistance Nominal Resistance Nominal 
Factor <I> Stress Factor <I> Stress 

Fnt Fnv 

A307 Bolts, Grade A 
40.5 0.65 24.0 

(1/4 in. S; d < 1/2 in.) 0.75 

A307 Bolts, Grade A 45.0 27.0 
(d ~ 1/2 in.) 

A325 bolts, when threads 
90.0 54.0 are not excluded from 

shear planes 

A325 bolts, when threads 
90.0 72.0 are excluded from 

shear planes 

A354 Grade BD Bolts 
(1/4 in. S; d < 1/2 in.), 101.0 59.0 
when threads are not 
exluded from shear planes 

A354 Grade BD Bolts 
(1/4 in. S; d < 1/2 in.) 
when threads are excluded 101.0 90.0 
from shear planes 

A449 Bolts 
(1/4 in. S; d < 1/2 in.), when 

81.0 47.0 threads are not excluded 
from shear planes 

A449 Bolts 
(1/4 in. S; d < 1/2 in.), when 

81.0 72.0 threads are excluded from 
shear planes 

A490 Bolts, when threads 
are not excluded from 112.5 67.5 
shear planes 

A490 Bolts, when threads 
are excluded from shear 112.5 90.0 
planes 

* Applies to bolts in holes as limited by Table E3. Washers or back-up plates shall be installed over long-slotted 
holes and the capacity of connections using long-slotted holes shall be determined by load tests in accordance 
with Section F. 
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The pullover strength of the connected sheet at the bolt head, nut or washer should 
be considered where bolt tension is involved, see Section E5.2. 

When bolts are subject to a combination of shear and tension produced by factored 
loads, the required tension strength shall not exceed the design strength, <pPn, based on 
<p = 0.75 andPn = AbP'nt, where P'nt is given in Table E3.4-2, in which fv is the shear stress 
produced by the same factored loads. The required shear strength shall not exceed the 
design shear strength, <pAbPnv, determined in accordance with Table E3.4-1. 

TABLE E3.4-2 
Nominal Tension Stress, F' nt, for Bolts 

Subject to 'the Combination of Shear and Tension 

Description of Bolts 
Threads Not Excluded Threads Excluded 

from Shear Planes from Shear Planes 

A325 Bolts 113 - 2.4fv ~ 90 113 - 1.9fv ~ 90 
A354 Grade BD Bolts 127 - 2.4fv ~ 101 127 - 1.9fv ~ 101 
A449 Bolts 101 - 2.4fv ~ 81 101 - 1.9fv ~ 81 
A490 Bolts 141 - 2.4fv ~ 112.5 141- 1.9fv ~ 112.5 

A307 Bolts, Grade A 
When 1/4 in. ~ d < liz in. 47 - 2.4fv ~ 40.5 
When d ~ liz in. 52 - 2.4fv ~ 45 

E4 Shear Rupture 

At beam-end connections, where one or more flanges are coped and failure might occur 
along a plane through the fasteners, the required shear strength shall not exceed the design 
shear strength, <p V n . 
where 

<p = 0.75 

V n = 0.6 FuAwn 
Awn = (dwe - ndh)t 
dwe = Coped web depth 
n = Number of holes in the critical plane 
dh = Hole diameter 

(Eq. E4-1) 
(Eq. E4-2) 

Fu = Tensile strength as specified in Section A3.1 or A3.2 or as reduced for low-ductility steel 
t = Thickness of coped web 

ES Connections to Other Materials 

ES.1 Bearing 

Proper provisions shall be made to transfer bearing forces resulting from axial 
loads and moments from steel components covered by the Specification to adjacent 
structural components made of other materials. The required bearing strength in the con
tact area shall not exceed the design strength, <pePp• 

In the absence of code regUlations, the design bearing strength on concrete may be 
taken as <pcPp : 
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On the full area of a concrete support . . . . . . . . . . . . . . . . . . . .. Pp = 0.85f Ie Al 
On less than the full area of a concrete support ............. Pp = 0.85f 'eAl~'--A-2-/-A-l 
where 

<pc =0.60 
f e = Specified compression strength of concrete 

Al =Bearing area 
A2 =Full cross-sectional area of concrete support 

The value of ~ A2 / Al shall not exceed 2. 

E5.2 Tension 

The pull-over shear/tension forces in the steel sheet around the head of the fasten
er should be considered as well as the pull-out force resulting from factored axial loads 
and bending moments transmitted onto the fastener from various adjacent structural 
components in the asserrlbly. 

The nominal tensile strength of the fastener and the nominal imbedment strength 
of the adjacent structural component shall be determined by applicable product code ap
provals, or product specifications and/or product literature. 

E5.3 Shear 

Proper provisions shall be made to transfer shearing forces from steel components 
covered by this Specification to adjacent structural components made of other materials. 
The required shear and/or bearing strength on the steel components shall not exceed that 
allowed by this Specification. The design shear strength on the fasteners and other mate
rial shall not be exceeded. Imbedment requirements are to be met. Proper provision shall 
also be made for shearing forces in combination with other forces. 
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F. TESTS FOR SPECIAL CASES 

(a) Tests shall be made by an independent testing laboratory or by a testing laboratory of a 
manufacturer. 

(b) The provisions of Chapter F do not apply to cold-fonned steel diaphragms. 

F1 Tests for Determining Structural Performance 

Where the composition or configuration of elements, assemblies, connections, or details 
of cold-fonned steel structural members are such that calculation of their load-carrying ca
pacity or deflection cannot be made in accordance with the provisions of this Specification, 
their structural performance shall be established from tests and evaluated in accordance with 
the following procedure. 
(a) Where practicable, evaluation of the test results shall be made on the basis of the average 

value of test data resulting from tests of not fewer than four identical specimens, pro
vided the deviation of any individual test result from the average value obtained from all 
tests does not exceed ± 1 0 percent. If such deviation from the average value exceeds 10 
percent, at least three more tests of the same kind shall be made. The average value of all 
tests made shall then be regarded as the predicted capacity, Rp, for the series of the tests. 
The mean value and the coefficient of variation of the tested-ta-predicted load ratios for 
all tests, Pm and V p, shall be determined for statistical analysis. 

(b) The load-carrying capacity of the tested elements, assemblies, connections, or members 
shall satisfy Eq. F 1-1. 

<1>Rp ~LYiQi (Eq. Fl-l) 

where 
LYiQi = Required resistance based on the most critical load combination determined in 

accordance with Section A5.IA. Yi and Qi are load factors and load effects, re
spectively. 

Rp = Average value of all test results 
<1> = Resistance factor 
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= 1.5(MmFmPm)exp(-~o~V~ + V~ +CpV~ + V6)* (Eq. FI-2) 

Mm = Mean value of the material factor listed in Table Fl for the type of component 

Fm = 

Pm = 
~o = 

= 
VM = 

VF = 

Cp = 
= 

Vp = 

n = 
VQ = 

= 

involved 
Mean value of the fabrication factor listed in Table FI for the type of compa
nent involved 
Mean value of the tested-ta-predicted load ratios determined in Section Fl (a) 
Target reliability index 
2.5 for structural members and 3.5 for connections 
Coefficient of variation of the material factor listed in Table F 1 for the type of 
component involved 
Coefficient of variation of the fabrication factor listed in Table Fl for the type 
of component involved 
Correction factor 
(n-l)/(n-3) (Eq. FI-3) 
Coefficient of variation of the tested-ta-predicted load ratios determined in 
Section Fl(a) 
Number of tests 
Coefficient of variation of the load effect 
0.21 

* For beams having tension flange through-fastened to deck or sheathing and with compression flange laterally unbraced, q, 
shall be determined with a coefficient of 1.6 in lieu of 1.5, ~o = 1.5, and V Q = 0.43. 
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TABLE F1 
Statistical Data for the Determination of Resistance Factor 

Type of Component Mm VM Fm VF 

Transverse Stiffeners 1.10 0.10 1.00 0.05 

Shear Stiffeners 1.00 0.06 1.00 0.05 

Tension Members 1.10 0.10 1.00 0.05 

Flexural Members 

Bending Strength 1.10 0.10 1.00 0.05 

Lateral Buckling Strength 1.00 0.06 1.00 0.05 

One Flange Through-Fastened to Deck or Sheathing 1.10 0.10 1.00 0.05 

Shear Strength 1.10 0.10 1.00 0.05 

Combined Bending and Shear 1.10 0.10 1.00 0.05 

Web Crippling Strength 1.10 0.10 1.00 0.05 

Combined Bending and Web Crippling 1.10 0.10 1.00 0.05 

Concentrically Loaded Compression Members 1.10 0.10 1.00 0.05 

Combined Axial Load and Bending 1.05 0.10 1.00 0.05 

Cylindrical Tubular Members 

Bending Strength 1.10 0.10 1.00 0.05 

Axial Compression 1.10 0.10 1.00 0.05 

Wall Studs and Wall Stud Assemblies 

Wall Studs in Compression 1.10 0.10 1.00 0.05 

Wall Studs in Bending 1.10 0.10 1.00 0.05 

Wall Studs with Combined Axial Load and Bending 1.05 0.10 1.00 0.05 
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TABLE F1 (Continued) 

Statistical Data for the Determination of Resistance Factor 

Type of Component Mm VM Fm VF 

Welded Connections 

Arc Spot Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Failure 1.10 0.08 1.00 0.15 

Arc Seam Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Tearing 1.10 0.10 1.00 0.10 

Fillet Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Failure 1.10 0.08 1.00 0.15 

Flare Groove Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Failure 1.10 0.10 1.00 0.10 

Resistance Welds 1.10 0.10 1.00 0.10 

Bolted Connections 

Minimum Spacing and Edge Distance 1.10 0.08 1.00 0.05 

Tension Strength on Net Section 1.10 0.08 1.00 0.05 

Bearing Strength 1.10 0.08 1.00 0.05 
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The listing in Table FI does not exclude the use of other documented statistical data 
if they are established from sufficient results on material properties and fabrication. * 

For steels not listed in Section A3.1, the values ofMm and VM shall be determined by 
the statistical analysis for the materials used. 

When distortions interfere with the proper functioning of the specimen in actual use, 
the load effects based on the critical load cOInbination at the occurrence of the accept
able distortion shall also satisfy Eq. Fl-l, except that the resistance factor <1> is taken as 
unity and that the load factor for dead load may be taken as 1.0. 

(c) If the yield point of the steel from which the tested sections are formed is larger than the 
specified value, the test results shall be adjusted down to the specified minimum yield 
point of the steel which the manufacturer intends to use. The test results shall not be 
adjusted upward if the yield point of the test specimen is less than the minimum speci
fied yield point. Similar adjustments shall be made on the basis of tensile strength in
stead of yield point where tensile strength is the critical factor. 

Consideration must also be given to any variation or differences which may exist be
tween the design thickness and the thickness of the specimens used in the tests. 

F2 Tests for Confirming Structural Performance 

For structural members, connections, and assemblies whose capacities can be computed 
according to this Specification or its specific references, confirmatory tests may be made to 
demonstrate the load-carrying capacity not less than the nominal resistance, Rn, specified in 
this Specification or its specific references for the type of behavior involved. 

F3 Tests for Determining Mechanical Properties 

F3.1 Full Section 

Tests for determination of mechanical properties of full sections to be used in Section 
A5.2.2 shall be made as specified below: 

(a) Tensile testing procedures shall agree with Standard Methods and Definitions for Me
chanical Testing of Steel Products, ASTM A370. Compressive yield point determina
tions shall be made by means of compression tests of short specimens of the section. 

(b) The compressive yield stress shall be taken as the smaller value of either the maximum 
compressive strength of the sections divided by the cross section area or the stress de
fined by one of the following methods: 

(I) For sharp yielding steel, the yield point shall be determined by the autographic dia
gram method or by the total strain under load method. 

(2) For gradual yielding steel, the yield point shall be determined by the strain under 
load method or by the 0.2 percent offset method. 

When the total strain under load method is used, there shall be evidence that the 
yield point so determined agrees within 5 percent with the yield point which would 
be determined by the 0.2 percent offset method 

(c) Where the principal effect of the loading to which the member will be subjected in serv
ice will be to produce bending stresses, the yield point shall be determined for the 
flanges only. In determining such yield points, each specimen shall consist of one com
plete flange plus a portion of the web of such flat width ratio that the value of p for the 
specimen is unity. 

* See Reference 36 of the Commentary 

• 
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(d) For acceptance and control purposes, two full section tests shall be made from each lot of 
not more than 50 tons nor less than 30 tons of each section, or one test from each lot of 
less than 30 tons of each section. For this purpose a lot may be defined as that tonnage of 
one section that is formed in a single production run of material from one heat. 

(e) At the option of the manufacturer, either tension or compression tests may be used for 
routine acceptance and control purposes, provided the manufacturer demonstrates that 
such tests reliably indicate the yield point of the section when subjected to the kind of 
stress under which the member is to be used. 

F3.2 Flat Elements of Formed Sections 

Tests for determining mechanical properties of flat elements of formed sections 
and representative mechanical properties of virgin steel to be used in Section A5.2.2 shall 
be made in accordance with the following provisions: 

The yield point of flats, Fyr, shall be established by means of a weighted average of 
the yield points of standard tensile coupons taken longitudinally from the flat portions of 
a representative cold-formed member. The weighted average shall be the sum of the 
products of the average yield point for each flat portion times its cross sectional area, di
vided by the total area of flats in the cross section. The exact number of such coupons will 
depend on the shape of the member, i.e., on the number of flats in the cross section. At 
least one tensile coupon shall be taken from the middle of each flat. If the actual virgin 
yield point exceeds the specified minimum yield point, the yield point of the flats, Fyr, 
shall be adjusted by multiplying the test values by the ratio of the specified minimum 
yield point to the actual virgin yield point. 

F3.3 Virgin Steel 

The following provisions apply to steel produced to other than the ASTM Specifi
cations listed in Section A3.1 when used in sections for which the increased yield point of 
the steel after cold forming shall be computed from the virgin steel properties according 
to Section AS.2.2. For acceptance and control purposes, at least four tensile specimens 
shall be taken from each lot as defined in Section F3.1(d) for the establishment of the 
representative values of the virgin tensile yield point and ultimate strength. Specimens 
shall be taken longitudinally from the quarter points of the width near the outer end of the 
coil. 
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PREFACE 
The American Iron and Steel Institute allowable stress design specification has long been 

used for the design of cold-fonned steel structural members. The Load and Resistance Fac
tor Design (LRFD) Specification has recently been devel9ped from a research project spon
sored by AISI at the University of Missouri-Rolla under the direction of Wei-Wen Yu with 
consultation of T.V. Galambos and initial contribution of M.K. Ravindra. In this LRFD 
Specification, separate load and resistance factors are applied to specified loads and nominal 
resistance to ensure that the probability of reaching a limit state is acceptably small. These 
factors reflect the uncertainties of analysis, design, loading, material properties and fabrica
tion. They are deri ved on the basis of the first order probabilistic methodology as used for the 
development of the AISC Load and Resistance Factor Design Specification for Structural 
Steel Buildings. 

This Specification contains six chapters of the LRFD recommendations for cold-formed 
steel structural members and connections. The background information for the design crite
ria is discussed in the Commentary and other related references. 

AISI acknowledges the devoted efforts of the members of the Committee on Specifica
tions for the Design of Cold-Formed Steel Structural Members. This group, comprised of 
consulting engineers, researchers, designers from companies manufacturing cold-formed 
steel members, components, assemblies, and complete structures, and specialists from the 
steel producing industry, has met two to three times per year since its establishment in 1973. 
Its current members, who have made extensive contributions of time and effort in developing 
and reaching consensus on this LRFD Specification are: 

R. L. Brockenbrough, Chainnan 
R.B. Haws, Secretary 
R.E. Albrecht 
R. B jorhovde 
R.E. Brown 
C.R. Clauer 
D.A. Cuoco 
D.S. Ellifritt 
S.J. Errera* 
E.R. Estes, Jr. 
J.M. Fisher 
T.V. Galambos 
M. Golovin 
W.B. Hall 
G.S. Harris 
R.B. Heagler 
N.lwankiw 
A.L. Johnson 
D.L. Johnson 
T.J. Jones 
H. Klein 

*Past Chairman 

K. H. Klippstein* 
R.A. LaBoube 
J.N. Macadam 
R.R. McCluer 
W.R. Midgley 
T.J. Morris 
J.A. Moses 
T.M. Murray 
G.G. Nichols 
J.N. Nunnery 
T.B. Pekoz 
C.W. Pinkham 
P.G. Schurter 
R.M. Schuster 
P .A. Seaburg 
F.V. Slocum 
D.L. Tarlton 
D.S. Wolford* 
W.W.Yu 
A.S. Zakrezewski 
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The activities of the Committee are sponsored by AISI's Light Construction Subcommit
tee of the Construction Marketing Committee. The Specification is issued under the auspices 
of AISI's Committee on Construction Codes and Standards. 

Users of the Specification are invited to continue to offer their valuable comments and 
suggestions. The cooperation of all involved, the users as well as the writers, is needed to 
continue to keep the Specification up to date and a useful tool for the designer. 

American Iron and Steel Institute 
March 16, 1991 
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SYMBOLS AND DEFINITIONS 

Symbol Definition Section 

A Full unreduced cross-sectional area of the member C3.1.1, C3.1.2, C4, C6.2, D4.1 
Ab bit + As, for transverse stiffeners at interior support and under B6.1 

concentrated load, and b2t + As, for transverse stiffeners at end 
support 

Ae 
An 
As 
A's 

As! 
Awn 
Al 
A2 
a 

a 
B 
Be 
b 

b 
bd 
be 
bo 
C 

Cb 
Cm 

Gross cross-sectional area of bolt 
18t2 + As, for transverse stiffeners at interior support and 
under concentrated load, and 10t2 + As, for transverse 
stiffeners at end support 

Effective area at the stress Fn 
Net area of cross section 
Cross-sectional area of transverse stiffeners 
Effective area of stiffener 
Gross area of shear stiffener 
Net web area 
Bearing area 

. Full cross sectional area of concrete support 
Shear panel length of the unreinforced web element. Fora 
reinforced web element, the distance between transverse 
stiffeners 

Length of bracing interval 
Stud spacing 
Term for determining the tensile yield point of corners 
Effective design width of compression element 

Flange width, Z-section 
Effective width for deflection calculation 
Effective design width of sub-element or element 
See Figure B4.1 
For flexural members, ratio of the total corner cross 
-sectional area of the controlling flange to the full cross 
-sectional area of the controlling flange 

Bending coefficient dependent on moment gradient 
End moment coefficient in interaction formula 

E3.4 
B6.1 

C4, C6.2, D4.1 
C2, E3.2 
B4, B4.1, B4.2, B6.1 
B4, B4.1, B4.2 
B6.2 
E4 
E5.1 
E5.1 
B6.2, C3.2 

03.2 
04,04.1 
A5.2.2 
B2.1, B2.2, B2.3, B3.1, B3.2, 
B4.1, B4.2, B5 

03.2.1 
B2.1, B2.2 
A 1.2, B2.3, B5 
B4, B4.1, B5 
A5.2.2 

C3.1.2 
C5 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

Cms Coefficient for lateral bracing of Z-section 
Cmx End moment coefficient in interaction formula 
Cmy End moment coefficient in interaction formula 
Cp Correction Factor 
Cs Coefficient for lateral torsional buckling 
CTF End moment coefficient in interaction formula 
Cth Coefficient for lateral bracing of Z-sections 
Ctr Coefficient for lateral bracing of Z-sections 
Cv Shear stiffener coefficient 
Cw Torsional warping constant of the cross-section 
Cy Compression strain factor 
Co Initial column imperfection 
C) Term used to compute shear strain in wall board 
C2 Coefficient as defined in Figure B4-2 
Cf Amount of curling 
D Outside diameter of cylindrical tube 
D Overall depth of lip 
D Shear stiffener coefficient 
D Nominal dead load 
Do Initial column imperfection 
d Depth of section 

d Width of arc seam weld 
d Visible diameter of outer surface of arc spot weld 
d Diameter of bolt 
da Average diameter of the arc spot weld at mid-thickness of t 
da A verage width of seam weld 
de Effective diameter of fused area 
de Effective width of arc seam weld at fused surfaces 
dh Diameter of standard hole 
ds Reduced effective width of stiffener 
d's Actual effective width of stiffener 
dwc Coped web depth 
E Modulus of elasticity of steel (29.5xl03 ksi) 

Section 

D3.2.1 
C5 
C5 
Fl 
C3.1.2 
C3.1.2 
D3.2.1 
D3.2.1 
B6.2 
C3.1.2 
C3.1.1 
D4.1 
B4, B4.1, D4.2 
B4, B4.2 
B1.1b 
C6, C6.1, C6.2, D4.2 
B1.1, B4, D1.1 
B6.2 
A5.1.4 
D4.1 
B1.1b, B4, C3.1.1, C3.1.3, 
D1.1, D3.2.1, D4, D4.1 

E2.3 
E2.2 
E3, E3.1, E3.2, E3,4 
E2.2 
E2.3 
E2.2 
E2, E2.3 
B2.2, E3.1, E4 
B4, B4.2 
B4, B4.2 
E4 
Bl.lb, B2.1, B6.1, C3.l.1, 
C3.2, C3.5, C4, 
C4.1, C5, C6.1, D1.2, D4.1, 
D4.2, E2.2 

1-9 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

E Nominal earthquake load 
Eo Initial column imperfection; a measure of the initial twist of 

the stud from the initial, ideal, unbuckled location 

EI Term used to compute shear strain in wallboard 
E' Inelastic modulus of elasticity 
e The distance measured in the line of force from the center 

of a standard hole to the nearest edge of an adjacent hole 
or to the end of the connected part toward which the force is 
directed 

emin Minimum allowable distance measured in the line of force 
from the centerline of a weld to the nearest edge of an 

ey 
F 
Fe 

Fm 
Fn 
Fnt 
Fnv 
F'nt 

Fsy 

Fu 

Fuv 

Fwy 
Fxx 

adjacent weld or to the end of the connected part toward which 
the force is directed 

Yield strain = FyIE 
Loads due to fluids 
Elastic buckling stress 

Mean value of the fabrication factor 
Nominal buckling stress 
Nominal tensile strength of bolts 
Nominal shear strength of bolts 
Nominal tensile strength for bolts subject to combination 
of shear and tension 

Yield point as specified in Sections A3.1 or A3.2 

Tensile strength as specified in Sections A3.1 or A3.2, 
or as reduced for low ductility steel 

Tensile strength of virgin steel specified by 
Section A3 or established in accordance with Section F3.3 

Yield point for design of transverse stiffeners 
Strength level designation in A WS electrode classification 

Section 

A5.1.4 
04.1 

D4.1 
D4.1 
E3.1 

E2.2 

C3.1.1 
A5.1.4 
C4, C4.1, C4.2, C4.3, C6.2, 
04.1 

Fl 
C4, C6.2, 04.1 
E3.4 
E3.4 
E3.4 

A3.1, A3.2, A3.3.2, E2.2, E3.1, 
E3.2 

A3.1, A3.2, A3.3, A3.3.2, E2.2, 
E2.3, E2.4,E2.5, E3.1, E3.2, 
E3.3, E4 

A3, A5.2.2, E2.2, F3.3 

B6.1 
E2.2, E2.3, E2.4, E2.5 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

Fy Yield point used for design, not to exceed the specified 
yield point or established in accordance with Section F3, 
or as increased for cold work of forming in Section 
A5.2.2 or as reduced for low ductility steels in Section 
A3.3.2 

Fya Average yield point of section 
Fyc Tensile yield point of comers 
Fyf Weighted average tensile yield point of the flat portions 
Fys Yield point of stiffener steel 
Fyv Tensile yield point of virgin steel specified by Section 

A3 or established in accordance with Section F3.3 

f Stress in the compression element computed on the basis 
of the effective design width 

fav Average computed stress in the full, unreduced flange 
width 

Stress at service load in the cover plate or sheet 
Specified compression stress of concrete 
Computed compressive stress in the element being 
considered. Calculations are based on the effective 
section at the load for which deflections are determined. 

Section 

AI.2, A3.3, A5.2.1, A5.2.2, 
B2.1, B5, B6.1, C2, C3.1, 
C3.I.l, C3.I.3, C3.2, C3.5, 
C4, C6.1, C6.2, D 1.2, D4, D4.2, 
E2 

A5.2.2 
A5.2.2 
A5.2.2, F3.2 
B6.1 
A3, A5.2.2, F3.3 

B2.1, B2.2, B3.2, B4, B4.1 

BI.1b 

DI.2 
E5.1 
B2.1, B2.2, B3.1, B4.1, B4.2 

fdl, fd2 Computed stresses fl and f2 as shown in Figure B2.3-1. B2.3 
Calculations are based on the effective section at the load 
for which deflections are deteremined 

fd3 Computed stress f3 in edge stiffener, as shown in Figure B3.2 
B4-2. Calculations are based on the effective section at 
the load for which deflections are determined 

fv Computed shear stress on a bolt E4 
fl, f2 Web stresses defined by Figure B2.3-1 B2.3 . 

f3 Edge stiffener stress defined by Figure B4-2 B3.2 
G Shear modulus of steel (11,300 ksi) C3.I.1, D4.1 
G' Inelastic shear modulus D4.1 
g Vertical distance between two rows of connections DI.l 

nearest to the top and bottom flanges 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

H Loads due to the weight and lateral pressure of soil and 
water in soil 

Section 

A5.1.4 

h Oepth of flat portion of web measured along the plane of web B 1.2, B6.2, C3.2, C3.4 
la Adequate moment of inertia of stiffener so that each B 1.1, B4, B4.1, B4.2 

component element will behave as a stiffened element 

Is 

Isf 

Ix,ly 
Ixy 

lye 

J 
j 
K 
K' 
Kb 
Kt 

Kx 
Ky 
k 

kv 
L 

Moment of inertia of the full unreduced section about the 
bending axis 

Actual moment of inertia of the full stiffener about its own 
centroidal axis parallel to the element to be stiffened 

Moment of inertia of the full area of the multiple stiffened 
element, including the intermediate stiffeners, about its 
own centroidal axis parallel to the element to be stiffened 

Moment of inertia of full section about principal axis 
Product of inertia of full section about major and minor 
centroidal axes 

Moment of inertia of the compression portion of a section 
about the centroidal axis of the entire section parallel to 
the web, using the full unreduced section 

St. Venant torsion constant 
Section property for torsional-flexural buckling 
Effective length factor 
A constant 
Effective length factor in the plane of bending 
Effective length factor for torsion 
Effective length factor for bending about x-axis 
Effective length factor for bending about y-axis 
Plate buckling coefficient 

Shear buckling coefficient 
Full span for simple beams, distance between inflection 
points for continuous beams, twice the length of cantilever 
beams 

C5 

B1.I, B4, B4.l, B4.2, B5 

B5 

01.1,03.2.2 
03.2.2, 04.1 

C3.1.2 

C3.l.2 
C3.1.2 
C3.1.2, C4, C4.1, C5 
03.2.2 
C5 
C3.l.2 
C3.1.2 
C3.1.2 
B2.l, B2.3, B3.1, B3.2, B4 
B4.1, B4.2 

B6.2, C3.2 
Bl.lc, 03.2.1 
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SYMBOLS AND DEFINITIONS 

Symbols Definition 

L 
L 
L 

L 
Lr 
LsI 
Lt 
Lx 

Me 
Me 
Mm 
Mn 

Length of seam weld not including the circular ends 
Length of fillet weld 
Unbraced length of member 

Nominal live load 
Nominal roof live load 
Length of transverse stiffener 
Unbraced length of compression member for torsion 
Unbraced length of compression member for bending 
about x-axis 

Unbraced length of compression member for bending 
about y-axis 

Critical moment 
Elastic critical moment 
Mean value of the material factor 
Nominal flexural strength 

Mnx,Mny Nominal flexural strengths about the centroidal axes 
detennined in accordance with Section C3 

Mnxo. 
Mnyo 

Mu 
Mux 
Muy 
My 

Ml 
M2 
m 

N 
n 
n 

Nominal flexural strengths about the centroidal axes 
detennined in accordance with Section C3.1 excluding 
the provisions of Section C3.1.2 

Required flexural strength 
Required flexural strength about x-axis 
Required flexural strength about y-axis 
Moment causing a maximum strain ey 
Smaller end moment 
Larger end moment 
Distance from the shear center of one channel to the 
mid-plane of its web 
Actual length of bearing 
Number of holes 
Number of tests 

Section 

E2.3 
E2.4, E2.5 
C3.1.2, C4.1, 01.1,04, 
04.1 

A5.1.4 
A5.1.4 
B6.1 
C3.1.2 
C3.1.2 

C3.1.2 

C3.1.2 
C3.1.2 
Fl 
C3.1, C3.1.1, C3.1.2, C3.1.3, 
C6.1 

C5 

C3.3, C3.5, D4.2, 04.3 

C3.3, C3.5 
C5 
C5 
B2.1, C3.1 
C3.1.2, C5 
C3.1.2, C5 
Dl.l,03.2.2 

D3.6 
E4 
Fl 



1-14 Cold-Fonned LRFD Specification - March 16, 1991 

SYMBOLS AND DEFINITIONS 

Symbol Definition 

np Number of parallel purlin lines 
P Loads, forces, and effects due to ponding 
PE 1t2EIb/(KbLb)2 

PL Force to be resisted by intermediate beam brace 
Pm Mean value of the tested-to-predicted load ratios 
Pn Nominal axial strength of member 
Po Nominal strength of connection component 
Pno Nominal axial strength of member determined in accordance 

with Section C4 for L = 0 

Pp Nominal bearing capacity on concrete 
P s Concentrated load or reaction based on factored loads 
Pu Required axial strength 

Q Design shear rigidity for sheathing on both sides of the 

wall assembly 

rey 

Load effect 
Unifonnly distributed factored load in the plane of the web 

Design shear rigidity for sheathing per inch of stud spacing 

Factor used to determine design shear rigidity 

Reduction Factor 
Coefficient 
Inside bend radius 
Nominal resistance 
A verage value of all test results 
Nominal roof rain load 
Radius of gyration of full unreduced cross section 
Force transmitted by the bolt or bolts at the section 
considered, divided by the tension force in the member at 
that section 

Radius of gyration of one channel about its centroidal 
axis parallel to web 

Radius of gyration of I-section about the axis perp
pendicular to the direction in which buckling would 
occur for the given conditions of end support and 
intermediate bracing 

Section 

03.2.1 
A5.1.4 
C5 
D3.2.1 
PI 
C4, C6.2 
E2, E2.2, E2.3, E2.4, E2.5 
C5 

E5.1 
D1.1 
C5 

D4.l 

PI 
01.1 

04.1 

04.1 

C3.1.3 
C4, C6.2 
A5.2.2, C3.4 
A1.2, Fl 

PI 
A5.1.4 
C3.l.l, C4, C4.1 
E3.2 

D1.1 

Dl.l 
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SYMBOLS AND DEFINITIONS 

Symbol Definition Section 

ro Polar radius of gyration of cross section about the shear C3.1.1, C4.2, D4.1 

center 

rx, ry Radius of gyration of cross section about centroidal C3.1.1 
principal axis 

S 1.28~E/f B4, B4.1 

S Nominal snow load A5.1.4 

Se Elastic section modulus of the effective section calculated C3.1.1, C3.1.2, C4 
at a stress Me/Sf in the extreme compression fiber 

Se Elastic section modulus of the effective section calculated C3.1.1, C3.1.3 
with extreme compression or tension fiber at Fy 

Sf Elastic section modulus of full, unreduced section for the C3.1.1, C3.1.2, C6.1 
extreme compression fiber 

Smax Maximum permissible longitudinal spacing of welds or D1.1 
other connectors joining two channels to form an 
I-section 

s Fastener spacing D1.2, D4.1 

s Spacing in line of stress of welds, rivets, or bolts connecting E3.2 
a compression coverplate or sheet to a non-integral 
stiffener or other element 

s Weld spacing D1.1 
Tn Nominal tensile strength C2 

Ts Design strength of connection in tension D1.1 
t Base steel thickness of any element or section A1.2, A3.4, A5.2.1, B1.1, 

B1.1b, B1.2, B2.1, B4, B4.1, 
B4.2, B5, B6.1, C3.1.1., 
C3.2, C3.4, C3.5, C4, C6.1, 
C6.2, D 1.2, 04, E2.4, E2.5 

t Total thickness of the two welded sheets E2.2 
t Thickness of thinnest connected part E2.2, E3.1, E4 

ts Equivalent thickness of a multiple-stiffened element B5, B6.1 

tw Effective throat of weld E2.4, E2.5 

VF Coefficient of variation of the fabrication factor Fl 

VM Coefficient of variation of the material factor Fl 
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SYMBOLS AND DEFINITIONS 

Symbol Definition 

V n Nominal shear strength 
V P Coefficient of variation of the tested-to-predicted load ratios 
V Q Coefficient of variation of the load effect 
V u Required shear strength 
W Factored load supported by all purlin lines being restrained 
W Nominal wind load 
w Flat width of element exclusive of radii 

w Flat width of the beam flange which contacts the 
bearing plate 

Wf Width of flange projection beyond the web or half the 
distance between webs for box- or V-type sections 

Wf 

WI 

W2 

X 

xo 

Y 

l/anx, 
l/any 

e 

o 
OCR 

Projection of flanges from inside face of web 
Leg on weld 
Leg on weld 
Distance from concentrated load to brace 
Distance from shear center to centroid along the principal 
x-axis 

Yield point of web steel divided by yield point of 
stiffener steel 

Magnification factors 

Coefficient 
Target reliability index 
Actual shear strain in the sheathing 

Permissible shear strain of the sheathing 

Load factor 
Angle between web and bearing surface >45 0 but no 
more than 900 

Angle between the vertical and the plane of the web of 
the Z-section, degrees 

Stress related to shear strain in sheathing 
Theoretical elastic buckling stress 

Section 

B6.2, C3.2, C3.3 
F1 
F1 
C3.3 
D3.2.1 
A5.1.4 
A1.2, B1.1, B2.1,B2.2, B3.1, 
B4, B4.1, B4.2, B5, C3.1.1, 
C4, D1.2 

C3.5 

B1.1c 

B1.1b, D1.1 
E2.4 
E2.4 
D3.2 
C3.1.1, C4.2, 04.1 

B6.2 

C5 

C4.2, D4.1 
F1 
04.1 

D4.1 

F1 
C3.4 

D3.2.1 

04.1 
04.1 
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SYMBOLS AND DEFINITIONS 

Symbol 

aex 

aexy 
aey 

at 
p 
A,~ 

'" ct> 

Definition 

(1t2~)/(}(x~xlrx)2 

(1t2~)/(~/rx)2 

(1t2~Ixy)/(~2) 

(1t2~)/(}(y~y/ry)2 

(1t2~)/(~/ry)2 

Torsional buckling stress 
Reduction factor 
Slenderness factors 
fufl 
Resistance factor 

Resistance factor for bending strength 

Resistance factor for concentrically loaded compression 
member 

Resistance factor for bearing strength 
Resistance factor for tension member 
Resistance factor for shear strength 
Resistance factor for web crippling strength 

Section 

C3.l.2, C4.2 
D4.l 

D4.l 
C3.l.2 
D4.l 

C3.I.l, C4.2, D4.1 
B2.l 
B2.l, C3.5 
B2.3 
A5.l.5, ~2, ~2.1, ~2.2, 
E2.3, E2.4, E2.5, ~2.6, 
E3.1, E3.2, E3.3, ~3.4, 
E4,Fl 

A5.I.5, C3, C3.I.l, C3.I.2, 
C3.1.3, C3.3, C3.5, C5, C6.1, 
C6.3, D4.2, D4.3 

A3.3.1, A5.1.5, B6.1, C4, C5, 
C6.2, C6.3, D4.1, D4.3 

E5.1 
C2 
B6.2, C3.2, C3.3 
C3.4, C3.5 
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LOAD AND .RESISTANCE FACTOR DESIGN 
SPECIFICATION FOR COLD-FORMED STEEL 
STRUCTURAL MEMBERS 

A. GENERAL PROVISIONS 

A 1 Limits of Applicability and Terms 

A 1.1 Scope and Limits of Applicability 

This Load and Resistance Factor Design Specification is an alternate to the Speci
fication for the Design of Cold-Fonned Steel Structural Members of the American Iron 
and Steel Institute. 

This Specification shall apply to the design of structural members cold-fonned to 
shape from carbon or low-alloy steel sheet, strip, plate or bar not more than one inch in 
thickness and used for load-carrying purposes in buildings. It may also be used for struc
tures other than buildings provided appropriate allowances are made for thennal and/or 
dynamic effects. 

A1.2 Terms 

Where the following terms appear in this Specification they shall have the mean
ing herein indicated: 

(a) Stiffened or Partially Stiffened Compression Elements. A stiffened or partially stiff
ened compression element is a flat compression element (i.e., a plane compression 
flange of a flexural member or a plane web or flange of a compression member) of 
which both edges parallel to the direction of stress are stiffened either by a web, 
flange, stiffening lip, intennediate stiffener, or the like. 

(b) Unstiffened Compression Elements. An unstiffened compression element is a nat 
compression element which is stiffened at only one edge parallel to the direction of 
stress. 

(c) Multiple-Stiffened Elements. A multiple-stiffened element is an element that is 
stiffened between webs, or between a web and a stiffened edge, by means of inter
mediate stiffeners which are parallel to the direction of stress. A sub-element is the 
portion between adjacent stiffeners or between web and intennediate stiffener or be
tween edge and intennediate stiffener. 

(d) Flat-Width-to-Thickness Ratio. The tlat width of an element measured along its 
plane, divided by its thickness. 

(e) Effective Design Width. Where the flat width of an element is reduced for design 
purposes, the reduced design width is tenned the effective width or effective design 
width. 

(f) Thickness. The thickness, t, of any element or section shall be the base steel thick
ness, exclusive of coatings. 

(g) Torsional-Flexural Buckling. Torsional-flexural buckling is a mode of buckling in 
which compression members can bend and twist simultaneously. 

(h) Point-Symmetric Section. A point-symmetric section is a section symmetrical 
about a point (centroid) such as a Z-section having equal flanges. 
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(i) Yield Point. Yield point, Fy or Fsy, as used in this Specification shall mean yield 
point or yield strength. 

(j) Stress. Stress as used in this Specification means force per unit area. 

(k) Confirmatory Test. A confirmatory test is a test made, when desired, on mernbers, 
connections, and assemblies designed according to the provisions of Sections A 
through E of this Specification or its specific references, in order to compare actual 
versus calculated performance. 

(1) Performance Test. A performance test is a test made on structural members, con
nections, and assemblies whose performance cannot be determined by the provi
sions of Sections A through E of this Specification or its specific references. 

(m) Virgin Steel. Virgin steel refers to steel as received from the steel producer or ware
house before being cold worked as a result of fabricating operations. 

(n) Virgin Steel Properties. Virgin steel properties refer to mechanical properties of 
virgin steel such as yield point, tensile strength, and elongation. 

(0) Specified Minimum Yield Point. The specified minimum yield point is the lower 
limit of yield point which must be equalled or exceeded in a specification test to 
qualify a lot of steel for use in a cold-formed steel structural member designed at 
that yield point. 

(p ) Cold-Formed Steel Structural Members. Cold-formed steel structural members are 
shapes which are manufactured by press-braking blanks sheared from sheets, cut 
lengths of coils or plates, or by roll forming cold- or hot-rolled coils or sheets; both 
forming operations being performed at ambient room temperature, that is, without 
manifest addition of heat such as would be required for hot forming. 

(q) LRFD (Load and Resistance Factor Design). A method of proportioning structural 
components (members, connectors, connecting elements and assemblages) such 
that no applicable limit state is exceeded when the structure is subjected to all appro
priate load comoinations. 

(r) Design Strength. Factored resistance or strength (force, moment, as appropriate), 
<t>Rn, provided by the structural component. 

(s) Required Strength. Load effect (force, moment, as appropriate) acting on the struc
tural component determined by structural analysis from the factored loads (using 
most appropriate critical load combinations). 

A 1.3 Units of Symbols and Terms 

The Specification is written so that any compatible system of units may be used 
except where explicitly stated otherwise in the text of these provisions. 

A2 Non-Conformlng Shapes and Construction 

The provisions of the Specification are not intended to prevent the use of alternate 
shapes or constructions not specifically prescribed herein. Such alternates shall meet the 
provisions of Section F of the Specification and be approved by the appropriate building 
code authority. 

A3 Material 

A3.1 Applicable Steels 

This Specification requires the use of steel of structural quality as defmed in gen
eral by the provisions of the following specifications of the American Society for Testing 
and Materials: 
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ASTM A36/ A36M, Structural Steel 

ASTM A242/A242M, High-Strength Low-Alloy Structural Steel 

ASTM A441 M, High-Strength Low-Alloy Structural Manganese Vanadium Steel 

ASTM A446/A446M (Grades A, B, C, D, & F) Steel, Sheet, Zinc-Coated (Galvanized) 
by the Hot-Dip Process, Structural (Physical) Quality 

ASTM A500, Cold-Fonned Welded and Seamless Carbon Steel Structural Tubing in 
Rounds and Shapes 

ASTM A529/A529M, Structural Steel with 42 ksi Minimum Yield Point (1/2 in. Maxi
mum Thickness) 

ASTM A570/ A570M Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural Quality 

ASTM A572/ A572M, High-Strength Low-Alloy Columbium-Vanadium Steels of 
Structural Quality 

ASTM A588/A588M, High-Strength Low-Alloy Structural Steel with 50 ksi Minimum 
Yield Point to 4 in. Thick 

ASTM A606 Steel, Sheet and Sbip, High Strength, Low Alloy, Hot-Rolled and Cold
Rolled, with Improved Atmospheric Corrosion Resistance 

ASTM A607 Steel Sheet and Strip, High Strength, Low Alloy, Columbium or Vana
dium' or both, Hot-Rolled and Cold-Rolled 

ASTM A611 (Grades A, B, C, & D) Steel, Sheet, Carbon, Cold-Rolled, Structural Qual
ity 

ASTM A 715 (Grades 50 and 60) Sheet Steel and Strip, High-Strength, Low-Alloy, Hot
Rolled, With Improved Fonnability 

ASTM A 792 (Grades 33, 37, 40 & 50) Steel Sheet, Aluminum-Zinc Alloy-Coated by 
the Hot-Dip Process, General Requirements 

A3.2 Other Steels 

The listing in Section A3.1 does not exclude the use of steel up to and including 
one inch in thickness ordered or produced to other than the listed specifications provided 
such steel conforms to the chemical and mechanical requirements of one of the listed 
specifications or other published specification which establishes its properties and suit
ability, and provided it is subjected by either the producer or the purchaser to analyses, 
tests and other controls to the extent and in the manner prescribed by one of the listed 
specifications and Section A3.3. 

A3.3 Ductility 

Steels not listed in Section A3.1 and used for structural members and connections 
shall comply with one of the following ductility requirements: 

A3.3.1 The ratio of tensile strength to yield point shall not be less than 1.08, and the 
total elongation shall not be less than 10 percent for a two-inch gage length or 7 per
cent for an eight-inch gage length standard specimen tested in accordance with 
ASTM A370. If these requirements cannot be met, the following criteria shall be sat
isfied: (1) local elongation in a 1/2 inch gage length across the fracture shall not be less 
than 20%, (2) unifonn elongation outside the fracture shall not be less than 3%*. 
When material ductility is detennined on the basis of the local and unifonn elongation 
criteria, the use of such material is restricted to the design of purlins and girts** in 

• Further infonnation on the test procedures should be obtained from the Commentary . 
•• Horizontal structural members which support roof deck or panel covering and applied loads principally by bending. 
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accordance with Sections C3.l.l(a), C3.1.2, and C3.1.3. For purlins and girts subject 
to combined axial load and bending moment (Section C5), Pu/q,cPn shall not exceed 
0.15. 

A3.3.2 Steels conforming to ASTM A446 Grade E and A6ll Grade E and other steels 
which do not meet the provisions of Section A3.3.1 may be used for particular con
figurations provided (1) the yield strength, Fy, used for design in Chapters B, C and D 
is taken as 75 percent of the specified minimum yield point or 60 ksi, whichever is less 
and (2) the tensile strength, Fu, used for design in Chapter E is taken as 75 percent of 
the specified minimum tensile stress or 62 ksi, whichever is less. Alternatively, the 
suitability of such steels for the configuration shall be demonstrated by load tests in 
accordance with Section Fl. Design strengths based on these tests shall not exceed 
the strengths calculated according to Chapters B through E, using the specified mini
mum yield point, Fsy, for Fy and the specified minimum tensile strength, Fu. 

Design strengths based on existing use shall not exceed the strengths calcu
lated according to Chapters B through E, using the specified minimum yield point, 
Fsy, for Fy and the specified minimum tensile strength, Fu. 

A3.4 Delivered Minimum Thickness 

The uncoated minimum steel thickness of the cold-formed product as delivered to 
the job site shall not at any location be less than 95 percent of the thickness, t, used in its 
design; however, lesser thicknesses shall be permitted at bends, such as comers, due to 
cold-forming effects. 

A4 Loads 

A4.1 Dead Load 

The dead load to be assumed in design shall consist of the weight of steelwork and 
all material permanently fastened thereto or supported thereby. 

A4.2 Live or Snow Load 

The live or snow load shall be that stipulated by the applicable code or specifica
tion under which the structure is being designed or that dictated by the conditions in
volved. 

A4.3 Impact Load 

For structures carrying live loads which induce impact, the assumed live load shall 
be increased sufficiently to provide for impact. 

A4.4 Wind or Earthquake Loads 

Wind or earthquake load shall be that stipulated by the applicable code or specifi
cation under which the structure is being designed or that dictated by the conditions in
volved. 

A4.5 Pondlng 

Unless a roof surface is provided with sufficient slope toward points of free drain
age or adequate individual drains to prevent the accumulation of rainwater, the roof sys-
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tern shall be investigated by rational analysis to assure stability under ponding condi
tions. 

AS Structural Analysis and Design 

AS.1 Design Basis 

This Specification is based on the Load and Resistance Factor Design concept. 
Load and Resistance Factor Design is a method of proportioning cold-formed steel 
structural components (i.e., members, connectors and connections) such that any appli
cable limit state is not exceeded when the structure is subjected to any appropriate load 
combination. 

Two types of limit states are to be considered: 1) the limit state of the strength re
quired to resist the extreme loads during the intended life of the structure, and 2) the limit 
state of the ability of the structure to perform its intended function dUling its life. These 
limit states will be called the Limit State of Strength and the Limit State of Serviceability, 
respectively, in these criteria. 

AS.1.1 Limit State - Strength 

The design meets this Specification when the required strengths, as deter
mined from the assigned nominal loads which are multiplied by appropriate load fac
tors, are smaller than or equal to the design strength of each structural component. 

The design strength is equal to <l>Rn, where <I> is a resistance factor and Rn is the 
nominal strength determined according to the formulas given in Chapter C for mem
bers, in Chapter D for structural assemblies and in Chapter E for connections. Values 
of resistance factors <I> are given in Section A5.1.5 for the appropriate limit states gov
erning member and connection strength. 

AS.1.2 Limit State - Serviceability 

Serviceability is satisfactory if a nominal structural response (e.g. live load 
deflection) due to the applicable nominal loads is less than or equal to the appropriate 
acceptable or allowable value of this response. 

AS.1.3 Nominal Loads 

The nominal loads shall be the minimum design loads stipulated by the appli
cable code under which the structure is designed or dictated by the conditions in
volved. In the absence of a code, the loads and load combinations shall be those stipu
lated in the American Society of Civil Engineers Standard, ANSI/ASCE 7-88, Mini
mum Design Loads for Buildings and Other Structures. For design purposes, the 
loads stipulated by the applicable code shall be taken as nominal loads. 

AS.1.4 Load Factors and Load Combinations* 

The structure and its components must be designed for the appropriate most 
critical load combination. The following load combinations of the factored nominal 
loads shall be used in the computation of the required strengths: 

1. 1.4 D + L 
2. 1.2 D + 1.6 L + 0.5(Lr or S or Rr) 
3. 1.2 D + (1.4 Lr or 1.6 S or 1.6 Rr) + (0.5 Lor 0.8 W) 

* For roof and floor construction, recommended load combinations for dead load, weight of wet concrete, and construction 
load including equipment, workmen and formwork are given in Section AS.l of the Commentary. 
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4. 1.2 D + 1.3 W + 0.5 L + 0.5(Lr or S or Rr) 
5. 1.2 D + 1.5 E + (0.5 Lor 0.2 S) 
6. 0.9 D - (1.3 Wor 1.5 E) 

where D = nominal dead load 
E = nominal earthquake load 
L = nominal live load 
Lr = nominal roof live load 
Rr = nominal roof rain load 
S = nominal snow load 
W = nominal wind load (Exception: For wind load on individual purlins, 

girts, wall panels and roof decks, multiply the load factor for W by 0.9) 

Exception: The load factor for L in combinations (3), (4), and (5) shall be equal to 1.0 
for garages, areas occupied as places of public assembly, and all areas where the live 
load is greater than 100 psf. 

When the structural effects of F, H, P or T are significant, they shall be con-
sidered in design as the following factored loads: 1.3F, 1.6H, 1.2P, and 1.2T, where 

F =loads due to fluids with well-defined pressures and maximum heights 

H = loads due to the weight and lateral pressure of soil and water in soil 

P = loads, forces, and effects due to ponding 

T =self-straining forces and effects arising from contraction or expansion 
resulting from temperature change, shrinkage, moisture changes, creep in 
component materials, movement due to differential settlement, or 
combinations thereof. 

AS.1.S Resistance Factors 

The resistance factors to be used for determining the design strengths, <l>Rn, of 
structural members and connections shall be taken as follows: 

Type of Strength 

(a) Stiffeners 

Resistance 
Factor, <I> 

Transverse stiffeners .................................. 0.85 
Shear stiffeners* ..................................... 0.90 

(b) Tension members .................................... 0.95 
(c) Flexural members 

Bending strength 
For sections with stiffened or partially stiffened 
compression flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.95 
For sections with un stiffened compression flanges ........ 0.90 

Laterally unbraced beams .............................. 0.90 
Beams having one flange through-fastened to deck or 
sheathing (C- or Z-sections) . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.90 
Web design 

Shear strength* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.90 
Web Crippling 

For single unreinforced webs ...................... 0.75 
For I-sections .................................. 0.80 

*When hit S ~Ekv I Fy ,4» = 1.0 
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Resistance 
Factor, <I> 

(d) Concentrically loaded compression members ............... 0.85 
(e) Combined axial load and bending 

<l>c for compression ................................. 0.85 
<l>b for bending 

Using Section C3.1.1 ....................... 0.90 -0.95 
Using Section C3.1.2 ............................ 0.90 

(t) . Cylindrical tubular members 
Bending strength ..................................... 0.95 
Axial compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.85 

(g) Wall studs and wall stud assemblies 
Wall studs in compression ........................... 0.85 
Wall studs in bending 

For sections with stiffened or partially stiffened 
compression flanges ............................. 0.95 
For sections with un stiffened compression flanges 0.90 

(h) Welded connections 
Groove welds 

Tension or compression .......................... 0.90 
Shear (welds) .................................. 0.80 
Shear (base metal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.90 

Arc spot welds 
Welds ........................................... 0.60 
Connected part ............................... 0.50 -0.65 
Minimum edge distance . . . . . . . . . . . . . . . . . . . . . . .. 0.60 -0.70 

Arc seam welds 
Welds ........................................... 0.60 
Connected part .................................... 0.60 

Fillet welds 
Longitudinal loading (connected part) ............. 0.55 - 0.60 
Transverse loading (connected part) ................... 0.60 
Welds ........................................... 0.60 

Flare groove welds 
Transverse loading (connected part) ................... 0.55 
Longitudinal loading (connected part) . . . . . . . . . . . . . . . . .. 0.55 
Welds ........................................... 0.60 

Resistance Welds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.65 
(i) Bolted connections 

Minimum spacing and edge distance . . . . . . . . . . . . .. 0.60 -0.70 
Tension strength on net section 

With washers 
Double shear connection ....................... 0.65 
Single shear connection ........................ 0.55 

Without washers ................................ 0.65 
Bearing strength 

See Tables E3.3-1 and E3.3-2 ................ 0.55 -0.70 
Shear strength of bolts .............................. 0.65 
Tensile strength of bolts. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.75 

U) Shear rupture ........................................ 0.75 
(k) Connections to other materials (Bearing) .................. 0.60 
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AS.2 Yield Point and Strength Increase from Cold Work of Forming 

AS.2.1 Yield Point 

The yield point used in design, Fy, shall not exceed the specified minimum 
yield point of steels as listed in Section A3.1 or A3.2, as established in accordance 
with Chapter F, or as increased for cold work of forming in Section A5.2.2, or as re
duced for low ductility steels in Section A3.3.2. 

AS.2.2 Strength Increase from Cold Work of Forming 

Strength increase from cold work of forming shall be permitted by substitut
ing Fya for Fy, where Fya is the average yield point of the full section. Such increase 
shall be limited to Sections C3.1 (excluding Section C3. 1. l(b», C4, C5, C6 and 04. 
The limitations and methods for determining Fya are as follows: 
(a) For axially loaded compression members and flexural members whose propor

tions are such that the quantity p for load capacity is unity as determined accord
ing to Section B2 for each of the component elements of the section, the design 
yield stress, Fya, of the steel shall be determined on the basis of one of the follow
ing methods: 

(1) full section tensile tests [see paragraph (a) of Section F3.1] 

(2) stub column tests [see paragraph (b) of Section F3.1] 

(3) computed as follows: 
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Fya = CFyc + (1 - C) Fyf (Eq. A5.2.2-1) 

where 

Fya = Average yield point of the steel in the full section of compression 
members or full flange sections of flexural members 

C = For compression members, ratio of the total comer cross-sectional 
area to the total cross-sectional area of the full section; for flexural 
members, ratio of the total comer cross-sectional area of the control
ling flange to the full cross-sectional area of the controlling flange 

Fyf = Weighted average tensile yield point of the flat portions established in 
accordance with Section F3.2 or virgin steel yield point if tests are not 
made 

Fyc = BcFyv/(Rlt)m, tensile yield point of corners. This formula is (Eq. A5.2.2-2) 
applicable only when Fuv/Fyv ~ 1.2, Rlt ~ 7, and minimum included 
angle ~ 1200 

Be = 3.69 (Fuv/Fyv) - 0.819 (Fuv/Fyv)2 - 1.79 
m = 0.192 (Fuv/Fyv) - 0.068 
R = Inside bend radius. 

(Eq. A5.2.2-3) 
CEq. A5.2.2-4) 

Fyv = Tensile yield point of virgin steel* specified by Section A3 or estab
lished in accordance with Section F3.3 

Fuv = Ultimate tensile strength of virgin steel * specified by Section A3 or 
established in accordance with Section F3.3 

(b) For axially loaded tension members the yield point of the steel shall be deter
mined by either method (1) or method (3) prescribed in paragraph (a) of this Sec
tion . 

... Virgin steel refers to the condition (Le., coiled or straight) of the steel prior to the cold-fonning operation. 
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(c) The effect of any welding on mechanical properties of a member shall be deter
mined on the basis of tests of full section specimens containing within the gage 
length, such welding as the manufacturer intends to use. Any necessary allow
ance for such effect shall be made in the structural use of the member. 

A5.3 Durability 

A structure shall be designed to perform its required functions during its expected 
life for durability considerations. 

A6 Reference Documents 

The following documents are referenced in this Specification: 

1. American Society of Civil Engineers, ANSI/ASCE 7-88, "Minimum Design Loads 
in Buildings and Other Structures," American Society of Civil Engineers (ASCE), 
345 East 47th Street, New York, N.Y. 10017 

2 American Institute of Steel Construction, "Load and Resistance Factor Design 
Specification for Structural Steel Buildings", American Institute of Steel Construc
tion (AISC), One East Wacker Drive, Suite 31()(), Chicago, Illinois 60601-2001, 
September 1, 1986 

3 American Welding Society, A WS D1.3-89, "Structural Welding Code - Sheet 
Steel," American Welding Society (AWS), 550 N.W. Lejeune Road, Miami, Flor
ida 33135 

4. American Welding Society, A WS C 1.1 ~6, "Recommended Practices for Resis
tance Welding," American Welding Society (A WS), 550 N.W. Lejeune Road, Mi
ami, Florida 33135 

5. American Welding Society, AWS C1.3-70, "Recommended Practices for Resis
tance Welding Coated Low Carbon Steels," American Welding Society (AWS), 
550 N.W. Lejeune Road, Miami, Florida 33135 

6. American Society for Testing and Materials (ASTM), 1916 Race Street, Philadel
phia, Pennsylvania 19013: 

ASTM A36/ A36M-84a, Structural Steel 

ASTM A 194-88, Carbon and Alloy Steel Nuts for Bolts for High-Pressure and 
High-Temperature Service 

ASTM A242/A242M-85, High-Strength Low-Alloy Structural Steel 

ASTM A307-84 (Type A), Carbon Steel Externally and Internally Threaded Stan
dard Fasteners 

ASTM A325-84, High Strength Bolts for Structural Steel Joints 

ASTM A354-84 (Grade BD), Quenched and Tempered Alloy Steel Bolts, Studs, 
and Other Externally Threaded Fasteners (for diameter of bolt smaller than 1 h 
inch) 

ASTM A370-77 Mechanical Testing of Steel Products 

ASTM A441M-85, High-Strength Low-Alloy Structural Manganese Vanadium 
Steel 

ASTM A446/A446M-85 (Grades A, B, C, D, & F) Steel, Sheet, Zinc-Coated (Gal
vanized) by the Hot-Dip Process, Structural (Physical) Quality 

ASTM A449-84a, Quenched and Tempered Steel Bolts and Studs (for diameter of 
bolt smaller than 1/2 inch) 
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ASTM A490-84, Quenched and Tempered Alloy Steel Bolts for Structural Steel 
Joints. 

ASTM A500-84 , Cold-Fonned Welded and Seamless Carbon Steel Structural 
Tubing in Rounds and Shapes 

ASTM A529/A529M-85, Structural Steel with 42 ksi Minimum Yield Point (lh in. 
Maximum Thickness) 

ASTM A563-88a, Carbon and Alloy Steel Nuts 

ASTM A570/ A570M-85 Steel, Sheet and Strip, Carbon, Hot-Rolled, Structural 
Quality 

ASTM A572/A572M-85, High-Strength Low-Alloy Columbium-Vanadium 
Steels of Structural Quality 

ASTM A588/A588M-85, High-Strength Low-Alloy Structural Steel with 50 ksi 
Minimum Yield Point to 4 in. Thick 

ASTM A606-85 Steel, Sheet and Strip, High Strength, Low Alloy, Hot-Rolled and 
Cold-Rolled, with Improved Atmospheric Corrosion Resistance 

ASTM A607-85 Steel Sheet and Strip, High Strength, Low Alloy, Columbium or 
Vanadium, or both, Hot-Rolled and Cold-Rolled 

ASTM A611-85 (Grades A, B, C, & D) Steel, Sheet, Carbon, Cold-Rolled, Struc
tural Quality 

ASTM A715-85 (Grades 50 & 60) Sheet Steel and Strip, High-Strength, Low-Al
loy, Hot-Rolled, With Improved Fonnability 

ASTM A 792-85a (Grades 33, 37, 40 & 50) Steel Sheet, A1uminum-Zinc Alloy-
Coated by the Hot-Dip Process, General Requirements 

ASTM F436-86, Hardened Steel Washers 

ASTM F844-83(1988), Washers, Steel, Plain (Flat), Unhardened for General Use 

ASTM F959-85, Compressible Washer-Type Direct Tension Indicators for Use 
with Structural Fasteners 
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B. ELEMENTS 

81 Dimensional Limits and Considerations 

81.1 Flange Flat-Wldth-to-Thickness Considerations 

(a) Maximum Flat-Width-to-Thickness Ratios 
Maximum allowable overall flat-width-to-thickness ratios, wIt, disregarding inter
mediate stiffeners and taking as t the actual thickness of the element, shall be as fol
lows: 

(1) Stiffened compression element having one longitudinal edge connected to a 
web or flange element, the other stiffened by: 

Simple lip 

Any other kind of stiffener 
having Is > Ia and D/w < 0.8 
according to Section B4.2 

(2) Stiffened compression element 
with both longitudinal 
edges connected to other 
stiffened elements 

(3) Unstiffened compression element 
and elements with an edge stiffener having 
Is < Ia and D/w ~ 0.8 according 
to Section B4.2 

60 

90 

500 

60 

Note: Unstiffened compression elements that have wIt ratios exceeding approximately 
30 and stiffened compression elements that have wIt ratios exceeding approxi
mately 250 are likely to develop noticeable deformation at the full design 
strength, without affecting the ability of the member to develop required 
strength. 
Stiffened elements having wIt ratios larger than 500 can be used with adequate 
design strength to sustain the required loads; however, substantial deformations 
of such elements usually will invalidate the design formulas of this Specifica
tion. 

(b) F lange Curling 
Where the flange of a flexural member is unusually wide and it is desired to limit the 
maximum amount of curling or movement of the flange toward the neutral axis, the 
following formula applies to compression and tension flanges, either stiffened or 
unstiffened: 

wf = ~0.06ltdE/fav V(100cf/d) 

where 
Wf= Width of flange projecting beyond the web; 

or half of the distance between webs for box- or U-type beams 
t = Range thickness 
d =Depth of beam 

(Eq. B1.1-1) 
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Cr =Amount of curling* 
fav=Average stress in the full, unreduced flange width. (Where members are 

designed by the effective design width procedure, the average stress equals 
the maximum stress multiplied by the ratio of the effective design width to 
the actual width.) 

(c) Shear Lag Effects - Short Spans Supporting Concentrated Loads 
Where the span of the beam is less than 30wr (Wf as defined below) and it carries one 

concentrated load, or several loads spaced farther apart than 2Wf, the effective de
sign width of any flange, whether in tension or compression, shall be limited to the 

following: 

TABLE B1.1(c) 

SHORT, WIDE FLANGES 
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MAXIMUM ALLOWABLE RATIO OF EFFECTIVE DESIGN WIDTH TO ACTUAL WIDTH 

L/Wf Ratio L/Wf Ratio 

30 1.00 14 0.82 

25 0.96 12 0.78 

20 0.91 10 0.73 
18 0.89 8 0.67 
16 0.86 6 0.55 

where 
L = Full span for simple beams; or the distance between inflection points for 

continuous beams; or twice the length of cantilever beams. 
Wr = , Width of flange projection beyond the web for I-beam and similar sec

tions or half the distance between webs of box or V-type sections. 

For flanges of I-beams and similar sections stiffened by lips at the outer 

edges, Wr shall be taken as the sum of the flange projection beyond the 
web plus the depth of the lip. 

B1.2 Maximum Web Depth-to-Thickness Ratio 

The ratio, hIt, of the webs of flexural members shall not exceed the following limi
tations: 

(a) 
(b) 

For unreinforced webs: (h!t)max = 200 
For webs which are provided with transverse stiffeners satisfying the 
requirements of Section B6.1: 

(1) When using bearing stiffeners only, (h!t)max = 260 

(2) When using bearing stiffeners and intermediate stiffeners, (h/t)max = 300 

In the above, 
h = Depth of flat portion of web measured along the plane of web 

... The amount of curling that can be tolerated will vary with different kinds of sections and must be established by the 
designer. Amount of curling in the order of 5 percent of the depth of the section is usually not considered exces
sive. 
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t = Web thickness 
Where a web consists of two or more sheets, the hit ratio shall be com
puted for the individual sheets. 

82 Effective Widths of Stiffened Elements 

82.1 Uniformly Compressed Stiffened Elements 

(a) Load Capacity Determination 
The effective widths, b, of uniformly compressed elements shall be determined 
from the following formulas: 

b =w when A ~ 0.673 
b =pw when A> 0.673 

where 
w = Flat width as shown in Figure B2.1-1 
p =(1 - 0.22/A )/A 

A is a slenderness factor determined as follows: 

A = l.052 (w) ff 
{k t ~E 

where 
t = Thickness of the uniformly compressed stiffened elements, and 
f for load capacity determination is as follows: 

For flexural members: 

(1) If Procedure I of Section C3.1.1 is used, f = Fy if the initial yielding is in com
pression in the element considered. 
If the initial yielding is in tension, the compressive stress, f, in the element 
considered shall be determined on the basis of the effective section at My 
(moment causing initial yield). 

(2) If Procedure II of Section C3 .1.1 is used then f is the stress in the element con
sidered at Mn determined on the basis of the effective section. 

(3) If Section C3.1.2 is used, then f is the stress Me as described in that Section 
in determining Se. Sf 

For compression members f is taken equal to Fn as determined in Section C4 or D4.1 
as applicable. 

E = Modulus of elasticity 
k = Plate buckling coefficient 

= 4 for stiffened elements supported by a web on each longitudinal edge. 
Values for different types of elements are given in the applicable sec
tions. 

(b) Deflection Determination 
The effective widths, bd, used in computing deflection shall be determined from the 
following formulas: 

bd = w when A ~ 0.673 
bd = pw when A > 0.673 

where 

(Eq. B2.I-l) 
(Eq. B2.1-2) 

(Eq. B2.1-3) 

(Eq. B2.1-4) 

(Eq. B2.l-5) 
(Eq. B2.1-6) 
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Effective Element, b, and Stress, f, 
on Effective Elements 

Figure 82.1-1 Stiffened Elements 

w = Flat width 
p =Reduction factor determined by either of the following two procedures: 

(1) Procedure I. 
A low estimate of the effective width may be obtained from Eqs. B2.1-3 

and B2.1-4 where fd is substituted for f where fd is the computed compres

sive stress in the element being considered. 

(2) Procedure II. 

For stiffened elements supported by a web on each longitudinal edge an 
improved estimate of the effective width can be obtained by calculating p 

as follows: 

p = 1 when A, ~ 0.673 
P =(1.358 - 0.461/A,)JA, when 0.673 < A, < Ac 
p = (0.41 + 0.59 ~Fy / fd - 0.22/A,)/A, when A, ~ Ac 

p shall not exceed 1.0 for all cases. 
where 

Ac =0.256 + 0.328 (w/t)~Fy / E 

and A. is as defined by Eq. B2.I-4 except that fd is substituted for f. 

82.2 Uniformly Compressed Stiffened Elements with Circular Holes 

(a) Load Capacity Determination 
The effective width, b, of stiffened elements with uniform compression having cir

cular holes shall be determined as follows: 

for 0.50 ~ ~ ~ 0, and w ~ 70 
w t 

center-to-center spacing of holes> 0.50w, and 3dh, 

b =W - dh when A. ~ 0.673 

W[I- (0.22) _ (0.8dh)] 

b = A. w when A. > 0.673 
A. 

b shall not exceed w - dh 
where 

(Eq. B2.1-7) 
(Eq. B2.I-8) 
(Eq. B2.1-9) 

(Eq. B2.I-IO) 

(Eq. B2.2-l) 

(Eq. B2.2-2) 
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w = Flat width 

dh =Diameter of holes 
A is as defined in Section B2.1. 

(b) Deflection Determination 
The effective width, bd, used in deflection calculations shall be equal to b deter
mined in accordance with Procedure I of Section B2.2a except that fd is substituted 
for f, where fd is the computed compressive stress in the element being considered. 

82.3 Effective Widths of Webs and Stiffened Elements with Stress Gradient 

(a) Load Capacity Determination 
The effective widths, bl and b2, as shown in Figure B2.3-1 shall be determined from 
the following formulas: 

bl =bJ(3 - 'V) (Eq. B2.3-1) 
For 'V ~ - 0.236 

In = be/2 (Eq. B2.3-2) 
bl + b2 shall not exceed the compression portion of the web calculated on the 
basis of effective section 

For 'V > - 0.236 

b2=be - bl (Eq. B2.3-3) 
where 

be =Effective width b determined in accordance with Section B2.I with fl sub-
stituted for f and with k determined as follows: 

k =4 + 2(1 - 'V)3 + 2(1- 'V) (Eq. B2.3-4) 
'V =f2/fl 
fl, f2 = Stresses shown in Figure B2.3-1 calculated on the basis of effective sec-

tion. 
f I is compression ( + ) and f2 can be either tension (-) or compression. In case f 1 

and f2 are both compression, fl ~ f2 
(b) Deflection Determination 

The effective widths in computing deflections at a given load shall be determined in 
accordance with Section B2.3a except that fdl and fd2 are substituted for fl and f2, 
where fd I, fd2 = Computed stresses f I and f2 as' shown in Figure B2.3-I. Calculations 
are based on the effective section at the load for which deflections are determined. 

83 Effective Widths of Uns'tlffened Elements 

83.1 Uniformly Compressed Unstiffened Elements 

(a) Load Capacity Determination 
Effective widths, b, of un stiffened compression elements with uniform compres
sion shall be determined in accordance with Section B2.la with the exception that k 
shall be taken as 0.43 and w as defmed in Figure B3.I-I. 

(b) Deflection Determination 
The effective widths used in computing deflections shall be determined in accor
dance with Procedure I of Section B2.1 b except that fd is substituted for f and k = 
0.43. 
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f 2(tension) 

Actual Element 

Effective Elements and Stresses on 
Effective Elements 

:;y---

Figure 82.3-1 Stiffened Elements with Stress Gradient and Webs 

w 

( 
Actual Element 

~I 

Effective Element and Stress 
on Effective Element 

Figure 83.1-1 Unstlffened Element with Uniform Compression 

83.2 Unstiffened Elements and Edge Stiffeners with Stress Gradient 

(a) Load Capacity Determination 
Effective widths, b, of unstiffened compression elements and edge stiffeners with 
stress gradient shall be determined in accordance with Section B2.1a with f = f3 as in 
Figure B4-2 in the element and k = 0.43. 

(b) Deflection Determination 
Effective widths, b, of unstiffened compression elements and edge stiffeners with 
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stress gradient shall be detennined in accordance with Procedure I of Section B2.1 b 
except that fd3 is substituted for f and k = 0.43. 

84 Effective Widths of Elements with an Edge Stiffener or One Intermediate 
Stiffener 

The following notation is used in this section. 
S = 1. 28vfE I f (Eq. B4-l) 
k = Buckling coefficient 
bo = Dimension defined in Figure B4-l 
d, w, D = Dimensions defined in Figure B4-2 
ds = Reduced effective width of the stiffener as specified in this section. ds, cal-

culated according to Section B4.2, is to be used in computing the overall 
effective section properties (see Figure B4-2) 

d's = Effective width of the stiffener calculated according to Section B3.1 (see 
Figure B4-2) 

CI, C2 = Coefficients defined in Figure B4-2 
As = Reduced area of the stiffener as specified in this section. As is to be used in 

computing the overall effective section properties. The centroid of the stiff
ener is to be considered located at the centroid of the full area of the stiffen
er, and the moment of inertia of the stiffener about its own centroidal axis 
shall be that of the full section of the stiffener. 

Ia = Adequate moment of inertia of stiffener, so that each component element 
will behave as a stiffened element. 

Is, A's = Moment of inertia of the full stiffener about its own centroidal axis parallel 

Is 
A's 

to the element to be stiffened and the effective area of the stiffener, respec
tively. For edge stiffeners the round corner between the stiffener and the 
element to be stiffened shall not be considered as a part of the stiffener. 

For the stiffener shown in Figure B4-2: 

= (d3t sin29)/12 
= d'st 

84.1 Uniformly Compressed Elements with an Intermediate Stiffener 

(a) Load Capacity Determination 

Case I: bolt ~ S 
la =0 (no intennediate stiffener needed) 
b =W 

As =A's 
Case II: S < bolt < 3S 

lalt4 = [50(bo/t)/S] - 50 
b and As are calculated according to Section B2.1a where 

k = 3 (Is/la) 112+ 1 ~ 4 
As=A's(ls/la) ~ A's 

Case III: bolt ~ 3S 
lalt4 = [128(bo/t)/S] - 285 
b and As are calculated according to Section B2.1a where 

k =3(ls/la)1/3 + 1 ~ 
As= A's (Is/la) ~ A's 

(b) Deflection Determination 
Effective widths shall be detennined as in Section B4.1a except that fd is substituted 
for f. 

(Eq. B4-2) 
(Eq. B4-3) 

(Eq. B4.1-l) 
(Eq. B4.1-2) 
(Eq. B4.1-3) 
(Eq. B4.1-4) 
(Eq. B4.1-5) 
(Eq. B4.1-6) 

(Eq. B4.l-7) 
(Eq. B4.1-8) 

(Eq. B4.l-9) 

(Eq. B4.1-10) 
(Eq. B4.1-11) 
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Figure 84-1 Elements with Intermediate Stiffener 

84.2 Uniformly Compressed Elements with an Edge Stiffener 

(a) Load Capacity Determination 

Case I: w/t:5 S/3 
Ia =0 (no edge stiffener needed) 
b =w 
ds =d's for simple lip stiffener 
As = A's for other stiffener shapes 

Case II: S/3 < wit < S 
Ialt4 =399{ [(w/t)/S] - 0.33}3 
n =1/2 
C2 =Is/la:5 1 
CI =2- C2 
b shall be calculated according to Section B2.1 where 

k =[4.82 - 5(D/w)](ls/la)n + 0.43 :5 5.25 - 5(D/w) 
for 0.8 ~ D/w > 0.25 

k =3.57(ls/la)n + 0.43 :5 4.0 
for (D/w) :5 0.25 

ds = d's (ls/la) :5 d's 
for simple lip stiffener 

As=A's (ls/la) :5 A's 
for other stiffener shape 

Case III: wit ~ S 
Ialt4 =[115 (w/t)/S] + 5 
CI, C2, b, k, ds, As are calculated per Case II with n = 1/3. 

(b) Deflection Determination 
Effective widths shall be determined as in Section B4.2a except that fd is substituted 
forf. 

(Eq. B4.2-1) 
(Eq. B4.2-2) 
(Eq. B4.2-3) 
(Eq. B4.2-4) 
(Eq. B4.2-5) 

(Eq. B4.2-6) 

(Eq. B4.2-7) 
(Eq. B4.2-8) 

(Eq. B4.2-9) 

(Eq. B4.2-10) 

(Eq. B4.2-11) 

(Eq. B4.2-12) 

(Eq. B4.2-13) 
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Figure 84-2 Elements with Edge Stiffener 
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used for Calculating 
Overall Section 
Properties 

85 Effective Widths of Edge Stiffened Elements with Intermediate Stiffeners 
or Stiffened Elements with More Than One Intermediate Stiffener 

For the determination of the effective width, the intermediate stiffener of an edge stiff
ened element or the stiffeners of a stiffened element with more than one stiffener shall be 
disregarded unless each intermediate stiffener has the minimum Is as follows: 

Imi. =[3.66~((W It)2 -(O.136E)/Fy )]t4 (Eq. BS-J) 

but not less than 18.4 t4 
where 

w/t= Width-thickness ratio of the larger stiffened sub--element 
Is = Moment of inertia of the full stiffener about its own centroidal axis parallel to the 

element to be stiffened 
(a) If the spacing of intermediate stiffeners between two webs is such that for the sub

element between stiffeners b < w as determined in Section B2.1, only two interme
diate stiffeners (those nearest each web) shall be considered effective. 

(b) If the spacing of intermediate stiffeners between a web and an edge stiffener is such 
that for the sub-element between stiffeners b < w as determined in Section B2.1, 
only one intennediate stiffener, that nearest the web, shall be considered effective. 

(c) If intermediate stiffeners are spaced so closely that for the elements between stiffen
ers b = w as determined in Section B2.1, all the stiffeners may be considered effec
tive. In computing the flat-width to thickness ratio of the entire multiple-stiffened 
element, such element shall be considered as replaced by an "equivalent element" 
without intennediate stiffeners whose width, bo, is the full width between webs or 
from web to edge stiffener, and whose equivalent thickness, is, is determined as fol-
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lows: 

where 

Isf = Moment of inertia of the full area of the multiple-stiffened element, including 
the intermediate stiffeners, about its own centroidal axis. The moment of inertia of 
the entire section shall be calculated assuming the "equivalent element" to be lo
cated at the centroidal axis of the multiple stiffened element, including the interme
diate stiffener. The actual extreme fiber distance shall be used in computing the sec
tion modulus. 

(d) If wIt> 60, the effective width, be, of the sub-element or element shall be deter
mined from the following formula: 

be = ~-0.10[w -60] 
t t t 

where 
w/t=flat-width ratio of sub-element or element 
b =effective design width determined in accordance with the provisions of 

Section B2.1 

be =effective design width of sub-element or element to be used in design 
computations 

For computing the effective structural properties of a member having compression 
sub-elements or element subject to the above reduction in effective width, the area of 
stiffeners (edge stiffener or intermediate stiffeners) shall be considered reduced to an ef
fective area as follows: 

For 60 < wIt < 90: 
Aef=a.Ast 

where 

a=(3-2b./w)- 3~[1- ~ I 7] 
For wIt ~ 90: 

Aef= (bJw) Ast 

In the above expressions, Aef and Ast refer only to the area of the stiffener section, 
exclusive of any portion of adjacent elements. 

The centroid of the stiffener is to be considered located at the centroid of the full 
area of the stiffener, and the moment of inertia of the stiffener about its own centroidal 
axis shall be that of the full section of the stiffener. 

86 Stiffeners 

86.1 Transverse Stiffeners 

Transverse stiffeners attached to beam webs at points of concentrated loads or re
actions, shall be designed as compression. members. Concentrated loads or reactions 
shall be applied directly into the stiffeners, or each stiffener shall be fitted accurately to 
the flat portion of the flange to provide direct load bearing into the end of the stiffener. 
Means for shear transfer between the stiffener and the web shall be provided according to 
Chapter E. Required strengths for the concentrated loads or reactions shall not exceed 
the design strength, ~Pn, where ~ = 0.85 and Pn is the smaller value given by (a) and (b) 
as follows: 
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(Eq. B5-2) 

(Eq. BS-3) 

(Eq. BS-4) 

(Eq. BS-S) 

(Eq. B5-6) 
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(a) Pn =FwyAc (Eq. B6.1-1) 

(b) Pn =Nominal axial strength evaluated according to Section C4(a) with Ae replaced 
by Ab 

where 

Ac = 18t2 + As, for transverse stiffeners at interior support and under concentrated (Eq. B6.1-2) 
load 

Ac = IOt2 + As, for transverse stiffeners at end support 
Fwy=Lower value of beam web, Fy or stiffener section, Fys 

Ab = bIt + As, for transverse stiffeners at interior support and under concentrated 
load 

Ab = b2t + As, for transverse stiffeners at end support 

As = Cross sectional area of transverse stiffeners 
bl =25t [O.0024(LsJt) + 0.72] $; 25t 
b2 = 12t [O.0044(LsJt) + 0.83] $; 12t 

Lst = Length of transverse stiffener 

t = Base thickness of beam web 

The wIts ratio for the stiffened and unstiffened elements of cold-formed steel 

transverse stiffeners shall not exceed 1.28 ~(E/Fys) and 0.37~(E/Fys), respectively, 
where Fys is the yield stress, Fy, and ts the thickness of the stiffener steel. 

86.2 Shear Stiffeners 
Where shear stiffeners are required, the spacing shall be such that the required 

shear strength shall not exceed the design shear strength, <\>v V n, pennitted by Section 
C3.2, and the ratio a/h shall not exceed [260/(h/t)]2 nor 3.0. 

The actual moment of inertia, Is, of a pair of attached shear stiffeners, or of a single 
shear stiffener, with reference to an axis in the plane of the web, shall have a minimum 
value of 

Ismin = 5ht3[h/a - 0.7(a/h)] ~ (h/50)4 

The gross area of shear stiffeners shall be not less than 

Ast = I-Cv [~_ (a/h)2 ]YDht 

2 h (a/h)+~I+(a/h)2 
where 

Cv = 45,000kv when Cv S 0.8 
Fy (h I t)2 

Cv = 190 ( ~J when Cv > 0.8 
hit ~F; 

kv = 4.00+ 5.34 when a/h $; 1.0 
(a I h)2 

kv =5.34+ 4.002 when a/h> 1.0 
(al h) 

a = Distance between transverse stiffeners 

y = Yield point of web steel 

Yield point of stiffener steel 

D = 1.0 for stiffeners furnished in pairs 

(Eq. B6.1-3) 

(Eq. B6.1-4) 

(Eq. B6.1-5) 

(Eq. B6.1-6) 

(Eq. B6.1-7) 

(Eq. B6.2-1) 

(Eq. B6.2-2) 

(Eq. B6.2-3) 

(Eq. B6.2-4) 

(Eq. B6.2-5) 

(Eq. B6.2-6) 
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D = 1.8 for single-angle stiffeners 
D =2.4 for single-plate stiffeners 
t and h are as defined in Section B 1.2 

86.3 Non-Conforming Stiffeners 

The design strength of members with transverse stiffeners that do not meet the re
quirements of Section B6.1 or B6.2, such as stamped or rolled-in transverse stiffeners 
shall be determined by tests in accordance with Chapter F of this Specification. 
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c. MEMBERS 

C1 Properties of Sections 

Properties of sections (cross-sectional area, moment of inertia, section modulus, radius 
of gyration, etc.) shall be determined in accordance with conventional methods of structural 
design. Properties shall be based on the full cross section of the members (or net sections 
where the use of net section is applicable) except where the use of a reduced cross section, or 
effective design width, is required. 

C2 Tension Members 

For axially loaded tension members, the design tensile strength, <\>tTn, shall be deter
mined as follows: 

<\>t = 0.95 
Tn = AnFy (Eq. C2-1) 

where 
Tn = Nominal strength of member when loaded in tension 
<\>t = Resistance factor for tension 
An = Net area of the cross section 
Fy = Design yield stress as determined in Section A5.2.1 

For tension members using bolted connections, the design tensile strength shall also be 
limited by Section E3.2. 

C3 Flexural Members 

C3.1 Strength for Bending Only 

The design flexural strength, <\>bMn, shall be the smallest of the values calculated 
according to Sections C3.1.1, C3.1.2, and C3.1.3. 

C3.1.1 Nominal Section Strength 

The design flexural strength, <\>bMn, shall be determined with <\>b = 0.95 for sections 
with stiffened or partially stiffened compression flanges and 0.90 for sections with 
un stiffened compression flanges, and the nominal section strength, Mn, calculated 
either on the basis of initiation of yielding in the effective section (Procedure I) or on 
the basis of the inelastic reserve capacity (Procedure II) as applicable. 

(a) Procedure I - Based on Initiation of Yielding 
Effective yield moment based on section strength, Mn, shall be determined as 
follows: 

where 

Fy = Design yield stress as determined in Section A5.2.1 
Se = Elastic section modulus of the effective section calculated with the 

extreme compression or tension fiber at Fy 

(b) Procedure n - Based on Inelastic Reserve Capacity 
The inelastic flexural reserve capacity may be used when the following condi
tions are met: 

(Eq. C3.1.1-l) 
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(1) The member is not subject to twisting or to lateral, torsional, or torsional
flexural buckling. 

(2) The effect of cold forming is not included in determining the yield point Fy. 
(3) The ratio of the depth of the compressed portion of the web to its thickness 

does not exceed Ai. 
(4) The shear force does not exceed 0.35Fy times the web area, ht. 
(5) The angle between any web and 'the vertical does not exceed 30 degrees. 

The nominal flexural strength, Mn, shall not exceed either 1.25 SeFy determined 
according to Procedure I or that causing a maximum compression strain of Cyey 
(no limit is placed on the maximum tensile strain). 

where 

ey = Yield strain = Fy/E 
E = Modulus of elasticity 
Cy =Compression strain factor determined as follows: 

(a) Stiffened compression elements without intermediate stiffeners 
Cy = 3 for wIt ~ Ai 

Cy = 3 - 2( wIt - Ai) for Ai < w < A2 
A2 -Ai t 

Cy = 1 for w It ~ A2 
where 
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At = 1.11 
~Fy/E 

A _ 1.28 

(Eq. C3.1.1-2) 

2 - ~Fy IE 
(b) Unstiffened compression elements 

Cy = 1 
(c) Multiple-stiffened compression elements and compression elements 

with edge stiffeners 
Cy = 1 

When applicable, effective design widths shall be used in calculating section prop
erties. Mn shall be calculated considering equilibrium of stresses, assuming an ideally 
elastic-plastic stress-strain curve which is the same in tension as in compression, as
suming small deformation and assuming that plane sections remain plane during 
bending. Combined bending and web crippling shall be checked by provisions of 
Section C3.5. 

C3.1.2 Lateral Buckling Strength 

The design strength of the laterally unbraced segments of singly-, doubly-, and 
point-symmetric sections* subject to lateral buclding, $bMn shall be determined with 
$b = 0.90 and Mn calculated as follows: 

Me 
Mn =Sc-

Sf 

where 

(Eq. C3.1.1-3) 

(Eq. C3.1.2-1) 

* The provisions of this Section apply to 1-, Z-. C- and other singly-symmetric section flexural members (not 

including multipl~web deck, U- and closed box-type members. and curved or arch members). The provi

sions of this Section do not apply to laterally unbraced compression flanges of otherwise laterally stable sec

tions. Refer to Cl.t.3 for C- and Z-purlins in which the tension flange is attached to sheathing. 
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Sf = Elastic section modulus of the full unreduced section for the extreme com
pression fiber 

Se = Elastic section modulus of the effective section calculated at a stress Me / Sf 
in the extreme compression fiber 

Me = Critical moment calculated according to (a) or (b) below: 

(a) For singly-, doubly-, and point-symmetric sections: 

For Me > O.5My 

Me =My(I-~J 
4Me 

For Me S; O.5My 

Me = Me 
where 

My = Moment causing initial yield at the extreme compression fiber 
of the full section 

=SfFy 

Me =Elastic critical moment computed by the following equations: 

(Eq. C3.1.2-2) 

(Eq. C3.1.2-3) 

(Eq. C3.1.2-4) 

Me =CbroA~CJeyCJt for bending about the symmetry axis. For (Eq. C3.1.2-5) 
singly-symmetric sections, x-axis is the axis of symmetry 
oriented such that the shear center has a negative x-coordinate. 
For point-symmetric sections, use 0.5 Me. 

Alternatively, Me can be calculated using the formula for dou
bly-symmetric I-sections or point-symmetric sections given in 
(b) 

Me =CsACJeJ j + Cs~ j2 + r;( CJt / CJex ) ] / CTF for bending about the (Eq. C3.1.2-6) 
centroidal axis perpendicular to the symmetry axis for singly 
-symmetric sections only 

Cs = + 1 for moment causing compression on the shear center side of 

Cs 

CJex 

CJey 

CJt 

the centroid 
=-1 for moment causing tension on the shear center side of the 

centroid 
1t2E = 

= 
(KyLy / ry)2 

= _1_ [GJ + 1t
2
ECw ] 

Ar; (K t L t )2 
= Full cross-sectional area 
= Bending coefficient which can conservatively be taken as unity, 

or calculated from 
= 1.75 + 1.05(MtlM2) + 0.3 (MtlM2) 2 S; 2.3 
where 

Ml is the smaller and M2 the larger bending moment at the ends 
of the unbraced length, taken about the strong axis of the mem
ber, and where Ml/M2, the ratio of end moments, is positive 

(Eq. C3.1.2-7) 

(Eq. C3.1.2-8) 

(Eq. C3.1.2-9) 
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when Ml and M2 have the same sign (reverse curvature bend
ing) and negative when they are of opposite sign (single curva
ture bending). When the bending moment at any point within 
an unbraced length is larger than that at both ends of this length, 
and for members subject to combined axial load and bending 
moment (Section C5), Cb shall be taken as unity. 

E =Modulus of elasticity 
CTF =0.6 - 0.4 (MdM2) 

where 
MI is the smaller and M2 the larger bending moment at the ends 
of the unbraced length, and where M dM2, the ratio of end mo
ments, is positive when MI and M2 have the same sign (reverse 
curvature bending) and negative when they are of opposite sign 
(single curvature bending). When the bending moment at any 
point within an unbraced length is larger than that at both ends 
of this length, and for members subject to combined axial load 
and bending moment (Section C5), CTF shall be taken as unity. 

ro =Polar radius of gyration of the cross section about the shear cen-
ter 
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=~r: +r; +x~ (Eq. C3.1.2-10) 
rx, ry =Radii of gyration of the cross section about the centroidal prin-

cipal axes 
G = Shear modulus 
Kx, Ky, K t =Effective length factors for bending about the x- and y-axes, 

and for twisting 
Lx, Ly, Lt = Unbraced length of compression member for bending about the 

x- and y-axes, and for twisting 
Xo = Distance from the shear center to the centroid along the princi-

pal x-axis, taken as negative 
J = St. Venant torsion constant of the cross section 
Cw 

j 

=Torsional warping constant of the cross section 

= -1-[1 X3dA+J xy2dA]-xo 
2Iy A A 

(b) For 1- or Z-sections bent about the centroidal axis perpendicular to the web (x
axis): 
In lieu of (a), the following equations may be used to evaluate Me: 
For Me ~ 2.78My 

Me = My 

For 2.78My > Me > O.56My 

M = 10 M (l_lOMy ) 
c 9 y 36Me 

For Me ~ 0.56My 

Me = Me 

where 

(Eq. C3.1.2-11) 

(Eq.C3.1.2-12) 

(Eq. C3.1.2-13) 

(Eq.C3.1.2-14) 
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Me = Elastic critical moment detennined either as defined in (a) above or 
as follows: 

_ 1t
2
ECbdIye for doubly-symmetric I-sections (Eq. C3.1.2-15) 

- L2 

= 1t
2
ECbdI ye for point-symmetric Z-sections (Eq. C3.1.2-16) 
2L2 

d = Depth of section 
L = Unbraced length of the member 
lye = Moment of inertia of the compression portion of a section about the 

gravity axis of the entire section parallel to the web, using the full un
reduced section 

Other tenns are defined in (a). 

C3.1.3 Beams Having One Flange Through-Fastened to Deck or 
Sheathing 

This section does not apply to a continuous beam for the region between inflection 
points adjacent to a support, or to a cantilever beam. 

The design flexural strength, </>bMn, of a Channel or Z-section loaded in a plane 
parallel to the web, with the tension flange attached to deck or sheathing and with the 
compression flange laterally unbraced shall be detennined with </>b = 0.90 and the 
nominal flexural strength, Mn, calculated as follows: 

Mn = RSeFy 

where 

R = 0.40 for simple span C sections 
= 0.50 for simple span Z sections 
=0.60 for continuous span C sections 
=0.70 for continuous span Z sections 

Se and Fy are defined in Section C3.1.1 

The reduction factor, R, shall be limited to roof and wall systems meeting the fol-
lowing conditions: 

(1) Member depth less than 11.5 inches 
(2) The flanges are edge stiffened compression elements 
(3) 60 ~ depth/thickness ~ 170 
(4) 2.8 ~ depth/flange width ~ 4.5 
(5) 16 ~ flat width/thickness of flange ~ 43 
(6) For continuous span systems, the lap length at each interior support in each 

direction (distance from center of support to end of lap) shall not be less 
than: 

1.5d for Zee sections 
3.0d for Channel sections 

(7) Member span length no greater than 33 feet 
(8) For continuous span systems, the longest member span shall not be more 

than 20% greater than the shortest span 
(9) Both flanges are prevented from moving laterally at the supports 
(10) Roof or wall panels shall be steel sheets, minimum of 0.0 19 in. coated thick

ness, having a minimum rib depth of 1 in., spaced a maximum of 12 in. on 

(Eq. C3.1.3-1) 
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centers and attached in a manner to effectively inhibit relative movement 
between the panel and purlin flange 

( 11) Insulation shall be glass fiber blanket 0 to 6 inches thick compressed be
tween the member and panel in a manner consistent with the fastener being 
used 

(12) Fastener type: minimum No. 12 self-drilling or self-tapping sheet metal 
screws or 3/16 - in. rivets, washers 1/2 in. diameter 

(13) Fasteners shall not be standoff type screws 
(14) Fasteners shall be spaced not greater than 12 in. on centers and placed near 

the center of the beam flange 

If variables fall outside any of the above stated limits, the user must perfonn full 
scale tests in accordance with Section Fl of the Specification, or apply another ra
tional analysis procedure. In any case, the user is permitted to perfonn tests, in accor
dance with Section PI, as an alternate to the procedure described in this section. 

C3.2 Strength for Shear Only 

The design shear strength, <l>v V n, at any section shall be calcuated as follows: 

(a) For hit ~ ~Ekv I Fy 

<l>v = 1.0 

Vn =0.577Fyht 

(b) For ~Ekv I Fy < hit ~ 1.415~Ekv I Fy 

<l>v =0.90 

Vn=0.64t2~ 

(c) For hit > 1.415~Ekv I Fy 

where 

<l>v =0.90 

V n =0.905Ekvt3/h 

$v = Resistance factor for shear 

V n = Nominal shear strength of beam 

t = Web thickness 

h = Depth of the flat portion of the web measured along the plane of the web 

kv = Shear buckling coefficient determined as follows: 

1. For unreinforced webs, kv = 5.34 

2. For beam webs with transverse stiffeners satisfying the requirements of 

Section B6 

when alb ~ 1.0 

kv =4.00+ 5.34 
(a I h)2 

when alb > 1.0 

kv =5.34+ 4.002 (a /h) 
where 

a =the shear panel length for unreinforced web element 

=distance between transverse stiffeners for reinforced web elements. 
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(Eq. C3.2.-l) 

(Eq. C3.2-2) 

(Eq. C3-2.3) 

(Eq. C3.2--4) 

(Eq. C3.2-5) 
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For a web consisting of two or more sheets, each sheet shall be considered as a 
separate element carrying its share of the shear force. 

C3.3 Strength for Combined Bending and Shear 

For beams with unreinforced webs, the required flexural strength, Mu, and the re
quired shear strength, V u, shall satisfy the following interaction equation: 

( 
Mu J2 (lJ2 < 1 0 (Eq. C3.3-1) 

<1>bM nxo + <1> v Vn -. 

For beams with transverse web stiffeners, the required flexural strength, Mu, and 
the required shear strength, Vu, shall not exceed <l>bMn and <l>vVn, respectively. When 
MuI( <l>bMnxo) > 0.5 and V uI( <l>v V n} > 0.7, then Mu and V u shall satisfy the following interac
tion equation: 

In the above: 
<1>b = Resistance factor for bending (See Section C3.1) 
<1>v = Resistance factor for shear (See Section C3.2) 
Mn = Nominal flexural strength when bending alone exists 
Mnxo = Nominal flexural strength about the centroidal x-axis detennined in accor

dance with Section C3.1 excluding the provisions of Section C3.1.2 
V n = Nominal shear strength when shear alone exists 

C3.4 Web Crippling Strength 

These provisions are applicable to webs of flexural members subject to concen
trated loads or reactions, or the components thereof, acting perpendicular to the longitu
dinal axis of the member, and in the plane of the web under consideration, and causing 
compressive stresses in the web. 

To avoid crippling of unreinforced flat webs of flexural members having a flat 
width ratio, hit, equal to or less than 200, the required strength for the concentrated loads 
and reactions shall not exceed the values of <1>wPn, with <l>w = 0.75 and 0.80 for single un
reinforced webs and I-sections, respectively, and Pn given in Table C3.4-1. Webs of 
flexural members for which hit is greater than 200 shall be provided with adequate means 
of transmitting concentrated loads and/or reactions directly into the webs. 

The fonnulas in Table C3.4-1 apply to beams when Rlt ~ 6 and to deck when R/t ~ 
7, N/t ~ 210 and Nih ~ 3.5. 

Pn represents the nominal strength for concentrated load or reaction for one solid 
web connecting top and bottom flanges. For two or more webs, Pn shall be computed for 
each individual web and the results added to obtain the nominal load or reaction for the 
multiple web. 

For built-up I-sections, or similar sections, the distance between the web connec
tor and beam flange shall be kept as small as practical. 

(Eq. C3.3-2) 



Cold-Formed LRFD Specification - March 16, 1991 

TABLE C3.4-1 
Pn 

Shapes Having 
Single Webs 

Stiffened or 
Partially Unstiffened 
Stiffened Flanges 
Flanges 

Opposing Loads End Reaction(3) Eq. C3.4-1 Eq. C3.4-2 
Spaced> I.Sh(2) Interior Reaction(4) Eq. C3.4-4 Eq. C3.4-4 

Opposing Loads End Reaction(3) Eq. C3.4-6 Eq. C3.4-6 
Spaced::; 1.5h(s) Interior Reaction(4) Eq. C3.4-S Eq. C3.4-S 

Footnotes and Equation References to Table C3.4-I: 

I-Sections or 
Similar Sections( I) 

Stiffened, 
Partially Stiffened 
and U nstiffened 
Flanges 

Eq. C3.4-3 

Eq. C3.4-S 

Eq. C3.4-7 

Eq. C3.4-9 

(1) I-sections made of two channels connected back to back or similar sections which 
provide a high degree of restraint against rotation of the web (such as I-sections 
made by welding two angles to a channel). 

(2) At locations of one concentrated load or reaction acting either on the top or bottom 
flange, when the clear distance between the bearing edges of this and adjacent oppo
site concentrated loads or reactions is greater than I.Sh. 

(3) For end reactions of beams or concentrated loads on the end of cantilevers when the 
distance from the edge of the bearing to the end of the beam is less than I.Sh. 

(4) For reactions and concentrated loads when the distance from the edge of bearing to 
the end of the beam is equal to or greater than 1.5h. 

(S) At locations of two opposite concentrated loads or of a concentrated load and an op
posite reaction acting simultaneously on the top and bottom flanges, when the clear 
distance between their adjacent bearing edges is equal to or less than 1.5h. 
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Equations for Table C3.4-I: 
t2kC3C4Ce[33I-O.61(h/t)] [I + 0.01 (N/t)] 
t2 kC3C4Ce[2I7 - 0.2S(h/t)] [1 + 0.01 (N/t)] 

(Eq. C3.4-I) 
(Eq. C3.4-2) 

When N/t > 60, the factor [1 + 0.01 (N/t)] may be increased to [0.71 + O.OIS(N/t)] 

t2FyC6(IO.0+ 1. 25ffiTt) (Eq. C3.4-3) 

t2 kCIC2Ce[53S - 0.74(h/t)] [1 + 0.OO7(N/t)] (Eq. C3.4-4) 
When N/t > 60, the factor [I + 0.007(N/t)] may be increased to [0.75 + 0.01 1 (N/t)] 

t2FyCs(0.SS+0.12m)( 15.0 + 3. 2SffiTt) (Eq. C3.4-5) 

t2 kC3C4Ce[244 - 0.57(h/t)] [1 + 0.01 (N/t)] (Eq. C3.4-6) 

t2FyC8(O.64+0.31 m) (10.0 + 1. 2SffiTt) (Eq. C3.4-7) 

t2 kCIC2Ce[771 - 2.26(h/t)] [1 + 0.0013(N/t)] (Eq. C3.4-S) 

t2FyC7(0.S2+0.15m) (15.0 + 3. 2SffiTt) (Eq. C3.4-9) 

In the above-referenced formulas: 
$w =Resistance factor for web crippling 
Pn = Nominal strength for concentrated load or reaction per web 
CI =(1.22 - 0.22k) 
C2 = (1.06 - 0.06R/t) ~ 1.0 

(Eq. C3.4-IO) 
(Eq. C3.4-II) 
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C3 =(1.33 - 0.33k) 
C4 =(1.15 - 0.15R1t) ~ 1.0 but not less than 0.50 
Cs =(1.49 - 0.53k) ~ 0.6 

C6 = 1 + ( h / t) when h / t ~ 150 
750 

= 1.20, when hit > 150 
C7 = 11k, when hit ~ 66.5 

= [1.10 - h / t]! when h / t > 66.5 
665 k' 

C = [0.98- hIt]! 
8 865 k 

Ce =0.7 + 0.3 (8/90)2 
Fy =Design yield stress of the web, see Section A5.2.1 
h =Depth of the flat portion of the web measured along the plane of the web 
k =Fy/33 
m =t/0.075 
t = Web thickness, inches 
N = Actual length of bearing, inches. For the case of two equal and opposite con

centrated loads distributed over unequal bearing lengths, the smaller value of 
N shall be taken 

R = Inside bend radius 
8 = Angle between the plane of the web and the plane of the bearing surface ~ 45°, 

but not more than 90° 

C3.5 Combined Bending and Web Crippling Strength 

Unreinforced flat webs of shapes subjected to a combination of bending and con
centrated load or reaction shall be designed to meet the following requirements: 

(a) For shapes having single unreinforced webs: 

Exception: At the interior supports of continuous spans, the above fonnula is not 
applicable to deck or beams with two or more single webs, provided the compression 
edges of adjacent webs are laterally supported in the negative moment region by continu
ous or intennittently connected flange elements, rigid cladding, or lateral bracing, and 
the spacing between adjacent webs does not exceed 10 inches. 

(b) For shapes having multiple unreinforced webs such as I-sections made of two chan
nels connected back-to--back, or similar sections which provide a high degree of 
restraint against rotation of the web (such as I-sections made by welding two angles 
to a channel); 

(Eq. C3.4--12) 
(Eq. C3.4--13) 
(Eq. C3.4--14) 

(Eq. C3.4-15) 

(Eq. C3.4-16) 
(Eq. C3.4-17) 

(Eq. C3.4-18) 

(Eq. C3.4-19) 

(Eq. C3.4-20) 

(Eq. C3.4-21) 
(Eq. C3.4-22) 

(Eq. C3.5-1) 

0.82(lJ+( Mu J ~ 1.32 (Eq. C3.5-2) 
ct>wPn ct>bMnxo 

Exception: When hit ~ 2.33/ ~(Fy / E) and A. ~ 0.673, the nominal concentrated e 
load or reaction strength may be determined by Section C3.4. 
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In the above fonnulas: 
«j>b =Resistance factor for bending (See Section 3.1) 
«j>w =Resistance factor for web crippling (See Section C3.4) 
Pu =Required strength for the concentrated load or reaction in the presence of 

bending moment 
Pn =Nominal strength for concentrated load or reaction in the absence of bend-

ing moment detennined in accordance with Section C3.4 
Mu = Required flexural strength at, or immediately adjacent to, the point of appli

cation of the concentrated load or reaction Pu 
Mnxo =Nominal flexural strength about the centroidal x-axis detennined in accor-

dance with Section C3.1 excluding the provisions of Section C3.1.2 
w = Flat width of the beam flange which contacts the bearing plate 
t =Thickness of the web or flange 
A =Slenderness factor given by Section B2.1 

C4 Concentrically Loaded Compression Members 

This section applies to members in which the resultant of all loads acting on the member 
is an axial load passing through the centroid of the effective section calculated at the stress, 
Fn, defined in this section. 

(a) The design axial strength, «j>cPn, shall be calculated as follows: 
«j>c = 0.85 
Pn = AeFn 

where 
Ae = Effective area at the stress Fn. For sections with circular holes, Ae shall be deter

mined according to Section B2.2a, subject to the limitations of that section. If the 
number of holes in the effective length region times the hole diameter divided by 
the effective length does not exceed 0.015, Ae can be detennined ignoring the 
holes. 

Fn is determined as follows: 
For Fe > Fy/2 Fn = Fy (1 - Fy/4Fe) 
For Fe S Fy/2 Fn = Fe 
Fe is the least of the elastic flexural, torsional and torsional-flexural buckling 
stress detennined according to Sections C4.1 through C4.3. 

(b) For C- and Z-shapes, and single-angle sections with unstiffened flanges, Pn shall be 
taken as the smaller of Pn calculated above and Pn calculated as follows: 

An2E 
Pn = 2 

25. 7(w I t) 
where 

A = Area of the full, unreduced cross section 
w = Flat width of the un stiffened element 
t = Thickness of the unstiffened element 

(c) Angle sections shall be designed for the required axial strength, Pu, acting simultane
ously with a moment equal to PuL/1 ()()() applied about the minor principal axis causing 
compression in the tips of the angle legs. 

(d) The slenderness ratio, KL/r, of all compression members preferably should not exceed 
200, except that during construction only, KL/r preferably should not exceed 300. 
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(Eq. C4-1) 

(Eq. C4-2) 
(Eq. C4-3) 

(Eq. C4-4) 
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C4.1 Sections Not Subject to Torsional or Torsional-Flexural Buckling 

For doubly-symmetric sections, closed cross sections and any other sections 
which can be shown not to be subject to torsional or torsional-flexural buckling, the elas

tic flexural buckling stress, Fe, shall be determined as follows: 

1t2E 
Fe =----:-

(KL / r)2 
where 

E = Modulus of elasticity 

K = Effective length factor* 

L = Unbraced length of member 

r = Radius of gyration of the full, unreduced cross section 

C4.2 Doubly- or Singly-Symmetric Sections Subject to Torsional or Tor
sional-Flexural Buckling 

For sections subject to torsional or torsional-flexural buckling, Fe shall be taken as 

the smaller of Fe calculated according to Section C4.1 and Fe calculated as follows: 

(Eq. C4.1-l) 

F, = 21~ [ ( ()" ,X+ ()", ) - ~ ( ()"" + 0",)2 - 4~0",,0", ] (Eq. C4.2-1) 

Alternatively, a conservative estimate of Fe can be obtained using the following 
equation: 

c _ O'tO'ex 
re -

O't + O'ex 
where O't and O'ex are as defined in C3.1.2(a) : 

For singly-symmetric sections, the x-axis is assumed to be the axis of symmetry. 

C4.3 Nonsymmetric Sections 

For shapes whose cross sections do not have any symmetry, either about an axis or 
about a point, Fe shall be determined by rational analysis. Alternatively, compression 
members composed of such shapes may be tested in accordance with Chapter F. 

C5 Combined Axial Load and Bending 

The required strengths Pu, M ux, and Muy shall satisfy the following interaction equa
tions: 

* In frames where lateral stability is provided by diagonal bracing, shear walls, attachment to an adjacent struc
ture having adequate lateral stability, or floor slabs or roof decks secured horizontally by walls or bracing sys
tems parallel to the plane of the frame, and in trusses, the effective length factor, K, for compression members 
which do not depend upon their own bending stiffness for lateral stability ofthe frame or truss, shall be taken as 
unity, unless analysis shows that a smaller value may be used. In a frame which depends upon its own bending 
stiffness for lateral stability, the effective length, KL, of the compression members shall be determined by a 
rational method and shall not be less than the actual unbraced length. 

(Eq. C4.2-2) 

(Eq. C4.2-3) 

(Eq. C5-1) 

(Eq. C5-2) 
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WhenPu/<t>cPn~0.15, the following fonnulamay be used in lieu of the above two fomlu-
las: 

where 
Pu =Required axial strength 
Mux and Muy = Required flexural strengths with respect to the centroidal axes of the effective 

section detennined for the required axial strength alone. For angle sections, 
Muy shall be taken either as the required flexural strength or the required 
flexural strength plus PuLl 1 000, whichever results in a lower value of Pn. 

Pn =Nominal axial strength detennined in accordance with Section C4 
Pne' =Nominal axial strength detennined in accordance with Section C4, with Fn = 

Fy 
Mnx and Mny =Nominal flexural strengths about the centroidal axes detennined in accor

dance with Section C3 
1/ anx, 1/ any =Magnification factors 
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(Eq. C5-3) 

= 1/[I-l] (Eq. C5-4) 
<t>cPE 

= 0.95 and 0.90 for bending strength (Section C3 .1.1) or 
0.90 for laterally unbraced beam (Section C3.1.2) 

=0.85 

1t2Eh 
(KbLb)2 

= Moment of inertia of the full, unreduced cross section about the axis of bend-
ing 

=Actual unbraced length in the plane of bending 
=Effective length factor in the plane of bending 
=Coefficients whose value shall be taken as follows: 

1. For compression members in frames subject to joint translation (sides
way) 

Cm = 0.85 

2. For restrained compression members in frames braced against joint trans
lation and not subject to transverse loading between their supports in the 
plane of bending 

(Eq. C5-5) 

Cm = 0.6 - 0.4 (MJ/M2) (Eq. C5-6) 

where 

MI/M2 is the ratio of the smaller to the larger moment at the ends of that 
portion of the member under consideration which is unbraced in the plane 
of bending. MI/M2 is positive when the member is bent in reverse curva
ture and negative when it is bent in single curvature. 

3. For compression members in frames braced against joint translation in the 
plane of loading and subject to transverse loading between their supports, 
the value of Cm may be determined by rational analysis. However, in lieu 
of such analysis, the following values may be used: 

(a) for members whose ends are restrained, Cm = 0.85, 

(b) for members whose ends are unrestrained, Cm = 1.0. 
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C6 Cylindrical Tubular Members 

The requirements of this Section apply to cylindrical tubular members having a ratio of 
outside diameter to wall thickness, D/t, not greater than 0.441 E/Fy. 

C6.1 Bending 

For flexural members, the required flexural strength uncoupled from axial load, 
shear, and local concentrated forces or reactions shall not exceed <pbMn, where <Pb = 0.95 
and Mn is calculated as follows: 
For D/t ~ 0.070 E/Fy 

Mn = 1.25 FySf 
For 0.070 E/Fy < D/t ~ 0.319 E/Fy 

Mn = [ 0.970 + O. 02oC~: ;; J }yS, 
For 0.319 E/Fy < D/t ~ 0.441 E/Fy 

Mn = [0.328E/(D/t)]Sf 
where 

Sf = Elastic section modulus of the full, unreduced cross section 

C6.2 Compression 

The requirements of this Section apply to members in which the resultant of all 
loads and moments acting on the member is equivalent to a single force in the direction of 
the member axis passing through the centroid of the section. 

The design axial strength, <pcPn, shall be calculated as follows: 
<pc = 0.85 

(Eq. C6.1-1) 

(Eq. C6.1-2) 

(Eq. C6.1-3) 

Pn = FnAe (Eq. C6.2-l) 
In the above equation, 

For Fe> Fy/2 
Fn = Flexural buckling stress 

= Fy [1 - Fy/4Fe] (Eq. C6.2-2) 

Fe = The elastic flexural buckling stress determined according to Section C4.1 

Ae = [1 - (1 - R2)(1- Ao/A)]A (Eq. C6.2-3) 

R = ~Fy /2Fe (Eq. C6.2-4) 

Ao = [OD~7 +0.667lA~A for D ~0.441~ (Eq. C6.2-5) 
__ y t Fy 
tE 

A = Area of the unreduced cross section 

For Fe ~ Fy/2 

Fn = Fe 

Ae = A 

C6.3 Combined Bending and Compression 

Combined bending and compression shall satisfy the provisions of Section C5. 
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D.STRUCTURAL ASSEMBLIES 

D1 BUilt-Up Sections 

D1.1 I - Sections Composed of Two Channels 
The maximum permissible longitudinal spacing of welds or other connectors, Smax, 

joining two channels to form an I-section shall be 

(a) For compression members: 
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Lrey 
Smax = - (Eq. D1.1-1) 

2rI 
where 

L = Unbraced length of compression member 
fI = Radius of gyration of the I-section about the axis perpendicular to the direc

tion in which buckling would occur for the given conditions of end support 
and intermediate bracing 

rey = Radius of gyration of one channel about its centroidal axis parallel to the 
web 

(b) For flexural members: 
Smax= L / 6 
In no case shall the spacing exceed the value 

2gTs 
Smax =--

mq 
where 

L = Span of beam 
Ts = Design strength of connection in tension (Section E) 
g = Vertical distance between the two rows of connections nearest to the top 

and bottom flanges 
q = Intensity of factored load on the beam (For methods of determination, see 

below) 
m = Distance from the shear center of one channel to the mid-plane of its web. 

For simple channels without stiffening lips at the outer edges, 

m = wl 
2wf+d/3 

For channels with stiffening lips at the outer edges, 

m = Wfdt[Wfd+2D(d_ 40
2 J] 

4Ix 3d 

Wf = Projection of flanges from the inside face of the web (For channels with 
flanges of unequal width, Wf shall be taken as the width of the wider flange) 

d = Depth of channel or beam 
D = Overall depth of lip 
Ix = Moment of inertia of one channel about its centroidal axis normal to the 

web. 

The intensity of factored load, q, is obtained by dividing the magnitude of factored 
concentrated loads or reactions by the length of bearing. For beams designed for a uni
formly distributed load, q shall be taken equal to three times the intensity of the uniformly 
distributed factored load. If the length of bearing of a concentrated load or reaction is 
smaller than the weld spacing, s, the required design strength of the welds or connections 
closest to the load or reaction is 

(Eq. D1.1-2) 

(Eq.01.1-3) 

(Eq. D1.1-4) 

(Eq.01.1-5) 

Ts = Psm/2g (Eq.01.1-6) 
where Ps is a concentrated load or reaction based on factored loads. 
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The required maximum spacing of connections, Smax, depends upon the intensity 
of the factored load directly at the connection. Therefore, if unifonn spacing of connec
tions is used over the whole length of the beam, it shall be detennined at the point of maxi
mum local load intensity. In cases where this procedure would result in uneconomically 
close spacing, either one of the following methods may be adopted: (a) the connection 
spacing may be varied along the beam according to the variation of the load intensity; or 
(b) reinforcing cover plates may be welded to the flanges at points where concentrated 
loads occur. The design shear strength of the connections joining these plates to the 
flanges shall then be used for Ts, and g shall be taken as the depth of the beam. 

01.2 Spacing of Connections in Compression Elements 

The spacing, s, in the line of stress, of welds, rivets, or bolts connecting a cover 
plate, sheet, or a non-integral stiffener in compression to another element shall not ex
ceed 

(a) that which is required to transmit the shear between the connected parts on the basis 
of the design strength per connection specified elsewhere herein; nor 

(b) 1.16t ~ (E I fc ), where t is the thickness of the cover plate or sheet, and fc is the stress 
at service load in the cover plate or sheet; nor 

(c) three times the flat width, w, of the narrowest unstiffened compression element 

tributary to the connections, but need not be less than 1.11 t ~ (E I Fy) if 

wit < 0.50 ~(E I Fy), or 1.33t ~(E I Fy) if wit ~ 0.50~(E I Fy), unless closer spacing 
is required by (a) or (b) above. 

In the case of intennittent fillet welds parallel to the direction of stress, the spacing 
shall be taken as the clear distance between welds, plus one-half inch. In all other cases, 
the spacing shall be taken as the center-t~enter distance between connections. 

Exception: The requirements of this Section do not apply to cover sheets which 
act only as sheathing material and are not considered as load--carrying elements. 

02 Mixed Systems 

The design of members in mixed systems using cold-fonned steel components in con
junction with other materials shall confonn to this Specification and the applicable Specifi
cation of the other material. 

03 Lateral Bracing 

Braces shall be designed to restrain lateral bending or twisting of a loaded beam or col
umn, and to avoid local crippling at the points of attachment. 

03.1 Symmetrical Beams and Columns 

Braces and bracing systems, including connections, shall be designed considering 
strength and stiffness requirements. 

03.2 Channel-Section and Z-Sec'lion Beams 

The following provisions for bracing to restrain twisting of channels and Z-sec
tions used as beams loaded in the plane of the web, apply only when (a) the top flange is 
connected to deck or sheathing material in such a manner as to effectively restrain lateral 
deflection of the connected flange * , or (b) neither flange is so connected. When both 
flanges are so connected, no further bracing is required. 

* Where the Specification does not provide an explicit method for design, further infonnation should be ob
tained from the Commentary. 
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03.2.1 Anchorage of Bracing for Roof Systems Under Gravity Load With 
Top Flange Connected to Sheathing 

For channels and Z-sections designed according to Section C3.1.1, and having 
deck or sheathing fastened directly to the top flanges in such a manner shown to effec
tively inhibit relative movement between the deck or sheathing and the purlin flange, 
provisions shall be made to restrain the flanges so that the maximum top flange lateral 
displacements with respect to the purl in reaction points do not exceed the span length 
divided by 360. If the top flanges of all purlins face in the same direction, anchorage 
of the restraint system must be capable of satisfying the requirements of Sections 
03.2.1(a) and D3.2.1(b). If the top flanges of adjacent lines of purl ins face in opposite 
directions, the provisions of Section 03.2.1(a) and D3.2.1(b) do not apply. 

Anchored braces need to be connected to only one line of purlins in each purlin bay 
of each roof slope if provision is made to transmit forces from other purl in lines 
through the roof deck and its fastening system. Anchored braces shall be as close as 
possible to the flange which is connected to the deck or sheathing. Anchored braces 
shall be provided for each purlin bay. 

For bracing arrangements other than those covered in Sections 03.2.1 (a) and 
03.2.1 (b), tests in accordance with Chapter F shall be performed so that the type and/ 
or spacing of braces selected are such that the test strength of the braced Z-section 
assembly is equal to or greater than its nominal flexural strength, instead of that re
quired by Chapter F. 

(a) Channel Sections 
For roof systems using channel sections for purlins with all compression 
flanges facing in the same direction, a restraint system capable of resisting 
O.OSW, in addition to other loading, shall be provided where W is the factored 
load supported by all purlin lines being restrained. Where more than one brace 
is used at a purlin line, the restraint force O.OSW shall be divided equally be
tween all braces. 

(b) Z-Sections 
For roof systems having a diaphragm stiffness of at least 2,000 lb/in., having 
four to twenty Z-purlin lines with all top flanges facing in the direction of the 
upward roof slope, and with restraint braces at the purlin supports, midspan or 
one-third points, each brace shall be designed to resist a force determined as 
follows: 

(1) Single-Span System with Restraints at the Supports: 

P 0 s[ 0.220b1.50 . e]w 
L = . sm 

n~·72do·90to.60 

(2) Single-Span System with Third-Point Restraints: 

PL = o.s[ 0.474b1.
22 

- sine]w 
n~·57 dO.89to.33 

(3) Single-Span System with Midspan Restraint: 

n [0. 224b
1.32 • e]w ~ L = - SIn 

n ~.65d 0.83tO.50 

(4) Multiple-Span System with Restraints at the Supports: 
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(Eq.03.2.1-1) 

(Eq.03.2.1-2) 

(Eq.03.2.1-3) 
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with 

sine ]w 

Ctr =0.63 for braces at end supports of multiple-span systems 
Ctr =0.87 for braces at the first interior supports 
Ctr =0.81 for all other braces 

(5) Multiple-Span System with Third-Point Restraints: 

Pt =Cth -sme W 
[

0. 181b1.l5Lo.25 . ] 
n~·54d l.l1tO.29 

with 
Cth =0.57 for outer braces in exterior spans 
Cth =0.48 for all other braces 

(6) Multiple-Span System with Midspan Restraints: 

Pt = Cms -SIne W 
[

0.116b1.32LO.18 . ] 
n O.7od l.00tO.50 

with P 

Cms = 1.05 for braces in exterior spans 
Cms =0.90 for all other braces 

where 
b = Flange width, in. 
d = Depth of section, in. 
t =Thickness, in. 
L =Span length, in. 
e = Angle between the vertical and the plane of the web of the Z-section, 

degrees 
np = Number of parallel purl in lines 
W =Total factored load supported by the purlin lines between adjacent 

supports, pounds 

The force, PL, is positive when restraint is required to prevent movement of the 
purlin flanges in the upward roof slope direction. 

For systems having less than four purl in lines, the brace force can be determined 
by taking 1.1 times the force found from Equations D3.2.1-1 through D3.2.1-6, with 
np = 4. For systems having more than twenty purlin lines, the brace force can be deter
mined from Equations D3.2.1-1 through D3.2.1-6, with np = 20. 

03.2.2 Neither Flange Connected to Sheathing 

Each intermediate brace, at the top and bottom flange, shall be designed to resist a 
required lateral force, PL, determined as follows: 

(a) For uniform loads, PL = 1.5K' times the factored load within a distance 0.5a 
each side of the brace. 

(b) For concentrated loads, PL = 1.0K' times each concentrated load within a dis
tance O.3a each side of the brace, plus 1.4K' (I-x/a) times each factored con
centrated load located farther than O.3a but not farther than 1.0a from 'the brace. 

In the above formulas: 

(Eq. D3.2.1-4) 

(Eq. D3.2.1-5) 

(Eq. D3.2.1-6) 
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For channels and Z-sections: 
x = Distance from the concentrated load to the brace 
a = Distance between center line of braces 

For channels: 

I-57 

K' =m/d (Eq. D3.2.2-1) 

where 
m =Distance from the shear center to the mid-plane of the web, as specified in 

Section D 1.1 
d = Depth of channel 

For Z-sections: 
K' =Ixy/lx 

where 
Ixy =Product of inertia of the full section about centroidal axes parallel and per

pendicular to the web 
Ix = Moment of inertia of the full section about the centroidal axis perpendicular 

to the web 
Braces shall be designed to avoid local crippling at the points of attachment to the 

member. 
Braces shall be attached both to the top and bottom flanges of the sections, at the 

ends and at intervals not greater than one-quarter of the span length, in such a manner 
as to prevent tipping at the ends and lateral deflection of either flange in either direc
tion at intermediate braces. If one-third or more of the total factored load on the beam 
is concentrated over a length of one-twelfth or less of the span of the beam, an addi
tional brace shall be placed at or near the center of this loaded length. 

Exception: When all loads and reactions on a beam are transmitted through mem
bers which frame into the section in such a manner as to effectively restrain the section 
against rotation and lateral displacement, no other braces will be required. 

03.3 Laterally Unbraced Box Beams 

For closed box-type sections used as beams subject to bending about the major 
axis, the ratio of the laterally unsupported length to the distance between the webs of the 
section shall not exceed 0.086 E/Fy. 

04 Wall Studs and Wall Stud Assemblies 

The design strength of a stud may be computed on the basis of Section C (neglecting 
sheathing and using steel only) or on the basis that sheathing (attached to one or both sides of 
the stud) furnishes adequate lateral and rotational support to the stud in the plane of the wall, 
provided that the stud, sheathing, and attachn:tents comply with the following requirements: 

Both ends of the stud shall be braced to restrain rotation about the longitudinal stud axis 
and horizontal displacement perpendicular to the stud axis; however, the ends mayor may 
not be free to rotate about both axes perpendicular to the stud axis. The sheathing shall be 
connected to the top and bottom members of the wall assembly to enhance the restraint pro
vided to the stud and stabilize the overall assembly. 

When sheathing is utilized for stability of the wall studs, the sheathing shall retain ade
quate strength and stiffness for the expected service life of the wall and additional bracing 
shall be provided as required for adequate structural integrity during construction and in the 
completed structure. 

(Eq. D3.2.2-2) 
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The equations given are based on solid-web steel studs and are applicable within the 
following limits: 

Yield point, Fy ~ 50 ksi 
Section depth, d ~ 6.0 in. 
Thickness, t ~ 0.075 in. 
Overall length, L ~ 16 ft. 
Stud spacing, B, not less than 12 in. nor greater than 24 in. 
Studs with perforations shall be designed using the results of stub column tests 
and/or rational analysis. 

04.1 Wall Studs In Compression 

For studs having identical sheathing attached to both flanges, and neglecting any 
rotational restraint provided by the sheathing* , the design axial strength, <l>cPn, shall be 
calculated as follows: 

<l>c = 0.85 
Pn =AeFn 

where 
<l>c = Resistance factor for axial compression 

Ae = Effective area determined at Fn 
Fn =The lowest value determined by the following three conditions: 

(a) To prevent column buckling between fasteners in the plane of the wall, Fn shall be 
calculated according to Section C4 with KL equal to two times the distance between 
fasteners. 

(b) To prevent flexural and/or torsional overall column buckling, Fn shall be calculated 
in accordance with Section C4 with Fe taken as the smaller of the two OCR values 
specified for the following section types, where OCR is the theoretical elastic buck
ling stress under concentric loading. 

(1) Singly-symmetric channels and C-Sections 

OCR= 0 ey + Qa 

O"CR = 21~ [( 0"" + O"tQ) - ~( O"ex + O"tQ)2 - (4!kJ",O"tQ) ] 

(2) Z-Sections 

(Eq.04.1-1) 

(Eq.04.1-2) 

(Eq.04.1-3) 

OCR = 0 t + Qt (Eq.04.1-4) 

O"CR = H ( 0"", + 0" ey + Q. ) - [(0"'" + O".y + Q.)2 - 4( 0" ",O".y + 0" '" Q. - 0"2",y ) ] } (Eq. D4.1-5) 

(3) I-Sections (doubly-symmetric) 

OCR= Oey + Qa 

OCR= Oex 

In the above formulas: 
1t2E 

Oex =----.,.... 
(L I rx)2 

Oexy% (1t2EIxy) / (AL2 ) 

*Studs with sheathing on one flange only. or with un identical sheathing on both flanges. or having rotational 
restraint that is not neglected. or having any combination of the above. shall be designed in accordance with 
the same basic analysis principles used in deriving the provisions of this Section. 

(Eq.04.1--6) 
(Eq.04.1-7) 

(Eq.04.1-8) 

(Eq.04.1-9) 
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1t2E 
O'ey = 2 

(L I ry) 
(Eq. D4.l-10) 

0' - _1_[OJ 1t
2
EC w ] 

t - 2 + 2 
Aro L 

(Eq. D4.l-11) 

O'tQ = O't + Qt (Eq. D4.l-12) 

Q = q B = Design shear rigidity for sheathing on both sides of the wall assembly 
-
q = Design shear rigidity for sheathing per inch of stud spacing (see Table D4) 
B = Stud spacing 
- -
Qa = Q I A (Eq. D4.l-13) 
A = Area of full unreduced cross section 
L = Length of stud 

Qt = (Qd2)/(4Ar;) (Eq. D4.l-14) 
d = Depth of section 
Ixy = Product of inertia 

(c) To prevent shear failure of the sheathing, a value ofFn shall be used in the fol
lowing equations so that the shear strain of the sheathing, ,,(, does not exceed the 

permissible shear strain, y. The shear strain, "(, shall be determined as follows: 
"( = (1t /L) [CI + (EI d/2)] (Eq. D4.l-15) 

where 

CI and EI are the absolute values of CI and EI specified below for each section 
type: 

(1) Singly-Symmetric Channels and C-Sections 

CI = (Fn Co)1 (O'ey - Fn + Qa) 

El _ Fn[(O'ex -Fn)(r;Eo -xoDo)-Fnxo(Do -xoEo)] 

- (O'ex -Fn)r;(O'tQ -Fn)-(Fnxo)2 
(2) Z-Sections 

Cl Fn [Co( O'ex - Fn) - DoO'exy ] 

- (O'ey -Fn + Qa)(O'ex -Fn)-O';xy 
EI = (Fn Eo) I (O'tQ - Fn ) 

(3) I-Sections 

C I = (F~ Co )1 (O'ey - Fn + Qa ) 
El = 0 

where 
Xo = distance from shear center to centroid along principal x-axis, in. (absolute 

value) 
Co, Eo, and Do are initial column imperfections which shall be assumed to be at 

least 
Co = L/350 in a direction parallel to the wall 
Do = LnOO in a direction perpendicular to the wall 
Eo = L/( d x 10,(00), rad., a measure of the initial twist of the stud from 

the initial, ideal, unbuckled shape 

If Fn > 0.5 Fy, then in the definitions for O'ey, (lex, O'exy and O'tQ, the parameters 
E and 0 shall be replaced by E' and 0', respectively, as defined below 
E' =4EFn (Fy - Fn )/Fl 
0' =0 (E'IE) 

(Eq. D4.l-16) 

(Eq. D4.1-17) 

(Eq. D4.1-18) 

(Eq.D4.l-19) 

(Eq. D4.1-20) 

(Eq. D4.1-21) 
(Eq. D4.1-22) 

(Eq.D4.l-23) 

(Eq. D4.1-24) 
(Eq. D4.1-25) 
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Sheathing parameters '10 and y may be determined from representative full
scale tests, conducted and evaluated as described by published documented 
methods (see Commentary), or from the small-scale-test values given in Table 
D4. 

TABLE 04 
Sheathing Parameters(1) 

-(3) 
qo 

Sheathing(2) k/in. 

3/8 to 5/8 in. thick gypsum 2.0 
Lignocellulosic board 1.0 
Fiberboard (regular or impregnated) 0.6 
Fiberboard (heavy impregnated) 1.2 

-
Y 

inJin. 

0.008 
0.009 
0.007 
0.010 

(1) The values given are subject to the following limitations: 
All values are for sheathing on both sides of the wall assembly. 
All fasteners are No.6, type S-12, self-drilling drywall screws with pan or bugle 
head, or equivalent, at 6- to 12-inch spacing. 

(2) All sheathing is 1I2-inch thick except as noted. 

(3) 'I = Ci o (2 - s/12) (Eq. D4.1-26) 

where s = fastener spacing, in. 

For other types of sheathing, '10 and y may be determined conservatively from rep
resentative small-specimen tests as described by published documented methods 
(see Commentary). 

04.2 Wall Studs in Bending 

For studs having identical sheathing attached to both flanges, and neglecting any 
rotational restraint provided by the sheathing, * the design flexural strengths are <pbMnxo 

and <!>bMnyo 

where 
<!>b = 0.95 for sections with stiffened or partially stiffened compression flanges 

= 0.90 for sections with unstiffened compression flanges 
Mnxo and Mnyo = Nominal flexural strengths about the centroidal axes determined in ac

cordance with Section C3.1, excluding the provisions of Section C3.1.2 
(lateral buckling) 

04.3 Wall Studs with Combined Axial Load and Bending 

The required axial strength and flexural strength shall satisfy the interaction equa
tions of Section C5 with the following redefined terms: 

Pn =Nominal axial strength determined according to Section 04.1 
Mnx and Mny in Equations C5-1, C5-2 and C5-3 shall be replaced by nominal flexural 

strengths, Mnxo and Mnyo, respectively. 

* Studs with sheAthing on one flange only, or with unidentical sheathing on both flanges, or having rotational 
restraint that is not neglected, or having any combination of the above, shall be designed in accordance with 
the same basic analysis principles used in deriving the provisions of this Section. 
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E. CONNECTIONS AND JOINTS 

E1 General Provisions 

Connections shall be designed to transmit the maximum forces resulting from the fac
tored loads acting on the connected member. Proper regard shall be given to eccentricity. 

E2 Welded Connections 

The following LRFD design criteria govern welded connections used for cold-formed 
steel structural members in which the thickness of the thinnest connected part is 0.18 in. or 
less. For welded connections in which the thickness of the thinnest connected part is greater 
than 0.18 in., refer to the AISC's "Load and Resistance Factor Design Specification for 
Structural Steel Buildings". 

Except as modified herein, arc welds on steel where at least one of the connected parts is 
0.18 inch or less in thickness shall be made in accordance with the A WS 0-1.3 (Reference 3 
of Section A6) and its Commentary. Welders and welding procedures shall be qualified as 
specified in AWS D1.3. These provisions are intended to cover the welding positions as 
shown in Table E2. 

Resistance welds shall be made in confonnance with the procedures given in A WS 
Cl.I, "Recommended Practices for Resistance Welding" or AWS Cl.3, "Recommended 
Practice for Resistance Welding Coated Low Carbon Steels." 

TABLE E2 
Welding Position 

Square 
Arc SJot Arc Seam 

Fillet Flare-

Connection Groove Weld, ~evel 
Butt Weld Wei Weld Lap orT roove 

F - F F F 
Sheet to H - H H H 
Sheet V - - V V 

OH - - OH OH 

Sheet to - F F F F 
Supporting - - - H H 
Member - - - V V 

- - - OH OH 

(F = flat, H = horizontal, V = vertical, OH = overhead) 

The required strength on each weld shall not exceed the design strength, <l>Pn, 
where 

~are-V 
roove 

Weld 

F 
H 
V 

OH 

-

-

-

-

<I> = Resistance factor for arc welded connections defined in Sections E2.1 through E2.5. 
Pn = Nominal strength of welds determined according to Sections E2.1 through E2.5. 

E2.1 Groove Welds in Butt Joints 

The design strength, <l>Pn, of a groove weld in a butt joint, welded from one or both 
sides, shall be detennined as follows: 

(a) Tension or compression normal to the effective area or parallel to the axis of the 
weld 
<I> = 0.90 
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Pn = LteFy 
(b) Shear on the effective area 

<I> = 0.80 

where 

Pn = Lte(0.6Fxx); and 

<I> = 0.90 

Pn = Lte (Fy /-v'3) 

<I> = Resistance factor for welded connections 
Pn = Nominal strength of a groove weld 
Fxx = Strength level designation in A WS electrode classification 
Fy = Specified minimum yield point of the lower strength base steel 

L = Length of weld 
te = Effective throat dimension for groove weld 

E2.2 Arc Spot Welds 

Arc spot welds permitted by this Specification are for welding sheet steel to 
thicker supporting members in the flat position. Arc spot welds (puddle welds) shall not 
be made on steel where the thinnest connected part is over 0.15 inch thick, nor through a 
combination of steel sheets having a total thickness over 0.15 inch. 

Weld washers, Figures E2.2(A) and E2.2(B), shall be used when the thickness of 
the sheet is less than 0.028 inch. Weld washers shall have a thickness between 0.05 and 
0.08 inch with a minimum prepunched hole of 3/s- inch diameter. 

Arc Spot Weld 

Figure E2.2A Typical Weld Washer 

(Eq. E2.1-1) 

(Eq. E2.1-2) 

(Eq. E2.1-3) 
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Optional Lug ~ , 

'" 
' , Washer , ~ 

~ ~ 

~ ~ 
~ , , 

~ 

Figure E2.2B Arc Spot Weld Using Washer 

Arc spot welds shall be specified by minimum effective diameter of fused area, de. 
Minimum allowable effective diameter is 3/8 inch. 

The design shear strength, ct>Pn, of each arc spot weld between sheet or sheets and 
supporting member shall be determined by using the smaller of either 

(a) ct> =0.60 
Pn=0.589 de2 Fxx ; or 

(b) For (dJt):S; 0.815 ~r-(E-/-Fu-): 
<I> =0.60 
Pn=2.20 t da Fu 

For O.815~(E / Fu) < (dJt) < 1.397 ~(E / Fu) : 
<I> =0.50 

Pn=0.280[1 +5.59 -JETF:]tdaFu 
da / t 

For (dJt) ~ 1.397 ~(E / Fu) : 
<I> =0.50 
Pn = 1.40 t da Fu 

where 
<I> = Resistance factor for welded connections 
Pn = Nominal shear strength of an arc spot weld 
d = Visible diameter of outer surface of arc spot weld 
da = Average diameter of the arc spot weld at mid-thickness of t where da = (d - t) 

for a single sheet, and (d - 2t) for multiple sheets (not more than four lapped 
sheets over a supporting member) 

de = Effective diameter of fused area 

1--63 

(Eq. E2.2-1) 

(Eq. E2.2-2) 

(Eq. E2.2-3) 

(Eq. E2.2-4) 

de = O.7d - 1.5t but:S; O.55d (Eq. E2.2-5) 
t = Total combined base steel thickness (exclusive of coatings) of sheets involved 

in shear transfer 
Fxx = Stress level designation in A WS electrode classification 
Fu = Tensile strength as specified in Section A3.1 or A3.2 or as reduced for low duc

tility steel. 

Note: See Figures E2.2(C) and E2.2(D) for diameter definitions 
The distance measured in the line of force from the centerline of a weld to the 

nearest edge of an adjacent weld or to the end of the connected part toward which 
the force is directed shall not be less than the value of emin as given below: 
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where 
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d a= d - t 

d e= O.7d - 1.St ~ O.S5d 

(C) Arc Spot Weld-Single Thickness of Sheet 

d a= d - 2t 

d e= O.7d - 1.St ~ O.S5d 

(D) Arc Spot Weld-Double Thickness of Sheet 

Figure E2.2 C, 0 Arc Spot Welds 

<p = Resistance factor for welded connections 
=0.70 when Fu/Fsy ~ 1.15 
=0.60 when Fu/Fsy < 1.15 

Pu =Required strength transmitted by weld 
t = Thickness of thinnest connected sheet 
Fsy = Yield point as specified in Sections A3.1 or A3.2 

(Eq. E2.2-6) 

Note: See Figures E2.2(E) and E2.2(F) for edge distances of arc welds. 

In addition, the distance from the centerline of any weld to the end or boundary 
of the connected member shall not be less than 1.5d. In no case shall the clear 
distance between welds and the end of member be less than 1.0d. 
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(E) Single Sheet 

(F) Double Sheet 

Figure E2.2 E, F Edge Distances for Arc Spot Welds 

The design tensile strength, <l>Pn, on each arc spot weld between sheet and support
ing member, shall be detennined as follows: 

<I> = 0.65 

Pn = 0.7 t da Fu 

The following additional limitations for use in Eq. 2.2-7 shall apply: 

emin ~ d 
Fxx ~ 60 ksi 
Fu ~ 60 ksi 

~ 0.028 in. 

If it can be shown by measurement that a given weld procedure will consistently 
give a larger effective diameter, de, or average diameter, da, as applicable, this larger di
ameter may be used providing the particular welding procedure used for making those 
welds is followed. 

E2.3 Arc Seam Welds 

Arc seam welds [Figure E2.3(A)] covered by this Specification apply only to the 
following joints: 
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(Eq. E2.2-7) 
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(a) Sheet to thicker supporting member in the flat position. 
(b) Sheet to sheet in the horizontal or flat position. 
The design shear strength, <1>Pn, of arc seam welds shall be detennined by using the 

smaller of either 
(a) <I> = 0.60 

Pn = 
[

7td
2 

] ~ + Lde 0.75Fxx ;or 

(b) <I> = 0.60 
Pn == 2.5 tFu(0.25L + 0.96 da) 

where 
<1> = Resistance factor for welded connections 
Pn = Nominal shear strength of an arc seam weld 
d = Width of arc seam weld 
L = Length of seam weld not including the circular ends 

(For computation purposes, L shall not exceed 3d) 
da = Average width of seam weld 

where 
da = (d - t) for a single sheet, and 

(d - 2t) for a double sheet 

de = Effective width of arc seam weld at fused surtaces 
de = 0.7d - 1.5t 
and Fu and Fxx are defined in Section E2.2. The minimum edge distance shall be as 
detennined for the arc spot weld, Section E2.2. See Figure E2.3(B). 

(Eq. E2.3-1) 

(Eq. E2.3-2) 

(Eq. E2.3-3) 
(Eq. E2.3-4) 

(Eq. E2.3-5) 

Jd LWidth 
Figure E2.3A Arc Seam Welds - Sheet to Supporting Member in Flat Position 
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Figure E2.38 Edge Distances for Arc Seam Welds 

E2.4 Fillet Welds 

Fillet welds covered by this Specification apply to the welding of joints in any po
sition, either 
(a) Sheet to sheet, or 
(b) Sheet to thicker steel member. 

The design shear strength, <l>Pn, of a fillet weld shall be determined as follows: 
(a) For longitudinal loading: 

For Lit < 25 : 
<I> =0.60 
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P. = (1- O.~IL )tLFu (Eq. E2.4-I) 

For L/t;;:= 25: 
<I> =0.55 
Pn =0.75 tLFu CEq. E2.4-2) 

(b) For transverse loading: 
<I> =0.60 
Pn =tLFu 

where t =Least value of t1 or 12, Figure E2.4 

In addition, for t > 0.150 inch the design strength determined above shall not ex
ceed the following value of <l>Pn : 

<I> = 0.60 
Pn = 0.75 twLFxx 

where 
<I> = Resistance factor for welded connedtions 
Pn = Nominal strength of a fillet weld 
L = Length of fillet weld 
tw = Effective throat = 0.707 w 1 or 0.707 W2, whichever is smaller. A larger effective 

throat may be taken if it can be shown by measurement that a given welding 
procedure will consistently give a larger value providing the particular welding 
procedure used for making the welds that are measured is followed. 

Wl and W2 = leg on weld (see Figure E2.4). 
Fu and Fxx are defined in Section E2.2. 

(Eq. E2.4-3) 

CEq. E2.4--4) 
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(A) Lap Joint (B) T-Joint 

Figure E2.4 Fillet Welds 

E2.S Flare Groove Welds 

Flare groove welds covered by this Specification apply to welding of joints in any 
position, either: 
(a) Sheet to sheet for flare-V groove welds, or 
(b) Sheet to sheet for flare-bevel groove welds, or 
(c) Sheet to thicker steel member for flare-bevel groove welds. 

The design shear strength, <l>Pn, of a flare groove weld shall be determined as fol
lows: 
(a) For flare-bevel groove welds, transverse loading [see Figure E2.5(A)]: 

<I> =0.55 
Pn =0.833tLFu 

(b) For flare groove welds, longitudinal loading [see Figures E2.5(B), E2.5(C), and 
E2.5(D)]: 
(I) For t :5; tw < 2t or if the lip height is less than weld length, L: 

<I> = 0.55 
Pn = 0.75tLFu 

(2) For tw ~ 2 t and the lip height is equal to or greater than L: 
<I> = 0.55 
Pn = 1.50tLFu 

In addition, if t > 0.15 inch, the design strength determined above shall not exceed the 
following value of <l>Pn : 

<I> = 0.60 
Pn = 0.75twLFxx 

(Eq. E2.5-1) 

(Eq. E2.5-2) 

(Eq. E2.5-3) 

(Eq. E2.5-4) 
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Figure E2.SA Flare-Bevel Groove Weld 

(B) Flare Bevel Groove 

(C) Flare V-Groove 

r-tw 

tw -r-----~.;.:1I =: ...L...-__ 

(0) Throat 

Figure E2.S B, C, D Shear In Flare Groove Welds 
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E2.6 Resistance Welds 

The design shear strength, <l>Pn, of spot welding shall be detennined as follows: 
<I> =0.65 
Pn =Tabulated value given in Table E2.6 

TABLE E2.6 
Nominal Shear Strength Of Spot Welding 

Thickness of Nominal Shear Thickness of Nominal 

Thinnest Outside Strength per Thinnest Outside Shear Stength 

Sheet, in. Spot, kips Sheet, in. per Spot, kips 

0.010 0.13 0.080 3.33 
0.020 0.48 0.090 4.00 
0.030 1.00 0.100 4.99 
0.040 1.42 0.110 6.07 
0.050 1.65 0.125 7.29 
0.060 2.28 0.190 10.16 
0.070 2.83 0.250 15.00 

E3 Bolted Connections 

The following LRFD design criteria govern bolted connections used for cold-fonned 
steel structural members in which the thickness of the thinnest connected part is less than 3/16 

inch. For bolted connections in which the thickness of the thinnest connected part is equal to 
or greater than 3/16 inch, refer to AISC's "Load and Resistance Factor Design Specification 
for Structural Steel Buildings", September 1, 1986. 

Bolts, nuts, and washers shall generally confonn to one of the following specifications: 

ASTM A 194 Carbon and Alloy Steel Nuts for Bolts for High-Pressure and High-Tem
perature Service 

ASTM A307(Type A), Carbon Steel Externally and Internally Threaded Standard Fas
teners 

ASTM A325 High Strength Bolts for Structural Steel Joints 
ASTM A354 (Grade BD), Quenched and Tempered Alloy Steel Bolts, Studs,and Other 

Externally Threaded Fasteners (for diameter of bolt smaller than I h inch) 
ASTM A449 Quenched and Tempered Steel Bolts and Studs (for diameter of bolt smaller 

than I h inch) 
ASTM A490 Quenched and Tempered Alloy Steel Bolts for Structural Steel Joints 
ASTM A563 Carbon and Alloy Steel Nuts 
ASTM F436 Hardened Steel Washers 
ASTM F844 Washers, Steel, Plain (Flat), Unhardened for General Use 
ASTM F959 Compressible Washer-Type Direct Tension Indicators for Use with Struc

tural Fasteners 

When other than the above are used, drawings shall indicate clearly the type and size of 
fasteners to be employed and the nominal strength assumed in design. 

Bolts shall be installed and tightened to achieve satisfactory perfonnance of the connec
tions involved under usual service conditions. 
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The holes for bolts shall not exceed the sizes specified in Table E3, except that larger 
holes may be used in column base details or structural systems connected to concrete walls. 

TABLE E3 
Maximum Size of Bolt Holes, Inches 

Nominal Standard Oversized Short-Slotted Long-Slotted 
Bolt Hole Hole Hole Hole 

Diameter, d Diameter, dh Diameter, dh Dimensions Dimensions 
in. in. in. in. in. 

< 1/2 d + 1/32 d+ Ih6 (d + 1/32) by (d + 1/4) (d + 1/32) by (2 1/2 d) 
~1/2 d+ Ih6 d + lis (d + 1/16) by (d + 1/4) (d + 1/16) by (2 1/2 d) 

Standard holes shall be used in bolted connections, except that oversized and slotted 
holes may be used as approved by the designer. The length of slotted holes shall be normal to 
the direction of the shear load. Washers or backup plates shall be installed over oversized or 
short-slotted holes in an outer ply unless suitable performance is demonstrated by load tests 
in accordance with Section F. 

E3.1 Spacing and Edge Distance 

The design shear strength, <l>Pn, of the connected part along two parallel lines in the 
direction of applied force shall be determined as follows: 
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Pn=teFu CEq. E3.1-l) 

(a) When Fu/Fsy ~ 1.15: 
<1>=0.70 

(b) When Fu/Fsy < 1.15: 
<1>=0.60 

where 
<I> = Resistance factor 

Pn =Nominal resistance per bolt 

e = The distance measured in the line of force from the center of a standard hole to the nearest 
edge of an adjacent hole or to the end of the connected part 

=Thickness of thinnest connected part 

Fu =Tensile strength of the connected part as specified in Section A3.1 or A3.2 
or as reduced for low-ductility steel 

Fsy = Yield point of the connected part as specified in Section A3.1 or A3.2 or 
as reduced for low-ductility steel 

In addition, the minimum distance between centers of bolt holes shall provide suf
ficient clearance for bolt heads, nuts, washers and the wrench but shall not be less than 3 
times the nominal bolt diameter, d. Also, the distance from the center of any standard 
hole to the end or other boundary of the connecting member shall not be less than 11 h d. 

For oversized and slotted holes, the distance between edges of two adjacent holes 
and the distance measured from the edge of the hole to the end or other boundary of the 
connecting member in the line of stress shall not be less than the value of e-(dh/2), in 
which e is the required distance computed from the applicable equation given above, and 
dh is the diameter of a standard hole defined in Table E3. In no case shall the clear dis-
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tance between edges of two adjacent holes be less than 2d and the distance between the 
edge of the hole and the end of the member be less than d. 

E3.2 Tension in Connected Part 

The design tensile strength, <l>Pn, on the net section of the connected part shall be 
determined as follows: 

(a) Washers are provided under both the bolt head and the nut 
Pn =(1.0 - 0.9r + 3rd/s) FuAn S; FuAn 
<I> =0.65 for double shear connection 
<I> =0.55 for single shear connection 

(b) Either washers are not provided under the bolt head and nut, or only one washer is 
provided under either the bolt head or nut 

where 

<I> =0.65 
Pn = (1.0 - r + 2.5rd/s) FuAn S; FuAn 

In addition, the design tensile strength shall not exceed the following values: 
<I> =0.95 
Pn =FyAn 

An = Net area of the connected part 
r = Force transmitted by the bolt or bolts at the section considered, divided by 

the tension force in the member at that section. If r is less than 0.2, it may 
be taken equal to zero. 

s = Spacing of bolts perpendicular to line of stress. 
In the case of a single bolt, s = Width of sheet 

Fu =Tensile strength of the connected part as specified in Section A3.1 or A3.2 
or as reduced for low-ductility steel 

Fy = Yield point of the connected part 
d and t are defined in Section E3.1 

E3.3 Bearing 

The design bearing strength, <l>Pn, shall be detennined by the values of <I> and Pn 
given in Tables E3.3-1 and E3.3-2 for the applicable thickness and Fu/Fsy ratio of the 
connected part and the typ'e of joint used in the connection. 

In Tables E3.3-1 and E3.3-2, the symbols <1>, Pn, d, Fu and t were previously de
fined. For conditions not shown, the design bearing strength of bolted connections shall 
be determined by tests. 

(Eq. E3.2-l) 

(Eq. E3.2-2) 

(Eq. E3.2-3) 
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Thickness of 
Connected Part 

in. 

~.024 

but < 3h6 

~ 3h6 

Thickness of 
Connected Part 

in. 

~ 0.036 
but < 3h6 

~ 3/16 

TABLE E3.3-1 
Nominal Bearing Strength for Bolted Connections 

with Washers under Both Bolt Head and Nut 

Resistance 
Type of joint Fu/Fsy ratio of Factor I 

Connected Part 
<\> 

Inside sheet of ~ 1.15 0.55 
double shear 
connection < 1.15 0.65 

Single shear 
and outside 
sheets of No limit 0.60 
double shear 
connection 

See AISC LRFD Specification 

TABLE E3.3-2 
Nominal Bearing Strength for Bolted Connections 
Without Washers Under Both Bolt Head and Nut, 

or With Only One Washer 

Fu/Fsy ratio of 
Resistance 

Type of joint Factor 
Connected Part 

<\> 

Inside sheet of double ~ 1.15 0.65 
shear connection 

Single shear and 

outside sheets ~ 1.15 0.70 
of double shear 
connection 

See AISC LRFD Specification 

E3.4 Shear and Tension In Bolts 

The required bolt strength in shear or tension shall not exceed the design strength, 
<\>Pn, detennined as follows: 

<\> = Resistance factor given in Table E3.4-1 
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Nominal 
Resistance 

Pn 

3.33 Fudt 

3.00 Fudt 

3.00 Fudt 

Nominal 
Resistance 

Pn 

3.00 Fudt 

2.22 Fudt 

Pn = AbFn (Eq. E3.4-1) 

where 
Ab = Gross cross-sectional area of bolt 
Fn is given by Fnv or Fnt in Table E3.4-I. 
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TABLE E3.4-1 
N omlna IT 'I d Sh S ens. e an ear trengt h fBI or ots 

Tensile Strength Shear Strength * 
Description of Bolts Resistance Nominal Resistance Nominal 

Factor <I> Stress Factor q, Stress 
Fnt Fnv 

A307 Bolts, Grade A 
40.5 24.0 

(1/4 in. $; d < 1/2 in.) 0.75 0.65 

A307 Bolts, Grade A 45.0 27.0 
(d ~ '/2 in.) 

A325 bolts, when threads 
90.0 54.0 are not excluded from 

shear planes 

A325 bolts, when threads 
90.0 72.0 are excluded from 

shear planes 

A354 Grade BD Bolts 
(1/4 in. $; d < 1/2 in.), 101.0 59.0 
when threads are not 
exluded from shear planes 

A354 Grade BD Bolts 
(1/4 in. $; d < 1/2 in.) 

101.0 when threads are excluded 90.0 
from shear planes 

A449 Bolts 

(1/4 in. ~ d < '/2 in.), when 
81.0 47.0 threads are not excluded 

from shear planes 

A449 Bolts 

(1/4 in. $; d < 1/2 in.), when 
81.0 72.0 

threads are excluded from 
shear planes 

A490 Bolts, when threads 
are not excluded from 112.5 67.5 
shear planes 

A490 Bolts, when threads 
are excluded from shear 112.5 90.0 
planes 

'" Applies to bolts in holes as limited by Table E3. Washers or back-up plates shall be installed over long-slotted 
holes and the capacity of connections using long-slotted holes shall be determined by load tests in accordance 
with Section F. 
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The pullover strength of the connected sheet at the bolt head, nut or washer should 
be considered where bolt tension is involved, see Section E5.2. 

When bolts are subject to a combination of shear and tension produced by factored 
loads, the required tension strength shall not exceed the design strength, <l>Pn, based on 
<l> = 0.75 and Pn = AbF' nt, where F' nt is given in Table E3.4-2, in which fv is the shear stress 
produced by the same factored loads. The required shear strength shall not exceed the 
design shear strength, <l>AbFnv, detennined in accordance with Table E3.4-1. 

TABLE E3.4-2 
Nominal Tension Stress, F' nt, for Bolts 

Subject to the Combination of Shear and Tension 

Description of Bolts 
Threads Not Excluded Threads Excluded 

from Shear Planes from Shear Planes 

A325 Bolts 113 - 2.4fv ~ 90 113 - 1. 9f v ~ 90 

A354 Grade BD Bolts 127 - 2.4fv ~ 101 127 - 1.9fv ~ 101 
A449 Bolts 101- 2.4fv ~ 81 101 - 1.9fv ~ 81 

A490 Bolts 141 - 2.4fv ~ 112.5 141- 1.9fv ~ 112.5 

A307 Bolts, Grade A 
When 1/4 in. ~ d < 1/2 in. 47 - 2.4fv S; 40.5 
When d ~ 1/2 in. 52 - 2.4fv S; 45 

E4 Shear Rupture 

At beam~nd connections, where one or more flanges are coped and failure might occur 
along a plane through the fasteners, the required shear strength shall not exceed the design 
shear strength, <l> V n . 
where 

<I> = 0.75 

V n = 0.6 FuAwn 
Awn = (dwc - ndh)t 
dwc = Coped web depth 
n = Number of holes in the critical plane 
dh = Hole diameter 
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(Eq. E4-1) 
(Eq. E4-2) 

Fu = Tensile strength as specified in Section A3.1 or A3.2 or as reduced for low-ductility steel 
t = Thickness of coped web 

E5 Connections to Other Materials 

ES.1 Bearing 

Proper provisions shall be made to transfer bearing forces resulting from axial 
loads and moments from steel components covered by the Specification to adjacent 
structural components made of other materials. The required bearing strength in the con
tact area shall not exceed the design strength, <pePp• 

In the absence of code regulations, the design bearing strength on concrete may be 
taken as <l>ePp : 
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On the full area of a concrete support . . . . . . . . . . . . . . . . . . . .. Pp = 0.85f 'e Al 
On less than the full area of a concrete support ............. Pp = 0.85f 'eA'..jr-A-2-/-A-, 
where 

<\>e =0.60 
f'e = Specified compression strength of concrete 
Al = Bearing area 
A2 = Full cross-sectional area of concrete support 

The value of ~ A2 / Al shall not exceed 2. 

E5.2 Tension 

The pull-over shear/tension forces in the steel sheet around the head of the fasten
er should be considered as well as the pull-out force resulting from factored axial loads 
and bending moments transmitted onto the fastener from various adjacent structural 
components in the assembly. 

The nominal tensile strength of the fastener and the nominal imbedment strength 
of the adjacent structural component shall be determined by applicable product code ap
provals, or product specifications and/or product literature. 

E5.3 Shear 

Proper provisions shall be made to transfer shearing forces from steel components 
covered by this Specification to adjacent structural components made of other materials. 
The required shear and/or bearing strength on the steel components shall not exceed that 
allowed by this Specification. The design shear strength on the fasteners and other mate
rial shall not be exceeded. Imbedment requirements are to be met. Proper provision shall 
also be made for shearing forces in combination with other forces. • 
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F. TESTS FOR SPECIAL CASES 

(a) Tests shall be made by an independent testing laboratory or by a testing laboratory of a 
manufacturer. 

(b) The provisions of Chapter F do not apply to cold-fonned steel diaphragms. 

F1 Tests for Determining Structural Performance 

Where the composi tion or configuration of elements, assemblies, connections, or details 
of cold-fonned steel structural members are such that calculation of their load-carrying ca
pacity or deflection cannot be made in accordance with the provisions of this Specification, 
their structural perfonnance shall be established from tests and evaluated in accordance with 
the following procedure. 
(a) Where practicable, evaluation of the test results shall be made on the basis of the average 

value of test data resulting from tests of not fewer than four identical specimens, pro
vided the deviation of any individual test result from the average value obtained from all 
tests does not exceed ± 10 percent. If such deviation from the average value exceeds 10 
percent, at least three more tests of the same kind shall be made. The average value of all 
tests made shall then be regarded as the predicted capacity, Rp, for the series of the tests. 
The mean value and the coefficient of variation of the tested-to-predicted load ratios for 
all tests, Pm and V p, shall be detennined for statistical analysis. 

(b) The load-carrying capacity of the tested elements, assemblies, connections, or members 
shall satisfy Eq. F 1-1. 
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<l>Rp ~~YiQi (Eq. F1-1) 

where 
~YiQi = Required resistance based on the most critical load combination detennined in 

accordance with Section AS.1A. Yi and Qi are load factors and load effects, re
spectively. 

Rp = Average value of all test results 
<I> = Resistance factor 

= l.S(MmFmPm)exp( -f3o~V~ + V; +Cp V~ + VJ)* (Eq. Fl-2) 

Mm = Mean value of the material factor listed in Table F1 for the type of component 
involved 

Fm = Mean value of the fabrication factor listed in Table F1 for the type of compo-
nent involved 

Pm = Mean value of the tested-to-predicted load ratios detennined in Section F1 (a) 
~o = Target reliability index 

= 2.S for structural members and 3.S for connections 
VM = Coefficient of variation of the material factor listed in Table FI for the type of 

component involved 
VF = Coefficient of variation of the fabrication factor listed in Table F1 for the type 

of component involved 
Cp = Correction factor 

= (n-l)/(n-3) (Eq. FI-3) 
VP = Coefficient of variation of the tested-to-predicted load ratios detennined in 

Section FI (a) 
n = Number of tests 
V Q = Coefficient of variation of the load effect 

= 0.21 

* For beams having tension flange through-fastened to deck or sheathing and with compression flange laterally unbraced, 4> 
shaH be determined with a coefficient of ] .6 in lieu of ] .5, ~o = 1.5, and V Q = 0.43. 
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TABLE F1 
Statistical Data for the Determination of Resistance Factor 

Type of Component Mm VM Fm VF 

Transverse Stiffeners 1.10 0.10 1.00 0.05 

Shear Stiffeners 1.00 0.06 1.00 0.05 

Tension Members 1.10 0.10 1.00 0.05 

Flexural Members 

Bending Strength 1.10 0.10 1.00 0.05 

Lateral Buckling Strength 1.00 0.06 1.00 0.05 

One Flange Through-Fastened to Deck or Sheathing 1.10 0.10 1.00 0.05 

Shear Strength 1.10 0.10 1.00 0.05 

Combined Bending and Shear 1.10 0.10 1.00 0.05 

Web Crippling Strength 1.10 0.10 1.00 0.05 

Combined Bending and Web Crippling 1.10 0.10 1.00 0.05 

Concentrically Loaded Compression Members 1.10 0.10 1.00 0.05 

Combined Axial Load and Bending 1.05 0.10 1.00 0.05 

Cylindrical Tubular Members 

Bending Strength 1.10 0.10 1.00 0.05 

Axial Compression 1.10 0.10 1.00 0.05 

Wall Studs and Wall Stud Assemblies 

Wall Studs in Compression 1.10 0.10 1.00 0.05 

Wall Studs in Bending 1.10 0.10 1.00 0.05 

Wall Studs with Combined Axial Load and Bending 1.05 0.10 1.00 0.05 
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TABLE F1 (Continued) 

Statistical Data for the Determination of Resistance Factor 

Type of Component Mm VM Fm VF 

Welded Connections 

Arc Spot Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Failure 1.10 0.08 1.00 0.15 

Arc Seam Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Tearing 1.10 0.10 1.00 0.10 

Fillet Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Failure 1.10 0.08 1.00 0.15 

Flare Groove Welds 

Shear Strength of Welds 1.10 0.10 1.00 0.10 

Plate Failure 1.10 0.10 1.00 0.10 

Resistance Welds 1.10 0.10 1.00 0.10 

Bolted Connections 

Minimum Spacing and Edge Distance 1.10 0.08 1.00 0.05 

Tension Strength on Net Section 1.10 0.08 1.00 0.05 

Bearing Strength 1.10 0.08 1.00 0.05 
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The listing in Table FI does not exclude the use of other documented statistical data 
if they are established from sufficient results on material properties and fabrication. * 

For steels not listed in Section A3.l, the values ofMm and VM shall be determined by 
the statistical analysis for the materials used. 

When distortions interfere with the proper functioning of the specimen in actual use, 
the load effects based on the critical load combination at the occurrence of the accept
able distortion shall also satisfy Eq. Fl-l, except that the resistance factor <I> is taken as 
unity and that the load factor for dead load may be taken as 1.0. 

(c) If the yield point of the steel from which the tested sections are formed is larger than the 
specified value, the test results shall be adjusted down to the specified minimum yield 
point of the steel which the manufacturer intends to use. The test results shall not be 
adjusted upward if the yield point of the test specimen is less than the minimum speci
fied yield point. Similar adjustments shall be made on the basis of tensile strength in
stead of yield point where tensile strength is the critical factor. 

Consideration must also be given to any variation or differences which may exist be
tween the design thickness and the thickness of the specimens used in the tests. 

F2 Tests for Confirming Structural Performance 

For structural members, connections, and assemblies whose capacities can be computed 
according to this Specification or its specific references, confirmatory tests may be made to 
demonstrate the load-carrying capacity not less than the nominal resistance, Rn, specified in 
this Specification or its specific references for the type of behavior involved. 

F3 Tests for Determining Mechanical Properties 

F3.1 Full Section 

Tests for determination of mechanical properties of full sections to be used in Section 
A5.2.2 shall be made as specified below: 

(a) Tensile testing procedures shall agree with Standard Methods and Definitions for Me
chanical Testing of Steel Products, ASTM A370. Compressive yield point determina
tions shall be made by means of compression tests of short specimens of the section. 

(b) The compressive yield stress shall be taken as the smaller value of either the maximum 
compressive strength of the sections divided by the cross section area or the stress de
fined by one of the following methods: 

(I) For sharp yielding steel, the yield point shall be determined by the autographic dia
gram method or by the total strain under load method. 

(2) For gradual yielding steel, the yield point shall be determined by the strain under 
load method or by the 0.2 percent offset method. 

When the total strain under load method is used, there shall be evidence that the 
yield point so determined agrees within 5 percent with the yield point which would 
be determined by the 0.2 percent offset method 

(c) Where the principal effect of the loading to which the member will be subjected in serv
ice will be to produce bending stresses, the. yield point shall be determined for the 
flanges only. In determining such yield points, each specimen shall consist of one com
plete flange plus a portion of the web of such flat width ratio that the value of p for the 
specimen is unity. 

* See Reference 36 of the Commentary 
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(d) For acceptance and control purposes, two full section tests shall be made from each lot of 
not more than 50 tons nor less than 30 tons of each section, or one test from each lot of 
less than 30 tons of each section. For this purpose a lot may be defined as that tonnage of 
one section that is formed in a single production run of material from one heat. 

(e) At the option of the manufacturer, either tension or compression tests may be used for 
routine acceptance and control purposes, provided the manufacturer demonstrates that 
such tests reliably indicate the yield point of the section when subjected to the kind of 
stress under which the member is to be used. 

F3.2 Flat Elements of Formed Sections 

Tests for determining mechanical properties of nat elements of formed sections 
and representative mechanical properties of virgin steel to be used in Section A5.2.2 shall 
be made in accordance with the following provisions: 

The yield point of flats, Fyf, shall be established by means of a weighted average of 
the yield points of standard tensile coupons taken longitudinally from the flat portions of 
a representative cold-formed member. The weighted average shall be the sum of the 
products of the average yield point for each flat portion times its cross sectional area, di
vided by the total area of flats in the cross section. The exact nurnber of such coupons will 
depend on the shape of the member, i.e., on the number of flats in the cross section. At 
least one tensile coupon shall be taken from the middle of each flat. If the actual virgin 
yield point exceeds the specified minimum yield point, the yield point of the flats, Fyf, 
shall be adjusted by multiplying the test values by the ratio of the specified minimum 
yield point to the actual virgin yield point. 

F3.3 Virgin Steel 

The following provisions apply to steel produced to other than the ASTM Specifi
cations listed in Section A3.1 when used in sections for which the increased yield point of 
the steel after cold forming shall be computed from the virgin steel properties according 
to Section A5.2.2. For acceptance and control purposes, at least four tensile specimens 
shall be taken from each lot as defined in Section F3.1 (d) for the establishment of the 
representative values of the virgin tensile yield point and ultimate strength. Specimens 
shall be taken longitudinally from the quarter points of the width near the outer end of the 
coil. 
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In the design of steel buildings, the "Allowable Stress Design Criteria" have long been 
used for the design of cold-formed steel structural members in the United States and other 
countries. Even though the theoretical concept of reliability analysis has been available for 
some time and the significance of such a concept in structural safety and design is well 
recognized, the probabilistic method has not yet been explicitly adopted as a basis for the 
American design standard for cold-formed steel structures. 

Recently, the load and resistance factor design (LRFD) criteria have been developed for 
steel buildings using hot-rolled shapes and built-up members fabricated from steel plates. It 
became evident that the development of a new specification for load and resistance factor 
design of cold-foffiled steel is highly desirable because the design criteria for heavy 
hot-rolled steel construction cannot possibly cover the design features of thin-walled, 
cold-formed steel construction completely. 

Since 1976, a joint project has been conducted at University of Missouri-Rolla and 
Washington University to develop the new design criteria for cold-formed steel structural 
members and connections based on the probabilistic approach . 

The Load and Resistance Factor Design criteria developed on the basis of the 1986 Edition 
of the AISI Specification with 1989 Addendum for allowable stress design are included in 
Sections A through F of this Specification. 

This commentary contains a brief presentation of the methodology used for the develop
ment of the load and resistance factor design criteria. In addition, it provides a record of the 
reasoning behind, and the justification for, various provisions of the Specification. For 
detailed background information, reference is made to the research reports given in the 
bibliography. 

A. GENERAL PROVISIONS 

A 1 Limits of Applicability and Terms 

Section A 1 of the LRFD Specification is essentially the same as Section A 1 of the AISI 
Specification for allowable stress design. The definitions and various terms used for the 
LRFD criteria are the same as that used for the allowable stress design. 

A2 Non-Conforming Shapes and Constructions 

Section A2 of the LRFD Specification is essentially the same as Section A2 of the AISI 
Specification for allowable stress design. 

A3 Material 

This Section is essentially the same as Section A3 of the AISI Specification for allowable 
stress design. 
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In lieu of the tensile-to-yield strength limit of 1.08, the Specification permits the use of 
elongation requirements using the measurement technique as given in Ref. 1, and Part VII 
of the Manual. Because of limited experimental verification of the structural performance 
of members using material having a tensile-to-yield strength ratio less than 1.08 (Ref. 2), the 
Specification limits the use of this material to purlins and girts meeting the elastic design 
requirements of Sections C3.L1(a), C3.L2, and C3.L3. Thus, the use of such steel in other 
applications (compression members, tension members, other flexural members including 
those whose strength is based on inelastic reserve capacity, etc.) is prohibited. However, in 
purlins and girts, concurrent axial loads of relatively small magnitude are acceptable 
providing the requirements of Section C5 are met and PuI<\>cPn does not exceed 0.15. 

A4 Loads 

This Section is the same as Section A4 of the AISI Specification for allowable stress 
design. 

With regard to ponding, design guidance can be found from Section K2 of the AISC Load 
and Resistance Factor Design Specification for Structural Steel Buildings (Ref. 3). 

A5 Structural Analysis and Design 

A5.1 Design Basis 

The current method of designing cold-formed steel structural members, as presented 
in the 1986 AISI Specification (Ref. 4), is based on the Allowable Stress Design method. 
In this approach, the forces (bending moments, axial forces, shear forces) in structural 
members are computed by accepted methods of structural analysis for the specified 
working loads. These member forces or moments should not exceed the allowable values 
permitted by the AISI Specification. The AISI allowable load or moment is determined 
by dividing the nominal load or moment at a limit state by a factor of safety. Usual factors 
of safety inherent in the AISI Specification for the Design of Cold-Formed Steel Structural 
Members are 5/3 for beams and 23/12 for columns. 

A limit state is the condition at which the structural usefulness of a load-carrying 
element or member is impaired to such an extent that it becomes unsafe for the occupants 
of the structure, or the element no longer performs its intended function. Typical limit 
states for cold-formed steel members are excessive detlection, yielding, buckling and 
attainment of maximum strength after local buckling (Le., post-buckling strength). These 
limit states have been established through experience in practice or in the laboratory, and 
they have been thoroughly investigated through analytical and experimental research. The 
background for the establishment of the limit states is extensively documented in the 
Commentary on the AISI Specification (Refs. 5 and 6)(see also Refs. 7 and 8), and a 
continuing research effort provides further improvement in understanding them. 

The factors of safety are provided to account for the uncertainties and variabilities 
inherent in the loads, the analysis, the limit state model, the material properties, the 
geometry, and the fabrication. Through experience it has been established that the present 
factors of safety provide satisfactory design. 

The allowable stress design method employs only one factor of safety for a limit state. 
The use of multiple load factors provides a refinement in the design which can account 
for the different degrees of the uncertainties and variabilities of the design parameters. 
Such a design method is called Load and Resistance Factor Design, and its format is 
expressed by the following criterion: 

<\>Rn ~ l:YiQi (CA5.l-1) 
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where 

Rn = the nominal resistance 

<I> = resistance factor 

'Yi = load factors 

Qi = load effects 

The nominal resistance is the strength of the element or member for a given limit state, 
computed for nominal section properties and for minimum specified material properties 
according to the appropriate analytical model which defines the strength. The resistance 
factor <I> accounts for the uncertainties and variabilities inherent in the ~, and it is usually 
less than unity. The load effects Qi are the forces on the cross section (bending moment, 
axial force, shear force) determined from the specified minimum loads by structural 
analysis, and 'Yi are the corresponding load factors which account for the uncertainties and 
variabilities of the loads. The load factors are greater than unity. 

The advantages of LRFD are: (1) the uncertainties and the variabilities of different 
types ofloads and resistances are different (e.g., dead load is less variable than wind load), 
and so these differences can be accounted for by use of multiple factors, and (2) by using 
probability theory designs can ideally achieve a more consistent reliability. Thus LRFD 
provides the basis for a more rational and refined design method than is possible with the 
Allowable Stress Design method. 

Probabilistic Concepts 

Factors of safety or load factors are provided against the uncertainties and variabilities 
which are inherent in the design process. Structural design consists of comparing nominal 
load effects Q to nominal resistances R, but both Q and R are random parameters (see 
Fig. CAS.l-l). A limit state is violated if R < Q. While the possibility of this event ever 
occurring is never zero, a successful design should, nevertheless, have only an acceptably 
small probability of exceeding the limit state. If the exact probability distributions of Q 
and R were known, then the probability of (R - Q) < 0 could be exactly determined for 
any design. In general the distributions of Q and R are not known, and only the means, 
Qrn and Rrn, and the standard deviations, O'Q and OR are available. Nevertheless it is 
possible to determine relative reliabilities of several designs by the scheme illustrated in 
Fig. CAS.l-2. The distribution curve shown is for In(R/Q), and a limit state is exceeded 
when In(R/Q) $ 0 . The area under In(R/Q) $ 0 is the probability of violating the limit 
state. The size of this area is dependent on the distance between the origin and the mean 
of In(RlQ). For given statistical data Rrn, Qrn' O'R and 0'9' the area under In(R/Q) $ 0 can 
be varied by changing the value of ~ (Fig. CAS.l-2), SInce ~O'ln(RJQ) = In(R/Q)m' from 
which approximately 

~ _ In(RrnIQrn) 
- ~y2 + y2 

R Q 
(CAS.l -2) 

where YR =O'RIRm and Y q = O'dQrn, the coefficients of variation ofR and Q, respectively. 
The index ~ is called the 'reliability index", and it is a relative measure of the safety of 
the design. When two designs are compared, the one with the larger ~ is more reliable. 

The concept of the reliability index can be used in determining the relative reliability 
inherent in current design, and it can be used in testing out the reliability of new design 
formats, as illustrated by the following example of simply supported, braced beams 
subjected to dead and live loading. 
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The design requirement of the 1986 AISI Specification for such a beam is 

where 

SeFy/FS = (L; s/8)(D+L) (CA5.1-3) 

Se = elastic section modulus based on the effective section 

FS = 5/3 = the factor of safety for bending 

Fy = specified yield point 

Ls = span length, and s = beam spacing 

D and L are, respectively, the code specified dead and live 
load intensities. 

The mean resistance is defined as (Ref. 9) 

Rm = Rn(P mMmFm) (CA5.1-4) 

In this equation Rn is the nominal resistance, which in this case is 

Rn = SeFy (CA5.1-5) 

that is, the nominal moment predicted on the basis of the post-buckling strength of the 
compression flange. The mean values Pm' Mm, and F m' and the corresponding coefficients 
of variation V p, V M and V F' are the statistical parameters which define the variability of 
the resistance: 

Pm = the mean ratio of the experimentally detennined moment to 
the predicted moment for the actual material and cross-sectional 
properties of the test specimens 

Mm =mean ratio of the yield point to the minimum specified value 

Fm = mean ratio of the actual section modulus to the specified 
(nominal) value 

The coefficient of variation of R equals 

VR=".jV~+V~+V~ (CA5.1 - 6) 

The values of these data were obtained from examining the available tests on beams 
having different compression flanges with partially and fully effective flanges and webs, 
and from analyzing data on yield point values from tests and cross-sectional dimensions 
from many measurements. This infonnation was developed in Ref. 10 and is given below: 

Pm = 1.11, Vp= 0.09; Mm = 1.10, VM = 0.10; Fm = 1.0, VF = 0.05 and thus Rm = 1.22Rn 
and VR = 0.14. 

The mean load effect is equal to 

and 

2 Qm = (Lss/8)(Dm + Lm) 

V 
_ "(Dm VD)2 + (Lm Vd

2 

Q-
Dm+Lm 

(CA5.1 - 7) 

(CA5.1 - 8) 

where Dm and Lm are the mean dead and live load intensities, respectively, and V D and 
V L are the corresponding coefficients of variation . 

Load statistics have been analyzed in Ref. 11, where it was shown that Dm = 1.05D, 
VD = 0.1; Lm = L, VL = 0.25. 
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The mean live load intensity equals the code live load intensity if the tributary area is 
small enough so that no live load reduction is included. Substitution of the load statistics 
into Eqs. CA5.1-7 and CA5.1-8 gives 

2 

Qrn=¥(~+I)L (CA5.1-9) 

V _ ~(1.05D/L)2V5 + vl 
Q- (1.05D/L + 1) 

(CA5.1 -10) 

Qm and V Q thus depend on the dead-to-live load ratio. Cold-formed beams typically have 
small D/L, and for the ~ i.lfposes of checking the reliability of these LRFD criteria it will 

2 
be assumed that D/L = 1/5, and so Qrn = 1.21L(Lss/8) and V Q = 0.21. 

From Eq. CA5.1-3 we obtain the nominal design capacity for D/L = 1/5 and FS = 5/3. 
Thus 

Rm 1.22x2.0xL(L;s/8) 
-= 2 =2.02 
Qrn 1.21L(Lss/8) 

and, from Eq. CA5.1-2 

~ = In(2.02) = 2 79 
~O.l42 + 0.21 2 . 

Of itself ~ = 2.79 for beams having different compression flanges with partially and 
fully effective flanges and webs designed by the 1986 AISI Specification means nothing. 
However, when this is compared to ~ for other types of cold-formed members, and to ~ 
for designs of various types from hot-rolled steel shapes or even for other materials, then 
it is possible to say that this particular cold-formed steel beam has about an average 
reliability (Ref. 12). 

Basis for LRFD of Cold-Formed Steel Structures 

A great deal of work has been performed for determining the values of the reliability 
index J3 inherent in traditional design as exemplified by the current structural design 
specifications such as the AISC Specification for hot-rolled steel, the AISI Specification 
for cold-formed steel, the ACI Code for reinforced concrete members, etc. The studies 
for hot-rolled steel are summarized in Ref 9, where also many further papers are 
referenced which contain additional data. The determination of ~ for cold-formed steel 
elements or members is presented in Refs. 10 and 13 through 17., where both the basic 
research data as well as the ~'s inherent in the AISI Specification are presented in great 
detail. The J3' s computed in the above referenced publications were developed with 
slightly different load statistics than those of this Commentary, but the essential con
clusions remain the same. 

The entire set of data for hot-rolled steel and cold-formed steel designs, as well as data 
for reinforced concrete, aluminum, laminated timber, and masonry walls was re-analyzed 
in Refs. 11, 12 and 18 by using (a) updated load statistics and (b) a more advanced level 
of probability analysis which was able to incorporate probability distributions which 
describe the true distributions more realistically. The details of this extensive reanalysis 
are presented in Refs. 11, 12 and 18 and also only the final conclusions from the analysis 
are summarized here: 

(1) The values of the reliability index J3 vary considerably for the different kinds of 
loading, the different types of construction, and the different types of members within a 
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given material design specification. In order to achieve more consistent reliability, it was 
suggested in Ref. 18 that the following values of ~ would provide this improved 
consistency while at the same time give, on the average, essentially the same design by 
the new LRFD method as is obtained by current design for all materials of construction. 
These target reliabilities ~o for use in LRFD are: 

Basic case: Gravity loading, ~o = 3.0 

For connections: ~o = 4.5 

For wind loading: ~o = 2.5 

These target reliability indices are the ones inherent in the load factors recommended 
in the ANSI/ASCE 7-88 Load Code (Ref. 19). 

For simply supported, braced cold-formed steel beams with stiffened flanges, which 
were designed according to the 1986 AISI allowable stress design specification or to any 
previous version of this specification, it was shown above that for the representative 
dead-to-live load ratio of 1/5 the reliability index ~ = 2.8. Considering the fact that for 
other such load ratios, or for other types of members, the reliability index inherent in 
current cold-formed steel construction could be more or less than this value of 2.8, a 
somewhat lower target reliability index of ~o = 2.5 is recommended as a lower limit for 
the new LRFD Specification. The resistance factors <I> were selected such that ~o = 2.5 is 
essentially the lower bound of the actual ~'s for members. In order to assure that failure 
of a structure is not initiated in the connections, a higher target reliability of ~o = 3.5 is 
recommended for joints and fasteners. These two targets of 2.5 and 3.5 for members and 
connections, respectively, are somewhat lower than those recommended by ANSI/ ASCE 
7-88 (i.e., 3.0 and 4.5, respectively), but they are essentially the same targets as are the 
basis for the 1986 AISC LRFD Specification (Ref. 3). 

(2) The following load factors and load combinations were developed in Refs. 11 and 
18 to give essentially the same ~'s as the target ~o's, and are recommended for use with 
the ANSI/ASCE 7-88 Load Code (Ref. 19) for all materials, including cold-fonned steel: 

1. l.4D 

2. 1.2D+ 1.6L+0.5(Lr or S or Rr) 

3. 1.2D+ 1.6(Lr or S or Rr)+(0.5L or 0.8W) 

4. 1.2D+ 1.3W+0.5L+0.5(Lr or S or Rr) 

5. 1.2D+ 1.5E+(0.5L or 0.2S) 

6. 0.9D-( 1.3W or 1.5E) 

where 

D = nominal dead load 

E = nominal earthquake load 

L = nominal live load due to occupancy; 
weight of wet concrete for composite construction 

Lr = nominal roof live load 

Rr = nominal roof rain load 

S = nominal snow load 

W = nominal wind load 
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In view of the fact that the dead load of cold-fonned steel structures is usually smaller 
than that of heavy construction, the fust case of load combinations included in Section 
A5.1.4 of the Specification is (1.4D+L) instead of the ANSI/ASCE value of I.4D. This 
AISI requirement is identical with the ANSI/ ASCE Code when L = O. 

Because of special circumstances inherent in cold-fonned steel structures, the follow
ing additional LRFD criteria apply for roof, floor and wall construction using cold-fonned 
steel: 

(a) For roof and floor composite construction 

1.2Ds + 1.6 Cw + l.4C 

where 

Ds = weight of steel deck 

Cw = nominal weight of wet concrete during construction 

C = nominal construction load, including equipment, workmen 
and fonnwork, but excluding the weight of the wet 
concrete. 

This suggestion provides safe construction practices for cold-fonned steel decks and 
panels which otherwise may be damaged during construction. The load factor used for 
the weight of wet concrete is 1.6 because of delivering methods and an individual sheet 
can be subjected to this load. The use of a load factor of 1.4 for the construction load 
reflects a general practice of 33% strength increase for concentrated loads. 

It should be noted that for the third case of load combinations, the load factor used for 
the nominal roof live load, Lr, in Section A5.1.4 of the AISI Specification is 1.4 instead 
of the ANSI/ASCE value of 1.6. The use of a relatively small load factor is because the 
roof live load is due to the presence of workmen and materials during repair operations 
and, therefore, can be considered as a type of construction load. 

(b) For roof and wall construction, the load factor for the nominal wind load W to be 
used for the design of individual purlins, girts, wall panels and roof decks should be 
multiplied by a reduction factor of 0.9 because these elements are secondary members 
subjected to a short duration of wind load and thus can be designed for a smaller reliability 
than primary members such as beams and columns. For example, the reliability index of 
a wall panel under wind load alone is approximately 1.5 with this reduction factor. With 
this reduction factor designs comparable to current practice are obtained. 

Deflection calculations for serviceability criteria should be made with the appropriate 
unfactored loads. 

The load factors and load combinations given above are recommended for use with the 
LRFD criteria for cold-fonned steel. The following portions of this Commentary present 
the background for the resistance factors <1> which are recommended in Section A5.1.5 
for the various members and connections in Sections B, C, D and E. These <1> factors are 
detennined in confonnance with the load factors given above to approximately provide 
a target ~o of 2.5 for members and 3.5 for connections, respectively, for the load 
combination 1.2D+ 1.6L. For practical reasons it is desirable to have relatively few 
different resistance factors, and so the actual values of ~ will differ from the derived 
targets. This means that 

<1>Rn = c( 1.2D+ 1.6L) = (1.2D/L+ 1.6)cL (CA5.1-11) 

where c is the detenninistic influence coefficient translating load intensities to load 
effects. 
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By assuming D/L = 1/S, Eqs. CAS. 1-11 and CAS.1-9 can be rewritten as follows: 

Rn = 1.84(cL/<I» 

Qm = (1.05D/L+ l)cL = 1.21cL 

Therefore, 

(CAS.I-12) 

(CAS.I-13) 

(CAS.1-14) 

The <I> factors can be computed from Eq. CAS.I-14 and the following equation by using 
VQ = 0.21: 

r:t 1n(Rm/Qm) 
Target Po = ~ 2 2 

VR+V
Q 

(CAS.l - IS) 

AS.2 Yield Point and Strength Increase from Cold Work of Forming 

This section is the same as Section AS.2 of the 1986 AISI Specification. 

The following statistical data (mean values and coefficients of variation) on material 
and cross-sectional properties were develpoed in Refs. 13 and 14 for use in the derivation 
of the resistance factors <1>: 

(Fy)m = 1.10Fy; Mm = 1.10; VFy = VM = 0.10 

(Fya)m = 1.10Fya; Mm = 1.10; VFya= VM = 0.11 

(Fu)m = 1.10Fu; Mm = 1.10; VF = VM = 0.08 
u 

Fm = 1.00; VF = O.OS 

The subscript m refers to mean values. The symbol V stands for coefficient of variation. 
The symbols M and F are, respectively, the ratio of the mean-to-the nominal material 
property or cross-sectional property; and F~" Fya' and Fu are, respectively, the specified 
minimum yield point, the average yield pomt mcluding the effect of cold forming, and 
the specified minimum tensile strength. 

These data are based on the analysis of many samples, and they are representative 
properties of materials and cross sections used in the industrial application of cold-formed 
steel structures. 

A6 Reference Documents 

The specifications and standards to which this Specification makes reference in various 
provisions are listed in Section A6 to provide the effective dates of these standards at the 
time of approval of this Specification. 

Additional references which the designer may use for related information are : 

1. American Institute of Steel Construction, "Specification for Structural Steel Buildings 
- Allowable Stress Design and Plastic Design," American Institute of Steel Construction 
(AISC), One East Wacker Drive, Suite 3100, Chicago, Illinois 60601-2001, June 1, 
1989 

2. Research Council on Structural Connections, "Allowable Stress Design Specification 
for Structural Joints Using ASTM A32S or A490 Bolts," Research Council on Structural 
Connections (RCSC), American Institute of Steel Construction (AISC), One East 
Wacker Drive, Suite 3100, Chicago, Illinois 60601-2001, November 13, 1985 

3. Metal Building Manufacturers Association, "Low Rise Building Systems Manual," 
Metal Building Manufacturers Association (MBMA), 1230 Keith Building, Cleveland, 
Ohio 4411S 
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4. Steel Deck Institute, "Design Manual for Composite Decks, Fonned Decks, and Roof 
Decks," Steel Deck Institute, Inc. (SDI), P. O. Box 9506, Canton, Ohio 44711, 1984 

5. Steel Joist Institute, "Standard Specifications Load Tables and Weight Tables for Steel 
Joists and Joist Girders," Steel Joist Institute (Sn), Suite A, 1205 48th Avenue North, 
Myrtle Beach, South Carolina 29577, 1986 

6. Rack Manufacturers Institute, "Specification for the Design, Testing and Utilization of 
Industrial Steel Storage Racks," Rack Manufacturers Institute (RMI), 8720 Red Oak 
Boulevard, Suite 201, Charlotte, North Carolina 28210,1985 

7. American Iron and Steel Institute, "Stainless Steel Cold-Fonned Structural Design 
Manual," American Iron and Steel Institute (AISI), 1133 15th Street, N. W., 
Washington, D. C. 20005, 1974 Edition 

8. American Society of Civil Engineers, "ASCE Standard, Specification for the Design 
and Construction of Composite Slabs," American Society of Civil Engineers (ASCE), 
345 East 47th Street, New York, New York 10017, October, 1984 

9. American Iron and Steel Institute, "Tentative Criteria for Structural Applications of 
Steel Tubing and Pipe," American Iron and Steel Institute (AISI), 1133 15th Street, N. 
W., Washington, D. C. 20005, August, 1976 
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B. ELEMENTS 

81 Dimensional Limits and Considera'tions 

This section is the same as Section B 1 of the AISI Specification for allowable stress 
design. 

82 Effec'live Widths of Stiffened Elements 

This section is the same as Section B2 of the AISI Specification for allowable stress 
design. 

83 Effec'live Widths of Unstiffened Elements 

This section is the same as Section B3 of the AISI Specification for allowable stress 
design. 

84 Effective Widths of Elements with an Edge Stiffener or One Intermediate 
Stiffener 

This section is the same as Section B4 of the AISI Specification for allowable stress 
design. 

Test data to verify the accuracy of the simple lip stiffener design was collected from a 
number of sources, both university and industry. These tests showed good correlation with 
the equations in Section B4.2. However, proprietary testing conducted in 1989 revealed that 
lip lengths with a d/t ratio of greater than 14 gave unconservative results . 

A review of the original research data showed a lack of data for simple stiffening lips with 
d/t ratios greater than 14. Therefore, an upper limit of 14 is recommended pending further 
research. 

85 Effective Widths of Edge Stiffened Elements with Intermediate Stiffeners 
or S'tiffened Elements with More Than One Intermediate S'liffener 

This section is the same as Section B5 of the AISI Specification for allowable stress 
design. 

86 Stiffeners 

86.1 Transverse Stiffeners 

The available experimental data on cold-formed steel transverse stiffeners were 
evaluated in Ref 10. The test results were compared to the predictions based on the same 
mathematical models on which the AISI Specification was based. The design provisions 
in these LRFD criteria are also based on the same mathematical models. 

Load capacity in these LRFD criteria is based on the same prediction models as were 
employed in the formulation of the AISI Specification. A total of 61 tests were examined. 
The resistance factor 4>c = 0.85 was selected on the basis of the statistical data given in 
Ref. 10. The corresponding safety indices vary from 3.32 to 3.41. A summary of the 
information is given in Table CB6.1 . 
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Table CB6.1 
Computed Safety Index ~ for Transverse Stiffeners 

(<Pc = 0.85 ) 

Case No. of Tests Mm VM Fm VF Pm Vp 

1 33 1.10 0.10 1.0 0.05 1.1762 0.08658 3.32 

2 28 1.10 0.10 1.0 0.05 1.2099 0.09073 3.41 

3 61 1.10 0.10 1.0 0.05 1.1916 0.08897 3.36 

Note: Case 1 = Transverse stiffeners at interior support and under concentrated load 

Case 2 = Transverse stiffeners at end support 

Case 3 = Sum of Cases 1 and 2 

86.2 Shear Stiffeners 

The available experimental data on shear strength of the beam webs with shear 
stiffeners were calibrated in Ref. 10. The <Pv factors were taken as the same as those for 
shear strength of beams (Section C3.2). The statistical data used for detennining the <Pv 
factor are given in Ref. 10 as follows: 

Pm = 1.60; 

Mm = 1.00; 

Fm = 1.00; 

Vp = 0.09 

VM = 0.06 

VF = 0.05 

Based on all these data, the value of ~ was found to be 4.10 for <Pv = 0.90. 

It should be noted that the equations for detennining Ismin and Ast of attached shear 
stiffeners are based on the studies summarized in Ref. 43. 

86.3 Non-Conforming Stiffeners 

This Section is the same as Section B6.3 of the AISI Specification for allowable stress 
design. 

~ 
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c. MEMBERS 

C1 Properties of Sections 

This section is the same as Section C 1 of the AISI Specification for allowable stress 
design. 

C2 Tension Members 

Section C2 of the LRFD criteria was developed on the basis of Section C2 of the AISI 
Specification for allowable stress design, in which the design of tension members is based 
only on the yield point of steel. 

The resistance factor of <l>t = 0.95 used for tension member design was derived from the 
procedure described in Section A5.1 of this Commentary and a selected ~o value of2.5. In 
the determination of the resistance factor, the following formulas were used for Rm and Rn: 

Rm = An (Fy)m 

Rn = AnFy 

i.e. RmlRn = (Fy)m/Fy 

(CC2-l) 

(CC2-2) 

(CC2-3) 

in which An is the net area of the cross section, (Fy)m is equal to 1.10Fy as discussed in 
Section A5.2 of the Commentary. By using VM = 0.10, VF = 0.05 and Vp = 0, the coeffi
cient of variation VR is: 

VR="-JV~ +V~ +V~ =0.11 

Based on V Q = 0.21 and the resistance factor of 0.95, the value of ~ is 2.4, which is close 
to the stated target value of ~o = 2.5. 

C3 Flexural Members 

C3.1 Strength for Bending Only 

Bending strengths of flexural members are differentiated according to whether or not 
the member is laterally braced. If such members are laterally supported, then they are 
proportioned according to the nominal section strength (Sec. C3.1.1). If they are laterally 
unbraced, then the limit state is lateral-torsional buckling (Sec. C3.1.2). For C- or 
Z-section with the tension flange attached to deck or sheathing and with compression 
flange laterally unbraced, the bending capacity is less than that of a fully braced member 
but greater than that of an unbraced member (Sec. C3.1.3). 

C3.1.1 Nominal Section Strength 

The bending strength of beams with a compression flange having stiffened, partially 
stiffened, orunstiffenedelements is based on the post-buckling strength of the member, 
and use is made in LRFD of the effective width concept in the same way as in the 1986 
AISI Specification. References 5, 6, 7, and 8 provide an extensive treatment of the 
background research. 

The experimental bases for the post-buckling strengths of cold-formed beams were 
examined in Refs. 8 and 10, where different cases were studied according to the types 
of compression flanges and the effectiveness of webs. 

On the basis of the initiation of yielding, the nominal strength Rn is based on the 
nominal effective cross section and on the specified minimum yield point, i.e., Rn = 
SeFy. 
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Table CC3.1.1 
Computed Safety Index ~ for Section Bending Strength of Beams 

Based on Initiation of Yielding 

Case No. of Tests Mm Fm VF Pm Vp 

Stiffened or Partially Stiffened Compression Flanges (<pb = 0.95) 

FF.FW. 8 1.10 0.10 1.0 0.05 1.10543 0.03928 2.76 

PF.FW. 30 1.10 0.10 1.0 0.05 1.11400 0.08889 2.65 

PF. PW. 5 1.10 0.10 1.0 0.05 1.08162 0.09157 2.53 

Unstiffened Compression Flanges (<pb = 0.90) 

FF.FW. 3 1.10 0.10 1.0 0.05 1.43330 0.04337 4.05 

PF.FW. 40 1.10 0.10 1.0 0.05 1.12384 0.13923 2.67 

PF.PW. 10 1.10 0.10 1.0 0.05 1.03162 0.05538 2.66 

Note: FF. = Fully effective flanges 

PF. = Partially effective flanges 

FW. = Fully effective webs 

PW. = Partially effective webs 

For details, see Ref. 10. 

The computed values of ~ for the selected values of <Pb = 0.95 for sections with 
stiffened or partially stiffened compression flanges and 0.90 for sections with unstif
fened compression flanges, and for a dead-to-live load ratio of 1/5 for different cases 
are listed in Table CC3.1.1. It can be seen that the ~ values vary from 2.53 to 4.05. In 
Table CC3.1.1, the values of Mm, VM, Fm and VF are the values presented in Sec. A5.2 
of this Commentary for the material strength. 

C3.1.2 Lateral Buckling Strength 

There are not many test data on laterally unsupported cold-formed beams. The 
available test results are summarized in Ref. 10, and they are compared with predictions 
from AISI design formulas, theoretical formulas and SSRC formulas. 

The statistical data used in Ref. 10 are listed in Table CC3.1.2. The symbol P is 
the ratio of the tested capacity to the predicted value, M is the ratio of the actual to the 
specified value of the modulus of elasticity, and F is the ratio of the actual to the nominal 
sectional properties. 

Using the recommended resistance factor <Pb = 0.90, the values of ~ vary from 2.35 
to 3.8. See Table CC3.1.2. It should be noted that the recommended design criteria use 
some simplified and conservative formulas, which are the same as the allowable stress 
design rules included in the 1986 AISI Specification. 

r 
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Case 

1 

2 

3 

4 

5 

Note: 

Table CC3.1.2 
Computed Safety Index ~ for Lateral Buckling Strength of Bending 

(<pb = 0.90) 

No. of Tests Mm VM Fm VF Pm Vp 

47 1.0 0.06 1.0 0.05 2.5213 0.30955 

47 1.0 0.06 1.0 0.05 1.2359 0.19494 

47 1.0 0.06 1.0 0.05 1.1800 0.19000 

47 1.0 0.06 1.0 0.05 1.7951 0.21994 

47 1.0 0.06 1.0 0.05 1.8782 0.20534 

Case 1 = AISI approach 

Case 2 = Theoretical approach with J = 0.0026 in.4 

Case 3 = SSRC approach with J = 0.0026 in.4 

Case 4 = Theoretical approach with J = 0.0008213 in.4 • 

Case 5 = SSRC approach with J = 0.0008213 in.4 

3.79 

2.48 

2.35 

3.53 

3.80 

C3.1.3 Beams Having One Flange Through-Fastened to Deck or 
Sheathing 

11-21 

For beams having the tension flange attached to deck or sheathing and the compres
sion flange unbraced, e.g., a roof purl in or wall girt subjected to wind suction, the 
bending capacity is less than a fully braced member, but greater than an unbraced 
member. This partial restraint is a function of the rotational stiffness provided by the 
panel-to-purlin connection. The Specification contains factors that represent the reduc
tion in capacity from a fully braced condition. These factors are based on experimental 
results obtained for both simple and continuous span purlins (Refs. 20 to 24). 

As indicated in Ref. 25, the rotational stiffness of the panel-to-purlin connection is 
primarily a function of the member thickness, sheet thickness, fastener type and 
fastener location. For compressed glass fiber blanket insulation of initial thicknesses 
of zero to six inches, the rotational stiffness was not measurably affected (Ref. 25). To 
ensure adequate rotational stiffness of the roof and wall systems designed using the 
Specification provision, Section C3.1.3 explicitly states the acceptable panel and 
fastener types. 

Continuous beam tests were made on three equal spans and the R values were 
calculated from the failure loads, using as a maximum positive moment, M = 

2 0.08wLs. 

The provisions of Section C3.1.3 apply to beams on which the tension flange is 
attached to deck or sheathing and the compression flange is completely unbraced. 
Beams with discrete point braces on the compression flange may have a bending 
capacity greater than those completely unbraced. Available data from simple span tests 
(Refs. 20, 23, 37, 38, and 39) indicate that for members having a lip edge stiffener at 
an angle of 75 degrees or greater with the plane of the compression flange and braces 
to the compression flange located at third points or more frequently, member capacities 
may be increased over those without discrete braces. 
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In this section, the <l>b factor is detennined for the load combination of 1.17W -0.90 
to approximately provide a target ~o of 1.S for counteracting loads with a reduction 
factor of 0.9 applied to the load factor for the nominal wind load. The reasons for using 
a low target ~o are discussed in Section AS.1 of this Commentary. Based on this type 
of load combination, the following equations can be established: 

<l>Rn = c(1.17W - 0.9D) = (1.17 - 0.9D/W)cW 

Qm = c(Wm - Om) 

Y _ ~(WmYW)2+ (Dmy D)2 
Q- W -D m m 

(CC3.1.3-l) 

(CC3.1.3-2) 

(CC3.1.3-3) 

where Wm is the mean wind load intensity and Yw is the corresponding coefficient of 
variation. 

Load statistics have been analyzed in Ref. 11, where it was shown that 

Dm = 1.050, YD = 0.1; Wm = 0.78W, Yw = 0.37 

The substitution of the load statistics into Eqs. CC3.1.3-2 and CC3.1.3-3 gives 

Qrn = c(0.78W - 1.0SD) = (0.78 - 1.0SD/W)cW 

Y _ ~(0.78x0.37)2 + (1.05D/WxO.1)2 
Q - 0.78 - 1.0S0/W 

(CC3.1.3-4) 

(CC3.1.3-S) 

By assuming D/W = 0.1, Eqs. CC3.1.3-1, CC3.1.3-4, and CC3.1.3-S can be rewritten 
as follows: 

<l>Rn = 1.08cW 

Qrn = 0.675cW = 0.67S(<I>Rnll.08) = 0.62S<I>Rn 

YQ = 0.43 

(CC3.1.3-6) 

The application ofEqs. CAS.1-2, CA5.1-4, CC3.1.3-6, and CAS.I-6 gives 

R _ 1n(1.6MrnFrnPrn /<1» 
I-' - ~y2 + y2 + y2 + y2 (CC3.1.3-7) 

M F P Q 
or 

<I> = 1.6(MrnFrnPrn)exp(- W·Jy 2 + y2 + y2 + y2) (CC3.1.3-8) 
M F P Q 

The computed values of ~ for the selected value of <l>b = 0.90 for different cases are 
listed in Table CC3.1.3. It can be seen that the ~ values vary from 1.S0 to 1.60 which 
are satisfactory for the target value of 1.S. In Table CC3.1.3, the values of Mm, VM, 
Fm, and YF are the val ues presented in Section AS.2 of this Commentary for the material 
strength and fabrication. 
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Case 

1 

2 

3 

4 

Note: 

Table CC3.1.3 
Computed Safety Index ~ for Beams Having One Flange 

Through-Fastened to Deck or Sheathing 
(<t>b = 0.90) 

No. of Tests Mm VM Fm Vp Pm Vp 

5 1.10 0.10 1.0 0.05 1.1995 0.2991 

15 1.10 0.10 1.0 0.05 1.0128 0.1112 

5 1.10 0.10 1.0 0.05 1.0466 0.1010 

14 1.10 0.10 1.0 0.05 1.0034 0.0689 

Case 1 = Simple span C-sections 

Case 2 = Simple span Z-sections 

Case 3 = Continuous span C-sections 

Case 4 = Continuous span Z-sections 

C3.2 Strength for Shear Only 
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1.60 

1.50 

1.58 

1.51 

The shear strength of beam webs is governed by either yielding or buckling, depending 
on the hit ratio and the mechanical properties of steel. For beam webs having small hit 
ratios, the shear strength is governed by shear yielding, i.e.: 

V n = Aw ty = AwFyI..J3 = 0.577Fyht (CC3.2-1) 

in which Aw is the area of the beam web computed by (ht), and ty is the yield point of 

steel in shear, which can be computed by Fy tf3. 

For beam webs having large hit ratios, the shear strength is governed by elastic shear 
buckling, i.e.: 

V n = Aw tcr = 12(1 _ f.12)(hlt)2 (CC3.2-2) 

in which tcr is the critical shear buckling stress in the elastic range, kv is the shear buckling 
coefficient, E is the modulus of elasticity, f.1 is the Poisson's ratio, h is the web depth, and 
t is the web thickness. By using f.1 = 0.3, the shear strength, V n' can be determined as 
follows: 

V n = 0.905Ekvt3/h (CC3.2-3) 

For beam webs having moderate hit ratios, the shear strength is based on the inelastic 
buckling, i.e.: 

V n = 0.64t2"kvFyE (CC3.2-4) 

In view of the fact that the appropriate test data on shear are not available, the <t>v factors 
used in Section C3.2 were derived from the condition that the nominal resistance for the 
LRFD method is the same as the nominal resistance for the allowable stress design 
method. Thus, 

(RJLRFD = (RJASD (CC3.2-5) 
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Since 

(Rn)LRFD ~ c(1.2D + 1.6L) / <I>v 

(Rn)ASD ~ c(F.S.)(D + L) 

the resistance factors can be computed from the following formula: 

1.2D + 1.6L 
<l>v = (F.S.)(D + L) 

= 1.2(D/L) + 1.6 
(F.S.)(D/L + 1) 

(CC3.2-6) 

(CC3.2-7) 

(CC3.2-S) 

By using a dead-to-live load ratio ofD/L = 1/5, the <l>v factors computed from the above 
equation are listed in Table CC3.2 for three different ranges of hit ratios. The factors of 
safety are adopted from the AISI Specification for allowable stress design. It should be 
noted that the use of a small safety factor of 1.44 for yielding in shear is justified by long 
standing use and by the minor consequences of incipient yielding in shear compared with 
those associated with yielding in tension and compression. 

Range of h / t Ratio 

TableCC3.2 

F.S. for 
Allowable Load 

Design 

h / t $; -VEkv / Fy 1.44 

-VEkv / Fy $; hit $; 1.415 -VEkv / Fy 1.67 

h / t > 1.415 -VEkv / Fy 1.71 

<I>v Factor 
computed 

by Eq. CC3.2-S 

1.06 

0.92 

0.90 

C3.3 Strength for Combined Bending and Shear 

Recommended 
<l>v Factor 

1.00 

0.90 

0.90 

This section is based on the interaction formulas included in Section C3.3 of the AISI 
Specification for allowable stress design. 

C3.4 Web Crippling Strength 

The nominal concentrated load or reaction, P n' is determined by the allowable load 
given in Section C3.4 of the AISI Specification times the appropriate factor of safety. In 
this regard, a factor of safety of I.S5 is used for Eqs. C3.4-1, C3.4-2, C3.4-4, C3.4-6 and 
C3.4-S, and a factor of safety of 2.0 is used for Eqs. C3.4-3, C3.4-5, C3.4-7 and C3.4-9. 

On the basis of the statistical analysis of the available test data on web crippling, the 
values of Pm' Mm, F m' V P' V M and V F were computed and selected. These values are 
presented in Table CC3.4 (see Table 76 of Ref. 10). By using ~o = 2.5, the resistance 
factors <l>w= 0.75 and O.SO were selected for single unreinforced webs and I-sections, 
respecti vel y, and is used in Sections A5 .1. 5 and C3.4. The values of ~ corresponding to 
these values of <l>w are also given in Table CC3.4. 
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~ 
Table CC3.4 

Computed Safety Index ~ for Web Crippling Strength of Beams 

Case No. of Tests Mm VM Fm VF Pm Vp 

Single, Unreinforced Webs (cpw = 0.75) 

l(SF) 68 1.10 0.10 1.0 0.05 1.00 0.12 3.01 

1 (UF) 30 1.10 0.10 1.0 0.05 1.00 0.16 2.80 

2(UMR) 54 1.10 0.10 1.0 0.05 0.99 0.11 3.02 

2(CA) 38 1.10 0.10 1.0 0.05 0.86 0.14 2.36 

2(SUM) 92 1.10 0.10 1.0 0.05 0.94 0.14 2.67 

3(UMR) 26 1.10 0.10 1.0 0.05 0.99 0.09 3.11 

3(CA) 63 1.10 0.10 1.0 0.05 1.72 0.26 3.80 

3(SUM) 89 1.10 0.10 1.0 0.05 1.51 0.34 2.95 

4(UMR) 26 1.10 0.10 1.0 0.05 0.98 0.10 3.03 

4(CA) 70 1.10 0.10 1.0 0.05 1.04 0.26 2.39 

4(SUM) 96 1.10 0.10 1.0 0.05 1.02 0.23 2.49 

~ I-Sections (cpw = 0.80) 

1 72 1.10 0.10 1.0 0.05 1.10 0.19 2.74 

2 27 1.10 0.10 1.0 0.05 0.96 0.13 2.57 

3 53 1.10 0.10 1.0 0.05 1.01 0.13 2.76 

4 62 1.10 0.10 1.0 0.05 1.02 0.11 2.89 

Note: Case 1 = End one-flange loading 

Case 2 = Interior one-flange loading 

Case 3 = End two-flange loading 

Case 4 = Interior two-flange loading 

SF = Stiffened flanges 

UF = U nstiffened flanges 

UMR = UMR and Cornell tests only 

CA = Canadian tests only 

SUM = Combine UMR and Canadian tests together 
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C3.5 Combined Bending and Web Crippling Strength 

This section is based on the interaction formulas included in Section C3.5 of the AISI 
Specification for allowable stress design. 

A total of 551 tests were calibrated for combined bending and web crippling strength. 
Six different cases were studied. Based on <1>w= 0.75 for single unreinforced webs and <1>w 
= 0.80 for I-sections, the values of safety indices vary from 2.45 to 3.27 as given in Table 
CC3.5. 

Table CC3.S 
Computed Safety Index ~ for Combined Bending and Web Crippling 

Case No. of Tests Mm Fm Vp Pm 

Single, Unreinforced Webs (Interior one-flange loading) 
(Based on <1>w= 0.75) 

1 74 1.10 0.10 1.0 0.05 1.01 

2 202 1.10 0.10 1.0 0.05 0.87 

3 103 1.10 0.10 1.0 0.05 0.95 

4 66 1.10 0.10 1.0 0.05 1.03 

5 445 1.10 0.10 1.0 0.05 0.94 

I-Sections (Interior one-flange loading) 
(Based on <1>w = 0.80) 

1 106 1.10 0.10 1.0 0.05 1.06 

Note: Case 1 = UMR and Cornell tests only 
Case 2 = Canadian brake-formed section tests only 

Case 3 = Canadian roll-formed section tests only 
Case 4 = Hoglund's tests only 

Case 5 = Combine all tests together 

C4 Concentrically Loaded Compression Members 

Vp 

0.07 

0.13 

0.10 

0.18 

0.14 

0.12 

3.27 

2.45 

2.91 

2.79 

2.68 

2.99 

The available experimental data on cold-formed steel concentrically loaded compression 
members were evaluated in Ref 10. The test results were compared to the predictions based 
on the same mathematical models on which the AISI Specification was based. The design 
provisions in these LRFD criteria are also based on the same mathematical models. 

Column capacity in these LRFD criteria is based on the same prediction models as were 
employed in the formulation of the AISI Specification. A total of 264 tests were examined; 
14 different cases were studied according to the types of the column, the types of the 
compression flanges and the failure modes. The resistance factor <l>c = 0.85 was selected on 

, 
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the basis of the statistical data given in Ref. 10. The corresponding safety indices vary from 
2.39 to 3.34. A summary of the information is given in Table CC4. 

The safety indices were determined from Eq. CA5 .1-2 for a D/L ratio of 1/5. Different <Pc 
factors could have been used for different cases. 
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Table CC4 
~ Computed Safety Index ~ for Concentrically Loaded Compression Member 

(<Pc= 0.85 ) 

Case No. of Tests Mm VM Fm VF Pm Vp 

1 5 1.10 0.10 1.0 0.05 1.14610 0.10452 3.13 

2 24 1.10 0.10 1.0 0.05 1.05053 0.07971 2.89 

3 15 1.10 0.10 1.0 0.05 1.05523 0.07488 2.93 

4 3 1.10 0.10 1.0 0.05 1.10550 0.07601 3.11 

5 28 1.10 0.10 1.0 0.05 1.04750 0.11072 2.76 

6 25 1.10 0.10 1.0 0.05 1.22391 0.21814 2.72 

7 9 1.00 0.06 1.0 0.05 0.96330 0.04424 2.39 

8 41 1.10 0.10 1.0 0.05 1.19620 0.09608 3.34 

9 18 1.10 0.10 1.0 0.05 1.02900 0.08131 2.81 

10 12 1.10 0.11 1.0 0.05 1.06180 0.11062 2.77 

11 8 1.00 0.06 1.0 0.05 1.15290 0.10544 2.92 

12 30 1.10 0.10 1.0 0.05 1.07960 0.15061 2.68 

13 14 1.10 0.10 1.0 0.05 1.07930 0.08042 3.00 

14 32 1.10 0.10 1.0 0.05 1.08050 0.10772 2.89 

Note: Case 1 = Stub columns having unstiffened flanges with fully effective 
widths 

Case 2 = Stub columns having unstiffened flanges with partially effective 
widths 

Case 3 = Thin plates with partially effective widths 
Case 4 = Stub columns having stiffened compression flanges with fully ef-

fective flanges and webs 
Case 5 = Stub columns having stiffened compression flanges with partial-

ly effective flanges and fully effective webs 
Case 6 = Stub columns having stiffened compression flanges with partial-

ly effective flanges and partially effective webs 
Case 7 = Long columns having unstiffened compression flanges subjected 

to elastic flexural buckling 
Case 8 = Long columns having unstiffened compression flanges subjected 

to inelastic flexural buckling 
Case 9 = Long columns having stiffened compression flanges subjected to 

inelastic flexural buckling 
Case 10 = Long columns subjected to inelastic flexural buckling (include 

cold-work) 
Case 11 = Long columns subjected to elastic torsional-flexural buckling 
Case 12 = Long columns subjected to inelastic torsional-flexural buckling 

Case 13 = Stub columns with circular perforations 

~ Case 14 = Long columns with circular perforations 
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C5 Combined Axial Load and Bending 

The LRFD Specification provide the similar interaction equations as the 1986 Edition of 
the AISI Specification with 1989 Addendum. 

A total of 144 tests were calibrated for combined axial load and bending. Nine different 
cases were studied according to the types of sections, the stable conditions and the loading 
conditions. Based on <Pc = 0.85, <Ph = 0.95 or 0.90 for nominal section strength (see Section 
C3 .1.1), and <Ph = 0.90 for lateral buckling strength, the values of safety indices vary from 
2.7 to 3.34 as given in Table CC5. 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Note: 

Table CC5 
Computed Safety Index ~ for Combined Axial Load and Bending 

(based on <Pc = 0.85 ) 

No. of Tests Mm VM Fm Vp Pm Vp 

18 1.05 0.10 1.0 0.05 1.0367 0.06619 2.70 

13 1.05 0.10 1.0 0.05 1.0509 0.07792 2.72 

33 1.05 0.10 1.0 0.05 1.1028 0.09182 2.86 

18 1.05 0.10 1.0 0.05 1.1489 0.10478 2.96 

6 1.05 0.10 1.0 0.05 1.1600 0.13000 2.87 

17 1.05 0.10 1.0 0.05 1.1200 0.09000 2.92 

10 1.05 0.10 1.0 0.05 1.2300 0.08000 3.34 

17 1.05 0.10 1.0 0.05 1.0910 0.07950 2.86 

12 1.05 0.10 1.0 0.05 1.1110 0.11450 2.79 

Case 1 = Locall~ stable beam-columns, hat sections of Pekoz and Winter 
(1967) 6 

Case 2 = Locally unstable beam-columns, lipped channel sections of 
Thomasson (1978)27 

Case 3 = Locally unstable beam-columns, lipped channel sections of 
Loughlan (1979)28 

Case 4 = Locally unstable beam-columns, lipped channel sections of Mul-
ligan and Pekoz (1983)29 

Case 5 = Locally stable beam-columns, lipped channel sections of Loh 
and Pekoz (1985)30 with ex ~ 0 and ey = 0 

Case 6 = Locally stable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex .= 0 and ey ~ 0 

Case 7 = Locally stable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex ~ 0 and ey ~ 0 

Case 8 = Locally unstable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex= 0 and ey~ 0 

Case 9 = Locally unstable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex ~ 0 and ey~ 0 
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C6 Cylindrical Tubular Members 

Section C6 of the LRFD criteria is based on Section C6 of the AISI Specification for 
allowable stress design. 

The <\>b factor of 0.95 used in Section C6.1 for bending is the same as that used in Section 
C3.1.1, while the <\>c factor of 0.85 used in Section C6.2 for compression is the same as that 
used in Section C4 for concentrically loaded compression members. 
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D. STRUCTURAL ASSEMBLIES 

01 Built-Up Sections 

This section is the same as Section D 1 of the AISI Specification for allowable stress 
design. 

02 Mixed Systems 

This section is the same as Section D2 of the AISI Specification for allowable stress 
design. 

03 Lateral Bracing 

This section is the same as Section D3 of the AISI Specification for allowable stress 
design. 

With regard to the footnote for Section D3.2, it should be noted that in conventional metal 
building roof systems, the roof panels are attached to the top flange of each purlin throughout 
its length using self-drilling or self-tapping, through-the-sheet, fasteners spaced at ap
proximately 1 foot on center. This panel usually provides sufficient stiffness to prevent the 
relative movement of the purlins with respect to each other, however, unless external restraint 
is provided, the system as a whole will tend to move laterally. This restraint or anchorage 
may consist of members attached to the purlin at discrete locations along the span and 
designed to carry forces necessary to restrain the system against lateral movement. The 
design rules for Z-purlin supported roof systems are based on a first order, elastic stiffness 
model (Reference 31). 

04 Wall Studs and Wall Stud Assemblies 

04.1 Wall Studs in Compression 

The AISI design provisions on the compression strength of wall studs were calibrated 
in Ref. 10. The statistical data used for determining the <Pc factor are given in Ref. 10 as 
follows: 

Pm = 1.14; 

Mm = 1.10; 

Fm = 1.00; 

Vp = 0.10 

VM =0.l0 

VF = 0.05 

Based on all these data and <Pc = 0.85, the ~ value was found to be 3.14. 

The provisions in this Specification section are given to prevent three possible modes 
of failure. Provision (a) is for column buckling between fasteners, even if one fastener is 
missing or otherwise ineffective. Provision (b) contains formulas for nominal axial 
strengths for overall column buckling. Essential to these provisions is the magnitude of 
the shear rigidity of the sheathing material. 

A table of shearing parameters and an equation for detennining the shear rigidity are 
provided in this Specification. These values are based on the small scale tests described 
in References 32 and 33. For other types of materials, the sheathing parameters can be 
determined using the procedures described in these references. 

Provision (c) is to insure that the sheathing has sufficient distortion capacity. The 
procedure involves assuming a value of the stress and checking whether the shear strain 
at the load corresponding to the stress exceeds the permissible design shear strain of the 
sheathing material. In principle, the procedure is one of successive approximations. 



11-32 Commentary on the Cold-Ponned Steel LRFD Specification - March, 1991 

However, if the smaller of Fe (provision a) or ocr (provision b) is tried and shown to be 
satisfactory, then the need for iteration is eliminated. 

04.2 Wall Studs in Bending 

The <I>t, factors for bending strength of wall studs were taken as the same as those for 
section bending strength of beams (Section C3.1.1). The available test data on wall stud 
sections with stiffened or partially stiffened compression flanges were calibrated in Ref. 
10. The statistical data used for determining the ~ value are given in Ref. 10 as follows: 

Pm = 1.27; 

Mm= 1.10; 

Fm = 1.00; 

Vp = 0.01 

VM=0.10 

Vp = 0.05 

Based on all these data and cl>b = 0.95, the ~ value was found to be 3.37. 

04.3 Wall Studs with Combined Axial Load and Bending 

The LRFD criteria provide the same interaction equations as the AISI Specification 
for allowable stress design. 

The available test data on wall studs with combined axial load and bending were 
calibrated in Ref. 10. The statistical data used for determining the ~ value are given in 
Ref. 10 as follows: 

Pm = 1.19; 

Mm= 1.05; 

Fm = 1.00; 

Vp = 0.13 

VM=0.10 

Vp = 0.05 

Based on <Pc = 0.85 and <Pb = 0.95 for sections with stiffened or partially stiffened 
compression flanges or <Pb = 0.90 for sections with unstiffened compression flanges, the 
~ value was found to be 2.94. 

• 



• 
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E. CONNECTIONS AND JOINTS 

Section E of the LRFD criteria is based on Section E of the AISI Specification for 
allowable stress design. This section contains the design provisions for welded connections, 
bolted connections, shear rupture and connections to other materials. 

The resistance factors used for welded and bolted connections were derived for a target 
reliability index ~o = 3.5 and the statistical data are summarized in the subsequent sections. 

E1 General Provisions 

This section is based on Section El of the AISI Specification for allowable stress design. 

E2 Welded Connections 

Section E2 contains the design provisions for arc-welds (groove welds in butt joints, arc 
spot welds, arc seam welds, fillet welds, and flare groove welds) and resistance welds. The 
design equations for the nominal strength and the <I> factors for groove welds in butt joints 
are the same as that used in the AISC LRFD criteria. (Ref. 3) 

For arc spot welds, the <I> factor of 0.60 used for detennining the design shear strength of 
welds is based on the test data reported in Ref. 34. It gives a ~ value of 3.55. The statistical 
data used for deriving the <I> factor are given in Ref 10 as follows: 

Pm =1.17; 

Mm= 1.10; 

Fm = 1.00; 

Vp = 0.22 

VM=0.10 

VF = 0.l0 

Table eE2-! 
Computed Safety Index ~ for Plate Failure in Weld Connections 

Case Mm VM Fm VF Pm Vp 

Arc Spot Welds 

1 1.10 0.08 1.00 0.15 1.10 0.17 0.60 

2 1.10 0.08 1.00 0.l5 0.98 0.18 0.50 

Fillet Welds 

3 1.10 0.08 1.00 0.l5 1.01 0.08 0.60 

4 1.10 0.08 1.00 0.l5 0.89 0.09 0.55 

5 1.10 0.08 1.00 0.l5 1.05 0.11 0.60 

Note: Case 1 = For daft $; 0.815 ~ (E/Fu) 

Case 2 = For daft> 1.397 ~ (E/Fu) 

Case 3 = Longitudinal Loading, Lit < 25 

Case 4 = Longitudinal Loading, Lit ~ 25 

Case 5 = Transverse Loading 

3.52 

3.64 

3.65 

3.59 

3.72 
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Case 

1 

2 

Note: 
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Table CE2-2 
Computed Safety Index ~ for Tensile Strength of Arc Spot Weld 

(<I> = 0.65 ) 

No. of Tests Mm VM Fm Vp Pm Vp 

103 1.10 0.08 1.0 0.15 1.5405 0.2949 

103 1.10 0.08 1.0 0.15 1.5405 0.2949 

Case 1 is for 1.20+ 1.6L (~o = 3.5) 

Case 2 is for 1. 17W-0.90 (~o = 2.5) 

3.45 

2.62 

With regard to the types of the plate failure governed by Eqs. E2.2-2 through Eq. E2.2-4 
in the design criteria, <I> factors were derived from the statistical data presented in Table CE2-1 
(Ref. 35). The <I> factors used for minimum edge distance were taken as the same as those 
used for bolted connections. 

For tension loads on arc spot welds, tests were perfonned which included variables of 
steel strengths from 50 to 68.5 ksi, steel sheet thickness ranging from 0.031 to 0.072 inches, 
galvanized steel sheet, prime painted and galvanized steel plate, and visible diameter of welds 
ranging from 0.47 to 0.94 inches. Thus, the additional limitations only applicable to arc spot 
welds in tension were included in the Specification. For use in calculating the tension load 
on arc spot welds, the tensile strength of the connected sheet, Fu, is limited to a maximum 
of 60 ksi, although sheet with greater tensile strengths may be used. The development of the 
equation is contained in Reference 40. The tests were reported in Reference 41. 

The statistical data for deriving the <I> factor are presented in Table CE2-2 (Ref. 42). Two 
cases were considered in the detennination of <I> factor: (1) 1.20+ 1.6L with ~o = 3.5, and (2) 
1.17W -0.90 with ~o = 2.5 (counteracting loads with a reduction factor of 0.9 applied to the 
load factor for the nominal wind load). <I> = 0.65 was selected for both cases, and the values 
of ~ corresponding to the selected <I> factor are given in Table CE2-2. It can be seen that for 
both cases, the ~ values compare satisfactorily to the target reliability indices. 

For arc seam welds, the design shear strength of welds is detennined from the same <I> 

factor used for arc spot welds. The derivation of the <I> factor for plate tearing is based on the 
following statistical data (Ref. 10): 

Pm = 1.00; Vp = 0.10 

Mm= 1.10; 

Fm = 1.00; 

VM=O.IO 

Vp = 0.10 

For the selected value of <I> = 0.60, the value of ~ = 3.81. 

For fillet welds, the <I> factors used for longitudinal loading (Eqs. E2.4-1 and E2.4-2) and 
transverse loading (Eq. E2.4-3) are based on the statistical data presented in Table CE2-1 
(Ref. 35). 

Similar to the arc spot welds, a <I> factor of 0.60 is used for the design shear strength of 
welds. 

For flare groove welds, the following statistical data were used to detennined the <I> 

factors: 

• 
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(a) Transverse Flare Bevel Welds (<I> = 0.55, ~ = 3.81) 

Pm = 1.04; Vp = 0.17 

Mm= 1.10; VM=0.10 

Fm = 1.00; Vp = 0.10 

(b) Longitudinal Flare Bevel Welds (<I> = 0.55, ~ = 3.56) 

Pm = 0.97; Vp = 0.17 

Mm= 1.10; 

Fm = 1.00; 

For detailed infonnation, see Ref. 10. 

VM=0.10 

Vp = 0.10 

For resistance welds, the nominal shear strength is based on the following equation: 

Rn = (2.5) x (allowable shear per spot specified in Section E2.6 
of the AISI Specification for allowable stress design) 

In the above equation, the safety factor is 2.5. 

IJ-35 

The <I> factor of 0.65 used in Section E2.6 for the design of resistance welds was determined 
on the basis of the following statistical data reported in Ref. 10. It gives a ~ value of 3.71. 

Pm = 1.00; Vp = 0.03 

Mm= 1.10; 

Fm = 1.00; 

E3 Bolted Connections 

VM= 0.10 

Vp = 0.10 

Section E3 of the LRFD criteria is based on Section E3 of the AISI Specification for 
allowable stress design. It deals only with the design of bolted connections used for connected 
parts thinner than 3/16 inch in thickness. For the design of bolted connections using materials 
equal to or greater than 3/16 inch in thickness, the AISC Specification should be used. 

All <I> factors were computed from the statistical data given in Ref. 10 and ~o = 3.5. The 
statistical data used in the study are presented in Table CE3. 

The <t> factors used for the high strength bolts for design shear and tensile strengths are 
adopted from Ref. 3. 
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Table CE3 
Computed Safety Index ~ for Bolted Connections 

Case Mm Fm Vp Pm Vp 

Minimum Spacing and Edge Distance 

1 1.10 0.08 1.00 0.05 1.13 0.12 0.70 3.75 

2 1.10 0.08 1.00 0.05 1.18 0.14 0.70 3.84 

3 1.10 0.08 1.00 0.05 0.84 0.05 0.60 3.61 

4 1.10 0.08 1.00 0.05 0.94 0.09 0.60 3.90 

5 1.10 0.08 1.00 0.05 1.06 0.11 0.70 3.62 

6 1.10 0.08 1.00 0.05 1.14 0.19 0.60 3.87 

Tension Stress on Net Section 

7 1.10 0.08 1.00 0.05 1.14 0.20 0.65 3.53 

8 1.10 0.08 1.00 0.05 0.95 0.21 0.55 3.41 

9 1.10 0.08 1.00 0.05 1.04 0.14 0.65 3.63 • Bearing Stress on Bolted Connections 

10 1.10 0.08 1.00 0.05 1.08 0.23 0.55 3.65 

11 1.10 0.08 1.00 0.05 0.97 0.07 0.65 3.80 

12 1.10 0.08 1.00 0.05 1.02 0.20 0.60 3.43 

13 1.10 0.08 1.00 0.05 1.05 0.13 0.60 4.06 

14 1.10 0.08 1.00 0.05 1.01 0.04 0.70 3.71 

15 1.10 0.08 1.00 0.05 0.93 0.05 0.65 3.70 

Shear Strength on A307 Bolts 

16 1.28 0.08 1.00 0.05 0.68 0.11 0.65 4.73 

17 1.13 0.08 1.00 0.05 0.60 0.10 0.65 3.85 

18 1.28 0.08 1.00 0.05 0.75 0.10 0.65 5.23 

19 1.36 0.08 1.00 0.05 0.63 0.06 0.65 4.49 

20 1.13 0.08 1.00 0.05 0.76 0.06 0.65 5.09 

Note: Case 1 = Single shear, with washers, FufFy ~ 1.15 • Case 2 = Double shear, with washers, FufFy ~ 1.15 j' 
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Table CE3 (Continued) 
Computed Safety Index ~ for Bolted Connections 

Case 3 = 

Case 4 = 
Case 5 = 

Case 6 = 
Case 7 = 
Case 8 = 

Case 9 = 

Case 10 = 
Case 11 = 

Case 12 = 

Case 13 = 

Case 14 = 

Case 15 = 

Case 16 = 
Case 17 = 

Case 18 = 
Case 19 = 

Case 20 = 

Single shear, with washers, FulPy < 1.15 

Double shear, with washers, FulPy < 1.15 

Single shear, without washers, FulPy ~ 1.15 

Single shear, without washers, FufFy < 1.15 

t< 3/16 in., double shear, with washers 

t < 3/16 in., single shear, with washers 

t < 3/16 in., single shear, without washers 

0.024 ~ t < 3/16 in., double shear, with washers, FufFy ~ 1.15 

0.024 S; t < 3/16 in., double shear, with washers, FufFy < 1.15 

0.024 S; t < 3/16 in., single shear, with washers, FulPy ~ 1.15 

0.024 S; t < 3/16 in., single shear, with washers, FulPy < 1.15 

0.036 S; t < 3/16 in., single shear, without washers, FufFy ~ 1.15 

0.036 ~ t < 3/16 in., double shear, without washers, FufFy ~ 1.15 

Double shear, with washers, 3/8 in. diameter 

Double shear, with washers, 3/4 in. diameter 

Single shear, with washers, 3/8 in. diameter 

Single shear, with washers, 1/2 in. diameter 

Single shear, with washers, 3/4 in. diameter 
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E4 Shear Rupture 

Section E4 of the LRFD criteria is based on Section E4 of the AISI Specification for 
allowable stress design. The <I> factor used in this section is adopted from Ref. 3. 

E5 Connections to Other Materials 

Section E5 of the LRFD criteria is based on Section E5 of the AISI Specification for 
allowable stress design. The <I> factor used for bearing is adopted from Ref. 3. 

• 
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F. TESTS FOR SPECIAL CASES 

F1 Tests for Determining Structural Performance 

The detennination of load-carrying capacity of the tested elements, assemblies, connec
tions, or members is based on the same basis for the LRFD design criteria. The correction 
factor Cp is used in the detennination of <I> factor to account for the influence due to the small 
number of tests (Ref. 36). It should be noted that when the number of tests is large enough, 
the effect of correction factor is negligible. 

For beams having tension flange through-fastened to deck or sheathing and with com
pression flange laterally unbraced (subject to wind uplift), the calibration is based on a load 
combination of 1. 17W-0.9D with D/W = 0.1 (see Section C3.I.3 of this Commentary for 
detailed discussion). 

The statistical data needed for the detennination of resistance factor are listed in Table 
FI. 

F2 Tests for Confirming Structural Performance 

This section is basically the same as Section F2 of the AISI Specification for allowable 
stress design. 

F3 Tests for Determining Mechanical Properties 

This section is the same as Section F3 of the AISI Specification for allowable stress design . 
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COMMENTARY ON THE 
LOAD AND RESISTANCE FACTOR DESIGN SPECIFICATION 

FOR 
COLD-FORMED STEEL STRUCTURAL MEMBERS 

INTRODUCTION 

11-7 

In the design of steel buildings, the "Allowable Stress Design Criteria" have long been 
used for the design of cold-fonned steel structural members in the United States and other 
countries. Even though the theoretical concept of reliability analysis has been available for 
some time and the significance of such a concept in structural safety and design is well 
recognized, the probabilistic method has not yet been explicitly adopted as a basis for the 
American design standard for cold-formed steel structures. 

Recently, the load and resistance factor design (LRFD) criteria have been developed for 
steel buildings using hot-rolled shapes and built-up members fabricated from steel plates. It 
became evident that the development of a new specification for load and resistance factor 
design of cold-fonned steel is highly desirable because the design criteria for heavy 
hot-rolled steel construction cannot possibly cover the design features of thin-walled, 
cold-fonned steel construction completely. 

Since 1976, a joint project has been conducted at University of Missouri-Rolla and 
Washington University to develop the new design criteria for cold-formed steel structural 
members and connections based on the probabilistic approach. 

The Load and Resistance Factor Design criteria developed on the basis of the 1986 Edition 
of the AISI Specification with 1989 Addendum for allowable stress design are included in 
Sections A through F of this Specification. 

This commentary contains a brief presentation of the methodology used for the develop
ment of the load and resistance factor design criteria. In addition, it provides a record of the 
reasoning behind, and the justification for, various provisions of the Specification. For 
detailed background infonnation, reference is made to the research reports given in the 
bibliography. 

A. GENERAL PROVISIONS 

A 1 Limits of Applicability and Terms 

Section A 1 of the LRFD Specification is essentially the same as Section A 1 of the AISI 
Specification for allowable stress design. The definitions and various terms used for the 
LRFD criteria are the same as that used for the allowable stress design. 

A2 Non-Conforming Shapes and Constructions 

Section A2 of the LRFD Specification is essentially the same as Section A2 of the AISI 
Specification for allowable stress design. 

A3 Material 

This Section is essentially the same as Section A3 of the AISI Specification for allowable 
stress design. 
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In lieu of the tensile-to-yield strength limit of 1.08, the Specification permits the use of 
elongation requirements using the measurement technique as given in Ref. 1, and Part VII 
of the Manual. Because of limited experimental verification of the structural performance 
of members using material having a tensile-to-yield strength ratio less than 1.08 (Ref. 2), the 
Specification limits the use of this material to purlins and girts meeting the elastic design 
requirements of Sections C3.1.1 (a), C3.1.2, and C3.1.3. Thus, the use of such steel in other 
applications (compression members, tension members, other flexural members including 
those whose strength is based on inelastic reserve capacity, etc.) is prohibited. However, in 
purlins and girts, concurrent axial loads of relatively small magnitude are acceptable 
providing the requirements of Section C5 are met and PuI<»cPn does not exceed 0.15. 

A4 Loads 

This Section is the same as Section A4 of the AISI Specification for allowable stress 
design. 

With regard to ponding, design guidance can be found from Section K2 of the AISC Load 
and Resistance Factor Design Specification for Structural Steel Buildings (Ref. 3). 

AS Structural Analysis and Design 

AS.1 DeSign Basis 

The current method of designing cold-formed steel structural members, as presented 
in the 1986 AISI Specification (Ref. 4), is based on the Allowable Stress Design method. 
In this approach, the forces (bending moments, axial forces, shear forces) in structural 
members are computed by accepted methods of structural analysis for the specified 
working loads. These member forces or moments should not exceed the allowable values 
permitted by the AISI Specification. The AISI allowable load or moment is determined 
by dividing the nominal load or moment at a limit state by a factor of safety. Usual factors 
of safety inherent in the AISI Specification for the Design of Cold-Formed Steel Structural 
Members are 5/3 for beams and 23/12 for columns. 

A limit state is the condition at which the structural usefulness of a load-carrying 
element or member is impaired to such an extent that it becomes unsafe for the occupants 
of the structure, or the element no longer performs its intended function. Typical limit 
states for cold-formed steel members are excessive deflection, yielding, buckling and 
attainment of maximum strength after local buckling (Le., post-buckling strength). These 
limit states have been established through experience in practice or in the laboratory, and 
they have been thoroughly investigated through analytical and experimental research. The 
background for the establishment of the limit states is extensively documented in the 
Commentary on the AISI Specification (Refs. 5 and 6}(see also Refs. 7 and 8), and a 
continuing research effort provides further improvement in understanding them. 

The factors of safety are provided to account for the uncertainties and variabilities 
inherent in the loads, the analysis, the limit state model, the material properties, the 
geometry, and the fabrication. Through experience it has been established that the present 
factors of safety provide satisfactory design. 

The allowable stress design method employs only one factor of safety for a limit state. 
The use of multiple load factors provides a refmement in the design which can account 
for the different degrees of the uncertainties and variabilities of the design parameters. 
Such a design method is called Load and Resistance Factor Design, and its format is 
expressed by the following criterion: 

<l>Rn ~ l:YiQi (CA5.I-I) 
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where 

Rn = the nominal resistance 

<I> = resistance factor 

"Ii = load factors 

Qi = load effects 

The nominal resistance is the strength of the element or member for a given limit state, 
computed for nominal section properties and for minimum specified material properties 
according to the appropriate analytical model which defines the strength. The resistance 
factor <I> accounts for the uncertainties and variabilities inherent in the Rn, and it is usually 
less than unity. The load effects Qi are the forces on the cross section (bending moment, 
axial force, shear force) determined from the specified minimum loads by structural 
analysis, and "Ii are the corresponding load factors which account for the uncertainties and 
variabilities of the loads. The load factors are greater than unity. 

The advantages of LRFD are: (1) the uncertainties and the variabilities of different 
types ofloads and resistances are different (e.g., dead load is less variable than wind load), 
and so these differences can be accounted for by use of multiple factors, and (2) by using 
probability theory designs can ideally achieve a more consistent reliability. Thus LRFD 
provides the basis for a more rational and refined design method than is possible with the 
Allowable Stress Design method. 

Probabilistic Concepts 

Factors of safety or load factors are provided against the uncertainties and variabilities 
which are inherent in the design process. Structural design consists of comparing nominal 
load effects Q to nominal resistances R, but both Q and R are random parameters (see 
Fig. CA5.1-1). A limit state is violated if R < Q. While the possibility of this event ever 
occurring is never zero, a successful design should, nevertheless, have only an acceptably 
small probability of exceeding the limit state. If the exact probability distributions of Q 
and R were known, then the probability of (R - Q) < 0 could be exactly determined for 
any design. In general the distributions of Q and R are not known, and only the means, 
Qrn and ~, and the standard deviations, oQ and OR are available. Nevertheless it is 
possible to determine relative reliabilities of several designs by the scheme illustrated in 
Fig. CA5.1-2. The distribution curve shown is for In(R/Q), and a limit state is exceeded 
when In(RlQ) ~ 0 . The area under In(R/Q) ~ 0 is the probability of violating the limit 
state. The size of this area is dependent on the distance between the origin and the mean 
of In(RlQ). For given statistical data Rrn, Qrn' OR and 0Q' the area under In(RlQ) ~ 0 can 
be varied by changing the value of ~ (Fig. CA5.1-2), smce ~Oln(RlQ) = In(R/Q)rn' from 
which approximately 

~ _ 1 n(Rrn/Qrn) 
- ~y2 + y2 

R Q 
(CA5.1 -2) 

where YR =OR~ and Y q = odQrn' the coefficients of variation ofR and Q, respectively. 
The index ~ is called the 'reliability index", and it is a relative measure of the safety of 
the design. When two designs are compared, the one with the larger ~ is more reliable. 

The concept of the reliability index can be used in determining the relative reliability 
inherent in current design, and it can be used in testing out the reliability of new design 
formats, as illustrated by the following example of simply supported, braced beams 
subjected to dead and live loading. 
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The design requirement of the 1986 AISI Specification for such a beam is 

where 

SeFylFS = (L; s/8)(D+L) (CAS. 1-3) 

Se = elastic section modulus based on the effective section 

FS = 5/3 = the factor of safety for bending 

Fy = specified yield point 

Ls = span length, and s = beam spacing 

D and L are, respectively, the code specified dead and live 
load intensities. 

The mean resistance is defined as (Ref. 9) 

Rm = Rn(PmMmFm) (CA5.l-4) 

In this equation ~ is the nominal resistance, which in this case is 

Rn = SeFy (CA5.1-5) 

that is, the nominal moment predicted on the basis of the post-buckling strength of the 
compression flange. The mean values Pm' Mm, and F m' and the corresponding coefficients 
of variation V p, V M and V F' are the statistical parameters which define the variability of 
the resistance: 

Pm = the mean ratio of the experimentally determined moment to 
the predicted moment for the actual material and cross-sectional 
properties of the test specimens 

Mm =mean ratio of the yield point to the minimum specified value 

Fm = mean ratio of the actual section modulus to the specified 
(nominal) value 

The coefficient of variation of R equals 

VR=-VV~+ V~+ V~ (CA5.l - 6) 

The values of these data were obtained from examining the available tests on beams 
having different compression flanges with partially and fully effective flanges and webs, 
and from analyzing data on yield point values from tests and cross-sectional dimensions 
from many measurements. This information was developed in Ref. lO and is given below: 

Pm = 1.11, V p = 0.09; Mm = 1.10, V M = 0.1 0; F m = 1.0, V F = 0.05 and thus Rm = 1.22Rn 
and VR = 0.14. 

The mean load effect is equal to 

and 

2 Qm = (Lss/8)(Dm + Lm) 

V 
_ "(Dm VD)2 + (Lm Vd2 

Q-
Dm+Lm 

(CA5.1 - 7) 

(CA5.l - 8) 

where Dm and Lm are the mean dead and live load intensities, respectively, and V D and 
V L are the corresponding coefficients of variation. 

Load statistics have been analyzed in Ref. 11, where it was shown that Dm = 1.05D, 
VD = 0.1; Lm = L, VL = 0.25. 
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The mean live load intensity equals the code live load intensity if the tributary area is 
small enough so that no live load reduction is included. Substitution of the load statistics 
into Eqs. CA5.1-7 and CA5.1-8 gives 

Qm =!f (~+ I)L (CAS.1 - 9) 

V _ "(1.0501L)2V5 + vl 
0= (1.0501L + 1) 

(CA5.1 -10) 

Qrn and V Q thus depend on the dead-to-live load ratio. Cold-fonned beams typically have 
small OIL, and for the 1- Jrposes of checking the reliability of these LRFD criteria it will 
be assumed that OIL = 1/5, and so Qrn = 1.21L(L;s/8) and V Q = 0.21. 

From Eq. CA5.1-3 we obtain the nominal design capacity for OIL = 1/5 and FS = 5/3. 
Thus 

Rrn 1. 22x2.0xL(L;s/8) 
-= 2 =2.02 
Qrn 1.21L(Ls s/8) 

and, from Eq. CA5.1-2 

~ - In(2.02) _ 2 79 
- "°.142 + 0.212 - . 

Of itself ~ = 2.79 for beams having different compression flanges with partially and 
fully effective flanges and webs designed by the 1986 AISI Specification means nothing. 
However, when this is compared to ~ for other types of cold-formed members, and to ~ 
for designs of various types from hot-rolled steel shapes or even for other materials, then 
it is possible to say that this particular cold-fonned steel beam has about an average 
reliability (Ref. 12). 

Basis for LRFO of Cold-Formed Steel Structures 

A great deal of work has been performed for detennining the values of the reliability 
index ~ inherent in traditional design as exemplified by the current structural design 
specifications such as the AISC Specification for hot-rolled steel, the AISI Specification 
for cold-formed steel, the ACI Code for reinforced concrete members, etc. The studies 
for hot-rolled steel are summarized in Ref 9, where also many further papers are 
referenced which contain additional data. The determination of ~ for cold-fonned steel 
elements or members is presented in Refs. 10 and 13 through 17., where both the basic 
research data as well as the ~'s inherent in the AISI Specification are presented in great 
detail. The ~'s computed in the above referenced publications were developed with 
slightly different load statistics than those of this Commentary, but the essential con
clusions remain the same. 

The entire set of data for hot-rolled steel and cold-fonned steel designs, as well as data 
for reinforced concrete, aluminum, laminated timber, and masonry walls was re-analyzed 
in Refs. 11, 12 and 18 by using (a) updated load statistics and (b) a more advanced level 
of probability analysis which was able to incorporate probability distributions which 
describe the true distributions more realistically. The details of this extensive reanalysis 
are presented in Refs. 11, 12 and 18 and also only the final conclusions from the analysis 
are summarized here: 

(1) The values of the reliability index ~ vary considerably for the different kinds of 
loading, the different types of construction, and the different types of members within a 
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given material design specification. In order to achieve more consistent reliability, it was 
suggested in Ref. 18 that the following values of ~ would provide this improved 
consistency while at the same time give, on the average, essentially the same design by 
the new LRFD method as is obtained by current design for all materials of construction. 
These target reliabilities ~o for use in LRFD are: 

Basic case: Gravity loading, ~o = 3.0 

For connections: ~o = 4.5 

For wind loading: ~o = 2.5 

These target reliability indices are the ones inherent in the load factors recommended 
in the ANSI/ ASCE 7-88 Load Code (Ref. 19). 

For simply supported, braced cold-formed steel beams with stiffened flanges, which 
were designed according to the 1986 AISI allowable stress design specification or to any 
previous version of this specification, it was shown above that for the representative 
dead-to-live load ratio of 1/5 the reliability index ~ = 2.8. Considering the fact that for 
other such load ratios, or for other types of members, the reliability index inherent in 
current cold-fonned steel construction could be more or less than this value of 2.8, a 
somewhat lower target reliability index of ~o = 2.5 is recommended as a lower limit for 
the new LRFD Specification. The resistance factors <I> were selected such that ~o = 2.5 is 
essentially the lower bound of the actual ~'s for members. In order to assure that failure 
of a structure is not initiated in the connections, a higher target reliability of ~o = 3.5 is 
recommended for joints and fasteners. These two targets of 2.5 and 3.5 for members and 
connections, respectively, are somewhat lower than those recommended by ANSI! ASCE 
7-88 (Le., 3.0 and 4.5, respectively), but they are essentially the same targets as are the 
basis for the 1986 AISC LRFD Specification (Ref. 3). 

(2) The following load factors and load combinations were developed in Refs. 11 and 
18 to give essentially the same Ws as the target ~o's, and are recommended for use with 
the ANSI/ASCE 7-88 Load Code (Ref. 19) for all materials, including cold-fonned steel: 

1. I.4D 

2. 1.2D+ 1.6L+0.5(L.- or S or Rr) 

3. 1.2D+ 1.6(L.- or S or Rr)+(0.5L or 0.8W) 

4. 1.2D+ 1.3W+0.5L+0.5(Lr or S or Rr) 

5. 1.2D+ 1.5E+(0.5L or 0.2S) 

6. 0.9D-(1.3Wor 1.5E) 

where 

D = nominal dead load 

E = nominal earthquake load 

L = nominal live load due to occupancy; 
weight of wet concrete for composite construction 

L.- = nominal roof live load 

Rr = nominal roof rain load 

S = nominal snow load 

W = nominal wind load 
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In view of the fact that the dead load of cold-fonned steel structures is usually smaller 
than that of heavy construction, the first case of load combinations included in Section 
A5.1.4 of the Specification is (1.4D+L) instead of the ANSI/ASCE value of I.4D. This 
AISI requirement is identical with the ANSI! ASCE Code when L = O. 

Because of special circumstances inherent in cold-fonned steel structures, the follow
ing additional LRFD criteria apply for roof, floor and wall construction using cold-fonned 
steel: 

(a) For roof and floor composite construction 

1.2Ds + 1.6 Cw + I.4C 

where 

Ds = weight of steel deck 

Cw = nominal weight of wet concrete during construction 

C = nominal construction load, including equipment, workmen 
and fonnwork, but excluding the weight of the wet 
concrete. 

This suggestion provides safe construction practices for cold-fonned steel decks and 
panels which otherwise may be damaged during construction. The load factor used for 
the weight of wet concrete is 1.6 because of delivering methods and an individual sheet 
can be subjected to this load. The use of a load factor of 1.4 for the construction load 
reflects a general practice of 33% strength increase for concentrated loads. 

It should be noted that for the third case of load combinations, the load factor used for 
the nominal roof live load, Lr, in Section A5 .1.4 of the AISI Specification is 1.4 instead 
of the ANSI/ASCE value of 1.6. The use of a relatively small load factor is because the 
roof live load is due to the presence of workmen and materials during repair operations 
and, therefore, can be considered as a type of construction load. 

(b) For roof and wall construction, the load factor for the nominal wind load W to be 
used for the design of individual purlins, girts, wall panels and roof decks should be 
multiplied by a reduction factor of 0.9 because these elements are secondary members 
subjected to a short duration of wind load and thus can be designed for a smaller reliability 
than primary mernbers such as beams and columns. For example, the reliability index of 
a wall panel under wind load alone is approximately 1.5 with this reduction factor. With 
this reduction factor designs comparable to current practice are obtained. 

Deflection calculations for serviceability criteria should be made with the appropriate 
unfactored loads. 

The load factors and load combinations given above are recommended for use with the 
LRFD criteria for cold-fonned steel. The following portions of this Commentary present 
the background for the resistance factors <t> which are recommended in Section A5.1.5 
for the various members and connections in Sections B, C, D and E. These <t> factors are 
determined in confonnance with the load factors given above to approximately provide 
a target ~o of 2.5 for members and 3.5 for connections, respectively, for the load 
combination 1.2D+ 1.6L. For practical reasons it is desirable to have relatively few 
different resistance factors, and so the actual values of ~ will differ from the derived 
targets. This means that 

<t>Rn = c(1.2D+ 1.6L) = (1.2D/L+ 1.6)cL (CA5.1-11) 

where c is the deterministic influence coefficient translating load intensities to load 
effects. 
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By assuming D/L = 1/5, Eqs. CA5.1-11 and CA5.1-9 can be rewritten as follows: 

Rn = 1.84(cL/<\» (CA5.1-12) 

Qm = (1.05D/L+l)cL = 1.21cL (CA5.1-13) 

Therefore, 

(CA5.1-14) 

The <\> factors can be computed from Eq. CA5 .1-14 and the following equation by using 
VQ = 0.21: 

1n(Rm/Qm) 
Target ~o = ..J 2 2 (CA5.1 - 15) 

VR+VQ 
AS.2 Yield Point and Strength Increase from Cold Work of Forming 

This section is the same as Section A5.2 of the 1986 AISI Specification. 

The following statistical data (mean values and coefficients of variation) on material 
and cross-sectional properties were develpoed in Refs. 13 and 14 for use in the derivation 
of the resistance factors <1>: 

(Fy)m = 1.10Fy; Mm = 1.10; VFy = V M = 0.10 

(FyJm = 1.10Fya; Mm = 1.10; VFya= V M = 0.11 

(Fu)m = 1.10Fu; Mm = 1.10; VF = V M = 0.08 
u 

Fm = 1.00; VF = 0.05 

The subscript m refers to mean values. The symbol V stands for coefficient of variation. 
The symbols M and F are, respectively, the ratio of the mean-to-the nominal material 
property or cross-sectional property; and F '/' F ya' and F u are, respectively, the specified 
minimum yield point, the average yield pomt mcluding the effect of cold forming, and 
the specified minimum tensile strength. 

These data are based on the analysis of many samples, and they are representative 
properties of materials and cross sections used in the industrial application of cold-formed 
steel structures. 

A6 Reference Documents 

The specifications and standards to which this Specification makes reference in various 
provisions are listed in Section A6 to provide the effective dates of these standards at the 
time of approval of this Specification. 

Additional references which the designer may use for related information are : 

1. American Institute of Steel Construction, "Specification for Structural Steel Buildings 
- Allowable Stress Design and Plastic Design," American Institute of Steel Construction 
(AISC), One East Wacker Drive, Suite 3100, Chicago, Illinois 60601-2001, June 1, 
1989 

2. Research Council on Structural Connections, "Allowable Stress Design Specification 
for S tructural Joints Using ASTM A325 or A490 Bolts," Research Council on Structural 
Connections (RCSC), American Institute of Steel Construction (AISC), One East 
Wacker Drive, Suite 3100, Chicago, Illinois 60601-2001, November 13, 1985 

3. Metal Building Manufacturers Association, "Low Rise Building Systems Manual," 
Metal Building Manufacturers Association (MBMA), 1230 Keith Building, Cleveland, 
Ohio 44115 
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4. Steel Deck Institute, "Design Manual for Composite Decks, Formed Decks, and Roof 
Decks," Steel Deck Institute, Inc. (SDI), P. O. Box 9506, Canton, Ohio 44711, 1984 

5. Steel Joist Institute, "Standard Specifications Load Tables and Weight Tables for Steel 
Joists and Joist Girders," Steel Joist Institute (S1I), Suite A, 1205 48th Avenue North, 
Myrtle Beach, South Carolina 29577, 1986 

6. Rack Manufacturers Institute, "Specification for the Design, Testing and Utilization of 
Industrial Steel Storage Racks," Rack Manufacturers Institute (RMI), 8720 Red Oak 
Boulevard, Suite 201, Charlotte, North Carolina 28210, 1985 

7. American Iron and Steel Institute, "Stainless Steel Cold-Formed Structural Design 
Manual," American Iron and Steel Institute (AISI), 1133 15th Street, N. W., 
Washington, D. C. 20005, 1974 Edition 

8. American Society of Civil Engineers, "ASCE Standard, Specification for the Design 
and Construction of Composite Slabs," American Society of Civil Engineers (ASCE), 
345 East 47th Street, New York, New York 10017, October, 1984 

9. American Iron and Steel Institute, "Tentative Criteria for Structural Applications of 
Steel Tubing and Pipe," American Iron and Steel Institute (AISI), 1133 15th Street, N. 
W., Washington, D. C. 20005, August, 1976 
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B. ELEMENTS 

81 Dimensional Limits and Considerations 

This section is the same as Section B 1 of the AISI Specification for allowable stress 
design. 

82 Effective Widths of Stiffened Elements 

This section is the same as Section B2 of the AISI Specification for allowable stress 
design. 

83 Effective Widths of Unstiffened Elements 

This section is the same as Section B3 of the AISI Specification for allowable stress 
design. 

84 Effective Widths of Elements with an Edge Stiffener or One Intermediate 
Stiffener 

This section is the same as Section B4 of the AISI Specification for allowable stress 
design. 

Test data to verify the accuracy of the simple lip stiffener design was collected from a 
number of sources, both university and industry. These tests showed good correlation with 
the equations in Section B4.2. However, proprietary testing conducted in 1989 revealed that 
lip lengths with a d/t ratio of greater than 14 gave unconservative results. 

A review of the original research data showed a lack of data for simple stiffening lips with 
d/t ratios greater than 14. Therefore, an upper limit of 14 is recommended pending further 
research. 

85 Effective Widths of Edge Stiffened Elements with Intermediate Stiffeners 
or Stiffened Elements with More Than One Intermediate Stiffener 

This section is the same as Section B5 of the AISI Specification for allowable stress 
design. 

86 Stiffeners 

86.1 Transverse Stiffeners 

The available experi.YJ1ental data on cold-formed steel transverse stiffeners were 
evaluated in Ref 10. The test results were compared to the predictions based on the same 
mathematical models on which the AISI Specification was based. The design provisions 
in these LRFD criteria are also based on the same mathematical models. 

Load capacity in these LRFD criteria is based on the same prediction models as were 
employed in the formulation of the AISI Specification. A total of 61 tests were examined. 
The resistance factor <l>c = 0.85 was selected on the basis of the statistical data given in 
Ref. 10. The corresponding safety indices vary from 3.32 to 3.41. A summary of the 
infonnation is given in Table CB6.1. 
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Table CB6.1 
Computed Safety Index ~ for Transverse Stiffeners 

(<I>c = 0.85 ) 

Case No. of Tests Mm VM Fm VF Pm Vp 

1 33 1.10 0.10 1.0 0.05 1. 17§i2 0.08658 3.32 

2 28 1.10 0.10 1.0 0.05 1.2099 0.09073 3.41 

3 61 1.10 0.10 1.0 0.05 1.1916 0.08897 3.36 

Note: Case 1 

Case 2 

= Transverse stiffeners at interior support and under concentrated load 

= Transverse stiffeners at end support 

Sum of Cases 1 and 2 Case 3 = 

86.2 Shear Stiffeners 

The available experimental data on shear strength of the beam webs with shear 
stiffeners were calibrated in Ref. 10. The <l>v factors were taken as the same as those for 
shear strength of beams (Section C3.2). The statistical data used for determining the <l>v 
factor are given in Ref. 10 as follows: 

Pm = 1.60; 

Mm = 1.00; 

Fm = 1.00; 

Vp = 0.09 

VM =0.06 

VF=0.05 

Based on all these data, the value of ~ was found to be 4.10 for <l>v = 0.90. 

It should be noted that the equations for determining Ismin and Ast of attached shear 
stiffeners are based on the studies summarized in Ref. 43. 

86.3 Non-Conforming Stiffeners 

This Section is the same as Section B6.3 of the AISI Specification for allowable stress 
design. 
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c. MEMBERS 

C1 Properties of Sections 

This section is the same as Section C 1 of the AISI Specification for allowable stress 
design. 

C2 Tension Members 

Section C2 of the LRFD criteria was developed on the basis of Section C2 of the AISI 
Specification for allowable stress design, in which the design of tension members is based 
only on the yield point of steel. 

The resistance factor of </>t = 0.95 used for tension member design was derived from the 
procedure described in Section A5.l of this Commentary and a selected ~o value of 2.5. In 
the determination of the resistance factor, the following formulas were used for Rm and Rn: 

Rm = An (Fy)m 

Rn = AnFy 

i.e. RmlRn = (Fy)mfFy 

(CC2-1) 

(CC2-2) 

(CC2-3) 

in which An is the net area of the cross section, (Fy)m is equal to 1.10Fy as discussed in 
Section A5.2 of the Commentary. By using VM = 0.10, VF = 0.05 and Vp = 0, the coeffi
cient of variation VR is: 

"./ 2 2 2 VR = V
M 

+Vp +Vp =0.11 

Based on VQ = 0.21 and the resistance factor of 0.95, the value of ~ is 2.4, which is close 
to the stated target value of ~o = 2.5. 

C3 Flexural Members 

C3.1 Strength for Bending Only 

Bending strengths of flexural members are differentiated according to whether or not 
the member is laterally braced. If such members are laterally supported, then they are 
proporti oned according to the nominal section strength (Sec. C3.1 .1). If they are laterally 
unbraced, then the limit state is lateral-torsional buckling (Sec. C3.1.2). For C- or 
Z-section with the tension flange attached to deck or sheathing and with compression 
flange laterally unbraced, the bending capacity is less than that of a fully braced member 
but greater than that of an unbraced member (Sec. C3.I.3). 

C3.1.1 Nominal Section Strength 

The bending strength of beams with a compression flange having stiffened, partially 
stiffened, orunstiffened elements is based on the post-buckling strength of the member, 
and use is made in LRFD of the effective width concept in the same way as in the 1986 
AISI Specification. References 5, 6, 7, and 8 provide an extensive treatment of the 
background research. 

The experimental bases for the post-buckling strengths of cold-formed beams were 
examined in Refs. 8 and 10, where different cases were studied according to the types 
of compression flanges and the effectiveness of webs. 

On the basis of the initiation of yielding, the nominal strength Rn is based on the 
nominal effective cross section and on the specified minimum yield point, i.e., Rn = 
SeFy. 
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Table CC3.1.1 
Computed Safety Index ~ for Section Bending Strength of Beams 

Based on Initiation of Yielding 

Case No. of Tests Mm Fm Pm Vp 

Stiffened or Partially Stiffened Compression Flanges (<j>b = 0.95) 

FF.FW. 8 1.10 0.10 1.0 0.05 1.10543 0.03928 2.76 

PF.FW. 30 1.10 0.10 1.0 0.05 1.11400 0.08889 2.65 

PF.PW. 5 1.10 0.10 1.0 0.05 1.08162 0.09157 2.53 

Unstiffened Compression Flanges (<j>b = 0.90) 

FF.FW. 3 1.10 0.10 1.0 0.05 1.43330 0.04337 4.05 

PF.FW. 40 1.10 0.10 1.0 0.05 1.12384 0.13923 2.67 

PF.PW. 10 1.10 0.10 1.0 0.05 1.03162 0.05538 2.66 

Note: FF. = Fully effective flanges 

PF. = Partially effective flanges 

FW. = Fully effective webs 

PW. = Partially effective webs 

For details, see Ref. 10. 

The computed values of ~ for the selected values of <j>b = 0.95 for sections with 
stiffened or partially stiffened compression flanges and 0.90 for sections with unstif
fened compression flanges, and for a dead-to-live load ratio of 1/5 for different cases 
are listed in Table CC3.1.1. It can be seen that the ~ values vary from 2.53 to 4.05. In 
Table CC3.1.1, the values of Mm, VM, Fm and VF are the values presented in Sec. A5.2 
of this Commentary for the material strength. 

C3.1.2 Lateral Buckling Strength 

There are not many test data on laterally unsupported cold-formed beams. The 
available test results are summarized in Ref. 10, and they are compared with predictions 
from AISI design formulas, theoretical formulas and SSRC formulas. 

The statistical data used in Ref. 10 are listed in Table CC3.1.2. The symbol P is 
the ratio of the tested capacity to the predicted value, M is the ratio of the actual to the 
specified value of the modulus of elasticity, and F is the ratio of the actual to the nominal 
sectional properties. 

Using the recommended resistance factor G>b = 0.90, the values of ~ vary from 2.35 
to 3.8. See Table CC3.1.2. It should be noted that the recommended design criteria use 
some simplified and conservative fonnulas, which are the same as the allowable stress 
design rules included in the 1986 AISI Specification. 
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Table CC3.1.2 
Computed Safety Index ~ for Lateral Buckling Strength of Bending 

(<»b = 0.90) 

Case No. of Tests Mm VM Fm VF Pm Vp 

1 47 1.0 0.06 1.0 0.05 2.5213 0.30955 3.79 

2 47 1.0 0.06 1.0 0.05 1.2359 0.19494 2.48 

3 47 1.0 0.06 1.0 0.05 1.1800 0.19000 2.35 

4 47 1.0 0.06 1.0 0.05 1.7951 0.21994 3.53 

5 47 1.0 0.06 1.0 0.05 1.8782 0.20534 3.80 

Note: Case 1 = AISI approach 

Case 2 = Theoretical approach with J = 0.0026 in.4 

Case 3 SSRC approach with J = 0.0026 in. 4 
= 

Case 4 = Theoretical approach with J = 0.0008213 in.4 

Case 5 SSRC approach with J = 0.0008213 in. 4 
= 

C3.1.3 Beams Having One Flange Through-Fastened to Deck or 
Sheathing 

11-21 

For beams having the tension flange attached to deck or sheathing and the compres
sion flange unbraced, e.g., a roof purlin or wall girt subjected to wind suction, the 
bending capacity is less than a fully braced member, but greater than an unbraced 
member. This partial restraint is a function of the rotational stiffness provided by the 
panel-to-purlin connection. The Specification contains factors that represent the reduc
tion in capacity from a fully braced condition. These factors are based on experimental 
results obtained for both simple and continuous span purlins (Refs. 20 to 24). 

As indicated in Ref. 25, the rotational stiffness of the panel-to-purlin connection is 
primarily a function of the member thickness, sheet thickness, fastener type and 
fastener location. For compressed glass fiber blanket insulation of initial thicknesses 
of zero to six inches, the rotational stiffness was not measurably affected (Ref. 25). To 
ensure adequate rotational stiffness of the roof and wall systems designed using the 
Specification provision, Section C3.1.3 explicitly states the acceptable panel and 
fastener types. 

Continuous beam tests were made on three equal spans and the R values were 
calculated from the failure loads, using as a maximum positive moment, M = 

2 0.08wLs. 

The provisions of Section C3.1.3 apply to beams on which the tension flange is 
attached to deck or sheathing and the compression flange is completely unbraced. 
Beams with discrete point braces on the compression flange may have a bending 
capacity greater than those completely unbraced. Available data from simple span tests 
(Refs. 20, 23, 37, 38, and 39) indicate that for members having a lip edge stiffener at 
an angle of 75 degrees or greater with the plane of the compression flange and braces 
to the compression flange located at third points or more frequently, member capacities 
may be increased over those without discrete braces. 
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In this section, the <Pb factor is detennined for the load combination of 1.17W-0.9D 
to approximately provide a target ~o of 1.5 for counteracting loads with a reduction 
factor of 0.9 applied to the load factor for the nominal wind load. The reasons for using 
a low target ~o are discussed in Section A5.1 of this Commentary. Based on this type 
of load combination, the following equations can be established: 

cpRn = c(1.17W - 0.90) = (1.17 - 0.9D/W)cW 

Qm = c(Wm - Dm) 

V 
_ -V(Wm YW)2 + (Om VO)2 

Q-
Wm-Dm 

(CC3.1.3-l) 

(CC3.1.3-2) 

(CC3.1.3-3) 

where Wm is the mean wind load intensity and Vw is the corresponding coefficient of 
variation. 

Load statistics have been analyzed in Ref. 11, where it was shown that 

Dm = 1.05D, Yo = 0.1; Wm = 0.78W, Vw = 0.37 

The substitution of the load statistics into Eqs. CC3.1.3-2 and CC3.1.3-3 gives 

Qm = c(O.78W - 1.05D) = (0.78 - 1.05D/W)cW (CC3.1.3-4) 

V _ -V(0.78x0.37)2 + (1.05D/WxO.1)2 
Q - 0.78 - 1.05D/W 

(CC3.1.3-5) 

By assuming O/W = 0.1, Eqs. CC3.1.3-1, CC3.1.3-4, and CC3.1.3-5 can be rewritten 
as follows: 

cpRn = 1.08cW 

Qm = 0.675cW = 0.675(cpRJ1.08) = 0.625cpRn 

VQ = 0.43 

(CC3.1.3-6) 

The application of Eqs. CA5.1-2, CA5.1-4, CC3.1.3-6, and CA5.1-6 gives 

A _ In(1.6MmFmPm /~) 
tJ - -Vy2 + y2 + y2 + V2 (CC3.1.3-7) 

M F P Q 
or 

<P = 1.6(MmFmPm)exp(- ~-Vy~ + y~ + V~ + V~) (CC3.1.3-8) 

The computed values of ~ for the selected value of CPb = 0.90 for different cases are 
listed in Table CC3.1.3. It can be seen that the ~ values vary from 1.50 to 1.60 which 
are satisfactory for the target value of 1.5. In Table CC3.1.3, the values of Mm, VM, 
Fm, and YF are the values presented in Section A5.2 of this Commentary for the material 
strength and fabrication. 
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Case 

1 

2 

3 

4 

Note: 

Table CC3.1.3 
Computed Safety Index ~ for Beams Having One Flange 

Through-Fastened to Deck or Sheathing 
(<pb = 0.90) 

No. of Tests Mm VM Fm VF Pm Vp 

5 1.10 0.10 1.0 0.05 1.1995 0.2991 

15 1.10 0.10 1.0 0.05 1.0128 0.1112 

5 1.10 0.10 1.0 0.05 1.0466 0.1010 

14 1.10 0.10 1.0 0.05 1.0034 0.0689 

Case 1 = Simple span C-sections 

Case 2 = Simple span Z-sections 

Case 3 = Continuous span C-sections 

Case 4 = Continuous span Z-sections 

C3.2 Strength for Shear Only 
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1.60 

1.50 

1.58 

1.51 

The shear strength of beam webs is governed by either yielding or buckling, depending 
on the hit ratio and the mechanical properties of steel. For beam webs having small hit 
ratios, the shear strength is governed by shear yielding, i.e.: 

Vn = Aw'ty = AwFy! -f3 = 0.577Fyht (CC3.2-1) 

in which Aw is the area of the beam web computed by (ht), and 'ty is the yield point of 
steel in shear, which can be computed by F y 1....[3. 

For beam webs having large hIt ratios, the shear strength is governed by elastic shear 
buckling, i.e.: 

2 
kv1t EAw V -A 't -------'------

n - w cr - 12(1 _ , .. I?)(h/t)2 
(CC3.2-2) 

in which 'tcr is the critical shear buckling stress in the elastic range, kv is the shear buckling 

coefficient, E is the modulus of elasticity, I..l is the Poisson's ratio, h is the web depth, and 
t is the web thickness. By using Jl = 0.3, the shear strength, V n' can be determined as 
follows: 

V n = 0.905Ekvt3/h (CC3.2-3) 

For beam webs having moderate hit ratios, the shear strength is based on the inelastic 
buckling, i.e.: 

V n = 0.64t
2"kvFyE (CC3.2-4) 

In view of the fact that the appropriate test data on shear are not available, the <Pv factors 
used in Section C3.2 were derived from the condition that the nominal resistance for the 
LRFD method is the same as the nominal resistance for the allowable stress design 
method. Thus, 

(RrJLRFD = (RrJASD (CC3.2-5) 
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Since 

(Rn)LRFD ~ c(I.2D + 1.6L) / ct>v 

(Rn)ASD ~ c(F.S.)(D + L) 

the resistance factors can be computed from the following fonnula: 

iI\ 1.2D + 1.6L 
't'v = (F.S.)(D + L) 

= 1.2(D/L) + 1.6 
(F.S.)(D/L + 1) 

(CC3.2-6) 

(CC3.2-7) 

(CC3.2-S) 

By using a dead-to-live load ratio ofD/L = 1/5, the <l>v factors computed from the above 
equation are listed in Table CC3.2 for three different ranges of hit ratios. The factors of 
safety are adopted from the AISI Specification for allowable stress design. It should be 
noted that the use of a small safety factor of 1.44 for yielding in shear is justified by long 
standing use and by the minor consequences of incipient yielding in shear compared with 
those associated with yielding in tension and compression. 

Range of h / t Ratio 

TableCC3.2 

F.S. for 
Allowable Load 

Design 

h / t ~ -VEkv / Fy 1.44 

-VEkv / Fy ~ hit ~ 1.415 -VEkv / Fy 1.67 

h / t > 1.415 -VEkv / Fy 1.71 

4>v Factor 
computed 

by Eq. CC3.2-S 

1.06 

0.92 

0.90 

C3.3 Strength for Combined Bending and Shear 

Recommended 
<l>v Factor 

1.00 

0.90 

0.90 

This section is based on the interaction formulas included in Section C3.3 of the AISI 
Specification for allowable stress design. 

C3.4 Web Crippling Strength 

The nominal concentrated load or reaction, P n' is determined by the allowable load 
given in Section C3.4 of the AISI Specification times the appropriate factor of safety. In 
this regard, a factor of safety of I.S5 is used for Eqs. C3.4-1, C3.4-2, C3.4-4, C3.4-6 and 
C3.4-S, and a factor of safety of 2.0 is used for Eqs. C3.4-3, C3.4-5, C3.4-7 and C3.4-9. 

On the basis of the statistical analysis of the available test data on web crippling, the 
values of Pm' Mm, F m' V P' V M and V F were computed and selected. These values are 
presented in Table CC3.4 (see Table 76 of Ref. 10). By using ~o = 2.5, the resistance 
factors <l>w= 0.75 and 0.80 were selected for single unreinforced webs and I-sections, 

respectively, and is used in Sections A5.1.5 and C3.4. The values of ~ corresponding to 
these values of <Pw are also given in Table CC3.4. 
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Table CC3.4 
Computed Safety Index ~ for Web Crippling Strength of Beams 

Case No. of Tests Mm VM Fm VF Pm Vp 

Single, Unreinforced Webs (<t>w = 0.75) 

l(SF) 68 1.10 0.10 1.0 0.05 1.00 0.12 3.01 

1 (UF) 30 1.10 0.10 1.0 0.05 1.00 0.16 2.80 

2(UMR) 54 1.10 0.10 1.0 0.05 0.99 0.11 3.02 

2(CA) 38 1.10 0.10 1.0 0.05 0.86 0.14 2.36 

2(SUM) 92 1.10 0.10 1.0 0.05 0.94 0.14 2.67 

3(UMR) 26 1.10 0.10 1.0 0.05 0.99 0.09 3.11 

3(CA) 63 1.10 0.10 1.0 0.05 1.72 0.26 3.80 

3(SUM) 89 1.10 0.10 1.0 0.05 1.51 0.34 2.95 

4(UMR) 26 1.10 0.10 1.0 0.05 0.98 0.10 3.03 

4(CA) 70 1.10 0.10 1.0 0.05 1.04 0.26 2.39 

4(SUM) 96 1.10 0.10 1.0 0.05 1.02 0.23 2.49 

I-Sections (<t>w = 0.80) 

1 72 1.10 0.10 1.0 0.05 1.10 0.19 2.74 

2 27 1.10 0.10 1.0 0.05 0.96 0.13 2.57 

3 53 1.10 0.10 1.0 0.05 1.01 0.13 2.76 

4 62 1.10 0.10 1.0 0.05 1.02 0.11 2.89 

Note: Case 1 = End one-flange loading 

Case 2 = Interior one-flange loading 
Case 3 = End two-flange loading 

Case 4 = Interior two-flange loading 

SF = Stiffened flanges 

UF = Un stiffened flanges 

UMR = UMR and Cornell tests only 

CA = Canadian tests only 

SUM = Combine UMR and Canadian tests together 
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C3.S Combined Bending and Web Crippling Strength 

This section is based on the interaction fonnulas included in Section C3.5 of the AISI 
Specification for allowable stress design. 

A total of 551 tests were calibrated for combined bending and web crippling strength. 
Six different cases were studied. Based on <l>w= 0.75 for single unreinforced webs and <l>w 
= 0.80 for I-sections, the values of safety indices vary from 2.45 to 3.27 as given in Table 
CC3.5. 

Table CC3.5 
Computed Safety Index ~ for Combined Bending and Web Crippling 

Case No. of Tests Mm Fm VF Pm 

Single, Unreinforced Webs (Interior one-flange loading) 
(Based on <l>w= 0.75) 

1 74 1.10 0.10 1.0 0.05 1.01 

2 202 1.10 0.10 1.0 0.05 0.87 

3 103 1.10 0.10 1.0 0.05 0.95 

4 66 1.10 0.10 1.0 0.05 1.03 

5 445 1.10 0.10 1.0 0.05 0.94 

I-Sections (Interior one-flange loading) 
(Based on <l>w = 0.80) 

1 106 1.10 0.10 1.0 0.05 1.06 

Note: Case 1 = UMR and Cornell tests only 

Case 2 = Canadian brake-fonned section tests only 

Case 3 = Canadian roll-fonned section tests only 

Case 4 = Hoglund's tests only 

Case 5 = Combine all tests together 

C4 Concentrically Loaded Compression Members 

Vp 

0.07 

0.13 

0.10 

0.18 

0.14 

0.12 

3.27 

2.45 

2.91 

2.79 

2.68 

2.99 

The available experimental data on cold-fonned steel concentrically loaded compression 
members were evaluated in Ref 10. The test results were compared to the predictions based 
on the same mathematical models on which the AISI Specification was based. The design 
provisions in these LRFD criteria are also based on the same mathematical models. 

Column capacity in these LRFD criteria is based on the same prediction models as were 
employed in the fonnulation of the AISI Specification. A total of 264 tests were examined; 
14 different cases were studied according to the types of the column, the types of the 
compression flanges and the failure modes. The resistance factor <I>c = 0.85 was selected on 
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the basis of the statistical data given in Ref. 10. The corresponding safety indices vary from 
2.39 to 3.34. A summary of the information is given in Table CC4. 

The safety indices were detennined from Eq. CA5.1-2 for a D/L ratio of 1/5. Different <\>c 
factors could have been used for different cases. 



II-28 Commentary on the Cold-Fonned Steel LRFD Specification - March, 1991 

Table CC4 
Computed Safety Index ~ for Concentrically Loaded Compression Member 

(<Pc= 0.85 ) 

Case No. of Tests Mm VM Fm VF Pm Vp 

1 5 1.10 0.10 1.0 0,05 1.14610 0.10452 3.13 

2 24 1.10 0.10 1.0 0.05 1.05053 0.07971 2.89 

3 15 1.10 0.10 1.0 0.05 1.05523 0.07488 2.93 

4 3 1.10 0.10 1.0 0.05 1.10550 0.07601 3.11 

5 28 1.10 0.10 1.0 0.05 1.04750 0.11072 2.76 

6 25 1.10 0.10 1.0 0.05 1.22391 0.21814 2.72 

7 9 1.00 0.06 1.0 0.05 0.96330 0.04424 2.39 

8 41 1.10 0.10 1.0 0.05 1.19620 0.09608 3.34 

9 18 1.10 0.10 1.0 0.05 1.02900 0.08131 2.81 

10 12 1.10 0.11 1.0 0.05 1.06180 0.11062 2.77 

11 8 1.00 0.06 1.0 0.05 1.15290 0.10544 2.92 

12 30 1.10 0.10 1.0 0.05 1.07960 0.15061 2.68 

13 14 1.10 0.10 1.0 0.05 1.07930 0.08042 3.00 

14 32 1.10 0.10 1.0 0.05 1.08050 0.10772 2.89 

Note: Case 1 = Stub columns having unstiffened flanges with fully effective 
widths 

Case 2 = Stub columns having unstiffened flanges with partially effective 
widths 

Case 3 = Thin plates with partially effective widths 
Case 4 = Stub columns having stiffened compression flanges with fully ef-

fective flanges and webs 
Case 5 = Stub columns having stiffened compression flanges with partial-

ly effective flanges and fully effective webs 
Case 6 = Stub columns having stiffened compression flanges with partial-

ly effective flanges and partially effective webs 
Case 7 = Long columns having unstiffened compression flanges subjected 

to elastic flexural buckling 
Case 8 = Long columns having unstiffened compression flanges subjected 

to inelastic flexural buckling 
Case 9 = Long columns having stiffened compression flanges subjected to 

inelastic flexural buckling 
Case 10 = Long columns subjected to inelastic flexural buckling (include 

cold-work) 
Case 11 = Long columns subjected to elastic torsional-flexural buckling 
Case 12 = Long columns subjected to inelastic torsional-flexural buckling 

Case 13 = Stub columns with circular perforations 

Case 14 = Long columns with circular perforations 
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C5 Combined Axial Load and Bending 

The LRFD Specification provide the similar interaction equations as the 1986 Edition of 
the AISI Specification with 1989 Addendum. 

A total of 144 tests were calibrated for combined axial load and bending. Nine different 
cases were studied according to the types of sections, the stable conditions and the loading 
conditions. Based on <Pc = 0.85, <Pb = 0.95 or 0.90 for nominal section strength (see Section 
C3.1.1), and <Pb = 0.90 for lateral buckling strength, the values of safety indices vary from 
2.7 to 3.34 as given in Table CC5. 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Note: 

TableCC5 
Computed Safety Index ~ for Combined Axial Load and Bending 

(based on <Pc ~ 0.85 ) 

No. of Tests Mm VM Fm VF Pm Vp 

18 1.05 0.10 1.0 0.05 1.0367 0.06619 2.70 

13 1.05 0.10 1.0 0.05 1.0509 0.07792 2.72 

33 1.05 0.10 1.0 0.05 1.1028 0.09182 2.86 

18 1.05 0.10 1.0 0.05 1.1489 0.10478 2.96 

6 1.05 0.10 1.0 0.05 1.1600 0.13000 2.87 

17 1.05 0.10 1.0 0.05 1.1200 0.09000 2.92 

10 1.05 0.10 1.0 0.05 1.2300 0.08000 3.34 

17 1.05 0.10 1.0 0.05 1.0910 0.07950 2.86 

12 1.05 0.10 1.0 0.05 1.1110 0.11450 2.79 

Case 1 = Locall~ stable beam-columns, hat sections of Pekoz and Winter 
(1967) 6 

Case 2 = Locally unstable beam-columns, lipped channel sections of 
Thomasson (1978 )27 

Case 3 = Locally unstable beam-columns, lipped channel sections of 
Loughlan (1979)28 

Case 4 = Locally unstable beam-columns, lipped channel sections of Mul-
ligan and Pekoz (1983)29 

Case 5 = Locally stable beam-columns, lipped channel sections of Loh 
and Pekoz (1985)30 with ex ~ 0 and ey = 0 

Case 6 = Locally stable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex .= 0 and ey ~ 0 

Case 7 = Locally stable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex ~ 0 and ey ~ 0 

Case 8 = Locally unstable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex= 0 and ey~ 0 

Case 9 = Locally unstable beam-columns, lipped channel sections of Loh 
and Pekoz (1985) with ex ~ 0 and ey~ 0 
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C6 Cylindrical Tubular Members 

Section C6 of the LRFD criteria is based on Section C6 of the AISI Specification for 
allowable stress design. 

The <Pb factor of 0.95 used in Section C6.1 for bending is the same as that used in Section 
C3.1.1, while the <Pc factor of 0.85 used in Section C6.2 for compression is the same as that 
used in Section C4 for concentrically loaded compression members. 
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D. STRUCTURAL ASSEMBL!ES 

01 Built-Up Sections 

This section is the same as Section D 1 of the AISI Specification for allowable stress 
design. 

02 Mixed Systems 

This section is the same as Section D2 of the AISI Specification for allowable stress 
design. 

03 Lateral Bracing 

This section is the same as Section D3 of the AISI Specification for allowable stress 
design. 

With regard to the footnote for Section D3.2, it should be noted that in conventional metal 
building roof systems, the roof panels are attached to the top flange of each purl in throughout 
its length using self-drilling or self-tapping, through-the-sheet, fasteners spaced at ap
proximately 1 foot on center. This panel usually provides sufficient stiffness to prevent the 
relati ve movement of the purl ins with respect to each other, however, unless external restraint 
is provided, the system as a whole will tend to move laterally. This restraint or anchorage 
may consist of members attached to the purlin at discrete locations along the span and 
designed to carry forces necessary to restrain the system against lateral movement. The 
design rules for Z-purlin supported roof systems are based on a first order, elastic stiffness 
model (Reference 31). 

04 Wall Studs and Wall Stud Assemblies 

04.1 Wall Studs in Compression 

The AISI design provisions on the compression strength of wall studs were calibrated 
in Ref. 10. The statistical data used for determining the <Pc factor are given in Ref. 10 as 
follows: 

Pm = 1.14; 

Mm = 1.10; 

Fm = 1.00; 

Vp=0.10 

VM =0.10 

VF=0.05 

Based on all these data and <Pc = 0.85, the ~ value was found to be 3.14. 

The provisions in this Specification section are given to prevent three possible modes 
of failure. Provision (a) is for column buckling between fasteners, even if one fastener is 
missing or otherwise ineffective. Provision (b) contains formulas for nominal axial 
strengths for overall column buckling. Essential to these provisions is the magnitude of 
the shear rigidity of the sheathing material. 

A table of shearing parameters and an equation for determining the shear rigidity are 
provided in this Specification. These values are based on the small scale tests described 
in References 32 and 33. For other types of materials, the sheathing parameters can be 
determined using the procedures described in these references. 

Provision (c) is to insure that the sheathing has sufficient distortion capacity. The 
procedure involves assuming a value of the stress and checking whether the shear strain 
at the load corresponding to the stress exceeds the permissible design shear strain of the 
sheathing material. In principle, the procedure is one of successive approximations. 
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However, if the smaller of Fe (provision a) or <lcr (provision b) is tried and shown to be 
satisfactory, then the need for iteration is eliminated. 

04.2 Wall Studs in Bending 

The ct>t, factors for bending strength of wall studs wen~ taken as the same as those for 
section bending strength of beams (Section C3.1.1). The available test data on wall stud 
sections with stiffened or partially stiffened compression flanges were calibrated in Ref. 
10. The statistical data used for determining the ~ value are given in Ref. 10 as follows: 

Pm = 1.27; 

Mm= 1.10; 

Fm = 1.00; 

Vp = 0.01 

VM=0.10 

VF = 0.05 

Based on all these data and <l>b = 0.95, the ~ value was found to be 3.37. 

04.3 Wall S'tuds wi'th Combined Axial Load and Bending 

The LRFD criteria provide the same interaction equations as the AISI Specification 
for allowable stress design. 

The available test data on wall studs with combined axial load and bending were 
calibrated in Ref. 10. The statistical data used for determining the ~ value are given in 
Ref. 10 as follows: 

Pm = 1.19; 

Mm= 1.05; 

Fm = 1.00; 

Vp = 0.13 

VM= 0.10 

VF = 0.05 

Based on <l>c = 0.85 and <l>b = 0.95 for sections with stiffened or partially stiffened 
compression flanges or <l>b = 0.90 for sections with unstiffened compression flanges, the 
~ value was found to be 2.94. 
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E. CONNECTIONS AND JOINTS 

Section E of the LRFD criteria is based on Section E of the AISI Specification for 
allowable stress design. This section contains the design provisions for welded connections, 
bolted connections, shear rupture and connections to other materials. 

The resistance factors used for welded and bolted connections were derived for a target 
reliability index ~o = 3.5 and the statistical data are summarized in the subsequent sections. 

E1 General Provisions 

This section is based on Section El of the AISI Specification for allowable stress design. 

E2 Welded Connections 

Section E2 contains the design provisions for arc-welds (groove welds in butt joints, arc 
spot welds, arc seam welds, fillet welds, and flare groove welds) and resistance welds. The 
design equations for the nominal strength and the <1> factors for groove welds in butt joints 
are the same as that used in the AISC LRFD criteria. (Ref. 3) 

For arc spot welds, the <1> factor of 0.60 used for determining the design shear strength of 
welds is based on the test data reported in Ref. 34. It gives a ~ value of 3.55. The statistical 
data used for deriving the <1> factor are given in Ref 10 as follows: 

Pm = 1.17; 

Mm= 1.10; 

Fm = 1.00; 

Vp = 0.22 

VM= 0.10 

VF = 0.10 

Table eE2-l 
Computed Safety Index ~ for Plate Failure in Weld Connections 

Case Mm VM Fm VF Pm Vp 

Arc Spot Welds 

1 1.10 0.08 1.00 0.15 1.10 0.17 0.60 

2 1.10 0.08 1.00 0.15 0.98 0.18 0.50 

Fillet Welds 

3 1.10 0.08 1.00 0.15 1.01 0.08 0.60 

4 1.10 0.08 1.00 0.15 0.89 0.09 0.55 

5 1.10 0.08 1.00 0.15 1.05 0.11 0.60 

Note: Case 1 = For dalt ~ 0.815 .../(E/Fu) 

Case 2 = For dalt > 1.397 .../ (E/Fu) 

Case 3 = Longitudinal Loading, Lit < 25 

Case 4 = Longitudinal Loading, Lit ~ 25 

Case 5 = Transverse Loading 

3.52 

3.64 

3.65 

3.59 

3.72 
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Case 

1 

2 

Note: 
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Table CE2-2 
Computed Safety Index ~ for Tensile Strength of Arc Spot Weld 

(<I> = 0.65 ) 

No. of Tests Mm VM Fm Vp Pm Vp 

103 1.10 0.08 1.0 0.15 1.5405 0.2949 

103 1.10 0.08 1.0 0.15 1.5405 0.2949 

Case 1 is for 1.20+ 1.6L (~o = 3.5) 

Case 2 is for 1. 17W-0.90 (~o = 2.5) 

3.45 

2.62 

With regard to the types of the plate failure governed by Eqs. E2.2-2 through Eq. E2.2-4 
in the design criteria, <I> factors were derived from the statistical data presented in Table CE2-1 
(Ref. 35). The <I> factors used for minimum edge distance were taken as the same as those 
used for bolted connections. 

For tension loads on arc spot welds, tests were perfonned which included variables of 
steel strengths from 50 to 68.5 ksi, steel sheet thickness ranging from 0.031 to 0.072 inches, 
galvanized steel sheet, prime painted and galvanized steel plate, and visible diameter of welds 
ranging from 0.47 to 0.94 inches. Thus, the additional limitations only applicable to arc spot 
welds in tension were included in the Specification. For use in calculating the tension load 
on arc spot welds, the tensile strength of the connected sheet, Fu, is limited to a maximum 
of 60 ksi, although sheet with greater tensile strengths may be used. The development of the 
equation is contained in Reference 40. The tests were reported in Reference 41. 

The statistical data for deriving the <I> factor are presented in Table CE2-2 (Ref. 42). Two 
cases were considered in the determination of <I> factor: (1) 1.2D+l.6L with ~o = 3.5, and (2) 
1.17W -0.90 with ~o = 2.5 (counteracting loads with a reduction factor of 0.9 applied to the 
load factor for the nominal wind load). <I> = 0.65 was selected for both cases, and the values 
of ~ corresponding to the selected <I> factor are given in Table CE2-2. It can be seen that for 
both cases, the ~ values compare satisfactorily to the target reliability indices. 

For arc seam welds, the design shear strength of welds is determined from the same <I> 

factor used for arc spot welds. The derivation of the <I> factor for plate tearing is based on the 
following statistical data (Ref. 10): 

Pm = 1.00; Vp = 0.10 

Mm= 1.10; 

Fm = 1.00; 

VM= 0.10 

VF = 0.10 

For the selected value of <I> = 0.60, the value of ~ = 3.81. 

For fillet welds, the <I> factors used for longitudinal loading (Eqs. E2.4-1 and E2.4-2) and 
transverse loading (Eq. E2.4-3) are based on the statistical data presented in Table CE2-1 
(Ref. 35). 

Similar to the arc spot welds, a <I> factor of 0.60 is used for the design shear strength of 
welds. 

For flare groove welds, the following statistical data were used to determined the <I> 

factors: 
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(a) Transverse Flare Bevel Welds (<I> = 0.55, ~ = 3.81) 

Pm = 1.04; Vp = 0.17 

Mm= 1.10; VM=0.10 

Fm = 1.00; VF = 0.10 

(b) Longitudinal Flare Bevel Welds ($ = 0.55, ~ = 3.56) 

Pm = 0.97; Vp = 0.17 

Mm= 1.10; 

Fm = 1.00; 

For detailed information, see Ref. 10. 

VM= 0.10 

VF = 0.10 

For resistance welds, the nominal shear strength is based on the following equation: 

Rn = (2.5) x (allowable shear per spot specified in Section E2.6 
of the AISI Specification for allowable stress design) 

In the above equation, the safety factor is 2.5. 

11-35 

The $ factor of 0.65 used in Section E2.6 for the design of resistance welds was determined 
on the basis of the following statistical data reported in Ref. 10. It gives a ~ value of 3.71. 

Pm = 1.00; Vp = 0.03 

Mm= 1.10; VM = 0.10 

Fm = 1.00; VF = 0.10 

E3 Bolted Connections 

Section E3 of the LRFD criteria is based on Section E3 of the AISI Specification for 
allowable stress design. It deals only with the design of bolted connections used for connected 
parts thinner than 3/16 inch in thickness. For the design of bolted connections using materials 
equal to or greater than 3/16 inch in thickness, the AISC Specification should be used. 

All $ factors were computed from the statistical data given in Ref. 10 and ~o = 3.5. The 
statistical data used in the study are presented in Table CE3. 

The <I> factors used for the high strength bolts for design shear and tensile strengths are 
adopted from Ref. 3. 
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Table CE3 
Computed Safety Index ~ for Bolted Connections 

Case Mm Fm Vp Pm Vp 

Minimum Spacing and Edge Distance 

1 1.10 0.08 1.00 0.05 1.13 0.12 0.70 3.75 

2 1.10 0.08 1.00 0.05 1.18 0.14 0.70 3.84 

3 1.10 0.08 1.00 0.05 0.84 0.05 0.60 3.61 

4 1.10 0.08 1.00 0.05 0.94 0.09 0.60 3.90 

5 1.10 0.08 1.00 0.05 1.06 0.11 0.70 3.62 

6 1.10 0.08 1.00 0.05 1.14 0.19 0.60 3.87 

Tension Stress on Net Section 

7 1.10 0.08 1.00 0.05 1.14 0.20 0.65 3.53 

8 1.10 0.08 1.00 0.05 0.95 0.21 0.55 3.41 

9 1.10 0.08 1.00 0.05 1.04 0.14 0.65 3.63 

Bearing Stress on Bolted Connections 

10 1.10 0.08 1.00 0.05 1.08 0.23 0.55 3.65 

11 1.10 0.08 1.00 0.05 0.97 0.07 0.65 3.80 

12 1.10 0.08 1.00 0.05 1.02 0.20 0.60 3.43 

13 1.10 0.08 1.00 0.05 1.05 0.13 0.60 4.06 

14 1.10 0.08 1.00 0.05 1.01 0.D4 0.70 3.71 

15 1.10 0.08 1.00 0.05 0.93 0.05 0.65 3.70 

Shear Strength on A307 Bolts 

16 1.28 0.08 1.00 0.05 0.68 0.11 0.65 4.73 

17 1.13 0.08 1.00 0.05 0.60 0.10 0.65 3.85 

18 1.28 0.08 1.00 0.05 0.75 0.10 0.65 5.23 

19 1.36 0.08 1.00 0.05 0.63 0.06 0.65 4.49 

20 1.13 0.08 1.00 0.05 0.76 0.06 0.65 5.09 

Note: Case 1 = Single shear, with washers, FufFy ~ 1.15 

Case 2 = Double shear, with washers, FufFy ~ 1.15 
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Table CE3 (Continued) 
Computed Safety Index ~ for Bolted Connections 

Case 3 = 

Case 4 = 

Case 5 = 

Case 6 = 

Case 7 = 
Case 8 = 
Case 9 = 
Case 10 = 

Case 11 = 

Case 12 = 

Case 13 = 

Case 14 = 

Case 15 = 

Case 16 = 
Case 17 = 

Case 18 = 
Case 19 = 

Case 20 = 

Single shear, with washers, FufFy < 1.15 

Double shear, with washers, FufFy < 1.15 

Single shear, without washers, FufFy ~ 1.15 

Single shear, without washers, FufFy < 1.15 

t< 3/16 in., double shear, with washers 

t < 3/16 in., single shear, with washers 

t < 3/16 in., single shear, without washers 

0.024 ~ t < 3/16 in., double shear, with washers, FufFy ~ 1.15 

0.024 ~ t < 3/16 in., double shear, with washers, FufFy < l.IS 

0.024 ~ t < 3/16 in., single shear, with washers, FufFy ~ 1.15 

0.024::;; t < 3/16 in., single shear, with washers, FufFy < 1.15 

0.036 ~ t < 3/16 in., single shear, without washers, FufFy ~ 1.15 

0.036 ~ t < 3/16 in., double shear, without washers, FufFy ~ 1.15 

Double shear, with washers, 3/8 in. diameter 

Double shear, with washers, 3/4 in. diameter 

Single shear, with washers, 3/8 in. diameter 

Single shear, with washers, 1/2 in. diameter 

Single shear, with washers, 3/4 in. diameter 
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E4 Shear Rupture 

Section E4 of the LRFD criteria is based on Section E4 of the AISI Specification for 
allowable stress design. The q, factor used in this section is adopted from Ref. 3. 

E5 Connections to Other Materials 

Section E5 of the LRFD criteria is based on Section E5 of the AISI Specification for 
allowable stress design. The q, factor used for bearing is adopted from Ref. 3. 
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F. TESTS FOR SPECIAL CASES 

F1 Tests for Determining Structural Performance 

The determination of load-carrying capacity of the tested elements, assemblies, connec
tions, or members is based on the same basis for the LRFD design criteria. The correction 
factor Cp is used in the determination of <I> factor to account for the influence due to the small 
number of tests (Ref. 36). It should be noted that when the number of tests is large enough, 
the effect of correction factor is negligible. 

For beams having tension flange through-fastened to deck or sheathing and with com
pression flange laterally unbraced (subject to wind uplift), the calibration is based on a load 
combination of I.I7W-0.9D with D/W = 0.1 (see Section C3.I.3 of this Commentary for 
detailed discussion). 

The statistical data needed for the detennination of resistance factor are listed in Table 
FI. 

F2 Tests for Confirming Structural Performance 

This section is basically the same as Section F2 of the AISI Specification for allowable 
stress design. 

F3 Tests for Determining Mechanical Properties 

This section is the same as Section F3 of the AISI Specification for allowable stress design. 
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PREFACE 
This document, Part III of the LRFD Cold-Formed Steel Design Manual supplements the 

Load and Resistance Factor Design Specification for Cold-Formed Steel Structural Mem
bers. It contains two different types of information: (a) design procedures of specification 
nature which are not included in the Specification itself, either because they are infrequently 
used or are regarded as too complex for routine design, and (b) other information intended to 
assist users of cold-formed steel. 

This Supplementary Information should be used in conjunction with the other parts of 
the Design Manual, which include Commentary (Part II), Illustrative Examples (Part N), 
Charts and Tables (Part V), Computer Aids (Part VI), and Test Procedures (Part VII), in 
addition to the Specification (Part I). 

American Iron and Steel Institute 
December 1991 
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PART III 
SUPPLEMENTARY INFORMATION 
ON THE MARCH 16, 1991, EDITION OF THE 
LOAD AND RESISTANCE FACTOR DESIGN SPECIFICATION 
FOR COLD-FORMED STEEL STRUCTURAL MEMBERS 

SECTION 1-LINEAR METHOD FOR COMPUTING PROPERTIES OF 
FORMED SECTIONS 

Computation of properties of formed sections may be simplified by using a so-called linear 
method, in which the material of the section is considered concentrated along the centerline of 
the steel sheet and the area elements replaced by straight or curved "line elements." The 
thickness dimension, t, is introduced after the linear computations have been completed. 

The total area of the section is found from the relation: Area = L x t, where L is the total 
length of all line elements. 

The moment of inertia of the section, I, is found from the relation: I = I' x t, where I' is the 
moment of inertia of the centerline of the steel sheet. The section modulus is computed as usual 
by dividing I or I I X t by the distance from the neutral axis to the extreme fiber, not to the 
centerline of the extreme element. 

First power dimensions, such as x, y, and r (radius of gyration) are obtained directly by the 
linear method and do not involve the thickness dimension. 

When the flat width, w, of a stiffened compression element is reduced for design purposes, 
the effective design width, b, is used directly to compute the total effective length Leer of the 
line elements. 

The elements into which most sections may be divided for application of the linear method 
consist of straight lines and circular arcs. For convenient reference, the moments of inertia and 
location of centroid of such elements are identified in the sketches and formulas in Section 1.1. 

The formulas for line elements are exact, since the line as such has no thickness dimension; 
but in computing the properties of an actual section, where the line element represents an 
actual element with a thickness dimension, the results will be approximate for the following 
reasons: 

(1) The moment of inertia of a straight actual element about its longitudinal axis is consid
ered negligible. 

(2) The moment of inertia of a straight actual element inclined to the axes of reference is 
slightly larger than that of the corresponding line element, but for elements oflike length 
the error involved is even less than the error involved in neglecting the moment of inertia 
of the element about its longitudinal axis. Obviously, the error disappears when the 
element is normal to the axis. 

(3) Small errors are involved in using the properties of a linear arc to find those of an actual 
corner, but with the usual small corner radii the error in the location of the centroid of the 
corner is of little importance, and the moment of inertia generally negligible. When the 
mean radius of a circular element is over four times its thickness, as for tubular sections 
and for sheets with circular corrugations, the errors in using linear arc properties 
practically disappear. 

U sing the computed values of Ix, Iy, and Ixy the moment of inertia about principal axes of 
the section can be calculated by the following equation: 

(D) 2 

I 2 2 + xy 
I - Ix + Iy 
Max- 2 ± 
Min 
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where Ix and Iy are the moment of inertia of the section about x- and y-axis, respectively, and 
Ixy is the product of inertia. 

The angle between the x-axis, and the minor axis is 

Examples of Part IV illustrate the application of the linear method. 

1.1 Proper'lies of Line Elements 

1.1.1 Straight Line Elements 

Moments of inertia of straight line elements can be calculated using the equations 
given below: 

h=O 

/3 ( 12 ) fa = la2 +-= I a2 +-
12 12 

13 

h=-
12 

1 = [cos2 0] p = In 2 

1 12 12 

1 = [sin2 0] /3 = 1m:! 
2 12 12 

1 = [sin ° cos 0] /3 = Imn 
12 12 12 

') In2 (2 n2) 13 = la - + - = I a +-
12 12 

Z 
3 3 

I~_fi __ 1 a 

L 
I 

i 
2 

i 
z 

3-.--------~----~-----3 

a 
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1.1.2 Circular Line Elements 

Moments of inertia of circular line elements can be calculated using the equations 
given below: 

o (expressed in radians) = 0.01745 0 (expressed in degrees and 
decimals thereof) 

_ sin O2 - sin 01 R C ... = cos 01 - cos O2 R 
c I - O

2 
_ 0

1 
' - O

2 
_ 0

1 

II = [02 - 01 + sin O2 cos O2 - sin 01 cos 01 _ .(sin O2 - sin Ol):!] R 3 

2 (J2-(J. 

I [
(J2 - O. - sin O2 cos O2 + sin O. cos 01 (cos (J. - cos (2)?'] . 

2 = - R3 
2 O2 - 01 

I = [sin:! (J2 - sin2 01 + (sin (J2 - sin (Jl) (cos O2 - cos (JI)] 3 

12 2 (J2 _ 01 R 

CASE I: (Jl = 0, O2 = 90° 4 
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c 
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2 

4 2 
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1.2 Properties of Sections 

Section properties of some sections can be calculated using the equations given below. The 
following are to be noted: 

(1) Three different types of dimensions are employed: capital letters (A) for outside dimen
sions, lower case barred letters (a) for centerline dimensions, lower case letters (a) for flat 
dimensions. The flat dimensions are required to obtain properties such as I where 
corners are assumed to be round. The centerline dimensions are needed for torsional 
properties such as Cw where corners are assumed to be square. The outside dimensions 
are shown because they are the dimensions usually given in tables. 

(2) All expressions consider the sections to contain round corners with the exception of those 
for some torsional properties (m, j and Cw)' These expressions are based on a square 
corner approximation with the exception that round corner values are used for quantities 
such as moment of inertia which appear in the torsional property expressions. However, 
allowable stresses calculated by this procedure are sufficiently accurate for routine 
engineering design of sections with small ratios of corner radius to thickness. 

(3) In the moment of inertia calculations, all quantities are accounted for except the moment 
of inertia of a flat element about its own axis when this is the weak axis. Moments of 
inertia of corners about their own axis are included to provide for the case of sections with 
large corner radii. 

(4) All expressions are given for the full, unreduced sections. 

1.2.1 Equal Angles (Singly-Symmetric) With and Without Lips 

---.. .,x 

C.G. = Centroid 
S.C. = Shear Center 

Figure 1.2.1-1 
Equal Angle (Singly-Symmetric) With Lips 

Figure 1.2.1-2 
Equal Angle (Singly-Symmetric) 

WIthout Lips 

NOTE: The x- and y- axes defined in these figures are referred to as the x2- and Y2- axes in the Tab/es of Section Properties, Part Vof 
the Design ManUal. 

1. Basic parameters 
a = A' -[r+t/2+a(r+t/2)]* 
i = A' -[t/2 + at/2] 
c = a[C' -(r + t/2)] 
c = a[C' -t 2] 
u = 1.57r 

*For sections with lips, a = 1.0; for sections without lips, a = 0 
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2. Cross-sectional area 

A = t[2a + u + 0:(2c + 2u)] 

3. Moment of inertia about x-axis 

Ix = 2t{a[1h(a/2 + r)2 + 0.0417a2] + 0.143r3 + o:[c(1h(r + a -C/2)2 
+ 0.0417c2)] + u(O. 707a + 0.898r)2 + 0.014r3} 

4. Distance between centroid and centerline of corner 

x = ~ {a(o.353a + O.293r) + [(u/2)O.102r 1 + a[c(O. 707a + O.353c + 1. 707r) 

+U(o.707a+r)]} 

5. Moment of inertia about y-axis 
Iy = 2t{a(0.353a + 0.293r)2 + 0.0417a3 + 0.015r3 + 0:[u(0.707a + r)2 + c(O.707a 

+ 0.353c + 1. 707r)2 + 0.417c3 + O.285r3]} - A(X)2 

6. Distance between shear center and centerline of corner 

= ta(c)2 (3- -2-) m3Y2[ac 
x 

7. St. Venant torsion constant 

t3 

J =3 [2a + u + 0:(2c + 2u)] 

t2(a)4(c)3 
8. Warping constant Cw = 18 I (4a + 3c) 

x 

9. Distance from centroid to shear center Xo = - (x + m)* 

10. Parameter used to determine elastic critical moment 

j = ~ [(a)4 + 4(a)3(c) -6(a)2(c)2 + (C)4] - Xo 
y 

1.2.2 Channels (Singly-Symmetric) With and Without Lips and Hat Sections 
(Singly-Symmetric) 

1. Basic parameters 
a = A' -(2r+t) 
a=A'-t 
b = B'-[r+t/2+0:(r+t/2)] 
b = B' -(t/2 + o:t/2) 
c = 0:[C'-(r+t/2)] 
C = o:(C' -t/2) 
u = 1.57r 

2. Cross-sectional area A = t[ a + 2b + 2u + 0:( 2c + 2u) ] 

3. Moment of inertia about x-axis 

Channel: Ix = 2t{O.0417a3 + b(a/2 + r)2 + u(a/2 + O.637r)2 + 0.149 r3 

c 
+a[O.0833c3+

4 
(a -C)2 + u(a/2 + O.637r)2 + O.149r3]) 

Hat Section: Ix = 2t{O.0417a3 + b(a/2 + r)2 + u(a/2 + O.637r)2 + O. 149 r3 

c 
+a[O.()833c3+4 (a + c + 4r)2 + u(a/2 + 1.363r)2 + 0.149r3]) 

*Neptive sign indicates Xc, is measured in neptive x direction. 
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\~ 

Figure 1.2.2-1 Figure 1.2.2-2 
Channel (Singly-Symmetric) With Lips Channel (Singly-Symmetric) Without Lips 

~ 1 1 
~ c c' 

-::x::t===::::::r:~===U 

C.G. = Centroid 

y 

r 
T~ 

I 

.. x 

Figure 1.2.2-3 
S.C. = Shear Center Hat Section (Singly-Symmetric) 

NOTE: The x- and y- axes defined in these figures are referred to as the X2- and Y2- axes in the Tables of Section Properties, Part Vof 
the Design Manual. 

4. Distance between centroid and web centerline 

x= ~ {b(b/2 + r) + u(O.363r) + a[u(b + 1.637r) + c(b + 2r)]} 

5. Moment of inertia about y-axis 

Iy = 2t{b(b/2 + r)2 + O.0833b3 + O.356r3 + a[c(b + 2r)2+ u(b + 1.637r)2 
+ O.149r3]} - A(X)2 

6. Distance between shear center and web centerline 

bt -
m = -[6c(a)2 + 3b(a)2 -8(C)3] 

12Ix 

7. Distance between centroid and shear cent~r 
Xo = -(x +m)* 

8. St. Venant torsion constant 

t 3 

J =3"[a + 2b + 2u + a(2c + 2u)] 

*Negative sign indicates Xo is measured in negative x direction. 
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9. Warping constant 
a) Channel with lips: 

C =!:{XA([)2[(f)2 + m2 -mb] 
W A t 3 

+ A[(m)2(a)3 + (b)2 (c)2(2c + 3a)] - Ixm2 (2a + 4c) 
3t t 

+ m~c)' [8(ii)'(c) +2m( 2c(c -a) + b(2c -3li»)] 

+ (ii)ili)' [(3C+ Ii) (4c+a:) -6(e)'] _ m'~li)4} 

Channel without lips: 

C = ta2b3 (36 + 2a) 
W 12 6b+a 

b) Hat section: 

Cw = (~'[ Iy + (X)'A( 1-(~;A)] 
x 

10. Parameter J3w 

11. Parameter J3r 

t [- _ _] t(a)2[ _ _ _] 
~r=2 (b-X)4_(X)4 +-4- (b-X)2_(X)2 

12. Parameter J31 

- 2 -
a) Channel: J31 = 2ct(b -x)3+"3t(b -x) [(a/2)3 -(a/2 -C)3] 

- 2 -b) Hat section: ~l = 2ct (b _X)3 +"3t(b -x) [(a/2 + cy - (a/2)3] 

13. Parameter used in determination of elastic critical moment 

j = 2~ (~w + ~f+ ~l) -xo 
y 

1.2.3 I-Sections With Unequal Flanges (Singly-Symmetric) and T-Sections 
(Singly-Symmetric) 

1. Basic parameters 
a = A' -[r + t/2 + a(r + t/2)]* 
a = A' -(t/2 + at/2) 
b = B' -(r+t/2) 
b = B' -t/2 
c = a[C' -(r + t/2)] 
c = a(C' -t/2) 
u = 1.57r 

·For I-sections (l = 1.0; for T-sections (l = 0 
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Figure 1.2.3-1 
I-Section With Unequal Flanges (Singly-Symmetric) 

C.G. = Centroid 
S.C. = Shear Center 

s.c./j: 1 T c.G.----l--·-+x 

~ La-------.l 
~:,--~ 
Figure 1.2.3-2 

T-Sectlon (Singly-Symmetric) 

2. Cross-sectional area 

A = t[2a + 2b + 2u + a(2c + 2u)] 

3. Moment of inertia about x-axis 

Ix = 2t{b(b/2 + r + t/2)2 + O.0833b3 + u(O.363r + t/2)2 
+ O.149r3 + a[c(c/2 + r + t/2)2 + O.0833b3 + u(O.363r + t/2)2 + O.149r3]} 

4. Distance between centroid and longer flange centerline 

x= ~{ u(O.363r) + a(a/2 +r) + a[u(a + 1.637r) + c(a + 2r)l} 

5. Moment of inertia about y-axis 

Iy = 2t{O.358r3 + a(a/2 + r)2 + O.0833a3 + a[u(a + 1.637r)2 
+ O.149r3 + c(a + 2r)2]} - A(X)2 



Supplementary Information on the March 16,1991 Edition ofthe LRFD Cold-Formed Specification 

6. Distance between shear center and longer flange centerline 

_ ( (6)3) 
m = a 1 (b)3+ (C)3 

7. Distance between shear center and centroid 

xo= -(x-m)* 

8. St. Venant torsion constant 

2t3 

J = 3[ a + b + u + a( U + c)] 

9. Warping constant 
For I-Sections the value of Cw is twice the value of each channel if fastened at the 
middle of the webs; however, if the two channels are continuously welded at both 
edges of the web to fonn the I-Section, the warping constants are as follows: 

U nlipped I -Sections and T-Sections 

= ta:2 (8(b)3(C)3) 
Cw 12 (b )3 + ( c )3 

For double symmetric, lipped I -Sections 

c = length of lip, see Figure 1.2.2-1 

Cw = t(~)2 ( (a)2b + 3(a)2c + na(e)2 + 4(e)3) 

10. Parameter used in detennination of elastic critical moment 

t{ - -j =- -2xb( (X)2 + (b)2/3) + 2c(a "':'x)[ (a _X)2 + (c)2/3] 
2Iy 

+~ [(a-104 -(X)4]} -x, 

1.2.4 Z-Sections (point-Symmetric) With and Without Lips 

1. Basic parameters 
a = A' -(2r+t) 
a = A'-t 
b = B' -[r + t/2 + a(r + t/2)]** 
b = B' -(t/2 + at/2) 
c = a[C' -(r + t/2)] 
c = a(C' -t/2) 
u = 1.57r 

2. Cross-sectional area 

A = t[a + 2b + 2u + a(2c + 2u)] 

3. Moment of inertia about x-axis 

Ix = 2t{0.0417a3 + b(a/2 + r)2 + u(a/2 + 0.637r)2 + 0.149r3 

c 
+ a[0.149r3+ u(a/2 + 0.637r)2 + 0.0833c3 +4 (a -C)2]) 

4. Moment of inertia about y-axis 

Iy = 2t{b(b/2 + r)2 + 0.0833b3 + 0.356r3 + a[ c(b + 2r)2 
+ u(b + 1. 637r)2 + 0.149r3]} 

* Negative sign indicates Xo is measured in negative x direction. 
** For sections with lips a = 1.0, for sections without lips, a = 0 
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J~ 
~ 

C.G. = Centroid 
S.C. = Shear Center 

Figure 1.2.4-1 Figure 1.2.4-2 
Z-Sectlon (Point-Symmetric) With Lip. Z-Sectlon (Point Symmetric) Without Lip. 

5. Product of inertia (See note below) 

Ixy == 2t{b(a/2 + r) (b/2 + r) + O.5r'l + O.285ar2 + a[c(2r + b) 
(a/2 -c/2) -0. 137r'l + u(b + 1. 637r) (0.5a + 0.637r)]} 

6. Location of principal axis (See note below) 

21 
28 == arctan ....=2L 

Iy -Ix 

7. Moment of inertia about ~ axis (See note below) 

Ix2 == Ixcos28 + Iysin28 -2Ixysin8 cos8 

8. Moment of inertia about Y2 axis (See note below) 

IY2 = Ixsin28 + Iycos28 + 2Ixysin8 cos8 

Note: The algebraic signs in Formulas 5, 6, 7 and 8 are correct for the cross-section 
oriented with respect to the coordinate axes as shown in Figure 1.2.4-1 and Figure 
1.2.4-2. 

9. Radius of gyration about any axis 

r= v'i7A 
10. Minimum radius of gyration, about X2 axis 

r min = YIx2/ A 

11. St. Venant torsion constant 

t 
J == t [a + 2b + 2u + a(2c + 2u)] 

12. Warping constant 

Cw = ti~2[(a)2( (6)2 + 2iib + 4a6H 6 iiC) + 4a(c)2(3(ii)2 

+ 3ab + 4bc + 2I~ + (C)2)]/ (a + 20 + 2C) 
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SECTION 2-GRAPHICAL DESIGN AIDS 

The use of the charts given in Part V are explained in this section. The charts are given for 
angle, lipped angle, channel, lipped channel and hat sections. 

2.1 Design Aids for Specification Section C3.1.2-Lateral Buckling Strength 

Buckling parameters O'ex and O't used in Specification Sections C3.1.2a, C4.2 and D4.I can 
be determined using the Charts given in Part V. 

Using the value of Cx given in Charts V1.2, V2.2 and V3.2, parameter O'ex can be 
determined as follows: 

U sing the values of CT and O"to given in Charts VI.3, VI.4, V2.3, V2.4, V3.3 and V3.4, 
parameter O"t can be determined as follows: 

= O"to
a2 (~)2 + CT (~)2 

O"t t2 a a2 ~L 

The lateral buckling moment about the centroidal axis perpendicular to the symmetry axis 
causing tension on the shear center side of the centroid, Me can be calculated using the value of 
Wand G1 determined from Charts VI.6, VI. 7, V2.6, V2.7, V3.6 and V3. 7 as follows: 

Me = A O"ex aWG1 

when A is the full cross-sectional area. 

2.2 Design Aids for Specification Section C4-Concentrically Loaded 
Compression Members 

2.2.1 Buckling Mode 

In Specifiction Section C4, Fe is the least of the elastic flexural, torsional or torsional
flexural buckling stress determined according to Sections C4.I through C4.3. Charts V1.I, 
V2.I and V3.I provide an easy means of determining which buckling mode governs. Based on 
the cross-sectional dimensions, the governing mode of buckling is determined as explained 
in these charts. These charts apply when ~ and ~ are equal to 1.0. 

2.2.2 Determination of Buckling Parameters 

Parameters O"ex and O't are determined as described in Section 2.1 above. The torsional
flexural buckling stress Fe needed in Specification Section C4.2 can be determined using the 
value ofF given in Charts VI.5, V2.5 and V3.5 as follows: 

2.3 Design Aids for Specification Section D4.1-Wall Studs in Compression 

Parameters o"x and O't are determined as described in Section 2.1 above. 

SECTION 3-LATERALLY UNBRACED COMPRESSION FLANGES 

There are many situations in cold-formed steel structures where a flexural member is so 
shaped or connected that it will not buckle laterally as a unit, but where the compression flange 
or flanges themselves are laterally unbraced and can buckle separately by a deflection of the 
compression flange relative to the tension flange, accompanied by out-of-plane bending of the 
web and the rest of the section. An example of such a situation is the use of a hat section as a 
flexural member in such a manner that the "brims" are in compression. 

An accurate analysis of such situations is extremely complex and beyond the scope of routine 
design procedures. The method outlined below is based on considerable simplifications of an 
exact analysis. Its results have been checked against more than a hundred tests. It has been 
found that discrepancies rarely exceed 30 percent on the conservative to 20 percent on the 
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unconservative side. Thus, this method allows a reasonable estimate of the design strength 
to be made which, if de~ired, can be further improved by test. 

The following design procedure was developed based upon tests on individual roof panels or 
hat-shaped beams. These members were tested as simply supported members with two 
concentrated loads thus creating a region of uniform moment. Therefore, the design procedure 
is applicable only to an individual hat-shape type section having its free flange subjected to 
compression resulting from flexure. It does not apply to the following: 

(1) The compression elements of roof panels interconnected by welds, mechanical fasteners 
or mechanical seams. 

(2) A system comprised of flexural members and panels. 

For ease of explanation, the design procedure is presented in the following 11 steps: 

(1) Determine the location of the neutral axis and define as the "equivalent column" the 
portion of the beam.from the extreme compression fiber to a level which is 

(3~'2~,Ct) d distance from the extreme compression fiber. 

In this expression ce and Ct are the distances from the neutral axis to the extreme 
compression and tension fibers respectively; d is the depth of the section. 

(2) Determine the distance, Yo' measured parallel to the web, from the centroid of the 
equivalent column to its shear center. (If the cross section of the equivalent column is of 
angle or T-shape, its shear center is at the intersection of web and flange; if of chann~l 
shape, the location of the shear center is obtained from Section D1.1 of the Specification. 
If the flanges of the channel are of unequal width, for an approximation take w as the 
mean of the two flange widths, or compute the location of the shear center by rigorous 
methods.) 

(3) To determine the spring constant ~, isolate a portion of the member one inch long, apply a 
force of 0.001 kip perpendicular to the web at the level of the column centroid, and 
compute the corresponding lateral deflection D of that centroid. Then the spring constant 
~=O.OOl/D 

(4) Calculate To = h/(h + 3.4yo) where h is the distance from the tension flange to the 
centroid of the equivalent column in inches. 

(5) If the flange is laterally braced at two or more points calculate 

Pe = 290,000 I/L2, C = ~L2/Pe' and L' = 3.7 V'1(h/t)3 

where I = moment of inertia of equivalent column about its gravity parallel to web, in. 4, 

L = unbraced length of equivalent column, in. 
If C is smaller than or equal to 30, compute 

Per = TPe[1 + ~L2/( 1T2Pe)] 
If C is larger than 30, compute 

Per = TPe(0.60 + 0.635 v'~L2/Pe) 
In both cases, T = To if L is equal to or greater than L' 

T = LTo/L' if L is less than L' 

(6) If the flange is braced at less than two points, compute 

Per = To Y 4~EI 
(7) Determine the slenderness ratio of the equivalent column 

(KL/r)eq = 490/YPerl Ae where Ae = cross-sectional area of equivalent column. 

(8) From paragraph (a) of Section C4 of the Specification, compute the stress, F n' corresponding 
to (KL/r) 

(9) The design compression bending stress is F b2 = 1.15 F n(cjyc) with a maximum of F y 

(10) Me = F b2Sr 

(11) Go to Equation C3.1.2-1 
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where 
Cc = distance from neutral axis of beam t<1~xtreme compression fiber, in. 
Yc = distance from neutral axis of beam to centroid of equivalent column, in. 

SECTION 4-TORSIONAL-FLEXURAL BUCKLING OF 
NON-SYMMETRICAL SHAPES 

Torsional-flexural buckling of non-symmetrical secti9ns is not covered by the Specification. 
These sections can be designed by taking Fe in Section C4 equal to (TTFO' 

The elastic torsional-flexural buckling stress, (TTFO, is less than the smallest of the Euler 
buckling stresses about the x- and y-axes and the torsional buckling stress. The value of (TTFO 

can be obtained from the following equation by trial and error: 

The following equation may be used for a first approximation: 

where 

p = 1-(xo/ro)2 -(Yo/ro)2 
"y =1-(Yo/ro)2 
J3 = 1-(xo/ro)2 
E = modulus of elasticity = 29,500 ksi 
L = unbraced length of compression member, in. 
r x = radius of gyration of cross section about the x-axis, in. 
r y = radius of gyration of cross section about the y-axis, in. 
r 0 = polar radius of gyration of cross section about the shear center, in. 
Ip = polar moment of inertia about shear center, in.4 = Aro2 = Ix + Iy + AXo2 + AYo2 
G = shear modulus = 11,300 ksi 
J = St. Venant torsion constant of the cross section, in.4 For open sections composed of 

n segments of uniform thickness = (1/3) (llt1
3 + l2t23 + ... + lntn 3) 

Cw = warping constant of torsion of the cross section, in. 6 

II = length of cross section middle line of segment i, in. 
tI = wall thickness of segment i, in. 
Xo = distance from shear center to centroid along the principal x-axis, in. 
Yo = distance from shear center to centroid along the principal y-axis, in. 

For any section, the values of xo' Yo and Cw can be computed from the following relationships 
(terms are defined in Figure 4-1): 
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Yo - 1 fi d· - -- wext s, In. 
Iy 0 

= I! (wo)2tds -HI! wotdS]: in.' 

where 
Ix and Iy = centroidal moments of inertia of the cross section about the principal x- and 

y-axes, in. 4 

A = total area of the cross section, in. 2 

t = wall thickness, in. 

We = f: Re ds, in. 2 

y 

~------Xo------~ 

)(8 . 
s C.G. = Centroid V S.C. = Shear Center 

Figure 4-1 Non-Symmetric Cross-Section 

x and y = the coordinates measured from the centroid to any point P along the middle line 
of the cross section, in. 

s = distance measured along middle line of cross section from one end to the point 
P, in. 

= total length of the middle line of the cross section, in. 
Re and Ro = perpendicular distances from the centroid (C.G.) and shear center (S.C.), 

respectively, to the middle line at P. Re or Ro is positive if a vector tangent to the 
middle line at P in the direction of increasing s has a counter-clockwise moment 
about C.G. or S.C. as shown in Figure 4-1, in. 
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SECTION 5-SUMMARV OF SCOPE AND PRINCIPLE TENSILE PROPERTIES, 
ASTM SPECIFICATIONS 

ASTM 
Designation Fy, Fu, 

ksi ksi 
SCOPE (after ASTM) PRODUCT GRADE (min) (min) 

A36/ A36M-84a 

This specification covers carbon steel shapes, plates, and bars Plates - 36 58-80 
of structural quality for use in riveted, bolted, or welded con- and (range) 
struction of bridges and buildings, and for general structural Bars 
purposes. 

Supplemental requirements are provided where improved 
notch toughness is important. These shall apply only when 
specified by the purchaser in the order. 

When the steel is to be welded, it is presurposed that a 
welding procedure suitable for the grade of stee and intended 
use or service will be utilized. 

A2421 A242M-85 

This shecification covers high-stren~h low-alloy structural Plates - 50 70 
steel s a~es, plates and bars for we ded, riveted, or bolted and 
constructIOn intended primarily for use as structural members Bars 

. where savin~ in weight or added durability are important. t:::;%in. 
These steels ave enhanced atmospheric corrosion resistance of 
approximately two times that of carbon structural steels with 
copper (Note). This specification is limited to material up to 
4 in. [100 mm], inclusive, in thickness. 

Note: Two times carbon structural steel with copper is equiv-
alent to four times carbon structural steel without copper (cop-
per 0.02 max). 

When the steel is to be welded, it is presurposed that a 
welding procedure suitable for the grade of stee and intended 
use or service will be utilized. 

A44l1A441M-85 

This shecification covers high-strength low-alloy structural Plates - 50 70 
steel s a}?es, plates, and bars for welded, riveted, or bolted and 
constructIOn but intended primarily for use in welded bridges Bars 
and buildin~ where saving in weight or added durability are 
important. e atmoshheric corrosion resistance of this steel is 
approximately twice t at of structural carbon steel. This s~eci-
fication is limited to material up to 8 in. [200 mm] inc. in 
thickness. 

When the steel is to be welded, it is presurposed that a 
welding procedure suitable for the grade of stee and intended 
use or service will be utilized. 

A446/ A446M -85 

This specification covers steel sheet of structural (physical) Sheet A 33 45 
qualitr in coils and cut lengths, zinc-coated (galvanized). Mate- B 37 52 
rial 0 this quality is intended primarily where mechanical or C 40 55 
structural properties of the base metal are specified or re- D 50 65 
quired. Such properties or values include those indicated by E 80 82 
tension, hardness, or other commonly accj:ted mechanical F 50 70 
tests. Material of this quality can be produce in six~des, A 
through F, according to the base metal mechanic require-
ments prescribed in the adjacent table. Structural (physical) 
quality galvanized sheet is produced with any of the types of 
coatinlc and coating designations listed in the latest revision of 
Speci lcation A525 or A525M. 

A500-84 

This specification covers cold-formed welded and seamless car- Round A 33 45 
bon steel round, square, rectangular, or special shape struc- Tubing B 42 58 
tural tubing for welded, riveted, or bolted construction of C 46 62 
bridges and buildings, and for general structural p~oses. 

This tubing is produced in both welded and seam ess sizes Sha~d A 39 45 
with a maximum periphery of 64 in. (1626 mm) and a maximum Tubmg B 46 58 
wall of 0.625 in. (15.88 mm). C 50 62 

Note: Products manufactured to this specification may not be 
suitable for those applications such as dynamically loaded ele-
ments in welded structures, etc., where low-temperature 
notch-toughness properties may be important. 

1II-19 

Percent 
elongation 

~ in 2 inches 
(min) Fy 

23 1.61-
2.22 

18 (in 8 inches) 1.40 

18 (in 8 inches) 1.40 

20 1.36 
18 1.41 
16 1.38 
12 1.30 
- 1.02 
12 1.40 

25 1.36 
23 1.38 
21 1.35 

25 1.15 
23 1.26 
21 1.24 
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ASTM Percent 
Designation F F u, elon~ation 

Icii ksi in 2 mches ~ 
SCOPE (after ASTM) PRODUCT GRADE (min) (min) (min) F,v 

A529/ A529M -85 

This specification covers carbon steel {>lates and bars V2 in. Plates - 42 60-85 19 (in 8 inches) 1.43-
[13 mm] and under in thickness or dIameter and Group 1 and (range) 2.02 
sh~es shown in Thble A of S~cification A6/ A6M of structural Bars (range} 
qu ity for use in metal buil ing system frames, trusses, and 
related riveted, bolted, or welded construction. When used in 
welded construction, welding procedures shall be suitable for 
the steel and the intended service. 

When the steel is to be welded, it is presurposed that a 
welding procedure suitable for the grade of stee and intended 
use or service will be utilized. 

A570-85 

This specification covers hot-rolled carbon steel sheet and strip Sheet 30 30 49 21 to 25 1.63 
of structural quality in cut lengths or coils. This material is and 33 33 52 18 to 23 1.58 
intended for structural eUlRoses where mechanical test values Strip 36 36 53 17 to 22 1.47 
are required, and is avallab e in a maximum thickness of 0.229 40 40 55 15 to 21 1.38 
in. (6.0 mm) except as limited by Specification A568, A568M, 45 45 60 13 to 19 1.33 
A749, or A749M. 50 50 65 11 to 17 1.30 

A572/ A572M -85 

This specification covers four grades of high-strength low-alloy Plates 42 60 24 1.43 
structural steel shares, plates, sheet piling, and bars. Grades and 
42 [290] and 50 [345 are mtended for nveted, bolted, or welded Bars 50 65 21 1.30 
construction of bridges, buildings, and other structures. Grades 
60 [415] and 65 [450] are intended for riveted or bolted con- 60 75 18 1.25 
struction of bridges, or for riveted, bolted, or welded con-

1.23 struction in other applications. 65 80 17 
For welded bridge construction notch toughness is an impor-

tant requirement. For this or other applications where notch-
toughness requirements are indicated, they shall be negotiated 
between the purchaser and the~roducer. 

The use of columbium, vana ium, and nitrogen, or combina-
tions thereof, within the limitations noted in Section 5, shall be 
at the option of the producer unless otherwise specified. Where 
designation of one of these elements or combination of elements 
is desired, reference is made to Supplementary Requirement SI 
in which these elements and their common combinations are 
listed as to type. When such a designation is desired, both the 
grade and type must be specified. 

The maximum thicknesses available in the ~ades and prod-
ucts covered by this specification are shown in ble 1. 

When the steel is to be welded, it is presurposed that a 
welding procedure suitable for the grade of stee and intended 
use or service will be utilized. 

A588/ A588M -85 

This s~ecification covers high-strength low-alloy structural Plates - 50 70 21 1.40 
steel s apes, plates, and bars for welded, riveted, or bolted and 
construction but intended primarily for use in welded bridges Bars, 
and buildin~ where savin~s in weight or added durability are ts4inches 
important. e atmosphenc corrosion resistance of this steel is 
approximately two times that of carbon structural steel with 
copper. This specification is limited to material up to 8 in. 
1200 mml inclusive in thickness. 

Note: Two times carbon structural steel with copror is equiv-
alent to four times carbon structural steel WIt out copper 
(Cu 0.02 max). 

When the steel is to be welded, it is presurposed that a 
welding procedure suitable for the grade of stee and intended 
use or service will be utilized. 

A606-85 

This specification covers high-strength, low-alloy, hot-and-cold Sheet Hot Rolled 
rolled sheet and strip in cut lengths or coils, intended for use in and -As Rolled 50 70 22 1.40 
structural and miscellaneous {>urposes, where savings in Strip Cut Lengths 
weight or added durability are Important. These steels have 

Hot Rolled enhanced atmospheric corrosion resistance and are supplied in 
two types: Type 2 having corrosion resistance at least two -As Rolled 45 65 22 1.44 
times that of ~lain carbon steel and ~ 4 having corrosion Coils 
resistance at east four times that of B ain carbon steel. The Hot Rolled degree of corrosion resistance is base on data acceptable to -Annealed 45 65 22 1.44 the consumer. or 
Note: Type 2 cold-rolled material is intended to replace ASTM N orrnalized 
Specification A374, for High-Strength Low-Alloy Cold-Rolled Cold Rolled 45 65 22 1.44 Steel Sheets and Stri~ and ~pe 2 hot-rolled material is in-
tended to reIElace AST Speci cation A375, for High-Strength 
Low Alloy ot-Rolled Steel Sheets and Stri~hich appear in 
the 1971 Annual Book of ASTM Standards, 3. 
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ASTM Percent 
Designation FY' FUt elongation 

ksi ksi in 2 inches Fu 
SCOPE (after ASTM) PRODUCT GRADE (min) (min) (min) Fy 

A607-85 Class 1 

This specification covers high-strength, low-alloy columbium, Sheet 45 45 60 Hot-Rolled 23-25 1.33 
or vanadium hot-rolled sheet and stnp, or cold-rolled sheet, or and Cold-Rolled 22 
combinations thereof, in either cut lengths or coils, intended Strip 50 50 65 Hot-Rolled 20-22 1.30 
for applications where greater strength and savings in weight Cold-Rolled 20 
are important. The material is available as two classes. They 55 55 70 Hot-Rolled 18-20 1.27 are similar in strength level except that Class 2 offers improved Cold-Rolled 18 weldability and more formability than Class 1. Atmospheric 
corrosion resistance of these steels is equivalent to plain carbon 60 60 75 Hot-Rolled 16-18 1.25 
steels. With copper srecified, the atmospheric corrosion resis- Cold-Rolled 16 
tance is twice that 0 plain carbon steel. Class 1 material was 65 65 80 Hot-Rolled 14-16 1.23 
previously A607 without a class designation. Cold-Rolled 15 

70 70 85 Hot-Rolled 12-14 1.21 
Cold-Rolled 14 

Class 2 

45 45 55 Hot-Rolled 23-25 1.22 
Cold-Rolled 22 

50 50 60 Hot-Rolled 20-22 1.20 
Cold-Rolled 20 

55 55 65 Hot-Rolled 18-20 1.18 
Cold-Rolled 18 

60 60 70 Hot-Rolled 16-18 1.17 
Cold-Rolled 16 

65 65 75 Hot-Rolled 14-16 1.15 
Cold-Rolled 15 

70 70 80 Hot-Rolled 12-14 1.14 
Cold-Rolled 14 

A611-85 

This specification covers cold-rolled carbon steel sheet, in cut Sheet A 25 42 26 1.68 
lengths or coils. It includes five streIt levels designated as B 30 45 24 1.50 
Grade A with yield ~oint 25 ksi (170 Pa) minimum; Grade B C 33 48 22 1.45 
with 30 ksi (205 MPa minimum; Grade C with 33 ksi (230 MPa) D, TyJes 40 52 20 1.30 
minimum; Grade D types 1 and 2 with 40 ksi (275 Mpa) mini- 1 an 2 
mum; and Grade E with 80 ksi (550 Mpa) minimum. E 80 82 - 1.02 

A715-85 

This shecification covers high-stren~th low-alloy, hot-rolled Sheet 50 50 60 22 to 24 1.20 
steel s eet and strip havin~ imStrove formability when com- and 
~d with steels covered y pecifications A606 and A607. Strip 60 60 70 20 to 22 1.17 

e product is furnished as either cut lengths or coils and is 
available in four strength levels, Grades 50, 60, 70, and 80 
(corresponding to minimum yield point), an in eight types (ac-
cording to chemical composition). Not all grades are available 
in all types. The steel is killed, made to a fine grain practice, 
and includes microalloying elements such as columbium, ti-
tanium, vanadium, zirconium, etc. The product is intended for 
structural and miscellaneous applications where higher 
strength, savings in weight, improved formability, and 
weld ability are important. 

A792-85a 

This s&ecification covers aluminum-zinc alloy-coated steel sheet Sheet 33 33 45 20 1.36 
in coi s and cut lengths coated by the hot-dip process. The 
aluminum-zinc alloli composition by weight is nominalx 55% 37 37 52 18 1.41 
aluminum, 1.6% si icon, and the balance zinc. The pro uct is 
intended for a~lications requiring corrosion resistance or heat 40 40 55 16 1.38 
resistance or tho Aluminum-zinc alloy-coated sheet is avail-
able as Commercial ~ualit~ Lock-Forming Quality, and Struc- 50 50 65 12 1.30 
tural (Physical) Qua ity. he available grades of Structural 
Quality are shown in This 'Thble. 80 80 82 - 1.03 
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SECTION 6-SUGGESTED COLD-FORMED STEEL STRUCTURAL 
FRAMING ENGINEERING, FABRICATION, AND ERECTION 
PROCEDURES FOR QUALITY CONSTRUCTION 

General 

Those taking advantage of the economies in building construction afforded by cold-formed 
steel structural framing are warned to observe the procedures outlined herein to obtain 
quality construction. 

Designing 

Building design involving cold-formed steel structural framing for floors, roofs, load-bearing 
walls, or curtain walls should be performed by, or under the supervision of, registered 
professional structural engineers. 

Detailing 

Framing drawings should show size, thickness, type, and spacing of all structural members 
including bridging and bracing. Large-scale details should be included for all connections 
either welded or screwed. Details should show the method of anchorage of walls to the 
foundation. 

Fabrication 

Manufacturers of cold-formed steel structural members maintain in-house quality control 
programs. Assembly of components into walls, etc., may be done on the job by the "stick built" 
method or off the the job by the "panelized" method utilizing assembly jigs. Assemblers must 
follow details shown on fabrication and/or erection drawings. 

Erection 

Erection should be performed by experienced mechanics who follow the plans and specifica
tions under the supervision of an experienced foreman or superintendent. 

Inspection of Construction 

Periodic inspections during the construction phase should be made by a professional structural 
engineer who either is or represents the design engineer of record. 

Sign Off 

At the conclusion of the cold-formed steel construction process a final inspection should be 
made by the engineer of record who should certify that the cold-formed steel framing has been 
constructed in accordance with the plans and specifications and in accordance with all applica
ble building codes and regulatory requirements. 
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PREFACE 
This document, Part IV of the LRFD Cold-Formed Steel Design Manual, contains 

examples intended to illustrate the application of various provisions of the Specification. 

These Illustrative Examples should be used in conjunction with the other parts of the 
Design Manual, which includes Commentary (Part II), Supplementary Information (Part 
III), and Design Aids (Part V), in addition to the Specification (Part I). 

As a general rule, section properties are computed to three significant figures, while 
dimensions are given to three decimal places. However, in some cases it was impractical to 
adhere strictly to this guideline. 

The weight of the sections is calculated based on steel weighing 40.80 pounds per square 
foot per inch thickness. 

Slight discrepancies should be expected between the calculated section properties given 
in the examples and the tabulated values given in Part V of the Manual which were calcu
lated by computer. 

For the design of compression members, results obtained by utilizing either the graph
ical or the analytical procedure as outlined in Part III of the Manual will differ somewhat. 
The reason for this is that in the graphical procedure, properties are computed assuming 
square corners for the section, while the analytical procedure is based on round corners 
(except for the torsional properties given by Cwj and m which are based on square corners). 
In general, this will cause only small differences in the results. 

The exception occurs when dealing with angle sections. The parameter x which is the 
distance between the centroid of the section and the centerline of the corner is sensitive to 
the type of corner utilized. This causes discrepancies in the order of ten percent between 
the two procedures. 

The linear method outlined in Part III of the Manual is used for computing the proper
ties of formed sections. 

These Illustrative Examples were prepared at Cornell University by graduate students 
V. Sagan, M. Bou-Shahri, and T. Miller, except for the purlin examples which were pre
pared by graduate students at the University of Florida. 

American Iron and Steel Institute 
December 1991 

IV-3 
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EXAMPLE NO.1 

CHANNEL SECTION 

6.000" 5.692" 
x x ------

1.625 " 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: 6 x 1.625 x 0.060 channel with un stiffened flanges. 

3. Compression flange braced against lateral buckling. 

4. Dead load to live load ratio DIL = 1/5 and 1.20 + 1.6L governs the design. 

Required: 

1. Design flexural strength, <I>b~, based on initiation of yielding. 

2. Effective moment of inertia based on procedure I for deflection determination at the service moment. 

Solution: 

1. Calculation of the design flexural strength, q,~: 

Properties of 90° comers: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 
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Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

Computation of Ix: 

For the first approximation, assume a compression stress of f = F y = 50 ksi in the top fibers of the sec
tion and that the web is fully effective. 

Compression flange: k = 0.43 (unstiffened compression element) (Section B3.I) 

wit = 1.471/0.060 = 24.52 < 60 OK (Section B1.1-(a)-(3» 

A = (1.052Nk)(w/t)"flE (Eq. B2.1-4) 

= (1.052/'J0.43 )(24.52)"50/29500 = 1.619> 0.673 

p = [1-(0.22/ A)]/ A (Eq. B2.1-3) 

= [1-(0.22/1.619)]/1.619 = 0.534 

b =pw (Eq. B2.1-2) 

= 0.534 x 1.471 

= 0.786 in. 

Effective section properties about x axis: 

y 
L Distance 

Effective from 
Length Top Fiber Ly Ly2 

Element (in.) (in.) (in.2) (in.3
) 

Web 5.692 3.000 17.076 51.228 
Upper Corner 0.195 0.075 0.015 0.001 
Lower Corner 0.195 5.925 1.155 6.846 

Compression Flange 0.786 0.030 0.024 0.001 
Tension Flange 1.471 5.970 8.782 52.428 

Sum 8.339 27.052 110.504 

Distance from top fiber to x-axis is 

Ycg = 27.052/8.339 = 3.244 in. 

I' 1 
About 
Own 
Axis 
(in.3

) 

15.368 

15.368 

Since the distance of top compression fiber from neutral axis is greater than one half the beam 
depth, a compression stress of 50 ksi will govern as assumed (i.e., initial yield is in compression). 

To check if web is fully effective (Section B2.3): 

fl = [(3.244 - 0.154)/3.244]x50 = 47.63 ksi(compression) 
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f2 = -[(2.756 - 0.154)/3.244]x50 = -40.10 ksi(tension) 

W = f21f. = -40.10/47.63 = -0.842 

k = 4+2(1-W)3+2(1-W) 

= 4+2[1 - (-0.842)]3+2[1 - (-0.842)] 

= 20.184 

h = w = 5.692 in., hit = wIt = 5.692/0.060 = 94.87 

hit = 94.87 < 200 OK (Section Bl.2-(a» 

A. = (1.052/ ~20.184 )(94.87) ~47.63/29500= 0.893>0.673 

P [1-(0.22/0.893)]/0.893 = 0.844 

be = 0.844 X 5.692 = 4.804 in. 

b2 =bJ2 

= 4.804/2 = 2.402 in. 

b. = bJ(3-W) 

= 4.804/{3 - (-0.842)]= 1.250 in. 

b1+b2 = 1.250 + 2.402 = 3.652 in. 

Compression portion of the web calculated on the basis of the 
effective section = Yeg - 0.154 = 3.244 - 0.154 = 3.090 in. 

(Eq. B2.3-4) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 

Since b}+b2 = 3.652 in. > 3.090 in., b}+b2 shall be taken as 3.090 in. This verifies the assumption 
that the web is fully effective. 

I'x = Ly2+I'.=Ly2cg 

= 110.504 + 15.368 - 8.339(3.244)2 

= 38.116 in.3 

Actual Ix = I' xt 

= 38.116xO.060 

= 2.287 in.4 

Se = Ix/Ycg 

= 2.287/3.244 

= 0.705 in.3 

= SeFy 

= 0.705x50 

= 35.25 kip-in. 

= 0.90 

CP.,Mn = 0.90x35.25 = 31.73 kip-in.(positive bending) 

(Eq. C3.1.1-l) 

(Section C3.1.1) 
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2. Calculation of the effective moment of inertia based on procedure I for deflection determination 
at the service moment Ms: 

<l>t>Mn: = 1.2MoL + 1.6MLL 

= [1.2(MoriMLL)+ 1.6]MLL 

= [1.2( 1/5) + 1.6]MLL = 1.84 MLL 

MLL = <l>bMn/1.84 = 31.73/1.84 = 17.24 kip-in. 

= (1/5+ 1 )MLL 

= 1.2(17.24) = 20.69 kip-in. 

where 

MOL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive stress f under this service moment 
Ms. Knowing f, one proceeds as usual to obtain Se and checks to see if (f x Se) is equal to Ms as it 
should. If not, reiterate until one obtains the desired level of accuracy. (Section B2.1-(b )-( 1») 

a. For the first iteration, assume a compression stress of f = Fy/2 = 25 ksi in the top fibers of the section 
and that the web is fully effective. 

Compression flange: 

A = (1.052/--./0.43 )(24.52)--./25/29500 = 1.145 > 0.673 

P = [1 - (0.22/1.145)]/1.145 = -.706 

bd =pw 

= 0.706 x 1.471 = 1.039 in. 

Effective section properties about x-axis: 

L = 8.339 - 0.786 + 1.039 = 8.592 in. 

Ly = 27.052 - 0.024 + 1.039xO.030 = 27.059 in? 

Ly2 = 110.504 - 0.001 + 1.039(0.030)2 = 110.504 in.3 

I'I = 15.368 in.3 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-6) 

Ycg = 27.059/8.592 = 3.149 in. greater than one half beam depth. Thus top compression fiber 
controls in determination of Se. 

To check if web is fully effective (Section B2.3-(a),(b »): 

fl = [(3.149 - 0.154)/3.149]x25 = 23.78 ksi 

f2 = -[(2.851 - 0.154)/3.149]x25 = -21.41 ksi 

'" = -21.41/23.78 = -0.900 
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k 

A 

= 4 + 2[1 - (-0.900)]3+2[1 - (-0.900)] = 21.518 

= (1.052/ "21.518 )(94.87}V23.78/29500= 0.611 < 0.673 

= 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b} = 5.692/[3 - (-0.900)] = 1.459 in. 

(Eq. B2.1-1) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 

Compression portion of the web calculated on the basis of the effective section = 3.149 - 0.154 = 
2.995 in. 

Since b 1+b2 = 4.305 in. > 2.995 in., b1+b2 shall be taken as 2.995 in .. This verifies the assumption 
that the web is fully effective. 

I' x = 110.504 + 15.368 - 8.592(3.149)2 

= 40.672 in.3 

Actual Ix = 40.672 x 0.060 

= 2.440 in.4 

Se = 2.440/3.149 = 0.775 in.3 

M = f x Se = 25 x 0.775 

= 19.38 kip-in. < Ms = 20.69 kip-in. 

Need to do another iteration and also to increase f. 

b. After several iterations, assume f = 27.01 ksi in the top fibers of the section and that the web is fully 
effective. 

Compression flange: 

A = (1.052N0.43 )(24.52) "27.01/29500= 1.190> 0.673 

p = [1 - (0.22/1.190)]/1.190 = .685 

bd = .685 x 1.471 = 1.008 in. 

Effective section properties about x-axis: 

L = 8.339 - 0.786 + 1.008 = 8.561 in. 

Ly = 27.052 - 0.024 + 1.008xO.030 = 27.058 in.2 

Ly2 = 110.504 - 0.001 + 1.008(0.030)2 = 110.504 in.3 

I'} = 15.368 in.3 

Ycg= 27.058/8.561 = 3.16lin. greater than one half beam depth. Thus top compression fiber 
controls in determination of Se. 

To check if web is fully effective: 

f} = [3.161 - 0.154)/3.161]x27.01 = 25.69 ksi 
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f2 = -[(2.839 - 0.154)/3.161]x27.01 = -22.94 ksi 

'II = -22.94/25.69 = 0.893 

k = 4 + 2[1 - (-0.893)]3+2[1 - (-0.893)] = 21.353 

A = (1.0521'121.353 )(94.87) ...)25.69/29500= 0.637 < 0.673 

be = 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b I = 5.692/[3 - (-0.893)] = 1.462 in. 

Compression portion of the web calculated on the basis of the effective section = 3.161 - 0.154 = 
3.007 in .. 

Since b1+b2 = 4.308 in. > 3.007 in., b1+b2 shall be taken as 3.004 in .. This verifies the assumption 
that the web is fully effective. 

I'x = 110.504+15.368-8.561(3.161)2 

= 40.331 in.3 

Actual Ix = 40.331 x 0.060 

= 2.420 in.4 

Se = 2.420/3.161 = 0.766 in.3 

M = fx Se = 27.01 x 0.766 

= 20.68 kip-in. = Ms OK 

Thus Ix = 2.420 in.4 using procedure I for deflection determination. 
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EXAMPLE NO.2 

C-SECTION 

1.317" 

~O.446' 

6.000" 
5.692" 

x ---------x 

0.600" 

0.075" 
1.625" 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: 6 x 1.625 x 0.060 channel with stiffened flanges. 

3. Compression flange braced against lateral buckling. 

4. Dead load to live load ratio D/L = 1/5 and 1.2D + 1.6L governs the design. 

Required: 

1. Design flexural strength, <t>b~' based on initiation of yielding. 

IV-II 

2. Effective moment of inertia based on procedure I for deflection determination at the service moment. 

Solution: 

1. Calculation of the design flexural strength, ~: 

Properties of 90° comers: 
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r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

Computation of Ix: 

For the first approximation, assume a compression stress of f = F y = 50 ksi in the top fibers of the 
section and that the web is fully effective. 

Compression flange: 

w = 1.317 in. 

w/t = 1.317/0.060 = 21.95 

S = 1.28 -VE/f 

= 1.28 -V29500/50 = 31.09 

S/3 = 10.36 < (w/t) = 21.95 < S = 31.09 

Ia = 399t4 {[(w/t)/S] -0.33}3 

= 399(0.060)4 [(21.95/31.09)-0.33]3 

= 0.000275 in.4 

D = 0.450 in. 

(Eq. B4-1) 

(Eq. B4.2-6) 

d = 0.296 in., d/t = 0.296/0.060 = 4.93 <14 OK (Section B4 of the Commentary) 

Is = d3t/12 (Eq. B4-2) 

Is = (0.296)\0.060)/12 = 0.000130 in.4 

D/w = 0.450/1.317 = 0.342, 0.25 < D/w = 0.342 < 0.80 

k = [4.82-5(D/w)](lJIa)n+0.43 ~ 5.25-5(D/w) 

n = 1/2 

[4.82-5(0.342)](0.OOOI30/0.000275i!2+0.43 = 2.568 

5.25-5(0.342) = 3.540> 2.568 

k = 2.568 

(Eq. B4-2) 

(Eq. B4.2-9) 

Since Is < la' the stiffener is considered a simple lip. 

w/t = 21.95 < 60 OK (Section B1.1-(a)-(1)) 

A = (1.052 /~)(w/t) "fIE (Eq. B2.1-4) 

= (1.052/ -V2.568 )(21.95) -V 50/29500 = 0.59 < 0.673 

b =w (Eq. B2.1-l) 

= 1.317 in. (Le. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.43 (unstiffened compression element) 

d/t = 4.93 
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Also conservatively assume f = 50 ksi as for top compression fiber. 

A=: (1.052/ ...)0.43 )(4.93)...)50/29500 = 0.32 < 0.673 

therefore, 

d's = d = 0.296 in. 

ds = d's(IJla) ~ d's 

= 0.296(0.000 130/0.000275) 

= 0.140 in. < 0.296 in. 

ds = 0.140 in. (Le. compression stiffener is not fully effective) 

Effective section properties about x-axis: 

L 
Effective 
Length 

Element (in.) 

Web 
Upper Corners 2xO.195 = 
Lower Corners 2xO.195 = 

Compression Flange 
Upper Stiffener 
Tension Flange 
Lower Stiffener 

Sum 

Distance from top fiber to x-axis is 

Yeg = 29.036/9.542 = 3.043 in. 

5.692 
0.390 
0.390 
1.317 
0.140 
1.317 
0.296 

9.542 

y 
Distance 

from 
Top Fiber Ly' 

(in.) (in.2) 

3.000 17.076 
0.075 0.029 
5.925 2.311 
0.030 0.040 
0.224 0.031 
5.970 7.862 
5.698 1.687 

29.036 

(Eq. B4.2-11) 

Ly2 
(in.3) 

51.228 
0.002 

13.691 
0.001 
0.007 

46.939 
9.610 

121.478 

I' 1 

IV-13 

About 
Own 
Axis 
(in.3

) 

15.368 

0.002 

15.370 

Since the distance of top compression fiber from neutral axis is greater than one half the beam depth, 
a compression stress of 50 ksi will govern as assumed (i.e., initial yield is in compression). 

To check if web is fully effective (Section B2.3): 

f1 = [(3.043-0. 154)/3.043]x50 = 47.47 ksi(compression) 

f2 = - [(2.957-0. 154)/3.043]x50 = -46.06 ksi(tension) 

'V = fJf1 = -46.06/47.47 = -0.970 

k = 4+2(l-'V)3+2(l-'V) 

= 4+2 [1-(-0.970)]3 +2 [1-(-0.970)] 

= 23.231 

h = w = 5.692 in., hit = wIt = 5.692/0.060 = 94.87 

hit = 94.87 < 200 OK (Section B 1.2-(a» 
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A = (1.052/"23.231 )(94.87) "47.47/29500 = 0.831 > 0.673 

P = [l-(0.22/A)]/A (Eq. B2.1-3) 

= [1 - (0.22/0.831)]/0.831 = 0.885 

be = pw (Eq. B2.1-2) 

= 0.885 X 5.692 = 5.037 in. 

b2 = bJ2 (Eq. B2.3-2) 

= 5.037/2 = 2.519 in. 

b} = bJ(3-'I') (Eq. B2.3-l) 

= 5.037/ [3-(-0.970)] = 1.269 in. 

b}+b2 = 1 .269 + 2.519 = 3.788 in. 

Compression portion of the web calculated on the basis of the effective section = y cg - 0.154 = 3.043 -
0.154 = 2.889 in. 

Since b1+b2 = 3.788 in. > 2.889 in., b l+ b2 shall be taken as 2.889 in. This verifies the assumption 
that the web is fully effective. 

I, L 2 I' L 2 x = Y + }- Y cg 

= 121.478 + 15.370 - 9.542(3.043)2 

= 48.491 in? 

Actual Ix = I' xt 

= 48.491xO.060 

= 2.909 in.4 

Se = Ix/Ycg= 2.909/3.043 

= 0.956 in.3 

= SeFy 

= 0.956x50 

= 47.80 kip-in. 

=0.95 

<I>~n = 0.95x47.80 = 45.41 kip-in. 

(Eq. C3.1.1-l) 

(Section C3.1.1) 

2. Calculation of the effective moment of inertia based on procedure I for deflection determination at the 
service moment Ms: 

<I>~n = 1.2MDL + 1.6MLL 

= [1.2(MDL IMLd+1.6]MLL 

= [1.2(1/5)+ 1. 6] MLL 

= 1.84MLL 

MLL = ct>~J1.84 = 45.41/1.84 = 24.68 kip-in. 

Ms = MDL + MLL 

= (1/5+ 1 )MLL 
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= 1 .2(24.68) = 29.62 kip-in. 

where 

MOL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

IV-I5 

The procedure is iterative: one assumes the actual compressive stress f under this service moment 
Ms' Knowing f, one proceeds as usual to obtain Se and checks to see if (f x Se) is equal to Ms as it 
should. If not, reiterate until one obtains the desired level of accuracy. (Section B2.1-(b )-( 1» 

a. For the first iteration, assume a compression stress of f = Fy/2 = 25 ksi in the top fibers of the section 
and that the web is fully effective. 

Compression flange: 

S = 1.28 .../'--29-500-/2-5 = 43.97 (Eq. B4-l) 

S/3 = 14.66 < (w/t) = 21.95 < S = 43.97 

Ia = 399(0.060)4 [(21.95/43.97)-0.33]3 (Eq. B4.2-6) 

= 0.000025 in.4 

IJla = 0.000130/0.000025 = 5.20 

k = [4.82-5(0.342)](5.20)112+0.43 =7.522> 3.540 (Eq. B4.2-9) 

k = 3.540 

A. = (1.052/.../3.540)(21.95) "'/25/29500 = 0.357 < 0.673 (Eq. B2.1-4) 

bd = 1.317 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

Again assume conservatively f = 25 ksi as in top compression fiber 

A. = (1.052/ .../0.43 )(4.93) "'/25/29500 = 0.230 < 0.673 

therefore d's = 0.296 in. 

Since IJIa = 5.20 > 1.0, it follows that ds = d's = 0.296 in. (i.e. compression stiffener fully effec
tive). 

Thus, one concludes that the section is fully effective. 

Ycg = 6/2 = 3.000 in. (from symmetry) 
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Full section properties about x axis: 

L 
Element (in.) 

Web 5.692 
Stiffeners 2 x 0.296 = 0.592 
Comers 4 x 0.195 = 0.780 
Flanges 2 x 1.317 = 2.634 

Sum 

y 
Distance 

from 
Centerline 
of Section 

(in.) 

2.698 
2.925 
2.970 

Ly2 
(in.3

) 

4.309 
6.673 

23.234 

34.216 

I' 1 
About 
Own 
Axis 
(in.3

) 

15.368 
0.004 

15.372 

Since section is singly symmetric about x-axis and fully effective, top compression fiber (and also 
bottom tension fiber) may be used in computing Se. 

To check if web is fully effective: 

fl = [(3.000-0. 154)/3.ooo]x25 = 23.72 ksi(compresion) 

= -23.72 ksi (tension) 

= -23.72/23.72 = -1.000 

= 4+2 [1_(_1)]3 +2 [1-(-1)] = 24.000 

= (1.052/ -J24 )(94.87) ...)23.72/29500 = 0.578 < 0.673 

= w (Eq. B2.1-I) 

= 5.692 in. 

= 5.692/2 = 2.846 in. 

= 5.692/ [3-(-1)] = 1.423 in. (Eq. B2.3-I) 

b 1+ b2 = 4.269 in. 

Compression portion of the web = 3.000 - 0.154 = 2.846 in. 

Since bl+b2 = 4.269 in. > 2.846 in., b1+b2 shall be taken as 2.846 in .. This verifies the assumption 
that the web is fully effective. 

I/x = 34.216 + 15.372 = 49.588 in.3 

Actual Ix = 49.588 x 0.060 = 2.975 in.4 

Se = 2.975/3.000 = 0.992 in.3 

M = f x Se = 25 x 0.992 

= 24.80 kip-in. < Ms = 29.62 kip-in. 

Need to do another iteration and also to increase f. 

b. After several iterations, assume a compression stressof f = 29.86 ksi in the top fibers of the section 
and that the web is fully effective. 
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Compression flange: 

S = 1.28 "--29-5-00-(2-9-.8-6 = 40.23 

S/3 = 13.41 < (wit) = 21.95 < S = 40.23 

la = 399(0.060)4 [(21.95/40.23)-0.33f 

= 0.000052 in.4 

IJla = 0.000130/0.000052 = 2.50 

k = [4.82-5(0.342)](2.50)1/2+0.43 = 5.347> 3.540 

k = 3.540 

A = (1.052/"V'3.540 )(21.95) "V'29.86/29500 = 0.390 < 0.673 

bd = 1.317 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

f conservatively taken as for top compression fiber 

A = (1.052/ "V'0.43 )(4.93) "V'29.86/29500 = 0.252 < 0.673 

d's = 0.296 in. 

Since IsfIa = 2.50 > 1.0, it follows that Ds = d's = 0.296 in. (Le. compression stiffener fully effec
tive). 

Thus, the section is fully effective. 

Ycg = 6/2 = 3.000 in. (from symmetry) 

Full section properties are the same as were found in the first iteration. Thus, as before, top com
pression fiber may be used in computing Se' 

To check if web is fully effective: 

fl = [(3.000-0. 154)/3.000]x29.86 = 28.33 ksi(compression) 

f2 = -28.33 ksi(tension) 

'tI = -28.33/28.33 = -1.000 

k = 24.000 

A = (l.052rJ24 )(94.87) "V'28.33/29500 = 0.631 < 0.673 

be = w = 5.692 in. 

Hence, as in first iteration, b1 + b2 = 2.846 in. and thus the web is fully effective as assumed. 

Ix = 2.975 in.4 

Se = 0.992 in.3 

M = fx Se = 29.86 x 0.992 

= 29.62 kip-in. = Ms OK 

Thus Ix = 2.975 in.4 using procedure I for deflection determination. 
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EXAMPLE NO.3. 

BRACED C-SECTION 

Given: 

1. Steel: Fy = 50 ksi. 

6.000" 
S.692" 

x 

0.079" 

0.07S" 

---------x 

1.62S" 

2. Section: 6 x 1.625 x 0.060 channel with stiffened flanges. 

3. Compression flange braced against lateral buckling. 

4. Dead load to live load ratio DIL = 1/5 and 1.2D + 1.6L governs the design. 

Required: 

1. Design flexural strength, <p"~, based on initiation of yielding. 

2. Effective moment of inertia based on procedure I for deflection determination at the service moment. 

Solution: 

1. Calculation of the design flexural strength, ~: 
Properties of 90° comers: 
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r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. Distance of c.g. from center of radius,c = 0.637r 
= 0.637 x 0.124 = 0.079 in. 

Computation of Ix: 

For the fust approximation, assume a compression stress of f = F y = 50 ksi in the top fibers of the 
section and that the web is fully effective. 

Compression flange: 

w = 1.317 in. 

wIt = 1.317/0.060 = 21.95 

S = 1.28 ~E/f 

= 1.28 ~29500/50 = 31.09 

S/3 = 10.36 < (w/t) = 21.95 < S = 31.09 

Ia = 399t4 {[(w/t)/S]-0.33}3 

= 399(0.060)4 [(21.95/31.09)-0.33]3 

= 0.000275 in.4 

D = 0.600 in. 

d = 0.446 in. d/t = 0.446/0.060 = 7.43 < 14 OK 

(Section B4 of the Commentary) 

Is = d3
t/12 

= (0.446/(0.060)/12 = 0.000444 in.4 

D/w = 0.600/1.317 = 0.456, 0.25 < D/w = 0.456 < 0.80 

k = [4.82-5(D/w)](IJla)n+0.43 =:;; 5.25-5(D/w) 

n = 1/2 

[4.82-5(0.456)](0'()OO444/0.000275i/2+0.43 = 3.657 

5.25-5(0.456) = 2.970 

k = 2.970 

(Eq. B4-1) 

(Eq. B4.2-6) 

(Eq. B4-2) 

(Fig. B4-2) 

(Eq. B4.2-9) 

Since Is > Ia and D/w < 0.8, the stiffener is not considered as a simple lip. 

wIt = 21.95 < 90 OK (Section B1.1-(a)-(1» 

A = (1.052/...Jk)(w/t) ~fJE (Eq. B2.1-4) 

= (1.052/ ~2.970 )(21.95) ~50/29500 = 0.55 < 0.673 

b =w (Eq. B2.l-l) 

= 1.317 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.43 (unstiffened compression element) 

d/t = 7.43 



IV-20 Examples Based on the March 16, 1991 Edition of the LRFD Cold-Fonned Specification 

f conservatively taken equal to 50 ksi as in top compression fiber 

A = (1.052/ -V0.43 )(7.43) -V50/29500 = 0.489 < 0.673 

therefore, 

d's = d = 0.446 in. 

ds = d's(IJIa) ~ d's 

= 0.446(0.000444/0.000275) 

= 0.720 in. > 0.446 in. 

ds = 0.446 in. (i.e. compression stiffener is fully effective) 

Thus, one concludes that the section is fully effective. 

Ycg = 6/2 = 3.000 in. (from symmetry) 

Full section properties about x axis: 

y 
Distance 

from 
Centerline 

L of Section 
Element (in.) (in.) 

Web 5.692 
Stiffeners 2 x 0.446 = 0.892 2.623 
Comers 4 x 0.195 = 0.780 2.925 
Flanges 2 x 1.317 - 2.634 2.970 

Sum 

(Eq. B4.2-11) 

Ly2 
(in.3

) 

6.137 
6.673 

23.234 

36.044 

I' 1 
About 
Own 
Axis 
(in?) 

15.368 
0.015 

15.383 

Since section is singly symmetric about x-axis and fully effective, a compression stress of 50 ksi will 
govern as assumed. (At the bottom tension fibers a tensile stress of 50 ksi will develop simultaneous
ly from symmetry). 

To check if web is fully effective: (Section B2.3) 

fl = [(3.000-0. 154)/3.000]x50 = 47.43 ksi(compression) 

f2 = -47.43 ksi(tension) 

'" = fJfl = -47.43/47.43 = -1.000 

k = 4+2(1-",)3+2(1_",) 

= 4+2 [1_(_1)]3 +2 [1-(-1)] 

k = 24.000 

h = w = 5.692 in., hit = wit = 5.692/0.060 = 94.87 

hit = 94.87 < 200 OK (Section B 1.2-(a» 

A = (1.052/ "24)(94.87) -V47.43/29500 = 0.817> 0.673 

.-
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p = [1-(0.22/ A)] / A 

= [1-(0.22/0.817)]/0.817 = 0.894 

be = pw 

= 0.894 X 5.692 = 5.089 in. 

b2 = be/2 

= 5.089/2 = 2.545 in. 

b l = be/(3-'V) 

= 5.089/ [3-(-1)] = 1.272 in. 

b l+b2 = 1.272 + 2.545 = 3.817 in. 

Compression portion of the web = Ycg - 0.154 

= 3.000 - 0.154 

= 2.846 i n. 

(Eq.B2.1-3) 

(Eq. B2.1-2) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 
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Since b}+b2 = 3.817 in. > 2.846 in., b}+ b2 shall be taken as 2.846 in .. This verifies the assumption 
that the web is fully effective. 

I' x = Ly2+I'} 

= 36.044 + 15.383 

= 51.427 in.3 

Actual Ix = I' xt 

= 51.427xO.060 

= 3.086 in.4 

Se = Ix/Ycg 

= 3.086/3.000 

Se = 1.029 in.3 

= SeFy 

= 1.029x50 

= 51.45 kip-in. 

$b = 0.95 

$tMn = 0.95x51.45 = 48.88 kip-in. 

(Eq. C3.1.1-l) 

2. Calculation of the effective moment of inertia based on procedure I for deflection detennination at the 
service moment Ms: 

$tMn = 1.2MoL + 1.6MLL 

= [1.2(MoLIMLL)+1.6]MLL 

= [1.2(1/5)+ 1.6]~L 

= 1.84MLL 

MLL = <t>tMo/1.84 = 48.88/1.84 = 26.57 kip-in. 

Ms =MOL+~L 

= (1/5+ 1 )MLL 
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= 1.2(26.57) = 31.88 kip-in. 

where 

MDL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive stress f under this service moment 
Ms' Knowing f, one proceeds as usual to obtain See and checks to see if (f x SJ is equal to Ms as it 
should. If not, reiterate until one obtains the desired level of accuracy. (Section B2.1-(b )-( 1» 

a. For the first iteration, assume a compression stress of f = 30.98 ksi in the top fibers of the section 
and that the web is fully effective. 

Compression flange: 

S = 1.28 "29500/30.98 = 39.50 (Eq B4-1) 

S/3 = 13.17 < wit = 21.95 <S = 39.50 

Ia = 399(0.060)4 [(21.95/39.50)-0.33]3 

= 0.000059 in.4 

IJIa = 0.000444/0.000059 = 7.525 

k = [4.82-5(0.456)](7.525)1/2+0.43 = 7.398 > 2.970 (Eq. B4.2-9) 

k = 2.970 

A, = (1.052/ "2.970)(21.95) "30.98/29500 = 0.434 < 0.673 (Eq. B2.1-4) 

bd = 1.317 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

f conservatively taken equal to 30.98 ksi as in top compression fiber 

.A= (1.052/ "0.43 )(7.43) "30.98/29500 = 0.386 < 0.673 therefore, d's = 0.446 in. 

Since IJIa = 7.525 > 1.0, it follows that ds = d's = 0.446 in. (i.e. compression stiffener fully effec
tive). 

Thus the section is fully effective. 

Ycg = 6/2 = 3.000 in. (from symmetry) 

And since the section is singly symmetric about x-axis, top compression fiber (and also bottom 
tension fiber) may be used in computing See 

To check if web is fully effective: 

f1 = [(3.000-0. 154)/3'()00]x30.98 = 29.39 ksi(compression) 

f2 = -29.39 ksi(tension) 

'V = fif1 = -29.39/29.39 = -1.000 

k = 24.0 

A, = (1.052/ fi4 )(94.87) "29.39/29500 = 0.643 < 0.673 

=w (Eq. B2.1-1) 

= 5.692 in. 

= 5.692f2 = 2.846 in. 
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b1 = 5.692/ [3-(-1)] = 1.423 in. 

b1+ b2 = 4.269 in. > compression portion of the web = 2.846 in. thus bl+~ shall be taken as 
2.846 in .. This verifies the assumption that the web is fully effective. 

IV-23 

Full section properties are the same as were found in detennination of <I>t,~ since the section is 
fully effective. 

Ix = 3.086 in.4 

Se = 1.029 in? 

M = fx Se = 30.98 x 1.029 

= 31.88 kip-in. = Ms OK 

Thus, Ix = 3.086 in.4 using procedure I for deflection detennination. 
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EXAMPLE NO.4. 

BRACED Z-SECTION 

x 

1.471 " 

~0.1S4" 

x 
6.000" S.692" -------

0.079" 

-'--------++-- ~ 
-"r,fT----:..----r--* 

1.62S" t 
0.07S" 

Given: 

1. Steel: Fy = 50 ksi. 

2. Section: 6 x 1.625 x 0.060 Z-section with stiffened flanges. 

3. Compression flange braced against lateral buckling. 

4. Dead load to live load ratio OIL = 1/5 and 1.20 + 1.6L governs the design. 

Required: 

1. Design flexural strength, <I>t,~, based on initiation of yielding. 

2. Effective moment of inertia based on procedure I for deflection determination at the service moment. 

Solution: 

1. Calculation of the design flexural strength, ~: 
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Properties of 90° comers: 

r = R + tl2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

Properties of 135° corners: 

r = R + tl2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = (45°/180°)(3. 14)r = 0.785r = 0.785 x 0.124 

= 0.097 in. 

Distance of c.g. from center of radius, 

c1 = rsinS/S = [(0.124 x sin45 0 )/0.785] = 0.112 in. 

Computation of Ix: 

IV-25 

For the first approximation, assume a compression stress of f = F y = 50 ksi in the top fibers of the 
section and that the web is fully effective. 

Compression flange: 

w = 1.471 in. 

wit = 1.471/0.060 = 24.52 

S = 1.28 ~E/f 

= 1.28 ~29500/50 = 31.09 

S/3 = 10.36 < wit = 24.52 < S = 31.09 

la = 399t4 {[(w/t)/S] -0.33} 3 

= 399(0.060)4 [(24.52/31.09)-0.33]3 

= 0.000499 in.4 

d = 0.600 in., d/t = 0.600/0.060 = 10 < 14 OK 

(Section B4 of the Commentary) 

o = d+0.154tan(S/2) = 0.600+0. 154tan(45°/2) = 0.664 in. 

Is = d3tsin2S/12 

= (0.600)3(0.060)sin2(450)/12 = 0.000540 in.4 

IJla = 0.000540/0.000499 = 1.082 

D/w = 0.664/1.471 = 0.451, 0.25 < D/w = 0.451 < 0.80 

k = [4.82-5(D/w)](lJIa)n+0.43~.25-5(D/w) 

n = 1/2 

[4.82-5(0.451)](1.082i!2+0.43 = 3.098 

5.25-5(0.451) = 2.995 

k = 2.995 

(Eq. B4-1) 

(Eq. B4.2-6) 

(Eq. B4-2) 

(Eq. B4.2-9) 
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Since Is > Ia and D/w < 0.8, the stiffener is not considered as a simple lip. 

wit = 24.52 < 90 OK (Section B1.1-(a)-(1» 

A = (1.052/...fk )(w/t)~f/E (Eq. B2.1-4) 

= (1.052/~2.995)(24.52) ~50/295oo = 0.614 < 0.673 

b =w 

= 1.471 in. (Le. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.43 (unstiffened compression element) 

d/t = 10.00 

f conservatively taken equal to 50 ksi as in top compression fiber 

A = (1.052/ ~0.43 )( 10.00) ~ 50/29500 = 0.660 < 0.673 

therefore, 

d's = d = 0.600 in. 

ds = d's(lJla)~ d's 

= 0.600(1.082) 

= 0.649 in. > 0.600 in. 

ds = 0.600 in. (i.e. compression stiffener is fully effective) 

(Eq. B2.1-1) 

(Eq. B4.2-11) 

Thus, one concludes that the section is fully effective. 

Ycg= 6/2 = 3.000 in. (from symmetry) 

Full section properties about x axis: 

L 
Element (in.) 

Web 5.692 
Stiffeners 2 x 0.600 = 1.200 

900 comers 2 x 0.195 = 0.390 
135 0 comers 2 x 0.097 = 0.194 

Flanges 2 x 1.471 = 2.942 

Sum 

y 
Distance 

from 
Centerline 
of Section 

(in.) 

. 
2.743 
2.925 
2.958 
2.970 

Ly2 
(in.3

) 

9.029 
3.337 
1.697 

25.951 

40.014 

I' 1 
About 
Own 
Axis 
(in.3

) 

15.368 
0.018 

15.386 

Since section is singly symmetric about x-axis and fully effective, a compression stress of 50 ksi will 
govern as assumed. (At the bottom tension fibers a tensile stress of 50 ksi will develop simultaneous
ly from geometry). 
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To check if web is fully effective: (Section B2.3) 

fl = [(3.000-0. 154)/3.000]x50 = 47.43 ksi(compression) 

f2 = -47.43 ksi(tension) 

'" = f2lft = -47.43/47.43 = -1.000 

k = 4+2(1-",)3+2(1_",) 

= 4+2 [1_(_1)]3 +2 [1-(-1)] 

= 24.000 

h = w = 5.692 in., hIt = wIt = 5.692/0.060 = 94.87 

hIt 

A 

p 

= 94.87 < 200 OK (Section B1.2-(a» 

= (1.052/ .rz4)(94.87) "47.43/29500= 0.817 > 0.673 

= [1-(0.22/ A)] / A 

= [1-(0.22/0.817)]/0.817 = 0.894 

= pw 

= 0.894 x 5.692 = 5.089 in. 

= bJ2 

= 5.089/2 = 2.545 in. 

= bJ(3-",) 

= 5.089/ [3-(-1)] = 1.272 in. 

b1+ b2 = 1.272 + 2.545 = 3.817 in. 

Compression portion of the web = Y cg - 0.154 

= 3.000 - 0.154= 2.846 in. 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 

IV-27 

Since b]+b2 = 3.817 in. > 2.846 in., b]+ b2 shall be taken as 2.846 in. This verifies the assumption 
that the web is fully effective. 

I' x = Ly2 +1' 1 

= 40.014 + 15.386 

= 55.400 in.3 

Actual Ix = I' xt 

= 55.400 x 0.060 

= 3.324 in.4 

= Ix/Ycg 

= 3.324/3.0 = 1.108 in.3 

= SeFy 

= 1.108 x 50 = 55.40 kip-in. 

<Ph = 0.95 

<P.,Mn = 0.95 x 55.400 = 52.63 kip-in. 

(Eq. C3.1.1-l) 
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2. Calculation of the effective moment of inertia based on procedure I for deflection detennination at 
the service moment Ms: 

<l>~n = 1.2MoL + 1.6MLL 

= [1.2(MoL /MLL )+ 1.6]MLL 

= [1.2( 1/5)+ 1.6] MLL 

= 1.84MLL 

MLL = <l>~n/l.84 = 52.63/1.84 = 28.603 kip-in. 

Ms=MoL + MLL 

= (1/5+ l)MLL 

= 1.2(28.603) = 34.324 kip-in. 

where 

MOL = Moment detennined on the basis of nominal dead load 

MLL = Moment detennined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive stress f under this service moment 
Ms' Knowing f, one proceeds as usual to obtain Se and checks to see if (f x SJ is equal to Ms as it 
should. If not, reiterate until one obtains the desired level of accuracy. (Section B2.1-(b)-(I» 

a. For the first iteration, assume a compression stress of f = 30.99 ksi in the top fibers of the section 
and that the web is fully effective. 

Compression flange: 

S = 1.28 .../29500/30.99 = 39.49 

S/3 = 13.16 < wIt = 24.52 < S = 39.49 

la = 399(0.060)4 [(24.52/39.49)-0.33]3 

= 0.000127 in.4 

IJIa = 0.000540/0.000127 = 4.252 

k = [4.82-5(0.443)](4.252)1/2+0.43 = 5.802 > 3.035 

k = 3.035 

A = (1.052/ .../3.035 )(24.52) .../30.99129500 = 0.480 <0.673 

bd = 1.471 in. (Le. compression flange fully effective) 

Compression (upper) stiffener: 

f conservatively taken equal to 30.99 ksi as in top compression fiber 

A = (1.052/ .../0.43 )(10'()0) "'/30.99/29500= 0.520 < 0.673 

therefore, d's = 0.600 in. 

Since Ilia = 4.252 1.0, it follows that Ds = d's = 0.600 in. (i.e. compression stiffener fully effec
tive). 

Thus the section is fully effective. 

Yeg= 6/2 = 3.000 in. (from symmetry) 
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And since the section is singly symmetric about x-axis, top compression fiber (and also bottom 
tension fiber) may be used in computing Se. 

To check if web is fully effective: 

fl = [(3.000-0. 154)/3.ooo]x30.99 = 29.40 ksi(compression) 

f2 = -29.40 ksi(tension) 

'I' = fvft = -29.40/29.40 = -1.000 

k = 24.000 

A. = (1.052/ ~)(94.87) "29.40/29500 = 0.643 < 0.673 

=w (Eq. B2.1-1) 

= 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b l = 5.692/ [3-(-1)] = 1.423 in. 

b l+ b2 = 4.269 in. > compression portion of the web = 2.846 in. thus b l + b2 shall be taken as 
2.846 in.. This verifies the assumption that the web is fully effective. 

Full section properties are the same as were found in determination of <l>b~ since the section is fully 
effective. 

Ix = 3.324 in.4 

Se. = 1.108 in.3 

M = fx Se = 30.99 x 1.108 

= 34.34 kip-in. = Ms OK 

Thus, Ix = 3.324 in.4 using procedure I for deflection determination. 
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EXAMPLE NO. 4A. 

DEEP-Z SECTION WITH STIFFENED FLANGE 
. 1.471" 

t=O.06O" 

9.S00" 
x x 

9.192" 

0.079" 

* 
1.62S" 

Given: 0.075" 

1. Steel: Fy = 50 ksi. 

2. Section: 9.5 x 1.625 x 0.060 Z-section with stiffened flanges. 

3. Compression flange braced against lateral buckling. 

4. Dead load to live load ratio OIL = 1/5 and 1.2D + 1.6L governs the design. 

Required: 

1. Design flexural strength, CPb~' based on initiation of yielding. 

2. Effective moment of inertia based on procedure I for deflection detennination at the service moment. 

Solution: 

1. Calculation of the design flexural strength, ~: 

Properties of 90° comers: 
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r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

Properties of 135° comers: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = (45°/180°)(3. 14)r = 0.785r = 0.785 x 0.124= 0.097 in. 

Distance of c.g. from center of radius, 

c1 = rsin9/9 = [(0.124 x sin45 0 )/0.785] = 0.112 in. 

Computation of Ix: 

IV-31 

For the first approximation, assume a compression stress of f = F y = 50 ksi in the top fibers of the 
section and that the web is fully effective. 

Compression flange: 

w = 1.471 in. 

wIt = 1.471/0.060 = 24.52 

S = 1.28...fW 

= 1.28 ...f29500/50 = 31.09 

S/3 = 10.36 < wIt = 24.52 < S = 31.09 

Ia = 399t4 {[(w/t)/S] -0.33 } 3 

= 399(0.060)4 [(24.52/31.09)-0.33]3 

= 0.000499 in.4 

d = 0.600 in., d/t = 0.600/0.060 =10 < 14 OK 

(Section B4 of the Commentary) 

D = d+0.154tan(9/2) = 0.600+0. 154tan(45°/2) = 0.664 in. 

Is = d3tsin29/12 

= (0.600)3(0.060)sin2(4SO)112 = 0.000540 in.4 

IJla = 0.000540/0.000499 = 1.082 

D/w = 0.664/1.471 = 0.451, 0.25 < D/w = 0.451 < 0.80 

k = [4.82-5(D/w)](IJlat+0.43 ~ 5.25-5(D/w) 

n = 1/2 

[4.82-5(0.451)](1.082))/2+0.43 = 3.098 

5.25-5(0.451) = 2.995 

k = 2.995 

(Eq. B4-1) 

(Eq. B4. 2-6) 

(Eq. B4-2) 

(Eq. B4.2-9) 

Since Is > Ia and D/w < 0.8, the stiffener is not considered as a simple lip. 

wIt = 24.52 < 90 OK (Section B1.1-(a)-(1)) 
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= (1.052/ -fI()(w/t)~flE 

= (1.052/ ~2.995 )(24.52) ~50/29500= 0.614 < 0.673 

b =w 

= 1.471 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.43 (unstiffened compression element) 

d/t = 10.00 

f conservatively taken equal to 50 ksi as in top compression fiber 

A = (1.052/ ~0.43 )(10.00) ~50/295OO= 0.660 < 0.673 

therefore, 

d's = d = 0.600 in. 

ds = d's(lJla)~d's 

since IlIa = 1.082 > 1.000 

ds = d's = 0.600 in. (i.e. compression stiffener is fully effective) 

Thus, one concludes that the section is fully effective. 

Yeg = 9.5/2 = 4.750 in. (from symmetry) 

It follows that a compression stress of 50 ksi will govern as assumed. 

To check if web is fully effective (Section B2.3): 

fl = [(4.750-0. 154)/4.750]x50 = 48.38 ksi(compression) 

f2 = -48.38 ksi(tension) 

'" = fJfl = -48.38/48.38 = -1.000 

k = 4+2(1-",)3+2(1_",) 

= 4+2 [1_(_1)]3 +2 [1-(-1)] 

= 24.000 

h = w = 9.192 in., hit = wit = 9.192/0.060 = 153.20 

hit = 153.20 < 200 OK (Section B 1.2-(a» 

A = (1.052/ ~)(153.20) ~48.38/29500=1.332 > 0.673 

P = [1-(0.22/ A)] / A; 

= [1-(0.22/1.332)] /1.332 = 0.627 

be = pw 

= 0.627 X 9.192 = 5.763 in. 

b2 = bJ'l 

= 5.763/2 = 2.882 in. 

bl = bJ(3-",) 

= 5.763/ [3-(-1)] = 1.441 in. 

(Eq. B2.1-4) 

(Eq. B2.1-1) 

(Eq. B4.2-11)} 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 
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= 1.441 + 2.882 = 4.323 in. 

Compression portio.n of the web = Yeg - 0.154 

= 4.750 - 0.154 

= 4.596 in. 
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Since b}+ b2 = 4.323 in. < 4.596 in., it follows that the web is not fully effective. Hence Yeg"# 4.750; 
as assumed. 

The procedure to determine the location of the neutral axis (N.A.) based on partially effective web is 
iterative. We start with Ye = 4.750 and from Figure B2.3-1 scale b l , b2 already computed with 
respect to Yeg = 4.750 in .. ~en we proceed to compute a new N.A. and hence b}+ b2. If b}+ b2 same 
as before, the solution stabilizes and the location ofN.A. is calculated according to this (b}+b2). If 
(b}+ b2) differ than before, one reiterates in the same before mentioned manner until b l+ b2 stabilizes. 

Thus, for the first iteration, the web is divided into three segments: 

b} = 1.441 in., ineffective portion of web, and bz<=2.882)+4.750-0.154 = 7.478 in .. Thus the ineffec
tive portion of web = 9.192-1.441-7.478 = 0.273 in. 

The compression flange and stiffener remain fully effective since nothing is altered in their calcula
tions. 

Effective section properties about x-axis: 

Y 
Distance 

from 
L Top Fiber Ly 

Element (in.) (in.) (in?) 

b} 1.441 0.154+( 1.441/2) = 0.875 1.261 
b2+(9.5-Yeg)-0.154 7.478 9.5-0.154-(7.4 78/2) = 5.607 41.929 

Compression flange 1.471 0.030 0.044 
Compresson stiffener 0.600 0.064-0. 124cos45° 

+(0.600/2)cos45° = 0.257 0.154 
Top 900 comer 0.195 0.075 0.015 

Top 135 0 comer 0.097 0.154-0.112 = 0.042 0.004 
Bottom 13Y comer 0.097 9.5-(0.154-0.112) = 9.458 0.917 
Bottom 90° comer 0.195 9.5-0.075 = 9.425 1.838 
Bottom stiffener 0.600 9.5-0.257 = 9.243 5.546 
Tension flange 1.471 9.5-(0.060/2) = 9.470 13.930 

--

Sum 13.645 65.638 

Yeg = LylL = 65.638/13.645= 4.810 in. (measured from top compression fiber) 

f} = [(4.810-0.154)/4.810](50) = 48.40 ksi(compression) 

f2 = -[(9.5-4.810-0.154)/4.810](50) = -47.15 ksi(tension) 

'II = -47.15/48.40 = -0.974 

k = 4+2 [1-(-0.974)]3 +2 [1-(-0.974)]= 23.332 
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A = (1.052/ ",,23.332 )(153.20) ",,48.40/29500 = 1.351 > 0.673 

P = [1-(0.22/1.351)]/1.351 = 0.620 

be = 0.620 X 9.192 = 5.699 in. 

b2 = 5.699/2 = 2.850 in. 

b I = 5.699/[3-(-0.974)] = 1.434 in. 

b I + b2 = 4.284 in. '¢ 4.323 in. therefore need to reiterate 

For the second iteration: 

b l = 1.434 in. 

b2+(9.5-Ycg)-0.154 = 2.850+9.5-4.810-0.154 = 7.386 in. 

ineffective portion of web = 9.192-1.434-7.386 = 0.372 in. 

Effective section properties about x-axis: 

L 
Element (in.) 

b l 1.434 
B2+(9.5-Ycg)-0.154 7.386 

Compression flange 1.471 
Compression stiffener 0.600 

Top 900 comer 0.195 
Top 1350 comer 0.097 

Bottom 1350 comer 0.097 
Bottom 900 comer 0.195 
Bottom stiffener 0.600 
Tension flange 1.471 

Sum 13.546 

Y 
Distance 

from 
Top Fiber 

(in.) 

0.871 
5.653 
0.030 
0.257 
0.075 
0.042 
9.458 
9.425 
9.243 
9.470 

Ycg = 65.450/13.546 = 4.832 in. (measured from top compression fiber) 

fl = [(4.832-0.154)/4.832](50) = 48.41 ksi 

f2 = - [(9.5-4.832-0.154)/4.832](50) = -46.71 ksi 

'" = -46.71/48.41 = -0.965 

k = 4+2 [1-(-0.965)]3 +2 [1-(-0.965)] = 23.105 

A = (1.052/ "23.105 )(153.20) "48.41/29500 = 1.358 > 0.673 

P = [1-(0.22/1.358)]/1.358 = 0.617 

be = 0.617 X 9.192 = 5.671 in. 

b2 = 5.671/2 = 2.836 in. 

b l = 5.671/ [3-(-0.965)] = 1.430 in. 

Ly 
(in.2

) 

1.249 
41.753 

0.044 
0.154 
0.015 
0.004 
0.917 
1.838 
5.546 

13.930 
65.450 
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bI +b2 = 4.266 in. '* 4.284 in. therefore need to reiterate 

For the third iteration: 

b i = 1.430 in. 

b2+(9.5-Ycg)-0.154 = 2.836+9.5-4.832-0.154 = 7.350 in. 

ineffective portion of web = 9.192-1.430-7.350 = 0.412 in. 

Effective section properties about x-axis: 

L = 13.506 in. 

Ly = 65.373 in.2 

Ycg = 65.373/13.506 = 4.840 in. 

fl = [(4.840-0.154)/4.840](50) = 48.41 ksi 

f2 = -[(9.5-4.840-0.154)/4.840](50) = -46.55 ksi 

'V = -46.55/48.41 = -0.962 

k = 4+2 [1-(-0.962)]3 +2 [1-(-0.962)] = 23.029 

A = (1.0521'123.029) (153.20) "48.41/29500 = 1.360 > 0.673 

P = [1-(0.22/1.360)]/1.360 = 0.616 

be = 0.616 x 9.192 = 5.662 in. 

b2 = 5.662/2 = 2.831 in. 

b i = 5.662/ [3-(-0.962)] = 1.429 in. 

b I +b2 = 4.260 in. '* 4.266 in. therefore need to reiterate 

For the fourth iteration: 

b i =1.429 in. 

b2 + (9.5-Ycg)-0.154 = 2.831+9.5-4.840-0.154 = 7.337 in. 

in effective portion of web = 9.192-1.429-7.337 = 0.426 in. 

Effective section properties about x-axis: 

L = 13.492 in. 

Ly = 65.345 in.2 

Ycg = 65.345/13.492 = 4.843 in. 

fl = [(4.843-0.154)/4.843](50) = 48.41 ksi 

f2 = - [(9.5-4.843-0.154)/4.843](50) = -46.49 ksi 

'V = -46.49/48.41 = -0.960 

k = 4+2 [1-(-0.960)]3 +2 [1-(-0.960)] = 22.979 

A = (1.052/ "22.979)(153.20) "48.41/29500 = 1.362> 0.673 

= [1-(0.22/1.362)]/1.362 = 0.616 

be = 0.616 x 9.192 = 5.662 in. 

b2 = 5.662/2 = 2.831 in. 

IV-35 
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b l = 5.662/ [3-(-0.960)] = 1.430 in. 

b1+b2 = 4.261 in. close enough to 4.260 in. thus the solution stabilizes. 

Hence we now compute the location of N.A. and moment of inertia using b l = 1 .430 in. and b2 = 
2.831 in. 

Effective section properties about x-axis: 

Y 
Distance 

from 
L Top Fiber Ly 

Element (in.) (in.) (in.2
) 

b l 1.430 0.869 1.243 
B2+(9.5-Ycg)-0.154 7.334 5.679 41.650 

Compression flange 1.471 0.030 0.044 
Compression stiffener 0.600 0.257 0.154 

Top 900 comer 0.195 0.075 0.015 
Top 1350 comer 0.097 0.042 0.004 

Bottom 1350 comer 0.097 9.458 0.917 
Bottom 900 comer 0.195 9.425 1.838 
Bottom stiffener 0.600 9.243 5.546 
Tension flange 1.471 9.470 13.930 

Sum 13.490 65.341 

Distance of x-axis from top fiber is Ycg= 65.341/13.490 = 4.844 in. 

Ly2 
(in.3

) 

1.080 
236.578 

0.001 
0.040 
0.001 

8.673 
17.322 
51.262 

131.917 
446.875 

I' I 
About 
Own 
Axis 
(in.3

) 

0.244 
32.860 

0.009 

0.009 

33.122 

Since distance of top compression fiber from neutral axis is greater than one half the beam depth (= 
4.750 in.), a compression stress of 50 ksi will govern as assumed. 

I' x 
2, 2 

= Ly +1 }-Ly cg 

= 446.875 + 33.122 - 13.490(4.844)2 

= 163.487 in.3 

Actual Ix = I' xt 

= 163.487xO.060 

= 9.809 in.4 

Se = Ix/Ycg 

= 9.809/4.844 

= 2.025 in. 3 

= SeFy 

= 2.025x50 

= 101.25 kip-in. 

= 0.95 

(Eq. C3.1.1-1) 
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<l>tMn = 0.95x101.25 = 96.19 kip-in. 

2. Calculation of the effective moment of inertia based on procedure I for deflection determination at the 
service moment Ms: 

<l>tMn = 1.2MoL + 1.6MLL 

= [1.2(MoL IMLd+ 1.6] MLL 

= [1.2(1/5)+ 1.6] M LL 

= 1.84MLL 

MLL = <l>bMn/1.84 = 96.19/1.84 = 52.28 kip-in. 

Ms = MOL + MLL 

= (1/5+ 1 )MLL 

= 1.2(52.28) = 62.73 kip-in. 

where 

MOL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive stress f under this service moment 
Ms' Knowing f, one proceeds as usual to obtain Se and checks to see if (f x Se) is equal to Ms as it 
should. If not, reiterate until one obtains the desired level of accuracy. (Section B2.1-(b )-( 1)) 

a. For the first iteration, assume a compression stress of f = 30 ksi in the top fibers of the section and 
that the web is fully effective. 

Compression flange: 

S = 1.28 --.)29500/30 = 40.14 

S/3 = 13.38 < wit = 24.52 < S = 40.14 

Ia = 399(0.060)4[(24.52/40.14)-0.33]3 

= 0.000115 in.4 

IJla = 0.000540/0.000115 = 4.696 

k = [4.82-5(0.451)](4.696)112+0.43 = 5.988> 2.995 

k = 2.995 

A = (1.052/ --.)2.995 )(24.52) --.)30/29500 = 0.475 < 0.673 

bd = 1.471 in. (Le. compression flange fully effective) 

Compression (upper) stiffener: 

f conservatively taken equal to 30 ksi as in the top compression fiber. 

A = (1.052"'0.43 )(1 o.()())--.) 3 0/29500 = 0.512 < 0.673 

therefore, d's = 0.600 in. 

Since IJla = 4.696 > 1.0, it follows that Ds = d's= 0.600 in. 
(Le. compression stiffener fully effective). 

Thus section is fully effective (since web was assumed fully effective). 

Yeg = 9.5/2 = 4.750 in. (from symmetry) 
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To check if web is fully effective: 

fl = [(4.750-0.154)/4.750] ;(30) = 29.03 ksi 

f2 = -29.03 ksi 

'II = -29.03/29.03 =1.000 

k = 24.000 

A = (1.052/ ~)(153.20) "29.03/29500 = 1.032 >0.673 

r = [1-(0.22/1.032)]/1.032 = 0.762 

be = 0.762 X 9.192 = 7.004 in. 

b2 = 7.004/2 = 3.502 in. 

b l = 7.004/ [3-(-1)] ; = 1.751 in. 

compression portion of the web = Ycg - 0.154 

= 4.750 - 0.154 = 4.596 in. 

b l+ b2 = 5.253 in. > 4.596 in. 

Thus bl + b2 shall be taken as 4.596 in. This verifies the assumption that the web is fully effective. 

Full section properties about x-axis: 

L 
Element (in.) 

Web 9.192 
Stiffeners 2 x 0.600 = 1.200 

900 comers 2 x 0.195 = 0.390 
1350 comers 2 x 0.097 = 0.194 

I' = x. 

= 

I = x. 

S = e 

M= 

Flanges 2 x 1.471 = 2.942 

Sum 

2 I 

Ly +1 I 

102.591 + 64.740 = 167.331 in.3 

167.331 (0.060) = 10.040 in.4 

I/Ycg = 10.040/4.750 = 2.114 in.3 

f x Se = 30 x 2.114 

y 
Distance 

from 
Centerline 
of Section Ly2 

(in.) (in.3
) 

4.493 24.224 

4.675 8.524 
4.708 4.300 
4.720 65.543 

102.591 

= 63.42 kip-in. not equal to MA = 60.63 kip-in. thus need to reiterate. 

I' I 
About 
Own 
Axis 
(in.3

) 

64.722 
0.018 

64.740 

However, one sees that we need to assume a smaller stress than 30 ksi and since the section was 
fully effective for f = 30 ksi, it will be fully effective for f < 30 ksi. 

Thus Se = 2.114 in.3 



Examples Based on the March 16, 1991 Edition of the LRFD Cold-Formed Specification IV-39 

Therefore, the correct actual fat MA = MA/Se = 60.63/2.114= 28.68 ksi. And Ix = 10.026 in.4 using 
procedure I for deflection determination. 

Remark: 

It was clearly seen that in the calculation of ~ the assumption of the web being fully effective was 
not true. However, it would be interesting to see the percentage of error if one neglected the partial effec
tiveness of the web and proceeded with the assumption of a fully effective web. 

To demonstrate: neglect in the frrst approximation in the calculation of ~b~ the partial effectiveness of 
the web 

Thus the whole section is fully effective. Full section properties about x-axis (from part 2): 

Ix = 10.040 in.4 

Se = 2.1 14 in.3 

~~n = 0.95(2.114x50) = 100.42 kip-in. 

% error = [(I00.42-96.00)/96.00]xlOO% = 4.60% 

Since the percentage of error is small, one could rationalize that in practical cases to get a first-hand 
quick answer one could assume the web being fully effective. 
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EXAMPLE NO.5 

HAT SECTION 

Complete Flexural Design, 
Stiffened Compression Flange 

L~N ~ 
14----------~i .-O.l54 N 

O.079 N 

~~==~===~=*= O.075
N 

Given: 

1. Steel: Fy = 50 ksi. 

2. Section: As shown in sketch. 

O.06O N 

------ 4I---X 

3. Span: L = 8 ft., with simple supports, no overhang, and 6-in. support bearing lengths. 

4. Loading: Live = 300 lb/ft.; Dead = 20 lb/ft. 

Required: 

Check adequacy of section for: 

1. Bending moment 

2. Shear 

3. Web Crippling 

4. Deflection 

Solution: 

1. Properties of 90° comers: 

3.000 N 
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Radius to centerline, 

r = R + tl2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

I' of corner about its own centroidal axis is negligible 

2. Nominal Section Strength, ~ (Section C3.1.1) 

a. Procedure I - Based on Initiation of Yielding 
Computation of lx, flrst approximation: 

* Assume a compressive stress of f = Fy = 50 ksi in the top fibers of the section. 

* Also assume web is fully effective. 

Element 4: 

hit = 3.692/0.060 = 61.53 < (hlt)max = 200 OK (Section B 1.2-(a» 

Assumed fully effective 

Element 5: 

wit = 8.692/0.060 = 144.9 < 500 OK (Section B1.1 -(a)-(2» 

k =4 

A = (1.052/ ..Jk)(w/t) "fIE 

= (1.052N4)(144.9) "50/29500 = 3.138> 0.673 

p 

b 

= [ 1-(0.22/ A)] / A 

= [ 1-(0.22/3.138)]/3.138 = 0.296 

=pw 

= 0.296 x 8.692 

= 2.573 in. 

Effective section properties about x axis: 

L 
Effective Length 

Element (in.) 

1 2 x 0.596 = 1.192 
2 4 x 0.195 = 0.780 
3 2 x 2.692 = 5.384 
4 2 x 3.692 = 7.384 
5 2.573 
6 2 x 0.195 = 0.390 

Sum 17.703 

y 
Distance 

from 
Top Fiber 

(in.) 

3.548 
3.925 
3.970 
2.000 
0.030 
0.075 

Ly 
(in.2) 

4.229 
3.062 

21.375 
14.768 
0.077 
0.029 
--

43.540 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

Ly2 
(in3

) 

15.005 
12.016 
84.857 
29.536 

0.002 
0.002 

141.418 

I' 1 

IV-41 

About 
Own 
Axis 
(in3

) 

0.035 

8.388 

8.423 
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Distance of neutral axis from top fiber, Yeg = Ly/L = 43.540/17.703 = 2.460 in. 

Since the distance of the top compression fiber from the neutral axis is greater than one half the 
beam depth, a compressive stress of F y will govern as assumed. 

, 2, 2 
I x = Ly + I I - Ly cg 

= 141.418 + 8.423 - 17.703(2.460)2 

= 42.71 in.3 

Actual Ix = tI'x= (0.060)(42.71) = 2.56 in.4 

Check Web 

-,....-----,,..----~---
/~---

I " 
T 
I 

I 
I ___ N_.A_· __ ~ _________ l 

I 
I 
1 

I I -::/ 

= (2.306/2.460)(50) = 46.87 ksi(compression) 

= -(1.386/2.460)(50) = -28.17 ksi(tension) 

= fifl = -28.17/46.87 = -0.601 

= 4+2(1-",)3+2(1_",) 

= 4+2[ 1-(-0.601)] 3 +2[ 1-(-0.601)] 

= 15.41 

fc =50 ksi 

(Eq. B2.3-4) 

= (1.052/-f1()(w/t) -Vf/E ,f= fl (Eq. B2.1-4) 

= (1.052/ -V15.41 )(61.53) -V46.87/29500 = 0.657 < 0.673 

b = w (Eq. B2.1-l) 

be = 3.692 in. 

= bJ2 (Eq. B2.3-2) 

= 3.692/2 = 1.846 in. 

= bJ(3-",) (Eq. B2.3-1) 

= 3.692/[ 3-(-0.601)]= 1.025 in. 

b 1+b2 = 1.025 + 1.846 = 2.871 in. > 2.306 in. (compression portion of web) 



Examples Based on the March 16,1991 Edition of the LRFD Cold-Fanned Specification 

Therefore, web is fully effective. 

= Ix/Yeg 

= 2.56/2.46 = 1.04 in.3 

= SeFy 

= (1.04)(50) 

= 52.0 kip-in. 

b. Procedure II - Based on Inelastic Reserve Capacity 

Al = (1.11/~) 

= (1.11/ ...)50/29500) = 26.96 

1..2 = (1.28/ ...jiVE") 
= (1.28/ ...)50/29500) = 31.09 

wit = 8.692/0.06 = 144.9 

For wit > ~, Cy = 1 

Maximum compressive strain = Cyey = ey 

(Eq. C3.1.1-l) 

(Eq. C3.1.1-2) 

(Eq. C3.1.1-3) 
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Therefore, the nominal moment, Mn is the same as the ~ determined by procedure I because the 
compression flange will yield first. 

3. Design Flexural Strength, <l>.,Mn (Section C3.l) 

<Pb = 0.95, <PbMn = 0.95x52.0 = 49.4 kip-in. 

Wu = 1.2WDL + 1.6WLL = 1.2(0.02)+ 1.6(0.3) = 0.504 kip/ft. 

Maximum required flexural strength = wuL2/8 = 0.504(8)2(12)/8= 48.38 kip-in. 

Mu = 48.38 kip-in. < <!>hMn = 49.4 kip-in. OK 

4. Strength for Shear Only (Section C3.2) 

The required shear strength at any section shall not exceed the design shear strength <l>v V n: 

...)EKv/Fy = ...)29500(5.34)/50 =56.13 

1.415...)EKv/Fy = 1.415(56.13) = 79.42 

hit = 61.53 

For ...)EKv/Fy < hit < 1.415 ...)EKv/Fy 

<Pv = 0.90 

Vn = 0.64r ...)KvFyE (Eq. C3.2-2) 

= 0.64(0.06)2 ...,fr--5.-34-(5-0-)(-29-5-00-)= 6.47 kips (per web) 

Total V n for section: 

Vn = 2(6.47) = 12.94 kips 

<PvVn = 0.90(12.94) = 11.65 kips 

Maximum Required Shear Strength = Reaction 

Vu = wuL/2 = 0.504(8)/2 = 2.02 k < <PvVn = 11.65 k OK 
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5. Web Crippling Strength (Section C3.4) 

R/t= (3/32)/0.06 = 1.563 < 6 OK 

hit = 3.692/0.06 = 61.53 < 200 

TABLE C3.4-1 
Stiffened Flanges 

Pn = t2kC3C4Ca [331-0.61(hlt)][ 1+0.01(N/t)] 

k = F/33 = 50/33 = 1.515 

C3 = (1.33-0.33k) 

I 1. I 
~ 

(Eq. C3.4-l) 

(Eq. C3.4-21) 

(Eq. C3.4-12) 

= [1.33-0.33(1.515)] = 0.830 (1. 15-0. 15R/t) = [ 1.15-0.15(1.563)] 

C4 = (1. 15-0. 15R1t) ~ 1.0 but not less than 0.50 (Eq. C3.4-13) 

= 0.916 ~ 1.0 OK 

> 0.50 OK 

C4 = 0.916 

Ca = 0.7+0.3(8/90)2 (Eq. C3.4-20) 

= 0.7+0.3(90/90)2 = 1.0 

Pn = (0.06)2 (1.515)(0.830)(0.916)(1.0)[ 331-0.61(61.53)] 

x[ 1 +0.0 1 (6/0.06)] = 2.43 k/web 

Pn = (2 webs)(2.43 k/web) = 4.86 k 

<l>w = 0.75 

<l>wPn = 0.75(4.86) = 3.65 k 

Reaction = 2.02 k < <l>wPn = 3.65 k OK 

6. Deflection Determination at Service Moment Ms 

Find leff at Ms = wL 2/8 = 0.32(8)2(12)/8 = 30.72 kip-in. 

a. Procedure I 

Computation of leff' first approximation 

* Assume a compressive stress of f = 0.6Fy = 30 ksi in the top fibers of the section. 

* Also assume web is fully effective. 
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Element 5: 

A. = (1.052/ v'4)(144.9) ..J30/29500 = 2.431 > 0.673 

P = [ 1-(0.22/2.431)]/2.431 = 0.374 

bd =pw 

= 0.374(8.692) = 3.251 in. 

Effective section properties about x axis: 

y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) 

1 2 x 0.596 = 1.192 
2 4 x 0.195 = 0.780 
3 2 x 2.692 = 5.384 
4 2 x 3.692 = 7.384 
5 3.251 
6 2 x 0.195 = 0.390 

Sum 18.381 

Distance of neutral axis from top fiber, 

ycg = LylL = 43.561/18.381 = 2.370 in. 

I/eff L 2 I' L 2 = Y + 1 - Y cg 

= 141.419 + 8.423 - 18.381(2.370)2 

= 46.60 in.3 

Actual leff = tI' eff 

= (0.060)(46.60) = 2.80 in.4 

Check Web 

* Should be fully effective 

r--- 0.154" 
r 

, 

(in.) 

3.548 
3.925 
3.970 
2.000 
0.030 
0.075 

, 
___ ~ __ ....I..-___ ......:.N..;.:,;;.A..:;;..._ 

- ' 
~ 

, ~r 

JJ 

L~ 
(in.2) 

4.229 
3.062 

21.375 
14.768 
0.098 
0.029 

43.561 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-6) 

Ly2 
(in.3

) 

15.005 
12.016 
84.857 
29.536 

0.003 
0.002 

141.419 

fc=30 ksi 

I' 1 
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About 
Own 
Axis 
(in.3

) 

0.035 

8.388 

8.423 
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fl = (2.216/2.370)(30) = 28.05 ksi(compression) 

f2 = -(1.476/2.370)(30) = -18.68 ksi(tension) 

'" = fjfl = -18.68/28.05 = -0.666 

k = 4+2(1-",)3+2(1_",) (Eq. B2.3-4) 

= 4+2[ 1-(-0.666)] 3 +2[ 1-(-0.666)] = 16.58 

A = (1.052/ -flC(w/t) ~f/E , f=fl (Eq. B2.1-4) 

= (1.052/~16.58 )(61.53) ~28.05/29500 = 0.490 < 0.673 

b = w (Eq. B2.1-1) 

be = 3.692 in. 

= bJ2 (Eq. B2.3-2) 

= 3.692/2 = 1.846 in. 

= bJ(3-'I') (Eq. B2.3-1) 

= 3.692/[ 3-(-0.666)] = 1.007 in. 

b1+b2 = 1.007 + 1.846 = 2.853 in. > 2.216 in. (compression portion of web) 
Therefore, web is fully effective. 

Seff = lefdY cg = 2.80/2.370 = 1.18 in.
3 

M = Seft<0.6Fy) 

= (1.18)(30) = 35.4 kip-in. 

To detennine Jeff at M = 30.72 kip-in., extrapolate using 

(1) M= 52.00 kip-in., 1= 2.56 in.4 

(2) M= 35.40 kip-in., 1= 2.80 in.4 

(3) M = 30.72 kip-in., 1= ? 

(30.72-35.4)/(1-2.80) = (35.4-52.0)/(2.80-2.56) 

-4.68 = -69.17(1-2.80) 

0.0676= 1-2.80 

1= 2.87 in.4 

Use I = 2.87 in.4 in deflection calculations 

Deflection = 5wL 4/384EI 

b. Procedure II 

A = 0.256+0.328(w/t) ~Fy/E 

= 0.256+0.328( 144.9) -v~50-/2-95-00-= 2.213 

Computation of leff: Check case of f = F y 

A = 3.138 > Ac 
p = (0.41 +0.59 ~Fy/f -0.22A)/A 

P = (l-0.22/A)/A 

M 
(kip-in.) 

60 

50 

40 

30 

20 

10 

0 
0 1.0 2.0 

(Eq. B2.1-10) 

(Eq. B2.1-9) 

p = 0.296, which is the same value for Load Capacity Detennination 

3.0 
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Computation of leff: Assume a compressive stress f = 0.6Fy 

= 30 ksi in top fiber of section 

Note: Web is fully effective 

A. = 2.431 > A.c 

p = (0.41+0.59 ..JF;/f -0.22!A.)!A. 

= (0.41+0.59 ...J50/30 -0.22/2.431)/2.431 = 0.445 

For A. > 0.673 

bd =pw 

= 0.445(8.692) = 3.868 in. 

Effective section properties about x axis: 

y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) 

1 2 x 0.596 = 1.192 
2 4 x 0.195 = 0.780 
3 2 x 2.692 = 5.384 
4 2 x 3.692 = 7.384 
5 3.868 
6 2 x 0.195 = 0.390 

Sum 18.998 

Distance of neutral axis from top fiber, 

Ycg = Ly/L = 43.579/18.998 = 2.294 in. 

I'eff = Ly2 + 1'1 - Ly2
cg 

= 141.420 + 8.423 - 18.998(2.294)2 

= 49.87 in.3 

Actual leff = tl' eff 

= (0.060)(49.87) = 2.99 in.4 

Seff = leff/Ycg = 2.99/2.294 = 1.30 in? 

M = SetiO.6Fy) 

= (1.30)(30) 

= 39.0 kip-in. 

(in.) 

3.548 
3.925 
3.970 
2.000 
0.030 
0.075 

To determine Ieffat M = 30.72 kip-in., extrapolate using 

(Eq. B2.1-9) 

(Eq. B2.1-6) 

LX 
(in.2

) 

Ly2 
(in.3

) 

4.229 15.005 
3.062 12.016 

21.375 84.857 
14.768 29.536 
0.116 0.004 
0.029 0.002 

43.579 141.420 
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1'1 
About 
Own 
Axis 
(in.3

) 

0.035 

8.388 

8.423 
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(1) M = 52.00 kip-in., 1 = 2.56 in.4 

(2) M = 39.00 kip-in., 1 =2.99 in.4 

(3) M = 30.72 kip-in., 1 =? 

(30.72-39.0)/(1-2.99) =(39.0-52.0)/(2.99-2.56) 

-8.28 = -30.23(1-2.99) 

0.27 = 1-2.99, 1 = 3.26 in.4 

Use I = 3.26 in.4 in deflection calculations 

Deflection = 5wL 4/384EI 
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EXAMPLE NO.6 

HAT SECTION 

Flexural Design, Compression Flange 
with Intermediate Stiffener 

9.000" 

0.496" 

-+h~"'" 

4.098" 
R=3/32" 

0.350" 
R=3/32" 

0.154" 

--++--x 

0.060" 

3.000" 

Given: 

1. Steel: Fy = 50 ksi. 

2. Section: As shown in the sketch. 

3. Dead load to live load ratio OIL = 1/5 and 1.20 + 1.6L governs the design. 

Required: 

IV-49 

1. For the section, determine the design flexural strength, <I>t,~ , and the moment of inertia for deflec
tion calculation. 

2. Compare structural economy of this section with an almost identical section without an intermediate 
stiffener computed in previous example. 

Solution: 

1. Properties of 900 comers: 
Radius to centerline, 

r = R + tl2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 
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Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.1 24 = 0.079 in. 

I' of comer about its own centroidal axis is negligible 

2. Nominal Section Strength, Mn (Section C3.1.1) 

a. Procedure I - Based on Initiation of Yielding 

Computation of lx, first approximation: 

* Assume a compressive stress of f = Fy = 50 ksi in the top fibers of the section. 

* Also assume web is fully effective. 

Element 4: 

hit = 3.692/0.060 = 61.53 < 200 OK (Section B1.2-(a)) Assumed fully effective 

Element 5: 

S = 1.28 ...fE/f 

= 1.28 ...f29500/50= 31.09 

bJt = 8.692/0.060 = 144.9 < 500 OK (Section B1.1-(a)-(2)) 

3S = 3(31.09) = 93.27 

For bolt> 3S (Case III) 

Ia = t 4 {[ 128(bo /t)/S] -285} 

= (0.06) 4 {[ 128(144.9)/31.09] -285} = 0.004038 in4 

Determine full section properties of stiffener 7: 

All inner radii = 3/32 in. 

r = R + t/2 = 3/32+0.060/2 = 0.124 in. 

u = 1.57r = 1.57(0.124) = 0.195 in. 

c = 0.637r = 0.637(0.124) = 0.0 79 in. 

II: 

~ 

!: 
0 

II: 

0 

'" ~ 
0 

II: 

~ 

!: 
0 

0 

(Eq. B4-1) 

(Eq. B4.1-9) 
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y 
Distance 

L from 
Length Top Fiber 

Element (in.) (in.) 

8 2 x 0.195 = 0.390 0.075 

9 2 x 0.350 = 0.700 0.329 

10 2 x 0.195 = 0.390 0.583 
Sum 1.480 

Distance of neutral axis from top fiber, 

Yeg = Ly/L = 0.4870/1.480 = 0.329 in. 

Total area of section, Lt = (1.480)(0.060) = 0.0888 in.2 

lIs L 2 I' L 2 = Y + 1 - Y eg 

= 0.2106 + 0.0071 - 1.480(0.329)2 

= 0.0575 in.3 

Actual Is = tI/S= (0.060)(0.0575) = 0.00345 in.4 

Reduced Area of Stiffener 

Element 9: 

Stiffened element, k = 4 

f = Fy = 50 ksi 

wIt = 0.350/0.060 = 5.83 < 500 OK (Section B1.1-(a)-(2» 

A = (1.052/ ...Jk)(w/t) ~f/E 

(1.052/ \"4)(5.83) ~50/29500 = 0.126 < 0.673 

b =w 

= 0.3 50 in. (fully effective) 

A's = Lt = 0.0888 in? 

As = A' s(IJla) ~ A's 

= 0.0888(0.00345/0.004038) 

= 0.0888(0.8544)= 0.0759 in.2 < A's OK 

Ls = (AJt) = (0.0759/0.060) = 1.265 in. 

Continuing with element 5: 

k = 3 (IJla)1/3 + 1 ~ 4 

= 3(0.8544)113+ 1 = 3.847 < 4 OK 

wIt = 4.098/0.060 = 68.30 

A = (1.052/ ...Jk)(w/t) ~f/E 

Ly' 
(in.2) 

Ly2 
(in.3

) 

0.0293 0.0022 
0.2303 0.0758 
0.2274 0.1326 
0.4870 0.2106 

(Eq. B2.1-4) 

(Eq. B2.l-l) 

(Eq. B4.1-11) 

(Eq. B4.1-10) 

(Eq. B2.1-4) 
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I' 1 
About 
Own 
Axis 
(in.3

) 

0.0071 

0.0071 
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= (1.052/ ~3.847 )(68.30) ~50/29500= 1.508 > 0.673 

P = (1-0.22/ A)/ A (Eq. B2.1-3) 

= (1-0.22/1.508)/1.508 = 0.566 

b =pw (Eq. B2.1-2) 

= 0.566(4.098) = 2.320 in. 

Effective section properties about x axis: 

y I' 1 
Distance About 

L from Own 
Effective Length Top Fiber LX L 2 Axis 

Y3 
Element (in.) (in.) (in.2

) (in. ) (in.3
) 

1 2 x 0.596 = 1.192 3.548 4.229 15.005 0.035 
2 4 x 0.195 = 0.780 3.925 3.062 12.016 
3 2 x 2.692 = 5.384 3.970 21.375 84.857 
4 2 x 3.692 = 7.384 2.000 14.768 29.536 8.388 
5 2 x 2.320 = 4.640 0.030 0.139 0.004 
6 2 x 0.195 = 0.390 0.075 0.029 0.002 
7 Stiffener 1.265 0.329 0.416 0.137 0.058 

Sum 21.035 44.018 141.557 8.481 

Distance of neutral axis from top fiber, Ycg = Ly/L = 44.018/21.035 = 2.093 in. 

Since the distance of the top compression fiber from the neutral axis is greater than one half the 
beam depth, a compressive stress of F y will govern as assumed. 

I' x 
2 I 2 

= Ly + I 1- Ly cg 

= 141.557 + 8.481 - 21.035(2.093)2 

= 57.89 in? 

Actual Ix = tI/X= (0.060)(57.89) = 3.47 in.4 

Check Web 

r- o lS4" , 
-------/ ...... -----1~-

~f , ~ 

" ('t') 

I:: ~ 
01 N tf"I 

~ 

" N Ir , 
0\ 

'" c-rl 
~ 

" tf"I .,... 
~ 

Ir ,Ir 

II 
----_// 
---~.,.,.. 

N.A. 

/ 
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k 

= (1.939/2.093)(50) = 46.32 ksi(compression) 

= -(1.753/2.093)(50) = -41.88 ksi(tension) 

= f2ifl = -41.88/46.32 = -0.904 

= 4+2(1-",)3+2(1_",) 

= 4+2[ 1-(-0.904)] 3 +2[ 1-(-0.904)] 

= 21.61 

(Eq. B2.3-4) 

= (1.052/"k") (w/t) "fIE, f= fl (Eq. B2.1-4) 

= (1.052/ "21.61 )(61.53) "46.32/29500= 0.552 < 0.673 

b = w (Eq. B2.1-1) 

be = 3.692 in. 

= bJ2 (Eq. B2.3-2) 

= 3.692/2 = 1.846 in. 

= bJ(3-",) (Eq. B2.3-1) 

= 3.692/[ 3-(-0.904)] = 0.946 in. 

bl+b2 = 0.946 + 1.846 = 2.792 in. > 1.939 in. (compression portion of web) 

Therefore, web is fully effective. 

Se = IJYcg 

= 3.47/2.093 = 1.66 in.3 

Mn = SeFy 

= (1.66)(50) = 83.0 kip-in. 

b. Procedure II - Based on Inelastic Reserve Capacity 
For multiple -stiffened compression elements 

Cy = 1 

Maximum compressive strain = Cyey = ey 

(Eq. C3.1.1-1) 
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Therefore, the nominal moment, Mn, is the same as the Mn determined by procedure I because the 
compression flange will yield first. 

3. Design Flexural Strength, <l>.,Mn (Section C3.1) 

<Pb = 0.95 

<l>bMn = 0.95x83.0 = 78.85 kip-in. 

4. For complete design, one should also check: 
a. Shear Strength 

b. Combined Bending and Shear, if applicable 

c. Web Crippling Strength 

5. Deflection Determination at Service Moment Ms 

cpt>Mn = 1.2MDL + 1.6MLL 
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= [ 1.2(MoL IMLd+ 1.6] MLL 

= [ 1.2( 1/5)+ 1.6] MLL 

<\>tMn = 1.84MLL 

MLL = <l>t,Mnll.84 = 78.85/1.84 = 42.85 kip-in. 

Ms =MOL+MLL 

= (1/5+ 1 )MLL 

= 1.2(42.85) = 51.42 kip-in. 

where 

MOL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

Find Ieff at Ms = 51.42 kip-in. 

Note: Procedure II of Section B2.1-(b )-(2) does not apply. 

Computation of Ieff' first approximation 

* Assume a compressive stress of f = 0.6F y = 30 ksi in the top fibers of the section. 

* Web is fully effective, because it was fully effective at a higher stress gradient. 

* Element 9 of the stiffener, which was fully effective at f = 50 ksi will also be fully ef
fective at f = 30 ksi. 

Element 5: 

S = 1.28 ffl{, f = 30 

= 1.28 ~29500/30= 40.14 

bo /t = 144.9 

3S = 3(40.14) = 120.42 

For bolt> 3S (Case III) 

Ia = t 4 {[ 128(bo /t)/S] -285} 

= (0.06) 4 {[ 128(144.9)/40.14] -285} = 0.002295 in.4 

Is = 0.00345 in.4 

k = 3(IJla)1/3+ 1~.4 

= 3(0.00345/0.002295)1/3+1 = 4.437 > 4 

k =4 

wIt = 68.30 

A = (1.052/ '*)(w/t) ~flE = 30 ksi 

= (1.052/ ...J4 )(68.30) ~30/29500 = 1.146 > 0.673 

P = (1-0.22/ A)/ A 

b 

= (1-0.22/1.146)/1.146 = 0.705 

=pw 

= 0.705(4.098) = 2.889 in. 

(Eq. B4-l) 

(Eq. B4.1-9) 

(Eq. B4.1-10) 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 
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Stiffener, Element 7: 

As ' JI ' = A s(l a) $ A s 

= 0.0888(0.00345/0.002295) 

= 0.133 in.2 > A's 

As = A's = 0.0888 in.2 

Ls = AJt = 0.0888/0.060 = 1.480 in. 
Effective section properties about x axis: 

y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) (in.) 

1 2 x 0.596 = 1.192 3.548 
2 4 x 0.195 = 0.780 3.925 
3 2 x 2.692 = 5.384 3.970 
4 2 x 3.692 = 7.384 2.000 
5 2 x 2.889 = 5.778 0.030 
6 2 x 0.195 = 0.390 0.075 
7 Stiffenerd 1.480 0.329 

Sum 22.388 

Distance of neutral axis from top fiber, 

Ycg = Ly/L = 44.123/22.388 = 1.971 in. 

I' eff 
2, 2 

= Ly + I 1 - Ly cg 

= 141.581 + 8.481 - 22.388(1.971)2 

= 63.09 in.3 

Actual leff = tI' eff 

= (0.060)(63.09) = 3.79 in.4 

Seff = leff/Ycg = 3.79/1.971 = 1.92 in? 

M = Seft<0.6Fy) 

= (1.92)(30) 

= 57.6 kip-in. > Ms = 51.42 kip-in. 

Computation of leff: second approximation 

Extrapolate to obtain the stress value 

(Eq. B4.1-11) 

Ly 
(in.2) 

Ly2 
(in?) 

4.229 15.005 
3.062 12.016 

21.375 84.857 
14.768 29.536 
0.173 0.005 
0.029 0.002 
0.487 0.160 --

44.123 141.581 

IV-55 

I' 1 
About 
Own 
Axis 
(in.3

) 

0.035 

8.388 

0.058 
8.481 
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(1) M = 83.00 kip-in., f = Fy = 50 ksi 

(2) M = 57.60 kip-in., f = 0.6Fy = 30 ksi 

(3) M = 51.42 kip-in., f =? 

(f-30)/(30-50) = (51.42-57.6)/(57.6-83.0) 

f =25.13 ksi 

* Compressive stress of f = 25.13 ksi in the top fiber of section 

* Web is fully effective 

* Element 9 of stiffener is fully effective 

Element 5: 

S = 1.28...JE/f, f = 25.13 ksi 

= 1.28 ~29500/25.13 = 43.86 

bJt = 144.9 

3S = 3(43.86) = 131.58 

For bolt> 3S (Case III) 

Ia = t 4 {[ 128(bo /t)/S] -285} 

= (0.06) 4 {[ 128(144.9)/43.86] -285}; = 0.00179 in.4 

Is= 0.00345 in.4 

k = 3(IJla)1/3+1 ~ 4 

Since IlIa> 1, k = 4 

w/t= 68.30 

A = (1.052/..Jk)(w/t) ~flE, = 25.13 ksi 

= (1.052/ ~)(68.30) "'25.13/29500= 1.049> 0.673 

p = (1-0.22/ A)/ A 

= (1-0.22/1.049)/1.049 = 0.753 

b =pw 

= 0.753(4.09 8) = 3.086 in. 

Stiffener, Element 7: 

As = A' s(lJla) ~ A's 

Since IlIa> I 

As = A's= 0.0888 in.2 

Ls = AJt = 0.0888/0.060 = 1.480 in. 
Effective section properties about x axis: 

(Eq. B4-1) 

(Eq. B4.1-9) 

(Eq. B4.1-10) 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4.1-11) 
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Y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) (in.) 

1 2 x 0.596 = 1.192 3.548 
2 4 x 0.195 = 0.780 3.925 
3 2 x 2.692 = 5.384 3.970 
4 2 x 3.692 = 7.384 2.000 
5 2 x 3.086 = 6.172 0.030 
6 2 x 0.195 = 0.390 0.075 
7 Stiffener 1.480 0.329 

Sum 22.782 

Distance of neutral axis from top fiber, 

Yeg = Ly/L = 44.135/22.782 = 1.937 in. 

I' eff = Ly2 + 1'1 - Ly2 eg 

= 141.582 + 8.481 - 22.782(1.937)2 

= 64.59 in. 3 

Actual Ieff = tl/efF (0.060)(64.59) = 3.88 in.4 

Seff = leff/Yeg = 3.88/1.937 = 2.00 in? 

M = (2.00)(25.13) = 50.26 kip-in. Close enough OK 

Use I = 3.88 in.4 in deflection calculations 

L~ 
(in.2) 

4.229 
3.062 

21.375 
14.768 
0.185 
0.029 
0.487 --

44.135 

7. Comparison of sections with and without intermediate stiffeners 

Ly2 
(in.3

) 

15.005 
12.016 
84.857 
29.536 

0.006 
0.002 
0.160 

141.582 

Section 
Total Area 

(in?) 
Design Flexural Strength 

(kip-in.) 

Without Stiffener 
With Stiffener 

1.43 
1.49 

Increase in weight = [(1.49-1.43)/1.43]x100% = 4.2% 

49.40 
78.85 

Increase in moment capacity = [(78.85-49.40)/49.40] x100% = 59.6% 

IV-57 

I' 1 
About 
Own 
Axis 
(in?) 

0.035 

8.388 

0.058 
8.481 
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EXAMPLE NO.7 

HAT SECTION 

Using Inelastic Reserve Capacity 

0323" r-' 
, 0 

§ I:: 10 
~ 
II"l 
M 

t.-i M 

f 
.;-- 0.162" 

J 
f 

~-I 

0) o '-0.161" 

- 1.347 " - .. 

-

Given: 

1. Steel: F y = 50 ksi. 

2. Section: As shown in sketch. 

3. Top flange continuously supported. 

4. Span = 8 ft. (simply supported). 

Required: 

Determine design flexural strength. <l>b~' 

Solution: 

1. Properties of 90° comers: 
Radius to centerline. 

r = R + t/2 = 3/16 + 0.135/2 = 0.255 in. 

4.500" 

3.854" 

0 

--

7.570" 

Length of arc, u = 1.57r = 1.57 x 0.255 = 0.400 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.255 = 0.162 in. 

.. 

I R:L Yeg 

- - 0.135" 

~ ~ 

1.670" - .. 

-
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I' of comer about its own centroidal axis = 0.149r3= 0.149(0.255)3 = 0.003 in.3. This is negligible. 

2. Nominal Section Strength (Section C3.1.1) 

a. Procedure I - Based on Initiation of Yielding 

Computation of Ix, first approximation: 

* Assume a compressive stress of f = F y = 50 ksi in the top fibers of the section. 

* Assume web is fully effective. 

Element 3: 

hit = 2.354/0.135 = 17.44 < 200 OK (Section B1.2-(a)). Assumed fully effective 

Element 5: 

wIt = 3.854/0.135 = 28.55 < 500 OK (Section B1.1-(a)-(2)) 

k 

A 

=4 

= (1.052/ -Vk)(w/t) -VflE 

= (1.052/ -Y4)(28.55) -V50/29500 = 0.618 < 0.673 

b =w 

= 3.854 in. (Fully effective) 

Effect ive section properties about x axis:= 

L 
Effective Length 

Element (in.) 

1 2 x 1.347 = 2.694 
2 2 x 0.400 = 0.800 
3 2 x 2.354 = 4.708 
4 2 x 0.400 = 0.800 
5 3.854 

Sum 12.856 

Distance of neutral axis from top fiber, 

Ycg = LylL = 17.626/12.856 = 1.371 in. 

y 
Distance 

from 
Top Fiber 

(in.) 

2.933 
2.839 
1.500 
0.161 
0.068 

L~ 
(in.2) 

7.902 
2.271 
7.062 
0.129 
0.262 

17.626 

(Eq. B2.1-4) 

(Eq. B2.1-1) 

Ly2 
(in.3) 

23.175 
6.448 

10.593 
0.021 
0.018 

40.255 

I' I 
About 
Own 
Axis 
(in.3

) 

2.174 

2.174 

Since the distance of the top compression fiber from the neutral axis is less than one half of the 
beam depth, a compressive stress of F y will not govern as assumed. The actual compressive stress 
will be less than F y and so the flange will still be fully effective. The tension flange will yield 
first. Section properties will not change. 

Therefore, 
2, 2 

= Ly + I 1 - Ly cg 
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= 40.255 + 2. 174 - 12.856(1.371)2 

= 18.26 in.3 

Actual Ix = tI'x= (0.135)(18.26) = 2.47 in.4 

Check Web 

rO.323f1 

/.:::=== 
1,/ 

~--,.-- ----+------- 1----.' 

II 
--------"/ -------'" -------'--- '--------' 

fl =50 ksi 

= (1.048/1.629)(50) = 32.17 ksi( compression) 

= -(1.306/1.629)(50) = -40.09 ksi(tension) 

= fz/fl = -40.09/32.17 = -1.246 

= 4+2(1-W)3+2(I-W) 

= 4+2[ 1-(-1.246)] 3 +2[ 1-(-1.246)] 

= 31.15 

(Eq. B2.3-4) 

= (1.052/-{}()(w/t) ...fflE, f= fl (Eq. B2.1-4) 

= (1.052/ ...f31.15 )(17.44) ...f32.17 (29500 = 0.109 < 0.673 

b = w (Eq. B2.1-1) 

be = 2.354 in. 

= bJ2 (Eq. B2.3-2) 

= 2.354/2 = 1.177 in. 

= bJ(3-W) (Eq. B2.3-1) 

= 2.354/[ 3-(-1.246)] = 0.554 in. 

b I +b2 = 0.554 + 1.177 = 1.731 in. > 1.048 in. (compression portion of web) 

Therefore, web is fully effective. 

Se = IJ(d-Ycg) = 2.47/(3-1.371) = 1.516 in.3 

Mn = SeFy (Eq. C3.1.1-1) 

= (1.516)(50) 



Examples Based on the March 16, 1991 Edition of the LRFD Cold-Fonned Specification 

= 75.8 kip-in. 

b. Procedure II - Based on Inelastic Reserve Capacity 

At = (1.1l/~) 

= (1.11/ "50/295(0) = 26.96 

~ =(1.28/~) 

= (1.28/ "50/29500 ) = 31.09 

wit = 28.55 

For 26.96 = Al < wit < ~ = 31.09 

Cy = 3-2[ (w/t-At )/(A2 - Ad] 

= 3-2[ (28.55-26.96)/(31.09-26.96)] = 2.23 

(Eq. C3.1.1-2) 

(Eq. C3.1.1-3) 

IV-61 

Compute location of er. on strain diagram, the summation of longitudinal forces should be zero. 
Using equations from Reck, Pekoz, and Winter, "Inelastic Strength of Cold-Formed Steel 
Beams," Journal of the Structural Division, November 1975, ASCE. 

Distance from neutral axis to the outer compression fiber, Ye: 

t = 0.135 in. 

bt = 2(1.670) = 3.340 in. 

be = 4.500 in. 

d = 3.000 in. 

Ye = (l/4)(bc be+2d) 

Ye = 0/4)[ 3.340-4.500+2(3.000)] = 1.210 in. 

Yp = Ye/Cy 

= 1.21/2.23 = 0.543 in. 

Yt = d-Ye 

= 3.000 -1.210 = 1.790 in. 

Yep = Ye-Yp 

= 1.210-0.543 = 0.667 in. 

Ytp = YcYp= 1.790-0.543 = 1.247 in. 

Summing moments of stresses in component plates: 

2 
Mn = Fyt{be Ye +2Yep[ Yp +(Yep /2)] +(4/3)yp 

+2ytp[ Yp +(Ytp /2)] +bt ytl 
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t: 
r-
~ 
d 

'" ~ 
~ 
on 
d 

N.A. -----~---------+----------+_--------------~~--------~---N.A. 
t: 
~ 
~ 
on 
0 

t: 
r-
~ 

~ 

STRAIN DIAGRAM STRESS DIAGRAM 

Mn = 50(0.135) (4.500( 1.210)+2(0.667)[ 0.543+(0.667/2 )] 

+(4/3)(0.543)2 +2(1.247)[ 0.543+(1.247/2)] +3.340(1.790)} 

Mn = 107.3 kip-in. 

Mn shall not exceed 1.25SeFy = 1.25(75.8) = 94.75 kip-in. 

Therefore 

Mn= 1.25SeFy = 94.75 kip-in. 

The inelastic reserve capacity can be used because: 

(1) Member is not subject to twisting, lateral, torsional, or torsional-flexural buckling. 

(2) The effect of cold-forming is not included in determining the yield point, Fy• 

(3) The ratio of depth of the compressed portion of the web to its thickness does not ex
ceed AI' (1.210-0.323)/0.135 = 6.57 < 11 = 26.96 OK 

(4) The shear force does not exceed 0.35F y times the web area, h x t. 
This still needs to be checked for a complete design. 

(5) The angle between any web and the vertical does not exceed 30°. 

3. Design Flexural Strength, <\>t,Mn 

<Pb = 0.95 

<PbMn = 0.95 x 94.75 = 90.01 kip-in. 
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EXAMPLE NO.8 

DECK SECTION 

-~--f04--1.000" 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: Shown in sketch above. 

2.000" 

,0.147" 

N.A. --- ---

2.000" 

3. Dead load to live load ratio D/L = 1/5 and 1.2D + 1.6L governs the design. 

Required: 

1. Design flexural strengths, ct>bMn' for positive and negative bending. 

IV-63 

Yes 

2.000" 

2. Factored unifonn load, w U' as controlled either by bending or deflection when deck is continuous 
over three 10'-0" spans. Deflection due to service live load is to be limited to 1/240 of the span. 
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Comer Properties: 

It=O.06O" 

r 

e = 75.96° 

R = 1/8" 

r = 0.155" 

a = rsin(90° -75.96°) 

= 0.155"sin 14.04° 

= 0.0376" 

b = t/2+r-a 

= 0.060"/2+0.155" -0.0376" 

= 0.147" 

, 
b = b-t/2 

, 

= 0.147"-0.060"/2 

= 0.117" 

b /btl = cos (90° -75.96°) 
, 

btl = b /cos14.04° 

= 0.117"/cos14.04° 

= 0.112" 
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Hat Portion of Web 

h' = 4.000"/cos 14.04° 

= 4.123" 

h = h'-2b"-t/cos14.04° 

= 4.123"-2(0.121") 

-0.06"/cos14.04 ° 

4.000" = 3.819" 

Solution: 

1. Full Section Properties: 

Elements 2 and 6: 

Radius to centerline, 

r = R + t/2 = 1/8 + 0.060/2 = 0.155 in. 

Angle, S = 75.96° = 1.326 rad 

Length of arc, u = Sr = 1.326(0.155) = 0.206 in. 

Distance of c.g. from center of radius, 

c 1 = rsinS/S = 0.155sin75.96° /1.326 = 0.113 in. 

1'1 of arc element about its own centroidal axis is negligible. 

Element 3: 

1= 3.819 in. 

S = 14.04° 

cosS = 0.9701 

I't = (cos2S13)/12 = [(0.9701)2 (3.819) 3]/12 = 4.368 in.3 

Element 7: 

I = 1.000 in. 

S = 14.04° 
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cosS = 0.9701 

I'l = (cos2S13)/12 = [ (0.9701)2 (1)3] /12 = 0.0784 in.3 

Distance of centroid of full section from top fiber, 

y = 4-0. 147-(1.000/2)cos14.04° = 3.368 in. 

2. Section Modulus for Load Determination - Positive Bending (Based on Procedure I) 

Since the effective design width of tlat compressive elements is a function of stress, iteration is 
required. 

Computation of Ix, first approximation: 

* Assume a compressive stress of f = F y = 50 ksi in the top fibers of the section. 

* Assume web is fully effective. 

Element 3: 

hIt = 3.819/0.060 = 63.65 200 OK (Section B 1.2-(a». Assumed fully effective 

Element 4: 

wIt = 2.000/0.060 = 33.33 < 500 OK (Section B 1.1-(a)-(2» 

k 

A 

=4 

= (1.052/ -.Jk)(w/t) ~f/E, f = Fy 

= (1.052/ -{tf )(33.33) ~50/29500 = 0.722 > 0.673 

p = (1-0.22/ 'A)/ 'A 

= (1-0.22/0.722)/0.722 = 0.963 

b = pw 

= 0.963 x 2 = 1.926 in. 

Effective section properties about x axis: 

y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) (in.) 

1 1.000 3.970 
2 5 x 0.206 = 1.030 3.928 
3 4 x 3.819 =15.276 2.000 
4 2 x 1.926 = 3.852 0.030 

5&8 2 x 2.000 = 4.000 3.970 
6 4 x 0.206 = 0.824 0.072 
7 1.000 3.368 --

Sum 26.982 

Distance of neutral axis from top fiber, 

Ly' 
(in.2) 

3.970 
4.046 

30.552 
0.116 

15.880 
0.059 
3.368 

57.991 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

Ly2 
(in.3

) 

15.761 
15.892 
61.104 

0.004 
63.044 

0.004 
11.343 

167.152 

I' I 
About 
Own 
Axis 
(in.3

) 

17.472 

0.078 
17.550 



Examples Based on the March 16, 1991 Edition of the LRFD Cold-Fonned Specification IV-67 

Ycg = LylL = 57.991/26.982 = 2.149 in. 

Since the distance of the top compression fiber from the neutral axis is greater than one half of the 
deck depth, a compressive stress of F y will govern as assumed. 

I'x = Ly2 + I't - Ly2cg= 167.152 + 17.550 - 26.982(2.149)2 

= 60.09 in.3 

Actual Ix = tI'x= (0.060)(60.09) = 3.61 in.4 

Check Web 

0.147" 

N.A. 

f t = (2.002/2.149)(50) = 46.58 ksi(compression) 

f2 = -(1.704/2.149)(50) = -39.65 ksi(tension) 

'" = fllft = -39.65/46.58 = -0.851 

fc=50 ksi 

k = 4+2(1-",)3+2(1_",) (Eq. B2.3-4) 

= 4+2[ 1-(-0.851)] 3 +2[ 1-(-0.851)]= 20.39 

= (1.052/ -{}( )(w/t) ...JflE, f= f t (Eq. B2.l-4) 

= (1.052/ ...J20.39)(63.65)-..J46.58/29500 = 0.589 < 0.673 

b =w CEq. B2.1-I) 

be = 3.819 in. 

= bJ2 CEq. B2.3-2) 

= 3.819/2 = 1.910 in. 

= bJ(3-",) CEq. B2.3-l) 

= 3.819/[ 3-(-0.851)] = 0.992 in. 

b1+b2 = 0.992 + 1.910 = 2.902 in. > 2.002 in. (compression portion of web) 

Therefore, web is fully effective. 
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Se = Ix/Ycg 

= 3.61/2.149= 1.68 in.3 

Mn = SeFy 

= (1.68)(50) 

= 84.0 kip-in 

<l>b = 0.95 

<I>~n= 0.95 x 84.0 = 79.8 kip-in. 

(Eq. C3.1.1-l) 

3. Moment of Inertia for Deflection Determination - Positive Bending 

<I>~n = 1.2MoL + 1.6MLL 

= [ 1.2(MoL /MLL )+ 1.6]MLL 

= [ 1.2(1/5)+ 1.6] MLL 

= 1.84MLL 

MLL = <\>bMn/1.84 = 79.80/1.84 = 43.37 kip-in. 

Ms = MOL+MLL 

= (1/5+1)MLL 

= 1.2(43.37) = 52.04 kip-in. 

where 

MOL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

Computation of leff' first approximation: 

* Assume a compressive stress of f = 31 ksi in the top fibers of the section. 

* Since the web was fully effective at a higher stress gradient, it will be fully effective 
at this stress level. 

Element 4: 

wit = 33.33 

k =4 

A = (1.052/~)(w/t) ~f/E, 

= (1.052/~)(33.33) ~31/29500 = 0.568 < 0.673 

bd =W 

= 2.000 in. (Fully effective) 

Note: All elements are fully effective. 

Effective section properties about x axis: 

(Eq. B2.1-4) 

(Eq. B2.1-5) 
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Y I' 1 
Distance About 

L from Own 
Effective Length Top Fiber Ly' Ly2 Axis 

Element (in.) (in.) (in.2) (in.3
) (in.3

) 

1 1.000 3.970 3.970 15.761 
2 5 x 0.206 = 1.030 3.928 4.046 15.892 
3 4 x 3.819 =15.276 2.000 30.552 61.104 17.472 
4 2 x 2.000 = 4.000 0.030 0.120 0.004 

5&8 2 x 2.000 = 4.000 3.970 15.880 63.044 
6 4 x 0.206 = 0.824 0.072 0.059 0.004 
7 1.000 3.368 3.368 11.343 0.078 --

Sum 27.130 57.995 167.152 17.550 

Distance of neutral axis from top fiber, 

Ycg = Ly/L = 57.995/27.130 = 2.138 in. 

Since the distance of the top compression fiber from teh neutral axis is greater than one half the 
deck depth, the compressive stress of 31 ksi will govern as assumed. 

I'eff = Ly2 + I't - Ly2cg 

= 167.152= 17.550-27.130(2.138)2 

= 60.69 in.3 

Actual leff = tI' eff 

= (0.060)(60.69) = 3.64 in.4 

Seff = leff/Ycg = 3.64/2.138 = 1.70 in.3 

M = Sefr(31)= (1.70)(31) 

= 52.7 kip-in. > Ms = 52.04 

leff = 3.64 in.4 can be used for deflection calculations for the following reasons: 

(1) M (leff = 3.64):::: Ms 

(2) In order to achieve M (leff) = Ms a lower compressive stress would be required, but 
the section is already fully effective. 

leff = 3.64 in.4 

4. Section Modulus for Load Determination - Negative Bending (Based on Procedure I) 

Following a similar procedure as in positive bending. 

Computation of~, frrst approximation: 

* Assume a compressive stress of f = F y = 50 ksi in the bottom fiber of the section. 

* Assume web is fully effective. 

Element 3: 

hit = 3.819/0.060 = 63.65 < 200 OK (Section B1.2-(a». Assumed fully effective 
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Element 1: 

wIt = 1.000/0.060 = 16.67 60 OK (Section B1.1-(a)-(3)) 

k = 0.43 

A = (1.052/~)(w/t) ...JftE 

= (1.052/ ...J0.43 )( 16.67) ...j'--50-{2-95-00- = 1.101 > 0.673 

P (1-0.22/A)/A 

= (1-0.22/1.101)/1.101 = 0.727 

b =pw 

= 0.727 x 1.000 

= 0.727 in. 

Element 5: 

Same as element 4 in positive bending case 

b = 1.926 in. 

Element 8: 

wIt = 2.000/0.060 = 33.33 < 60 OK (Section B1.1-(a)-(3)) 

S = 1.28 ...JE/f 

= 1.28 ...J29500/50 = 31.09 

For w/t > S 

Ia = t 4 {[ 115(w/t)/S] +5} 

= (0.060/ {[ 115(33.33)/31.09] +5} 

= 0.00166 in.4 

Is = d3tsin2S/12 

= (1.000)\0.060)(sin75.96°)/12 = 0.00471 in.4 

D = 1.000+0. 185tan(75.96°/2) = 1.144 in. 

D/w = 1.144/2.000 = 0.572 

For 0.25 < D/w < 0.80 

k = [ 4.82-5(D/w)] (Is/la) 113+0.43 :5; 5.25-5(D/w) 

[4.82-5(0.572)] (0.0047110.00166)1/3+0.43 = 3.205 

5.25-5(0.572) = 2.390 

k = 2.390 

A = (1.052/~ )(w/t) ...JftE 

= (1.052/ ...J2.390 )(33.33) ...J50/295oo = 0.934> 0.673 

P = (1-0.22/ A)/ A 

= (1-0.22/0.934)/0.934 = 0.818 

b = pw 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4-l) 

(Eq. B4.2-13) 

(Eq. B4.2-9) 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 
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= 0.818(2.000) = 1.636 in. 

Element 7: 

Is = 0.00471 in.4 (calculated previously) 

la = 0.00166 in.4 (calculated previously) 

d = 1.000 in. 

Assume max. stress in element, f = F y = 50 ksi although it will be actually less. 

k = 0.43 

wit = 1.000/0.060 = 16.67> 14 (Section B4 of the Commentary) 

A. = (1.052/Vk)(w/t)VflE) (Eq. B2.1-4) 

= (1.052/ V0.43 )(16.67) V5 0/295 00 = 1.101 > 0.673 

P = (1-0.22()...)()... (Eq. B2.1-3) 

= (1-0.22/1.101)/1.101 = 0.727 

b =pw 

= 0.727(1.000) = 0.727 in. 

d's = 0.727 in. 

ds= d's(lJla) ~ d's 

Since I/Ia > 1 

ds = d's = 0.727 in. 

1'1 = (ds)3sin2S/12 = (0.727)\sin75.96°)2/12 = 0.030 in.3 

Distance of centroid of reduced section from top fiber, 

y = 4-0. 147-(0.727/2)cosI4.04° = 3.500 in. 

Effective section properties about x axis: 

(Eq. B2.1-2) 

(Eq. B4.2-11) 
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L 
Effective Length 

Element (in.) 

1 0.727 
2 5 x 0.206 = 1.030 
3 4 x 3.819 =15.276 
4 2 x 2.000 = 4.000 
5 1.926 
6 4 x 0.206 = 0.824 
7 0.727 
8 1.636 

Sum 26.146 

Distance of neutral axis from top fiber, 

Yeg = LylL = 54.349/26.146 = 2.079 in. 

Y 
Distance 

from 
Top Fiber 

(in.) 

3.970 
3.928 
2.000 
0.030 
3.970 
0.072 
3.500 
3.970 

I' 1 
About 
Own 

Ly Ly2 Axis 
(in.2) (in.3

) (in.3
) 

2.886 11.458 
4.046 15.892 

30.552 61.104 17.472 
0.120 0.004 
7.646 30.355 
0.059 0.004 
2.545 8.906 0.030 
6.495 25.785 

54.349 153.508 17.502 

Since the distance of the top fiber from the neutral axis is greater than one half the deck depth, a 
compressive stress ofFy will not govern as assumed. The compressive stress will be slightly less. 

fc =50 ksi 

Computation of Ix' second approximation: 

* Assume a compressive stress of f = 45 ksi 

* Assume web is fully effective. 

Element 1: 

wit = 16.67 

k 

A 

= 0.43 

= (1.052/ Vk)(w/t) ~flE 

= (2.079/1.921)(50) 

= 54.11 ksi > Fy 

(Eq. B2.1-4) 



Examples Based on the March 16, 1991 Edition of the LRFD Cold-Formed Specification 

= (1.052/ --.)0.43 )(16.67) --.)45/29500 = 1.045> 0.673 

P = (1-0.22/ 'A)/ 'A 

= (1-0.22/1.045)/1.045 = 0.756 

b =pw 

= 0.756 x 1.000 

= 0.756 in. 

Element 5: 

wit = 33.33 

k =4 

A. = (1.052/...Jk )(w/t) --.)flE 

= (1.052/ ~)(33.33) --.)45/29500= 0.685> 0.673 

P = (1-0.22/ 'A)/ A. 

= (1-0.22/0.685)/0.685 = 0.991 

b = pw 

= 0.991 x 2.000= 1.982 in. 

Element 8: 

wIt = 33.33 

S = 1.28 --.)E/f 

= 1.28 --.)29500/45 = 32.77 

For w/t > S 

Ia = t 4 {[ 115(w/t)/S] +5}; 

= (0.060) 4 {[ 115(33.33)/32.77] +5}= 0.00158 in.4 

Is = 0.00471 in.4 (calculated previously) 

D = 1.144 in. (calculated previously) 

D/w = 0.572 (calculated previously) 

For 0.25 < D/w < 0.80 

k = [4.82-5(D/w)](IJla)I/3+0.43$;5.25-5(D/w) 

[4.82-5(0.572)](0.00471/0.oo158i/3 +0.43 = 3.251 

5.25-5(0.572) = 2.390 

k = 2.390 

A. = (1.052/...Jk )(w/t) --.)flE 

= (1.052/ --.)2.390 )(33.33) --.)45/29500 = 0.886 > 0.673 

P = (1-0.22/ 'A)/ A. 

= (1-0.22/0.886)/0.886 = 0.848 

b = pw 

= 0.848(2.000) = 1.696 in. 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

Eq. B2.1-2) 

(Eq. B4-1) 

(Eq. B4.2-13) 

(Eq. B4.2-9) 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 
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Element 7: 

Is = 0.00471 in.4 (calculated previously) 

Ia = 0.00158 in.4 (calculated previously) 

d = 1.000 in. 

Assume max. stress in element, f = 45 ksi although it will be actually less. 

k = 0.43 

wit = 16.67 

A = (1.052/ -K )(w/t)~flE 
= (1.052/ ~0.43 )(16.67) ~45/29500= 1.045> 0.673 

p = (1-0.22/ A)/ A 

b 

= (1-0.22/1.045)/1.045 = 0.756 

= pw 

= 0.756(1.000) = 0.756 in. 

d's = 0.756 in. 

ds = d's(lJla) $ d's 

Since I/Ia > 1 

ds = d's = 0.756 in. 

1'1 = (ds)3sin2S/12 = (0.756)3(sin75.96°)2/12 = 0.034 in.3 

Distance of centroid of reduced section from top fiber, 

y = 4-0. 147-(0.756/2)cosI4.04° = 3.486 in. 

Effective section properties about x axis: 

Element 

2 

3 
4 
5 

6 
7 
8 

Sum 

L 
Effective Length 

(in.) 

0.756 
5 x 0.206 = 1.030 
4 x 3.819 =15.276 
2 x 2.000 = 4.000 

1.982 

4 x 0.206 = 0.824 
0.756 
1.696 

26.320 

Distance of neutral axis from top fiber, 

y 
Distance 

from 
Top Fiber 

(in.) 

3.970 
3.928 

2.000 
0.030 
3.970 
0.072 
3.486 
3.970 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4.2-11) 

L~ 
(in.2) 

Ly2 
(in.3) 

3.001 11.915 
4.046 15.892 

30.552 61.104 
0.120 0.004 
7.869 31.238 

0.059 0.004 
2.635 9.187 
6.733 26.730 

55.015 156.074 

I' 1 
About 
Own 
Axis 
(in.3) 

17.472 

0.034 

17.506 

• 
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Yeg = LyIL = 55.015/26.320 = 2.090 in. 

Check Web 

N.A. 

0.147" 

fl = (1.763/1.910)(45) = 41.54 ksi (compression) 

f2 = -(1.943/1.910)(45) = -45.78 ksi (tension) 

'V = f~fl = -45.78/41.54 = -1.102 

k = 4+2(1-'I')3+2(1-'V) 

= 4+2[ 1-(-1.102)] 3 +2[ 1-(-1.102)] 

= 26.78 

/.., = (1.052Nk)(w/t) ~flE , f = fl 

fc=4S ksi 

= (1.052/ ~26. 78 )(63.65) ",r--41-.5-4-a-95-00-= 0.486 < 0.673 

b = w 

ft = (2.090/1.910)(45) 

= 49.24 ksi Satisfactory 

(Eq. B2.3-4) 

(Eq. B2.1-4) 

(Eq. B2.1-l) 
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= 3.819 in. 

= bJ2 (Eq. B2.3-2) 

= 3.819/2 = 1.910 in. 

= bJ(3-'I') (Eq. B2.3-1) 

= 3.819/[ 3-(-1.102)] = 0.931 in. 

b 1+b2 = 0.931 + 1.910 = 2.841 in. > 1.763 in. (compressionportion of web) 

Therefore, web is fully effective. 

Check Element 7: 

Maximum stress in element, f = 41.54 ksi 

k = 0.43, wit = 16.67 

A = (1.052/ ..Jk)(w/t) ...Jf/E 

= (1.052/ "0.43 )( 16.67) "41.54/29500 = 1.004 > 0.673 

P = (1-0.22/ A)/ A 

= (1-0.22/1.004)/1.004 = 0.778 

b = pw 

= O. 778( 1.000) = 0.778 in. 

d's = 0.778 in. 

ds = d's(lJla) ~ d's 

Since lila> 1 

ds = d's = 0.778 in. 

1'1 = (ds)3sin2e/12 = (0.778)3(sin75.96°)2/12 = 0.037 in.3 

Distance of centroid of reduced section from top fiber, 

y = 4-0. 147-(0.778/2)cosI4.04° = 3.476 in. 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4.2-11) 

Detennine section properties, but only the properties of element 7 have changed 

& = 0.778-0.756 = 0.022 in. 

&y = (0.778)(3.476)-2.635 = 0.069 in.2 

&y2 = 0.778(3.476)2-9.187 = 0.213 in.3 

~1'1 = 0.037-0.034 = 0.003 in.3 

Therefore, 

L = 26.320+0.022 = 26.342 in. 

Ly = 55.015+0.069 = 55.084 in.2 

Ly2 = 156.074+0.213 = 156.287 in.3 

1'1 = 17.506+0.003 = 17.509 in.3 

Distance of neutral axis from top fiber, 

Yeg = LylL = 55.084/26.342 = 2.091 in. 

ft = (2.091/1.909)(45) = 49.29 ksi ::= 50 ksi OK 
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I' x 2 I 2 = Ly + I 1 - Ly cg 

= 156.287 + 17.509 - 26.342(2.091)2 

= 58.62 in.3 

Actual Ix = tI/x 

= (0.060)(58.62) = 3.52 in.4 

Se = Ix/Ycg 

= 3.52/2.091 

= 1.68 in.3 

Mn = SeFy 

= (1.68)(50) 

= 84.0 kip-in. 

<l>b = 0.90 

<I>~n = 0.90 x 84.0 = 75.6 kip-in. 

5. Moment of Inertia for Deflection Determination - Negative Bending 

<l>tMn = 1.2MoL + 1.6MLL 

= [ 1.2(MoL /MLL )+ 1.6] MLL 

= [ 1.2(1/5)+ 1.6] MLL 

= 1.84MLL 

MLL = <l>bMn/1.84 = 75.60/1.84 = 41.09 kip-in. 

Ms = MOL + MLL= (1/5+l)MLL= 1.2(41.09) = 49.31 kip-in. 

Computation of I eff, first approximation: 

(Eq. C3.1.1-1) 

* Assume a compressive stress of f = 27 ksi in the bottom fiber of the section. 

* Since the web was fully effective at a higher stress gradient, it will be fully effective 
at this stress level. 

Element 1: 

wIt = 16.67 

k = 0.43 

A = (1.052/{k)(w/t) -VflE 

= (1.052/ -V0.43 )(16.67) ...)27/29500 = 0.809> 0.673 

P = (1-0.22/ A)/ A 

b 

= (1-0.22/0.809)/0.809 = 0.900 

=pw 

= 0.900 x 1.000 

= 0.900 in. 

Element 5: 

wIt = 33.33 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 
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k = 4 

A = (1.052/ -fIZ(w/t) ~f/E 

= (1.052/ -{Lf)(33.33) ~27 /29500 = 0.530 > 0.673 

bd =W 

= 2.000 (Fully effective) 

Element 8: 

wit = 33.33 

S = 1.28 ~E/f 

= 1.28 ~29500/27 = 42.31 

For S/3 < wit < S, 

la = t 4 399{ [ (w/t)/S] -0.33} 3 

= (0.060) 4 (399)[ (33.33/42.31)-0.33] 3 

= 0.000496 in.4 

Is = 0.00471 in.4 (calculated previously) 

IJIa = 0.00471/0.000496 = 9.5 > 1 

D = 1.144 in. (calculated previously) 

D/w = 0.572 (calculated previously) 

For 0.25 < D/w < 0.80 

k = [4.82-5(D/w)](IJla)I!2+0.43 ~5.25-5(D/w) 

Since I/Ia < 1 

k = 5.25-5(D/w) = 5.25-5(0.572) = 2.390 

A = (1.052/ -fIZ)(w/t) ~f/E 

= (1.052/ ~2.390 )(33.33) ~27 /29500 = 0.680> 0.673 

P = (1-0.22/ A)/ A 

=( 1-0.22/0.680)/0.680 = 0.994 

b =pw 

= 0.994(2.000) = 1.988 in. 

Element 7: 

IJIa> 1 

d = 1.000 in. 

(Eq. B2.1-4) 

(Eq. B2.1-5) 

(Eq. B4-1) 

(Eq. B4.2-6) 

(Eq. B4.2-9) 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

Assume max. stress in element, f = 27 ksi although it will be actually less. 

k = 0.43 

wit = 16.67 

A = (1.052/ -fIZ)(w/t) ~f/E (Eq. B2.1-4) 

= (1.052/ ~0.43 )(16.67) ~27/29500= 0.809 > 0.673 

P = (1-0.22/ A)/ A (Eq. B2.1-3) 
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= (1-0.22/0.809)/0.809 = 0.900 

b =pw (Eq. B2.1-2) 

= 0.900(1.000) = 0.900 in. 

d' s ::: 0.900 in. 

ds 'lJI ' = d s( a)~ s (Eq. B4.2-11) 

Since IJla > 1 

ds = d's = 0.900 in. 

1'1 = (dsisin2S/l2 = (0.900)3(sin75.96°)2/l2 = 0.057 in.3 

Distance of centroid of reduced section from top fiber, 
Y = 4-0. 147-(0.9OO/2)cosI4.04 0 = 3.416 in. 

Effective section properties about x axi~: 

y I' 1 
Distance About 

L from Own 
Effective Length Top Fiber L~ Ly2 Axis 

Element (in.) (in.) (in.2) (in.3) (in.3) 

1 0.900 3.970 3.573 14.185 
2 5 x 0.206 = 1.030 3.928 4.046 15.892 
3 4 x 3.819 =15.276 2.000 30.552 61.104 17.472 
4 2 x 2.000 = 4.000 0.030 0.120 0.004 
5 2.000 3.970 7.940 31.522 
6 4 x 0.206 = 0.824 0.072 0.059 0.004 
7 0.900 3.416 3.074 10.50 0.057 
8 1.988 3.970 7.892 31.331 

--

Sum 26.918 57.256 164.544 17.529 

Distance of neutral axis from top fiber, 

Ycg = LylL = 57.256/26.918 = 2.127 in. 

I'eff 
2, 2 = Ly + I 1 - Ly cg 

= 164.544 + 17.529 - 26.918(2.127)2= 60.29 in.3 

Actual leff = tI' efF (0.060)(60.29) = 3.62 in.4 

Seff = leff/(d-Ycg) = 3.62/(4-2.127) = 1.93 in.3 

M = (1.93)(27) = 52.11 ksi > Ms = 49.31 ksi N.G. 

Computation of leff' second approximation: 

* Assume a compressive stress in the bottom fiber of the section using extrapolation. 

(1) f = 45 ksi, M = 84.00 kip-in. 

(2) f = 27 ksi, M = 52.11 kip-in. 

(3) f = ? M = 49.31 kip-in. 
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(f-27)/( 49.31-52.11) =(27-45)/(52.11-84.00) 

f - = -1.58 f= 27 - 1.58 

f = 25.42 ksi 

Element 1: 

wIt = 16.67 

k 0.43 

A = (l.052/--Jk)(w/t) ...Jf/E 

= (1.052/ ...J0.43 )(16.67) ...J25.42/29500 = 0.785> .673 

P = (1-0.22/ A)/ A 

= (1-0.22/0.785)/0.785 = 0.917 

b =pw 

= 0.917 x 1 = 0.917 in. 

Element 5: 

Fully effective at f = 27 ksi 

It will also be fully effective at f = 25.42 ksi 

b = 2.000 in. 

Element 8: 

wIt = 33.33 

S = 1.28 ...Jf/E 

= 1.28 ...J29500/25.42 = 43.60 

For S/3 < wIt < S, 

IJla > 1 by observation 

D/w = 0.572 

Since lila> 1 

k = 2.390 

A = 0.052/ ..Jk)(w/t) ...Jf/E 

= (1.052/ ...J0.43 )(33.33) ...J25.42/295oo = 0.666 < 0.673 

b =w 

= 2.000 in. (Fully effective) 

Element 7: 

I/Ia> 1 

d = 1.000 in. 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4-1) 

(Eq. B2.1-4) 

(Eq. B2.1-1) 

Assume max. stress in element, f = 25.42 ksi although it will be actually less. 

k = 0.43 

wIt = 16.67 
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A = (1.052/ -(]()(w/t) ~f!E 

= (1.052/ ~0.43 )(16.67) ~25.42/29500 = 0.785> 0.673 

P = (1-0.22/ A)/ A 

= (1-0.22/0.785)/0.785 = 0.917 

b =pw 

= 0.917(1.000) = 0.917 in. 

d's = 0.917 in. 

Since I/Ia > 1 

ds = d's = 0.917 in. 

1'1 = (ds)3sin2S/12 =(0.917i(sin75.96°)2/12 = 0.060 in.3 

Distance of centroid of reduced section from top fiber, 

y = 4-0. 147-(0.917/2)cos 14.04° = 3.408 in. 

Effective section properties about x axis: 

y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) 

1 0.917 
2 5 x 0.206 = 1.030 
3 4x3.819 =15.276 
4 2 x 2.000 = 4.000 
5 2.000 
6 4 x 0.206 = 0.824 
7 0.917 
8 2.000 

Sum 26.964 

Distance of neutral axis from top fiber, 

y cg LylL = 57.422/26.964 = 2.130 in. 

I' eff = Ly2 + 1'1 - Ly2eg 

(in.) 

3.970 
3.928 
2.000 
0.030 
3.970 
0.072 
3.408 
3.970 

= 165.151 + 17.532 - 26.964(2.130)2= 60.35 in.3 

Actual leff = tI'efr (0.060)(60.35) = 3.62 in.4 
Seff = Ieft/(d-Yeg) = 3.62/(4-2.130) = 1.94 in.3 

M = (1.94)(25.42) = 49.31 ksi = Ms OK 

Ly 
(in.2) 

3.640 
4.046 

30.552 
0.120 
7.940 
0.059 
3.125 
7.940 

57.422 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

I' 
1 

Ly2 
(in.3

) 

14.453 
15.892 
61.104 

0.004 
31.522 

0.004 
10.650 
31.522 

165.151 

IV-81 

About 
Own 
Axis 
(in.3

) 

17.472 

0.060 

17.532 

Note :A slight adjustment could be made for element 7 since the actual maximum stress is less than f = 
25.42 ksi, but the net effect will be negligible. 
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6. Summary Positive Bending : ct>t,~ = 79.8 kip-in. 
leff = 3.64 in.4 

Negative Bending: cf>bMn = 75.6 kip-in. 

lerr = 3.62 in.4 

7. Compute Factored Uniform Load for a continuous deck over three equal spans, the maximum bending 
moment is negative and occurs over the interior supports. It is given by: 

Mu = O.lOOwuL 2 

Therefore, the maximum factored uniform load is 

Wu = MjO.lOOL2 = 75.6/0.100(10'x12"/l)2 = 0.0525 kip/in. 

Wu = 0.630 kip/ft 

The maximum deflection occurs at a distance of 0.446L from the exterior supports. It is given by: 

d = 0.0069wL 4/EI 

This deflection is limited to d = L/240 for live load. Therefore , the maximum live load which will 
satisfy the deflection requirement is) 

WLL = EI/[ 240(0.OO69)L 3] = 29500(3.64)/[ 240(0.0069)(10x12)3] 

= 0.0375 kip/in. 

WLL = 0.450 kip/ft 

Wu = 1.2DLL+l.6 WLL 

= [ 1.2(wDL /WLL )+ 1.6] WLL 

= [ 1.2( 1/5)+ 1.6] WLL 

= 1.84wLL = 1.84(0.450) = 0.828 kip/ft > 0.630 kip/ft 

Therefore, design flexural strength governs. 

Factored Uniform Load = 0.630 kip/ft. 

8. Check Shear Strength (Section C3.2) 
ky = 5.34, unreinforced web 

...JEkvfFy = ...J29500(5.34/50 = 56.13 

1.415 ...JEkvlf\ = 1.415 (56.13) = 79.42 

hIt = 3.819/0.060 = 63.65 

For ...JEkJFy< hit < 1.415...JEkjFy 

6y = 0.90 

Vn = 0.64t2 ...JkyFyE 

= 0.64(0.06)2...Jr-5.-34-(5-0-)(-29-5OO-) = 6.47 kips (per web) 

Total V n for section: 

Vn =4(6.47) = 25.88 kips 

CPyVn = 0.90(25.88) = 23.29 kips 

Vertical component (cf>vVn)v = 23.29cosI4.04° = 22.59 kips 
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The maximum required shear strength is given by 

V u = 0.600 wuL 

= (0.600)(0.630)(10) = 3.78 kips < (<l>vVn)v= 22.59 kips OK 

9. Check Strength for Combined Bending and Shear (Section C3.3) At the interior supports there is a 
combination of web bending and web shear: 

<l>~nxo = 75.6 kip-in. Mu = 0.I00wuL
2 

(<l>v V n)v = 22.59 kips V u = 0.600wuL 
For unreinforced webs. 

(Mj<l>~nxo)2+[ Vu /(<l>vVn )v] 2 ~ 1.0 (Eq. C3.3-l) 

Solve for wu: 
{[ O.I00wu (lOxI2)2] n5.6}2 +{ [0.600wu (lOxI2)] /22.59 }2= 1.0 

362.81 wu2+ 1 0.16wu2 = 1.0 

372.97wu2 = 1.0 

Factored Uniform Load = 0.621 kip/ft. 

10. Check Web Crippling Strength (Section C3.4) 

h = 3.819 in. 

t = 0.060 in. 

hit = 3.819/0.06 = 63.65 < 200 OK 

R = 1/8 in. 

R/t = 0.125/0.06 = 2.083 < 7 OK 

Let N =6 in. 

N/t = 6/0.06 = 100 < 210 OK 

Nih = 6/3.819 = 1.57 < 3.5 0 K 

Table C3.4-1 applies 

For end reactions: 

For interior reaction: 

k = Fyl33 = 50/33 = 1.515 

C I = (1.22-0.22k) 

= [ 1.22-0.22(1.515)] = 0.887 

C2 = (1.06-0.06R/t) 

= [ 1.06-0.06(2.083)] = 0.935 < 1.0 OK 

C3 = (1.33-0.33k) 

= [ 1.33-0.33(1.515)] = 0.830 

C4 = (1. 15-0. 15R/t) ~ 1.0 but not less than 0.50 

Wu= 0.0518 kip/in. 

= 0.621 kip/ft. 

(Eq. C3.4-2) 

(Eq. C3.4-4) 

(Eq. C3.4-21) 

(Eq. C3.4-10) 

(Eq. C3.4-II) 

(Eq. C3.4-12) 

(Eq. C3.4-13) 
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(1. 15-0.15R/t) = [ 1.15-0.15(2.083)] = 0.838 ~ 1.0 OK 

C4 = 0.838 

8 = 75.960 

Ca= 0.7+0.3(8/90)2 

= 0.7+0.3(75.96/90i = 0.914 

For end reaction: 

Pn(= t 2kC3C4Ca[ 217-0.28(h/t)][ 1 +0.0 1 (N/t)] 

== (0.06i(1.515)(0.830)(0.838)(0.914)[217-0.28(63.65)] 

x[ 1 +0.01(100)] = 1.38 kips/web 

Total P n for section: 

Pn = (4 webs)(1.38 k/web) = 5.52 kips 

8w = 0.75 

8wPn = 0.75(5.52) =4.14kips 

End reaction is given by 

R = O.4oowuL 

= (0.400)(0.621)(10) = 2.48 kips < 8wPn 4.14 kips OK 

For interior reaction: 

Pn = t2kC,C2Ca[ 538-0.74(h/t)][ 1+0.007(N/t)] 

= (0.06)2(1.515)(0.887)(0.935)(0.914)[ 538-0.74(63.65)] 

x[ 1+0.007(100)] = 3.45 kips/web 

Total P n for section: 

Pn = (4 webs)(3.45 k/web) = 13.80 kips 

8w = 0.75 

8wPn = 0.75(13.80) = 10.35 kips 

Interior reaction is given by 

R = 1.10wuL 

= (1.10)(0.621)(10) = 6.83 kips < 8wPn = 10.35 kips OK 

(Eq. C3.4-20) 

(Eq. C3.4-2) 

(Eq. C3.4-4) 
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EXAMPLE NO.9. 

CYLINDRICAL TUBULAR SECTION 

---++--- + 

Given: 

1. Steel: Fy = 50 ksi. 

2. Section: Shown in sketch above. 

Required: 

Design flexural strength, <l>t,Mn. 

Solution: 

Ratio of outside diameter to wall thickness, 

D/t = 8.000/0.125 = 64.00 

D/t < 0.441E/Fy = 0.441(29500/50) = 260.2 OK 

Sf = 1t[ (O.D.) 4 -(LD.) 4]/32(O.D.) 

= 1t [ (8) 4 -(7.75) 4] /32(8) 

= 5.995 in.3 

0.070E/Fy = 0.070(29500/50) = 41.30 

0.319E/Fy = 0.319(29500150) = 188.2 

For 0.070E/Fy < D/t < 0.319E/Fy 

Mn = [0.97+O.02(E/Fy )/(D/t)]FySr 

Outer diameter = 8.000 /I 
Thickness = 0.125/1 

(Eq. C6.1-2) 
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= [0.97+0.02(29500/50)/64.00](50)(5.995) 

= 346.02 kip-in. 

<l>b = 0.95 

<l>t,Mn = 0.95 x 346.02 = 328.72 kip-in. 
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EXAMPLE NO.1 o. 
C-SECTION 

Given: 

3.5" 2.914" 

1. Steel: F y = 50 ksi. 

1.414" 

R=3/16" 

ty 

I _____ +-- ___________ x~~~ 
I 

I 

2" 

2. Section: 3.5 x 2 x 0.105 channel with stiffened flanges. 

3. KxLx = KyLy = ~Lt = 6 ft. 

Required: 

Design axial strength, <l>J> n. 

Solution: 

1. Basic parameters: 

r = R+t/2 = 3/16+0.105/2 = 0.240 in. 

IV-87 

0.9" 

From the sketch and Section 1.2.2 of Part III of the Manual, a = 2.914 in., b = 1.414 in., c = 0.607 
in., a=1.00 (Since the section has lips) 
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a 

'6 

c 

u 

2. Area: 

A 
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= A' -t = 3.5-0.105 = 3.395 in. 

= B' -[ t/2+at/2] = B'-t = 2-0.105 = 1.895 in. 

= a[ C' -t/2] = C'-t/2 = 0.9-0.105/2 = 0.848 in. 

=1.57r = 1.57 x 0.240 = 0.377 in. 

= t[ a+2b+2u+a(2c+2u)] = t[ a+2b+2c+4u] 

= 0.105[ 2.914+2x1.414+2xO.607+4x0.377]= 0.889 in.2 

3. Moment of inertia about x-axis: 

Ix = 2t{0.0417a3+b(a/2+r)2+u(a/2+0.637rl+0.149r3 

+a[ 0.0833c 3 +(c/4)(a-c)2 +u(a/2+0.637r)2 +0. 149r 3] } 

= 2t[ 0.0417a3 +b(a/2+r)2 +2u(a/2+0.637r) 2 +0.298r 3 

+0.0833c 3 +(c/4)(a-c)2] 

= 2xO.105[0.0417(2.914l +1.414(2.914/2+0.240)2 

+2xO.377(2.914/2+0.637xO.240i +0.2 98(0.240) 3 

+0.0833(0.607) 3 +(0.607/4)(2.914-0.607)2] 

= 1.657 in.4 

4. Distance from centroid of section to centerline of web: 

x = (2t/A){b(b/2+r)+u(0.363r)+a[ u(b+ 1.637r)+c(b+2r)] } 

= [(2xO.l05)/0.889] (1.414(1.414/2+0.240) 

+0.377(0.363 x 0.240) +0.377(1.414+1.637xO.240)+O.607(1.414+2xO.240)} 

= 0.757 in. 

5. Moment of inertia about y-axis: 

Iy = 2t{b(b/2+r)2+0.0833b3+0.356r3+a[ c(b+2ri 

+u(b+ 1.637r)2 +0. 149r 3] }-A(X)2 

= 2xO.l 05 { 1.414( 1.414/2+0.240r +0.0833( 1.414l 

+0.356(0.240i +0.607 (1.414+ 2xO.240)2 

+0.377 (1.414+ 1.637xO.240)2 +0. 149(0.240i } -0.889(0.757)2 

= 0.524 in.4 

6. Distance from shear center to centerline of web: 

m = (ot/12Ix)[6 C {a)2 +3 6(ci)2 -8(ci] 

= [(1.895xO.105)/(12x1.657)][6xO.848(3.395r 

+ 3x 1.895(3.395)2 -8(0.848) 3] 

= 1.194 in. 

7. Distance from centroid to shear center: 

xo = -(X +m) = -(0.757+1.194) 
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= -1.951 in. 

8. St. Venant torsion constant: 
J = (e /3)[ a+2b+2u+a(2c+2u)] 

= [(0.105)3/3][ 2.914+2x1.414+4xO.377+2xO.607] 

= 0.003266 in.4 

9. Warping Constant: 
Cw = (t2/AH [ xA(ii /t][ (0)2 /3+m2 -m6 ] +(N3t)[ (m)2 (i) 3 

+(6)2 (C)2 (2 c+3 i)] -(Ix m2 /t)(2 a+4 C) +[ m(ci /3][ 8(0)2 (C)] 

+2m(2 c(C- i)+ 6(2 c-3 i)] +[ (6)2 (a)2 /6] [ (3 c+ 0)(4 c+ i)-6(c)2] 

_[m2 
( it) 4]/4]} 

= [(0.105)2/0.889] {[ 0.757xO.889x(3.395)2 /0.105][ (1.895)2/3 

+(1. 194i - 1. 194x1.895] +0.889/(3xO.105)[ (1.194)2 (3.395) 3 

+( 1.895i (0.848)2 (2xO.848+ 3x3 .395)] 

-[ 1.657x( 1.194)2/0.1 05](2x3.395+4xO.848) 

+[ 1.194(0.848)2 13][ 8(1.895i (0.848) 

+2x1.194(2xO.848(0.848-3.395)+1.895(2xO.848-3x3.395»] 

+[ (1.895)2 (3.395)2 /6][ (3xO.848+ 1.895)(4xO.848+3.395) 

-6(0.848i] -[ (1.194)2 (3.395) 4/4] } 

= 2.050 in.6 

10. Radii of gyration: 
rx = ~(lxlA) = ~1.657/0.889) = 1.365 in 

ry = ~(Iy!A) = ~0.524/0.889) = 0.768 in 

(KyLy)/ry =(6x12)/0.768 = 93.75 < 200 

ro = ~r/ + r/ + xo
2 = "r-(l-.3-6-5--..)2-+-(-0.-76-8-)2,.----+-(--1-.9-5-1)--..-2 

= 2.502 in.2 

11. Torsional-flexural constant: 
~ = 1-(xjro)2 

= 1-(-1.951/2.502)2 = 0.392 

12. Determination of Fe: 

(Eq. C4.2-3) 
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For this singly symmetric section (x-axis is the axis of symmetry), Fe shall be taken as the smaller of 
either (Eq. C4.1-1) or (Eq. C4.2-1): 

(Fe). = (1t2E)/(KyLy/ry)2 (Eq. C4.1-l) 

= (1t2x29500)/(6xI2/0.768)2 = 33.13 ksi 

O"ex = (~E)/(KxLxlrJ2 (Eq. C3.1.2-7) 
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= (1t2x295OO)/(6xI2/1.365i = 104.65 ksi 

Ot = lI(Ar/)[ GJ+( 1t2 ECw )/(Kt Lr )2] (Eq. C3.1.2-9) 

= 1I(0.889x2.5022)[11300xO.003266+(1t2x29500x2.050)/( 6x 12i] 

= 27.32 ksi. 

(Feh = (1/2~)[ (oex+ Ot)- "(Oex+CJt)2 - 4~oexot ] 

= 1/(2x0.392)[ (104.65+27.32) 

-"(104.65 + 27.32)2 -4x0.392xlO4.65x27.32 ] 

= 23.27 ksi 

Fe = 23.27 ksi 

13. Detennination ofFn: 

Fy!2 = 50/2 = 25.00 ksi 

For Fe < F/2 

Fo =Fe 

= 23.27 ksi. 

14. Detennination of Ae: 
Flanges: 

d = 0.607 in. 

Is= d3t/12 = (0.607)\0.105)/12 

= 0.001957 in.4 

D = 0.9 in. 

w = 1.414 in. 

D/w = 0.9/1.414 = 0.636 < 0.80 

S = 1.28 ~, f= Fo 

= 1.28 "'29500/23.27 = 45.57 

w/t = 1.414/0.105 = 13.47 < S/3 = 15.19 

Ia = 0 (no edge stiffener needed) 

b =w 

= 1.414 in. (flanges fully effective) 

w/t = 13.47 < 90 (Section B1.1-(a)-(l» 

Web: 

w = 2.914 in., k = 4.00 

A = (1.052/...fk )(w/t) ~f/E, f = Fo 

= (1.052/...J4 )(2.914/0.105) "23.27/29500 

= 0.410 < 0.673 

b =w 

(Eq. C4.2-l) 

(Eq. C4-3) 

(Eq. B4-l) 

(Eq. B4.2-l) 

(Eq. B4.2-2) 

(Eq. B4.2-3) 

(Eq. B2.1-4) 

(Eq. B2.1-l) 
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= 2.914 in. (web fully effective) 

wIt = 2.914/0.105 = 27.75 < 500 (Section B1.1-(a)-(2)) 

Lips: 

d = 0.607 in. 

k = 0.43 (unstiffened compression element) 

ds = d's 

A = (1.052/ ...)0.43 )(0.607/0.105) ...)23.27/29500 

= 0.260 < 0.673 

d's = d = 0.607 in., ds = 0.607 in. 

d/t = 5.78 < 14 (Section B4 of the Commentary) 

Since flanges, web, and lips are fully effective 

Ae = A = 0.889 in.2 

15. Determination of <l>cPn: 
Pn = AeFn 

= 0.889 x 23.27 

= 20.69 kips 

<l>c = 0.85 

<l>cPn = 0.85 x 20.69= 17.59 kips 

(Eq. B4.2-4) 

(Eq. C4-1) 
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EXAMPLE NO. 11 

C-SECTION WITH HOLES 

~ 

0.293"~ 

+ 
0.293" 

~ 

~ 

.. 1+-0.293" - -1414" 

If ~R=3/16" ~ , 

0.9" 

" 
~0.105" ty 

I 
3. 5" 

--+----~ 2.914" 
I 

I 
~ 

0.607" 
n 

,. 
r 0.293" ~ ~ 

f - 2" .. - -

Given: 

1. Steel: Fy = 50 ksi. 

2. Section: 3.5 x 2 x 0.105 channel with stiffened flanges. 

3. KxLx = KyLy = KtLt = 6 ft. 

n 

O. 9" 

'F 

4. Web is perforated with holes for bolts of l/2-in. diameter (in standard hole) at 4 in. spacing along the 
height of the column. 

Required: 

Design axial strength, <l>J> n 

Solution: 

1. Basic parameters: 

r = R+t/2 = 3/16+0.105/2 = 0.240 in. 

From the sketch and Section 1.2.2 of Part ill of the Manual, a = 2.914 in., b = 1.414 in., c = 0.607 in., 
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a = 1.00 (Since the section has lips) 

a = A'-t = 3.5-0.105 = 3.395 in. 

ti = B'-t = 2-0.105 = 1.895 in. 

c = C'-t/2 = 0.9-0.105/2 = 0.848 in. 

u = 1.57r = 1.57 x 0.240 = 0.377 in. 

2. Area: 

A = t[ a+ 2b+ 2c+4u] 

0.105 [2.914+ 2x 1.414+ 2xO.607 +4x0.377] 

= 0.889 in.2 

3. Moment of inertia about x-axis: 

Ix = 2t[ 0.0417a 3 +b(a/2+r)2 +2u(a/2+0.637r)2 +0.298r 3 

+0.0833c 3 +(c/4)(a-ci] 

= 2xO.105[ 0.0417(2.914) 3 +1.414(2.914/2+0.240)2 

+ 2x0.377 (2.914/2+0.637xO.240r +O.298(O.240i 

+0.0833(0.607) 3 +(0.607/4)(2.914-0.607)2] 

= 1.657 in.4 

4. Distance from centroid of section to centerline of web: 

x = (2t/A)[ b(b/2+r)+u(0.363r)+u(b+ 1.637r)+c(b+2r)] 

= (2xO.1 05/0.889)[ 1.414( 1.414/2+0.240+0.377 (0.363xO.240) 

+0.377(1.414+1.637xO.240)+0.607(l.414+2xO.240)] 

= 0.757 in. 

5. Moment of inertia about y-axis: 

Iy = 2t[ b(b/2+r)2 +0.0833b 3 +0.505r 3 +c(b+2ri 

+u(b+ 1 .637r)2] _A(X)2 

= 2xO.105[ 1.414(1.414/2+0.240)2 +0.0833(1.414) 3 

+0.505(0.240)3 +0.607 (1.414+ 2xO.240l 

+0.377 (1.414+ 1.637xO.240r] -0.889(0.757)2 

= 0.524 in.4 

6. Distance from shear center to centerline of web: 

m = (bt/12Ix )[ 6 crai +3 b(a)2 -8(C)3] 

= [(1.895xO.105)/(12x1.657)][6xO.848(3.395r 

+3x1.895(3.395)2 -8(0.848) 3] 

= 1.194 in. 

7. Distance from centroid to shear center: 

Xo = -(X+m) = -(0.757+1.194) 
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= -1.951 in. 

8. St. Venant torsion constant: 

J = (t 3 /3)[ a+2b+2c+4u] 

= [(0.105) 3/3][ 2.914+2xl,414+2xO.607+4xO.377] 

= 0.003266 in.4 

9 . Warping Constant: 

Cw = (t2 /A){ [ xA( i)2/tH (0)2 /3+m2 -m 0] + (A/3t)[ (m)2 (a) 3 

+ (0)2 (C)2 (2 c+3 a)] -(Ix m2 /t)(2 i+4 C)+[ m( C)2 /3][ 8( 0)2 (C) 

+2m(2 c( c- a)+ 0(2 c-3 a)] +[ (0)2 (i)2 /6[ (3 c+ 0)(4 c+ a)-6( C)2] 

- [m2 (a) 4/4]} 

= [ (0.105)2/0.889] {[ 0.757xO.889x(3.395)2 /0.105][ (1.895)2/3 

+(1.194)2 -1. 194x1.895] +0.889/(3xO.105)[ (1.194)2 (3.395) 3 

+(1.895)2 (0.848)2 (2xO.848+3x3.395)] 

-[ 1.657x(1.194)2/0.105](2x3.395+4xO.848) 

+[ 1.194(0.848)2 /3][ 8(1.895i(0.848) 

+2x 1. 194(2xO.848(0.848-3.395)+ 1.895(2xO.848-3x3.395»] 

+[ (1.895)2 (3.395)2 /6][ (3xO.848+ 1.895)( 4xO.848+3.395) 

-6(0.848)2] -[ (1.194)2 (3.395) 4 /4] } 

= 2.050 in.6 

10. Radii of gyration: 

rx = ...)(lx/A) = ...)0.657/0.889) = 1.365 in. 

ry = ...)(ly/A) = ...)(0.524/0.889) = 0.768 in. 

(KyLy)/ry = (6xI2)/0.768 = 93.75 < 200 

ro = ..../r/ + r/ + x/ = ..../"'-0-.3-6-5--::::)2-+-(-0.-7-68-)-=-2 +-C--1-.9-5-1)-=-2 

= 2.502 in? 

II. Torsional-flexural constant: 

p = 1-(XJro)2 

= 1-(-1.951/2.502i 

= 0.392 

12. Determination of Fe: 

(Eq. C4.2-3) 

For this singly symmetric section (x-axis is the axis of symmetry), Fe shall be taken as the smaller of 
either (Eq. C4.1-l) or (Eq. C4.2-1): 

(Fe) I = (1t2E)/(KyLy/ry)2 (Eq. C4.1-l) 

= (~x29500)/(93.75i = 33.13 ksi 
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aex = (1t2E)/(KxLx/rx)2 (Eq. C3.1.2-7) 

= (1t2x29500)/(6xI2/1.365i = 104.65 ksi 

at = l/(Aro2)[ GJ+( 1t2 ECw)/(Kt L t l] (Eq. C3.1.2-9) 

= l/(0.889x2.5022)[ 113OOxO.OO3266+(1t2x295OOx2.050)/( 6x 12iJ 

= 27.32 ksi. 

(Feh = (l/2~)[(aex + at)-...J(aex + at)2-4~aexat ] 

= l/(2x0.392)[ (104.65+27.32) 

-...J(104.65+27.32)2-4x0.392xl04.65x27.32 J 

= 23.27 ksi 

Fe = 23.27 ksi 

13. Detennination ofFn: 

Fy/2 = 50/2 = 25.00 ksi 

For Fe <F/2 

Fn =Fe 

= 23.27 ksi. 

14. Detennination of Ae: 
Flanges: 

d = 0.607 in. 

Is = d3t/12 = (0.607)3(0.105)/12= 0.001957 in.4 

D = 0.9 in. 

w =1.414 in. 

D/w = 0.9/1.414 = 0.636 < 0.80 

S = 1.28 -m[f, f = Fn 

= 1.28 ...f295oo(23.27 = 45.57 

wIt = 1.414/0.105 = 13.47 < S/3 = 15.19 

Ia = 0 (no edge stiffener needed) 

b =W 

= 1.414 in. (flanges fully effective) 

wIt = 13.47 < 90 (Section B 1.1-(a)-(1» 

Web: 

w = 2.914 in., k = 4.00 

A. = (1.052/ Vk)(w/t) ...ff/E, f = Fn 

= (1.052/ ...[.4)(2.914/0.105) ...f23.27/29500 

= 0.410 < 0.673 

dh = d+l/16 

(Eq. C4.2-1) 

(Eq. C4-3) 

(Eq. B4-1) 

(Eq. B4.2-1) 

(Eq. B4.2-2) 

(Eq. B4.2-3) 

(Eq. B2.1-4) 

(Table E3) 
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d = diameter of bolt = 0.5 in. 

dh = 0.5+ 1/16= 0.563 in. 

Number of holes in the effective length = 17 
(17xO.563)/(6x12) = 0.133> 0.015 then Ae must be determinedwith holes accounted for. (Section 
C4-(a)) 

dJw = 0.563/2.914 = 0.193 < 0.50 

wIt = 2.914/0.105 

= 27.75 < 70 

0.5w = 0.5x2.914 = 1.457 in. 

3dh = 3xO.563 = 1.689 in. 

Spacing of holes = 4 in. greater than 0.5w and 3dh 
Effective width, b, shall be determined by using (Eq. B2.2-1) 

b = w-dh 

= 2.914-0.563 

= 2.351 in. 

wIt = 27.75 < 500 (Section B1.1-(a)-(2)) 

Lips: 

d = w 

k 

Iv 

= 0.607 in. 

= 0.43 (unstiffened compression element) 

= (1.052/ ...J0.43 )(0.607/0.105) ...J23.27/295oo 

= 0.260 < 0.673 

d's = d = 0.607 in. 

= 0.607 in. (No reduction in lips area) 

wIt = 0.607/0.105 = 5.78 < 14 (Section B4 of the Commentary) 

Ae = A-t(w-b)web 

= 0.889-0.105(2.914-2.351) 

= 0.830 in.2 

(Eq. B2.2-1) 

(Eq. B4.2-4) 

15. Determination of <l>cPn: 

Pn = AeFn 

= 0.830 x 23.27 

= 19.31 kips 

<l>c = 0.85 

<l>cPn = 0.85 x 19.31 

= 16.41 kips 

(Eq. C4-l) 
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EXAMPLE NO. 12 

C-SECTION WITH WIDE FLANGE 

0.293"---+ .. ~0.293" - . 

+ 
,~ 0.293" 

KR=3/16" '" ~ 

, 
0.9" 

r 

ty 
-. "-0.105" I 

3. 5" ----+-----~ 2.914" 
I 

I 
" ~ 

0.607" 
If , 0 .9" 

r 0.293" ~ ~ r 

t 3.S" -

Given: 

1. Steel: Fy = 50 ksi. 

2. Section: 3.5 x 3.5 x 0.105 channel with stiffened flanges. 

3. KxLx = KyLy = KtLt = 6 ft. 

Required: 

Design axial strength, <l>J> n' 

Solution: 

1. Basic parameters: 

r = R+t/2 = 3/16+0.105/2 = 0.240 in. 

From the sketch and Section 1.2.2 of Part TIl of the Manual, a = 2.914 in., b = 2.914 in., c = 0.607 in., 

a = 1.00 (Since the section has lips) 

a = A'-t = 3.5-0.105 = 3.395 in. 
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= B'-t = 3.5-0.105 = 3.395 in. 

= C'-t/2 = 0.9-0.105/2 = 0.848 in. 

= 1.57r = 1.57 x 0.240 = 0.377 in. 

2. Area: 

A = t[ a+2b+2c+4u] 

= 0.105[ 2 .914+2x2.914+2xO.607+4x0.377] 

= 1.204 in.2 

3. Moment of inertia about x-axis: 

III = 2t[ 0.0417a 3 +b(a/2+r)2 +2u(a/2+0.637r)2 +O.298r 3 

+0.0833c 3 +(c/4)(a-c)2] 

= 2xO.105[ 0.0417(2.914)3 +2.914(2.914/2+0.240)2 

+2x0.377(2.914/2+0.637xO.240i +0.298(0.240i 

+0.0833(0.607) 3+(0.607/4)(2. 914-0.607i] 

= 2.564 in.4 

4. Distance from centroid of section to centerline of web: 

x = (2t/A)[ b(b/2+r)+u(O.363r)+u(b+ 1.637r)+c(b+2r)] 

= [(2xO.1 05)/1.204] [2.914(2.914/2+0.240)+0.377 (0.363xO.240) 

+0.377(2.914+ 1.637xO.240)+0.607(2.914+2xO.240)] 

= 1.445 in. 

5. Moment of inertia about y-axis: 

Iy = 2t[ b(b/2+r)2 +0.0833b 3 +0.505r 3 +c(b+2r)2 

+u(b+ 1.637r)2] -A( X)2 

= 2xO.105[ 2.914(2.914/2+0.240)2 +0.0833(2.914) 3 

+0.505(0.240i +0.607 (2.9 14+ 2xO.240)2 

+0.377 (2. 914+ 1.637xO.240)2]-1.204( 1.445)2 

= 2.017 in.4 

6. Distance from shear center to centerline of web: 
m = ( ot/12Ill )[ 6 c( 3:)2 +3 b( i)2 -8( C) 3] 

= [(3.395xO.l05)/(l2x2.564)][6xO.848(3.395i 

+3x3.395(3.395)2 -8(0.848) 3] 

= 1.983 in. 

7. Distance from centroid to shear center: 

xo = -( x+m) = -(1.445+ 1.983)= -3.428 in. 

8. St. Venant torsion constant: 

J = (t 3 /3)[ a+2b+2c+4u] 
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= [ (0.105) 3/3][ 2.914+2x2.914+2xO.607+4x0.377] 

= 0.004424 in. 4 

9. Warping Constant: 

Cw = (t2 /A){ [xA( a)2 /t][ ( 0)2 /3+m2 -m 0]+(A/3t)[ (mi (a) 3 

+ (0)2 (C)2 (2 c+3 a) -(Ix m2 /t)(2 a+4 C)+[ m( C)2 /3][ 8( 0)2 (C) 

+2m(2 c( c- 3)+ 0(2 c- 3 a)] +[ (0)2 (a)2 /6)][ (3 c+ 0)(4 c+ a)-6( C)2] 

_[m2 (a) 4 /4]} 

= [ (0.105)2/1.204] {[1.445x1.204x(3.395)2 /0.105][ (3.395)2 /3 

+(1.983)2 -1.983x3.395] + 1. 204/(3 xO. 105)[ (1.983)2 (3.395) 3 

+(3.395)2 (0.848)2 (2xO.848+3x3.395)] 

-[ 2.564x(1.983)2 /0.105] (2x3.395+4xO.848) 

+[ 1.983(0.848)2 /3][ 8(3.395)2 (0.848) 

+ 2x 1.983(2xO.848(0.848-3 .395)+ 3.395(2xO.848-3x3.395»] 

+[ (3.395)2 (3.395)2/6][ (3xO.848+3.395)(4xO.848+3.395) 

-6(0.848)2] -[ (1.983)2 (3.395) 4 /4] } 

= 7.572 in.6 

10. Radii of gyration: 

rx = ~(lJA = ~(2.564/1.204) = 1.459 in. 

ry = ~(I/A) = ~(2.017 11.204) = 1.294 in. 

(KyLy)/ry = (6x12)/1.294 = 55.64 < 200 

ro = "r / + r / + Xo 2 = "r-(l-.4-5-9~)2-+-(-1.-29-4-)2;or-+-( --3-.4-28-)~2 

= 3.944 in.2 

11. Torsional-flexural constant: 

~ = 1-(xJro)2 

= 1-(-3.428/3.944i 

= 0.244 

12. Determination of Fe: 

(Eq. C4.2-3) 

IV-99 

For this singly symmetric section (x-axis is the axis of symmetry), Fe shall be taken as the smaller of 
either (Eq. C4.1-1) or (Eq. C4.2-1): 

(Fe)t = (1t
2E)/(KyLy/ry)2 (Eq. C4.1-l) 

= (1t
2x295OO)/(55.64)2 = 94.05 ksi 

aex = (1t2E)/(KxLJrx)2 (Eq. C3.1.2-7) 

= (1t
2x29500)/(6x12/1.459l = 119.55 ksi 

at = l/(Aro 2)[ GJ+( 1t
2 ECw)/(Kt L t )2] (Eq. C3.1.2-9) 

= l/(1.204x3.9442)[ 11300xO.004424+( 1t
2x29500x7.572)/(6x12l] 
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= 25.38 ksi. 

(Feh = (1/2~)[ (O'ex+ Ot)- -V(O'ex + O'ti-4~O'exO't ] 

= l/(2xO.244)[ (119.55+25.38) 

-~( 119.55 + 25.38)2 -4xO.244xl19.55x25.38 ] 

= 21.73 ksi 

Fe = 21.73 ksi 

13. Determination ofFn: 

F/2 = 50/2 = 25.00 ksi 

For Fe < F/2 

Fn =Fe 

= 21.73 ksi. 

14. Determination of Ae: 
Flanges: 

d = 0.607 in. 

Is= d3t/12 = (0.607i(0.105)/12 

=0.001957 in.4 

D = 0.9 in. 

w = 2.914 in. (for flange) 

D/w = 0.9/2.914 = 0.309 < 0.80 

S = 1.28 "E/f, f =F n 

= 1.28 "29500/21.73 = 47.16, S/3 = 15.72 

wit = 2.914/0.105 = 27.75 

S/3 < wit < S 

Ia = 399t 4 {[ (w/t)/S] -0.33} 3 

= 399(0.105)4[(27.75/47.16)-0.33]3 

= 0.000837 in.4 < Is = 0.001957 in.4 

C, = 2-(IJla) ~ 1.0 

= 2-(0.001957/0.000837) = -0.34 < 1.0 

C, = 1.0 

C2 = IJla $; 1.0 

IJla = (0.001957/0.000837) = 2.34 > 1 .0 

C2 = 1.0 

0.25 <D/w = 0.309 < 0.8 

k = [4.82-5(D/w)](lJIa)n+0.43 ~ 5.25-5(D/w) 

n = 1/2 

(Eq. C4.2-l) 

(Eq. C4-3) 

(Eq. B4-1) 

(Eq. B4.2-6) 

(Eq. B4.2-8) 

(Eq. B4.2-7) 

(Eq. B4.2-9) 
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[4.82-5(0.309)](0.001957 /0.OOO837i/2 +0.43 = 5.438 

5.25-5(0.309) = 3.705 < 5.438 

k = 3.705 

Iv = (1.052M )(w/t) Vf/E, f = Fn 

= (1.052/ ...J3.705 )(27.75) ...J21.73/29500 = 0.412 < 0.673 

b =w 

= 2.914 in. (flanges fully effective) 

wIt = 27.75 < 90 (Section B1.1-(a)-(1» 

Web: 

w = 2.914 in., k = 4.00 

Iv = (1.052/ -.J4 )(2.914/0.105) ...J21.73/29500 

= 0.396 < 0.673 

b = w = 2.914 in. (web fully effective) 

wIt = 2.914/0.105 = 27.75 < 500 (Section B1.1-(a)-(2» 

Lips: 

d = 0.607 in. 

k = 0.43 (unstiffened compression element) 

Iv = (1.052/ ...J0.43 )(0.607/0.105) ...J21.73/29500 

= 0.252 < 0.673 

d's = d = 0.607 in. 

ds = d's(lJlJ $; d's 

= 0.607(2.34) = 1.420> d's = 0.607 in. 

(Eq. B2.1-4) 

(Eq. B2.1-l) 

(Eq. B4.2-11) 

ds = 0.607 in. (Lip fully effective in computing the overall effective area) 

d/t = 5.78 < 14 (Section B4 of the Commentary) 

Since flanges, web, and lips are fully effective 

Ae = A = 1.204 in.2 

15. Determination of <PcPn: 
Pn = AeFn 

= 1.204 x 21.73 

= 26.16 kips 

<Pc = 0.85 

<PcPn = 0.85 x 26.16 

= 22.24 kips 

(Eq. C4-1) 

IV-IOI 



IV-I02 Examples Based on the March 16, 1991 Edition of the LRFD Cold-Fonned Specification 

EXAMPLE NO. 13 

TUBULAR SECTION - SQUARE 

3.744" 
0.128"~ 

yf 
R=1I16" 

I 

--+-~ , 

I 

4.000" 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: 4 x 4 x 0.065 Square Tube. 

3. KxLx = KyLy = 10 ft. 

Required: 

Design axial strength, <l>J> n' 

Solution: 

1. Properties of 90° comers: 

r = R + t/2 = 1/16 + 0.065/2 = 0.095 in. 

Length of arc, u = 1.57r = 1.57 x 0.095 = 0.149 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.095 = 0.061 in. 

4.000" 
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Ix = ~ = I (doubly symmetric section) 

Element (in.) 

Flanges 2 x 3.744 = 7.488 
Comers 4 x 0.149 = 0.596 

Web 2x3.744=~ 

Sum 15.572 

y 
Distance 
to Center 
of Section 

(in.) 

2 - 0.065/2 = 1.968 
3.744/2+0.061 = 1.933 

wit = 3.744/0.065 = 57.60 < 500 (Section B1.1-(a)-(2» 

A = Lt = 15.572xO.065 = 1.012 in.2 

I' = Ly2+I'1 = 31.228+8.747 = 39.975 in.3 

I = I't = 39.975xO.065 = 2.598 in.4 

r = ~I/A = ~2.598/1.012 = 1.602 in. 

KL/r = 10xI2/1.602 = 74.91 < 200 (Section C4-(d» 

29.001 
2.227 

I' 1 
About 
Own 
Axis 
(in.3

) 

8.747 
31.228 8.747 

IV-I03 

2. Since the square tube is a doubly symmetric closed section, provisions of Section C4.1 apply, i.e., sec
tion is not subjected to torsional flexural buckling. 

3. 

4. 

Fe = 1t2E/(KL/r)2 (Eq. C4.1-l) 

= 1t2x29500/(74.91)2 = 51.89 ksi 

Fy!2 = 50/2 = 25.00 ksi 

ForFe>F/2: 

Fn = F/I-Fy!4Fe) (Eq. C4-2) 

= 50[ 1-50/(4x51.89)] = 37.96 ksi 

=(1.052/~)(w/t)~flE, f=Fn (Eq.B2.l-4) 

= (1.052/ '-'4 )(3.744/0.065) ~37.96/29500 = 1.087> 0.673 

(Section not fully effective) 

p = (1-0.22/ A)/ A 

= (1-0.22/1.087)/1.087 = 0.734 

b = pw 

= 0.734x3.744 = 2.748 in. 

Ae = A-4(w-b)t 

= 1.012-4(3.744-2.748)xO.065 

= 0.753 in.2 

(Eq. B2.l-3) 

(Eq. B2.1-2) 

(Eq. C4-1) 
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= 0.753x37.96= 28.58 kips 

<l>c = 0.85 

<l>cPn = 0.85 x 28.58 = 24.29 kips 
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EXAMPLE NO. 14 

TUBULAR SECTION - ROUND 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: Shown in sketch above. 

3. Height: L = 10'-0", simply supported at each end. 

Required: 

Design axial strength, <l>J> n' 

Solution: 

Ratio of outside diameter to wall thickness, 

D/t = 8.000/0.125 = 64.00 

D/t < 0.441E/Fy = 0.441(29500/50) = 260.2 OK 

Fe = 1t2E/(KL/r)2 

I = (l/4)1t[ (O.R.) 4 -(I.R.) 4] 

= (l/4)1t[ (4) 4 -(3.875) 4] 

= 23.98 in.4 

A = (l/4)1t[ (O.D.)2 _(I.D.)2] 

= (l/4)1t[ (8)2 -(7.75)2] 

= 3.093 in.2 

r = ...fIlA 

= ...f23.98/3.093 = 2.784 in. 

Fe = 1t2(29500)/[ 10(12)/2.784]2= 156.71 ksi 

Outer diameter = 8.000" 
Thickness = 0.125 It 

(Eq. C4.1-l) 

IV-I05 
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Since Fe > F /2 

Fn = FyC1-Fy!4Fe) 

= 50[ 1-50/(4x156.71)]= 46.01 ksi 

Ao = [ 0.037/(DFy /tE)+0.667]A ~ A 

= {0.037 /[8x50/(0.125x29500)]+O.667} (3.093) 

= 3.118 in.2 

Therefore, Ao = A = 3.093 in? 

Ae = [ 1-(1-R2)(1-Ao /A)]A 

Since AjA = 1, Ae = A 

Ae = 3.093 in.2 

Pn = FnAe 

= (46.01)(3.093) 

= 142.31 kips 

cflc = 0.85 

cflcPn = 0.85 x 142.31= 120.96 kips 

(Eq. C6.2-2) 

(Eq. C6.2-5) 

(Eq. C6.2-3) 

(Eq. C6.2-l) 
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EXAMPLE NO. 15 

C-SECTION 

8.000 

Given: 

1. Steel: Fy = 50 ksi. 

, 

" 7.415" 

" 

2. Section: Channel as shown. 

3. Length of Section = 16 ft. 

4. Lx =Ly =Lt =16ft. 

5. Kx = Ky = Kt = 1.0. 

~ 

0.105"-' 

0.293" 

3000" 
-- -

__ 2.415" .. - 0.293" -
r---O.l40" 
r 

~R=1I16" 
~ , 

L O.l53 " 

fy 
... 

I 

CD I I --t---.2... 
, 

I 
r-----

CD ~ 

CD 
0.800" 

~ ~ , 
--- -3.000 " 

6. Axial loads: PDL = 0.4 kips, PLL = 2.0 kips. 

7. Eccentricity at both end~: 
(a) Axial loads are applied 2 in. to the left of the c.g. of the full section. 

, 
, 
J 

0.508" 

(b) Axial loads are applied 2 in. to the left and 4 in. above the c.g. of the full section. 

IV-I07 
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Required: 

Check the adequacy of the given section for both cases. 

Solution: Part (a) 

1. Full section properties: 

r = R +t/2 = 3/16+0.105/2 = 0.240 in. 

a =A'-(2r+t) = 8.000-(2xO.240+0.105) == 7.415 in. 

a = A' -t == 8.000-0.105 == 7.895 in. 

b = B'-(2r+t) = 3.000-(2xO.240+0.105) = 2.415 in. 

D = B'-t = 3.000-0.105 = 2.895 in. 

c = C' -(r+t/2) = 0.800-(0.240+0.105/2) = 0.508 in. 

C = C'-t/2 = 0.800-(0.105/2) = 0.748 in. 

u = 1.57r = 1.57 x 0.240 = 0.377 in. 

Distance of comer's c.g. from center of radius == 0.637 r= 0.637(0.240) = 0.153 in. 

A = t[ a+2b+2c+4u] = 0.105[ 7.415+2x2.415+2xO.508+4x0.377] 

= 1.551 in.2 

Ix = 2t[ 0.0417a 3 +b(a/2+r)2 +2u(a/2+0.637r)2 +0.298r 3 

+0.0833c 3 +(c/4)(a-c)2] 

= 2xO.l05[ 0.0417(7.415) 3 +2.415(7.415/2+0.240)2] 

+2x0.377(7.415/2+0.637xO.240i+0.298(0.240i 

+0.0833(0.508) 3 +(0.508/4)(7.415-0.508)2] 

= 15.108 in.4 

x = (2t/A)[ b(b/2+r)+u(O.363r)+u(b+ 1.637r)+c(b+2r)] 

= (2xO.l 05/1.551 )[2.415(2.415/2+0.240)+0.377(0.363xO.240) 

+0.377 (2.415+ 1.637xO.240)+0.508(2.415+ 2xO.240)] 

= 0.820 in. 

Iy = 2t[ b(b/2+r)2 +0.0833b 3 +0.505r 3 +c(b+2r)2 

+u(b+ 1.637r)2] -A( X)2 

= 2xO.l05[2.415(2.415/2+0.240)2 +0.0833(2.415) 3 

+0.505(0.240i +0.508(2.415+2xO.240i 

+0.377(2.415+ 1.637xO.240)2]-1.551 (0.820i 

= 1.786 in.4 

m = (DtI12Ix)[ 6 c( a)2 +3 D( a)2 -8( C) 3] 

= [(2.895xO.105)/(12x15.108)][6xO.748(7.895Y 

+3x2.895(7.895)2 -8(0.748) 3] 

= 1.371 in. 
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Xo = -( x+m) = -(0.820+ 1.371) 

= -2.191 in. 

J = (e/3)[ a+2b+2c+4u] 

= [(0.105) 3/3] [7.415+2x2.415+2xO.508+4x0.377] 

= 0.005699 in.4 

Cw = (t2 /A){ [xA( a)2/t][ ( 0)2 /3+m2 -m D+(A/3t)[ (m)2 (a) 3 

+( 0)2 (c)2 (2 c+3 a)] -(Ix m2 /t)(2"3.+4 C)+[ m( C)2 /3][ 8( 0)2 (C) 

+2m(2 c( c- a)+ 15(2 c-3 a»] +[ (15)2 (a)2 /6][ (3 c+ 15)(4 c+ a)-6( ci] 
_[m2 (a) 4 /4]} 

= [(0.105)2 /l .551] {[ 0.820x1.551x(7.895)2 /0.105][ (2.895)2/3 

+(1.371)2 -1.371x2.895] +1.551/(3xO.105)[ (1.371)2 (7.895) 3 

+(2.895i (0.748i (2xO.748+3x7.895)] 

-[l5.108x(1.371i /0.105] (2x7.895+4xO.748) 

+[1.371(0.748)2 /3][ 8(2.895)2(0.748) 

+2x1.371(2xO.748(0.748-7.895)+2.895(2xO.748-3x7.895»] 

+[ (2.895)2 (7.895)2/6][ (3xO.748+2.895)(4xO.748+ 7.895) 

-6(0.748)2] -[ (1.371)2 (7.895) 4 /4] } 

= 23.468 in.6 

~w = - {0.0833[ t x( a) 3] +t( X) 3 a} 

= _ {0.0833[0.105xO.820(7.895) 3] +0.105(0.820) 3 x7.895} 

= -3.987 

B f = (t/2)[ ( 15- x) 4 -( x) 4] +[ t( a)2 /4][ ( 15- X)2 _( X)2] 

= (0.105/2)[(2.895-0.820) 4 -(0.820) 4] 

+[ 0.1 05(7.895)2 /4][(2.895-0.820)2 -(0.820)2] 

= 6.894 

~l = 2 et( 0- x) 3 +(2/3)t( 15- x)[ ( a/2) 3 -( a/2- C) 3] 

J 

= 2xO.748xO.105(2.895-0.820l +(2/3)xO.l05(2.895 

_ 0.820){ (7.895/2) 3_[ (7.895/2)-0.748] 3} 

= 5.581 

= (1/2I)(~w+ ~~ ~l)-XO 

= [l/(2x1.786)]( -3.987+6.894+5.581)-( -2.191) 

= 4.567 

fx = ...JIxlA = ...J15.108/1.551 = 3.121 in. 

KxLJfx = [ 1(16xI2)] /3.121 = 61.52 

ry = ...JI/A = ...J1.786/1.551 = 1.073 in. 

(Eq. C3.1.2-11) 

KyLy/ry = [ 1(16x12)]/1.073 = 178.94 < 200 (Section C4-(d» 

IV-I09 
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= "-1r/+r/+x/ 

= "(3.121)2+(1.073)2+(-2.191)2 = 3.961 in. 

= 1-(xJro)2 

= 1-(-2.19l/3.961i = 0.694 

2. Detennination of <l>cPn (Section C4): 

(Eq. C3.1.2-10) 

(Eq. C4.2-3) 

Since the channel is singly symmetric, Fe shall be taken as the smaller of Fe calculated according to 
Section C4.1 or Fe calculated according to Section C4.2. 

Section C4.1: 

(Fe) 1 = (1t2E)/(KyL/ry)2 (Eq. C4.1-1) 

= (1t
2X29500)/(178.94i = 9.093 ksi 

Section C4.2: 

O'ex = (1t2E)/(KxLx/rx)2 

= (1t2x29500)/(lxI6xI2/3.121i = 76.93 ksi. 

O't = l/(Aro2)[ GJ+( 1C
2 ECw )/(Kt Lt)2] 

= [l/1.551(3.961)2][11300xO.OO5699] 

+( 1C
2X29500x23 .468 )/[ (1 x 16x 12 )2] 

= 10.26 ksi. 

(Feh = (1/2~)[(O'ex+ O't)- "(Oex + Ot)2-4~O'exOt ] 

= l/(2xO.694)[ (76.93+ 10.26) 

- "76.93+ 1 0.26)2- 4xO.694x76.93x 10.26 ] 

= 9.820 ksi 

Therefore 

Fe = 9.093 ksi 

Fy/2 = 50/2 = 25.00 ksi 

Since Fe < F /2 it follows that 

Fn = Fe 

= 9.093 ksi. 

For element 1: 

w = 7.415 in. 

wIt = 7.415/0.105 = 70.62 < 500 OK (Section B1.1-(a)-(2» 

k 

A 

b 

= 4.0 (Since connected to two stiffened elements) 

= (1.052/-fIZ)(w!t) -../f/E, f=Fn 

= (1.052/ ...f4 )(70.62) -../9.093/29500 

= 0.652 < 0.673 

=W 

(Eq. C3.1.2-7) 

(Eq. C3.1.2-9) 

(Eq. C4.2-l) 

(Eq. C4-3) 

(Eq. B2.1-4) 

(Eq. B2.1-1) 
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= 7.415 in. (Element 1 fully effective) 

For element 2: 

w = 2.415 in. 

wit = 2.415/0.105 = 23.00 

S = 1.28 §, f = Fn 

= 1.28"29500/9.093 = 72.91 

wit = 23.00 < S/3=24.30 

b =w 

= 2.415 in. (Element 2 fully effective) 

For element 3: 

d = 0.508 in. 

(Eq. B4-l) 

(Eq. B4.2-3) 

d/t = 0.508/0.105 = 4.84 < 14 OK (Section B4 of the Commentary) 

k = 0.43 (unstiffened compression element) 

A = (1.052/ "0.43 )(4.84) "9.093/29500 

= 0.136 < 0.673 

d's = d = 0.508 in. 

ds = d's 

= 0.508 in. (Element 3 fully effective) 

Thus the whole section is fully effective. 

Ae = A = 1.551 in.2 

Pn = AeFn 

= 1.551 x 9.093 

= 14.10 kips 

<Pc = 0.85 

<PcPn = 0.85 x 14.10 

= 11.985 kips 

3. P u = 1.2x0.4+ 1.6x2.0 = 3.68 kips 

PJ<PcPn = 3.68/11.985 = 0.307 > 0.15 

Must check both interaction equations (Eq. C5-1), (Eq. C5-2) 

4. Determination of <PcP no (Section C4 for F n = F y): 

For element 1: 

A = (1.052/ "4.00 )(70.62)"50(29500 = 1.529> 0.673 

(Eq. B4.2-4) 

P = (1-0.22/ A)/ A (Eq. B2.1-3) 

= (1-0.22/1.529)/1.529 = 0.560 

b = pw (Eq. B2.1-2) 

= 0.560x7.415 = 4.152 in. 

IV-Ill 
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For element 2: 

S = 1.28 "",29500/50 = 31.09 

S/3 = 10.36 

S/3 = 10.36 < wIt = 23.00 < S = 31.09 

Ia = 399t 4 {[ (w/t)/S] -0.33} 3 

= 399(0.105) 4[(23/31.09)-0.33] 3= 0.003337 in.4 

Is = d3t/12 = (0.508)\0.105)/12 

= 0.001147 in.4 

IJla = 0.001147/0.003337 = 0.344 

D/w = 0.8/2.415 = 0.331 

n = 1/2 

k = [4.82-5(D/w)](IJla)n+0.43 ~.25-5(D/w) 

= [4.82-5(0.331)](0.344)\12+0.43 = 2.286 

5.25-5(0.331) = 3.595 > 2.286 

k = 2.286 

A = (1.052/ "",2.286 )(23.00) "",50/29500 = 0.659 < 0.673 

b = w = 2.415 in. (Element 2 fully effective) 

For element 3: 

A = (1.052/ ...)0.43 )(4.84)...)50/29500 = 0.320 < 0.673 

d's = d = 0.508 in. 

ds = d' s(ls/Ia) ~ d's 

Since lila = 0.344 < 1.0 

ds = 0.508(0.344) = 0.175 in. 

Ae = 1.551-0.105(7.415-4.152)-0.105(0.508-0.175)x2 

= 1.138 in.2 

Pno = 1.138 x 50 = 56.90 kips 

<Pc = 0.85 

<PePno = 0.85 x 56.90 

= 48.37 kips 

(Eq. B4.2-6) 

(Eq. B4.2-9) 

(Eq. B4.2-11) 

5. Determination of Muy (required flexural strength about y-axis): (Mux= 0 since ey = 0), Mu)' will be 
with respect to the centroidal axes of the effective section determined for the required axial strength 
alone. 

Ae = 1.551 in.2 under required axial strength alone 

Since Ae = A, the centroidal axes for the effective section are the same as those for the full section. 
Therefore, ex did not change. 

Muy = 3.68(2.00) = 7.36 kip-in. (Required Flexural Strength) 

The interaction equations (Eq. C5-1) and (Eq. C5-2) reduce to the following: 
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P uI<t>cP n+CmyMuy/<t>~nyClny ~ 1.0 

Pu/<t>cPno+MuY!<t>~ny ~ 1.0 

6. Determination of <I>t,~y (Section C3.1): 

(Eq. C5-1) 

(Eq. C5-2) 

IV-II3 

<t>bMny shall be taken as the smaller of the design flexural strengths calculated according to sections 
C3.1.1 andC3.1.2: 

a. Section C3.1.1: Mny will be calculated on the basis of initiation of yielding. 

Here it is evident that the initial yielding will not be in the compression flange, rather it will be in the 
tension flange. 

8000" 
~ - -

7.415" 
0.293"--' - -
~ compression flange in bending 

3.000 

A 0.293" 

~~'----+- '" • 

~ 
~ I 

2.415 " 
Y I Y 

3. " 

L Web------' ---. ~O.l05" ...---0153" ,Ir r . 

, ~ 
j , :;..-

U ~on flanges in bendi~! _ 0.800'_ 

~ 
'--- 0.140" 

0.293" -
0.508" 

The procedure is iterative: one assumes the actual compressive stress f under Mny. Knowing f one 
proceeds as usual to obtain Xcg (measured from top fiber) to neutral axis. Then one obtains f = Fy [ 
Xcg /(3- Xcg )] and checks if it equals to the assumed value. If not, one reiterates by assuming another 
f until finally it checks. Then for this condition one obtains Iy and ~y = f(~/xcg)= Fy [ Iy /(3-xcg )]. 
For the first iteration assume a compressive stress f = 20 ksi in the top compression fibers and that 
the webs are fully effective. 

Compression flange: 

k=4.00 

wit = 7.415/0.105 = 70.62 

A = (1.052/ -V4.00 )(70.62) -V20/29500 = 0.967> 0.673 

P = [1-(0.22/0.967)]/0.967 = 0.799 

b = 0.799 x 7.415 = 5.925 in. 



IV-114 Examples Based on the March 16, 1991 Edition of the LRFD Cold-Fonned Specification 

To calculate effective section properties about y-axis: 

L 
Effective Length 

Element (in.) 

Webs 2x2.415 = 4.830 
Upper Comers 2xO.377 = 0.754 
Lower Comers 2xO.377 = 0.754 

Compression Flange 5.925 
Tension Flanges 2xO.508 = 1.016 

Sum 13.279 

Distance from top fiber to y-axis is 

Xcg = 12.816/13.279 = 0.965 in. 

f = Fy[ Xcg /(3-Xcg )] 

x 
Distance 

from 
Top Fiber 

(in.) 

1.500 
0.140 
2.860 
0.053 
2.948 

= 50 [0.965/(3.00-0.965)] = 23.71 ksi> 20 ksi 

need to do another iteration. 

I' 1 
About 
Own 

Lx Lx2 Axis 
(in.2) (in.3

) (in.3
) 

7.245 10.868 2.347 
0.106 0.015 
2.156 6.167 
0.314 0.017 
2.995 8.830 

12.816 25.897 2.347 

For the second iteration assume a compressive stress f = 24.95 ksi in the top compression fibers, and 
that the webs are fully effective. 

Compression flange: 

A = (1.052/ ..J4.00 )(70.62) ..J24.95/29500 = 1.080 >0.673 

p = [1-(0.22/1.080)]/1.080 = 0.737 

b = 0.737 x 7.415 = 5.465 in. 

Effective section properties about y-axis: 

x 
Distance 

L from 
Effective Length Top Fiber Lx 

Element (in.) (in.) (in.2) 

Webs 2x2.415 = 4.830 1.500 7.245 
Upper Comers 2xO.377 = 0.754 0.140 0.106 
Lower Comers 2xO.377 = 0.754 2.860 2.156 

Compression Flange 5.465 0.053 0.290 
Tension Flanges 2xO.508 = 1.016 2.948 2.995 

Sum 12.819 12.792 

Distance from top fiber to y-axis is 

Lx2 
(in.3

) 

10.868 
0.015 
6.167 
0.015 
8.830 

25.895 

I' I 
About 
Own 
Axis 
(in?) 

2.347 

2.347 
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Xcg = 12.792/12.819 = 0.998 in. 

f = 50[0.998/(3.00-0.998)] = 24.93 ksi (close enough) 

Thus actual compressive stress f = 24.95 ksi 

To check if the webs are fully effective (Section B2.3): 

fl = [ (0.998-0.293)/2.002](50) = 17.61 ksi(compression) 

f2 = -[ (2.002-0.293)/2.002](50) = -42.68 ksi(tension) 

W = f2ifl = -42.68/17.61 = -2.424 

k = 4+2(l-W)3 +2(l-W) 

= 4+2[ 1-(-2.424)] 3 +2[ 1-(-2.424)] 

=91.132 

h = w = 2.415 in. 

wit = 2.415/0.105 = 23.00 < 200 OK (Section B1.2-(a» 

A = (1.052/ -Y91.132 )(23.00) -Y17.61/29500 = 0.062 < 0.673 

be = 2.415 in. 

b2 = bJ2 

= 2.415/2 = 1.208 in. 

b I = bJ(3-W) 

= 2.415/[ 3-(-2.424)] = 0.445 in. 

(Eq. B2.3-4) 

(Eq. B2.3-2) 

(Eq. B2.3-l) 

Compression portion of each web calculated on the basis of the effective section 
= Xcg -0.293 = 0.998-0.293 = 0.705 in. 

IV-lIS 

Since bI+b2 = 1.653 in. > 0.705 in., b I+b2 shall be taken as 0.705 in .. This verifies the assumption 
that the web is fully effective. 

2 I 2 
= Lx + I 1 - Lx cg I' y 

= 25.895 + 2.347 - 12.819(0.998)2 

= 15.474 in.3 

Actually = I' yt= 15.474(0.105) = 1.625 in.4 

Se = IyI(3.000-Xcg) 

= 1.625/(3.000-0.998) 

= 0.812 in? 

= SeFy 

= 0.812(50) 

= 40.60 kip-in. 

<Pb = 0.95 

<Pb Mny = 0.95 x 40.65 = 38.57 kip-in. 

(Eq. C3.1.1-1) 
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b. Section C3.1.2: Mny will be calculated on the basis of the lateral buckling strength. (y-axis is the axis 
of bending). 

For the full section: 

Iy = 1.786 in.4 

Xcg = x+ 1/2 = 0.820+0.105/2 = 0.873 in. 

Sf = Iy/Xcg = 1.786/0.873 = 2.046 in.3 

= SfFy 

= 2.046(50) = 102.30 kip-in. 

Cs = +1.00 

A = 1.551 in.2 

crex = 76.93 ksi 

crt = 10.26 ksi 

MdM2 = -1.00 (single curvature) 

CTF = 0.6-0.4(MdM2) 

= 0.6-0.4( -1.(0) = 1.00 

ro = 3.961 in. 

j = 4.567 

= CsAcrex[ j+Cs ...Jp + ~(crJcrex) ]/CTF 

= 1.0(1.551)(76.93)[ 4.567 

+ 1.00 ...J(4.567)2 + (3.961)2(l0.26n6.93) ]/1.00 

= 1116.54 kip-in. 

= 1116.54 kip-in. > 0.5My = 51.15 kip-in. 

= My[ 1-(My /4Me)] 

= 102.30{ 1-[ 102.30/(4xII16.54)]} = 99.96 kip-in. 

MJSf = 99.96/2.046 = 48.86 ksi 

(Eq. C3.1.2-4) 

(Eq. C3.1.2-6) 

(Eq. C3.1.2-2) 

To calculate effective section properties to obtain Sc at stress 48.86 ksi , we assume that the webs are 
fully effective. 

Compression tlange: 

A = (1.052/ ..J4.00 )(70.62) ..J48.86/29500= 1.512> 0.673 

p = [1-(0.22/1.512)]/1.512 = 0.565 

b = 0.565 x 7.415 = 4.189 in. 

Effective section properties about y-axis: 
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L 
Effective Length 

Element (in.) 

Webs 2x2.415 = 4.830 
Upper Comers 2xO.377 = 0.754 
Lower Comers 2xO.377 = 0.754 

Compression Flange 4.189 
Tension Flanges 2xO.508 = 1.016 

Sum 11.543 

Distance from top fiber to y-axis is 

Xeg = 12.724/11.543 = 1.102 in. 

x 
Distance 

from 
Top Fiber 

(in.) 

1.500 
0.140 
2.860 
0.053 
2.948 

To check if the webs are fully effective (Section B2.3): 

Lx 
(in.2) 

7.245 
0.106 
2.156 
0.222 
2.995 --

12.724 

f} = [(1.102-0.293)/1.102](48.86) = 35.87 ksi (compression) 

f2 = -[(1.898-0.293)/1.102](48.86) = -71.16 ksi (tension) 

'" = -71.16/35.87 = -1.984 

k = 4+2[ 1-(-1.984) 3] +2[ 1-(-1.984)] 

= 63.109 

A. = (1.052/vf63.109 )(23.00)vf35.87/29500 = 0.106 < 0.673 

be = 2.415 in. 

b2 = 2.415/2 = 1.208 in. 

b} = 2.415/[ 3-(-1.984)] = 0.485 in. 

IV-117 

I' } 
About 
Own 

Lx2 Axis 
(in.3

) (in.3
) 

10.868 2.347 
0.015 
6.167 
0.012 
8.830 

25.892 2.347 

Compression portion of each web calculated on the basis of the effective section = 1.102-0.293 = 
0.809 in. 

Since b}+b2 = 1.693 in. > 0.809 in., b}+b2 shall be taken as 0.809 in .. This verifies the assumption 
that the web is fully effective. 

I' y = 25.892 + 2.347 - 11.543( 1.102)2 

= 14.221 in.3 

Actually = 14.221(0.105) = 1.493 in.4 

Sc = Iy/Xcg = 1.493/1.102 = 1.355 in? 

= McSJSf 

= 99.96(1.355)/2.046 

= 66.20 kip-in. 

<\>b = 0.90 

<l>bMny = 0.90 x 66.20 = 59.58 kip-in. 

<\>.,Mny shall be the smaller of 38.57 kip-in. and 59.58 kip-in. 

(Eq. C3.1.2-1) 
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Thus 

<l>tMny = 38.57 kip-in. 

7. Cmy = 0.6-0.4(MtfM2) 

MtfM2 = -1.00 (single curvature) 

0.6-0.4( -1.00) = 1.00 

Cmy = 1.00 

8. Detennination of l/~y: 

<l>c = 0.85 

PE = rr? EIy!(KyLy)2 

Iy = 1.786 in.4 

KyLy = 1.0(16x12) = 192 in. 

PE = [ 1t
2 (29500)(1.786)]/(192)2 = 14.11 kips 

1/Clny = 1/[ 1-Pu /( <l>c PE )] 

= 1/[ 1-3.68/(0.85x14.11)] = 1.443 

Clny = 0.693 

9. Check interaction equations: 

P u/<I>cP n +CmyMu/<I>~ny<Xny ~ 1.0 

3.68/11.985+ 1.00x7 .36/(38.57xO.693) = 0.307+0.275 

= 0.582 < 1.0 OK 

Pj<l>cPno+MuY!<I>~ny ~ 1.0 

3.68/48.37+7.36/38.57 = 0.076+0.191 = 0.267 < 1.0 OK 

Therefore the section is adequate for the applied loads. 

Solution: Part (b) 

1. Full section properties are the same as previously calculated in part (a. 1 ). 

2. <l>cPn = 11.985 kips (calculated in part (a». 

3. P j<l>cPn = 3.68/11.985 = 0.307> 0.15 

Therefore the following interaction equations must be satisfied. 

Pj<l>cPn+CmxMux/<I>~nx<Xnx +CmyMuY!<I>~nyClny ~ 1.0 

Pj<l>cPno+Muxl<l>~nx+MuY!<I>bMny ~ 1.0 

4. <l>cPno = 48.37 kips (calculated in part (a.4». 

5. Detennination of Mux (Section C5): 

(Eq. C5-5) 

(Eq. C5-4) 

(Eq. C5-1) 

(Eq. C5-2) 

(Eq. C5-l) 

(Eq. C5-2) 
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The centroidal x-axis is the same for both the full and effective sections. 

ey = 4.000 in. 

Mux = Puey = 3.68(4.000) = 14.72 kip-in. 

6. Determination of <I>t,~ (Section C3.1): 

<l>bMnx shall be taken as the smaller of the design flexural strengths calculated according to Sections 
C3.1.1 and C3.1.2. 

a. Section C3.1.1: Mnx will be calculated based on the initiation of yielding. 

First approximation: 

* Assume a compressive stress of f = F y = 50 ksi in the top fiber of the section. 

* Assume that the web is fully effective. 

Compression flange: 

w = 2.415 in. 

wit = 2.415/0.105 = 23.00 

S = 1.28 -VE/f 

= 1.28 -V29500/50 = 31.09 

For S/3 = 10.36 < wit = 23.00 < S = 31.09 

Ia = t 4 399{ [(w/t)/S] -0.33} 3 

= (0.105)4(399)[ (23.00/31.09)-0.33] 3 

= 0.003337 in.4 

Is = d3t/l2 

= (0.508)\0.105)/12 = 0.001147 in.4 

IJla = 0.001147/0.003337 = 0.344 

D = 0.800 in. 

D/w = 0.800/2.415 = 0.331 

wit = 23.00 < 14 OK (Section B4 of the Commentary) 

For 0.25 < D/w = 0.331 < 0.8 

k = [4.82-5(D/w)](IJla)I12+0.43$;5.25-5(D/w) 

k 

A 

b 

= [4.82-5(0.331)](0.344)112+0.43 = 2.286 

5.25-5(0.331) = 3.595 > 2.286 

= 2.286 

= (1.052/ ~)(w/t) -VfIE 

= (1.052/ ~2.286 )(23.oo)~50/29500 = 0.659 < 0.673 

=w 

= 2.415 in. (fully effective) 

Compression stiffener: 

d = 0.508 in. 

(Eq. B4-1) 

(Eq. B4.2-6) 

(Eq. B4-2) 

(Eq. B4.2-9) 

(Eq. B2.1-4) 

(Eq. B2.1-l) 
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d/t = 0.508/0.105 = 4.84 < 14 OK (Section B4 of the Commentary) 

k = 0.43 

Assume max. stress in element, f = F y = 50 ksi although it will be actually less. 

A = (1.052/-Vk)(w/t) ~f/E (Eq. B2.1-4) 

= (1.0521'10.43 )(4.84) ~50/29500 = 0.320 

For A< 0.673 

b =w 

d's = 0.508 in. 

ds = d' s(lJIa) ~d' s 

= 0.508(0.344) 

= 0.175 in. 

Effective section properties about x-axis: 

L 
Effective Length· 

Element (in.) 

Compression Flange 2.415 
Compression Stiffener 0.175 
Compression Comers 2xO.377 = 0.754 

Web 7.415 
Tension Flange 2.415 

Tension Stiffener 0.508 
Tension Comers 2xO.377 = 0.754 

Sum 14.436 

Distance from neutral axis to top fiber, 

Ycg= Ly/L = 58.867/14.436 = 4.078 in. 

(Eq. B2.1-1) 

(Eq. B4.2-11) 

y 
Distance 

from 
Top Fiber LX Ly2 

(in.) (in.2) (in.3
) 

0.053 0.128 0.007 
0.381 0.067 0.025 
0.140 0.106 0.015 
4.000 29.660 118.640 
7.948 19.194 152.557 
7.453 3.786 28.218 
7.860 5.926 46.582 

58.867 346.044 

I' 1 
About 
Own 
Axis 
(in?) 

33.974 

0.011 

33.985 

Since the distance from the neutral axis to the top compression fiber is greater than half the depth 
of the section, a compressive stress of F y = 50 ksi governs as assumed. 

I' x 
2, 2 = Ly + I 1 - Ly cg 

= 346.044 + 33.985 - 14.436(4.078)2 

= 140.0 in.3 

Actual Ix = tI' x 

= (0.105)(140.0) = 14.70 in.4 

Check Web 

wit = 7.415/0.105 = 70.62 < 200 OK (Section B1.2-(a)) 
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fl = [(4.078-0.293)/4.078](50) = 46.41 ksi(compression) 

f2 = -[ (3.922-0.293)/4.078](50) = -44.50 ksi(tension) 

'II = f2lfl = -44.50/46.41 = -0.959 

k = 4+2[ 1-(-0.959)] 3 +2[ 1-(-0.959)] 

= 22.95 

A = (1.052/ ...J22.95 )(70.62)...J46.41129500= 0.615 

For A <0.673 

b =w 

be = 7.415 in. 

b2 = 7.415/2 = 3.708 in. 

b i = 7.415/[ 3-(-0.959)] =1.873 in. 

(Eq. B2.1-l) 

b l+b2 = 1.873+ 3.708 = 5.581 in. > 3.785 in. (compression portion of web) 

Therefore web is fully effective as assumed. 

Check Compression Stiffener 

Actual maximum stress in stiffener = 46.41 ksi 

A = (1.052/ ...J0.43 )(4. 84)...J46.4 1129500 = 0.308 

For A< 0.673 

d's = 0.508 in. 

Since IJIa is unchanged 

ds =0.175 in. 

Conservative assumption OK 

Se = Ix/Ycg = 14.70/4.078 = 3.605 in? 

Mnx = SeFy (Eq. C3.1.1-l) 

= (3.605)(50) = 180.25 kip-in. 

<Pb = 0.95 

<PtMnx = 0.95 x 180.25 = 171.24 kip-in. 

b. Section C3.1.2: Mnx will be calculated based on the lateral buckling strength. 

For the full section: 

Ix = 15.108 in.4 

y cg = 4.000 in. 

Sf = Ix/Ycg = 15.108/4.000 = 3.777 in? 

My = SfFy (Eq. C3.1.2-4) 

= 3.777(50) = 188.85 kip-in. 

Cb = 1.00 (for members subject to combined axial load and bending moment) 

ro = 3.961 in. 

IV-121 
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A = 1.551 in.2 

= rc2E/(KyLy/ry)2 

= rc2(29500)/(178.94)2 = 9.093 ksi 

= 10.26 ksi 

= ClI oA ~ CJeyCJt 

= (1.000)(3.961)(1.551) "(9.093)(10.26) 

= 59.34 kip-in. 

0.5My = 0.5(188.85) = 94.43 kip-in. 

= 59.34 kip-in. 

MJSf = 59.34/3.777 = 15.71 ksi 

(Eq. C3.1.2-5) 

(Eq. C3.1.2-3) 

DeteImine Sc' the elastic section modulus of the effective section calculated at a stress of MjSf in 
the extreme compression fiber. 

For compression flange: 

w = 2.415 in. 

wit = 2.415/0.105 = 23.00 

S = 1.28 "E/f 

= 1.28 "29500/15.71 = 55.47 

S/3 = 18.49 < wIt = 23.00 < S = 55.47 

la = 399(0.105)4[(23.00/55.47)-0.33]3 

= 0.000029 in.4 

Is = 0.001147 in.4 

IJla = 0.001147/0.000029 = 39.55 

k = [4.82-5(0.331)](39.55)112+0.43 = 20.334 > 3.595 

k = 3.595 

A = (1.052/ "3.595 )(23.00)~ 15.71129500 = 0.294 < 0.673 

b = w = 2.415 in. (compression flange fully effective) 

For compression stiffener: 

f is taken conservatively 15.71 ksi as in the top compression fiber. 

d/t = 4.84 

A = (1.052/ "0.43 )(4.84) "15.71129500= 0.179 < 0.673 

d's = d = 0.508 in. 

And since I/Ia = 39.55 > 1.0 

ds = d's = 0.508 in. (compression 'stiffener fully effective) 

And since the web was fully effective at the stress f =~Fy= 50 ksi, it will be fully effective for f = 
15.71 ksi. Thus the whole section is fully effective at MjSf = 15.71 ksi 
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Therefore 

Sc = Se = 3.777 in.3 

Mnx = McSJSf 

= 59.34(3.777)/3.777 

= 59.34 kip-in. 

<l>b = 0.90 

<I>~nx= 0.90 x 59.34 = 53.41 kip-in. 

<l>bMnx shall be the smaller of 171.24 kip-in. and 53.41 kip-in. 

Therefore 

<I>~nx= 53.41 kip-in. 
7. Determination of Crnx (Section C5): 

MdM2 = -1.00 (single curvature) 

Crnx = 0.6-0.4(-1.0) = 1.00 

8. Determination of CXnx (Section C5): 
Pu = 3.68 kips 

PE = 1t2Elx/(KxLx)2 

= [ 1t2 (29500)(15.108)] /[ 1(16)xI2]2 = 119.32 kips 

<l>c = 0.85 

l/Cl.nx = 1/[ 1-Pu/( <l>cPE )] 

= 1/[ 1-3.68/(0.85xl19.32)] = 1.038 

Cl.nx = 0.964 

9. Muy = 7.36 kip-in. (calculated in part (a.5» 

10. <l>b~y = 38.57 kip-in. (calculated in part (a.6» 

11. Crny = 1.0 (calculated in part (a.7» 

12. any = 0.693 (calculated in part (a.8» 

13. Interaction equations (Section C5): 

p J<I>cPn +Cmx~/<I>bMnx<X.tx +Cm~/<I>bMny<X.ty~1.0 

3.68/11.985+ 1.0xI4.72/(53.41xO.964)+ 1.0x7.36/(38.57xO.693) 

0.307+0.286+0.275 = 0.868 < 1.0 OK 

Pj<l>cPno+Muxl<l>~nx+MuY!<l>hMny ~1.0 

3.68/48.37 + 14.72/53.41 + 7.36/38.57 

0.076+0.276+0.191 = 0.543 < 1.0 OK 

Therefore the section is adequate for the applied loads. 

(Eq. C5-5) 

(Eq. C5-4) 

(Eq. C5-1) 

(Eq. C5-2) 
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EXAMPLE NO. 16 

C-SECTION - WALL STUD 

Stud Cross Section/Properties 

y 

7.0" 

0.7" 

x---- -. )40-- t=0.075"(l4 Ga.) --x 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: As shown, spacing 24 in. O.C. 

3. Length: 15 f1.-0 in. 

Sx = 2.19 in.3 

A =1.003 in.2 

Ix = 7.66 in.4 

Iy = 1.00 in.4 

rx = 2.76 in. 

ry = 0.999 in. 

J = 0.00188 in.4 
(S1. Venant Torsion Constant) 

Cw = 10.10 in.6 

(Warping constant of Torsion) 

ro = 3.57 in. 
(Polar r About Shear Ctr.) 

Xo = 2.03 in. 
(Distance From Shear Ctr. to centroid) 
along the x-axis 

G = 11,300 ksi 
(Shear Modulus) 

Note: y - y axis perpendicular to wall board 

4. Cladding: On both sides, 1/2 in. gypsum board with No.6 Type S-12 self-drilling screws @ 12 in. 
O.C. vertically. 

5. Dead load to live load ratio OIL = 1/5. 

Required: 

1. The design axial strength, ct»cP n' 

2. The permitted service axial load in combination with 5 psf lateral load. 
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Solution: 

1. No Lateral Load (Section D4.l) 

a. Check column buckling between fasteners 

KL/ry = (2)(12)/0.999 = 24.0 

For flexural buckling about the y-y axis 

Fel = Tt
2E/(KL/ry)2 

= [ Tt
2 (29500)]/(24.0)2 = 505 ksi 

For torsional-flexural buckling 

F e2 = (1/2~)[ ( oex + Ot) - ~r--( 0-ex-+-0-t)-=2 ---4-~0-e-xO-t ] 

oex = (Tt
2E)/(KxLx/rx)2 

= Tt
2 (29500)/[(2)(12)/2.76]2 = 3850 ksi. 

ot = (1/ Aro 2)[ GJ+( Tt
2 ECw )/(Kt L t i] 

= [1/1.003(3.57)2][11300xO.00188] 

+(Tt2x29500xl0.l0)/[(2xI2i] = 401 ksi 

~ = 1-(xJro)2 

= 1-(2.03/3.57)2 = 0.677 

Fe2 = [ 1/(2xO.677)][ (3850+401) 

- ~ (3850+401 )2-4(0.677)(3850)(401) ] 

= 387 ksi < 505 ksi 

Since Fe2 > F/2 = 25 ksi 

Fnl = FyCI-Fy!4Fe) 

= 50[1-50/(4x387)] = 48.4 ksi 

b. Check flexural and/or torsional overall column buckling 

OcR = Oey+Qa 

OR 

OcR = (1/2~)[(oex + otQ) -~(Oex + OtQ)2 - 4~oexotQ ] 

oex = Tt
2E/(L/rx)2 

= Tt2(29500)/[(15)(12)/2.76f = 68.5 ksi 

OtQ = Ot+ Qt 

Ot = (1/Aro2)[ GJ+( Tt
2 ECw IL2)] 

= [1/1.003(3.57)2][ 11300xO.OOI88 

+(Tt2x29500x 1 0.10)/[ (15x 12)2] 

= 8.76 ksi 

Qt = ( Qd2
)/( 4Aro 2) 

Q =ijB 

(Eq. C4.1-l) 

(Eq. C4.2-1) 

(Eq. C3.1.2-7) 

(Eq. C3.1.2-9) 

(Eq. C4.2-3) 

(Eq. C4-2) 

(Eq. D4.1-2) 

(Eq. D4.1-3) 

(Eq. D4.1-8) 

(Eq.04.1-12). 

(Eq.D4.1-11) 

(Eq. D4.1-14) 
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B = 24 in. O.C. 

q 

qo = 2.0 kip/in. 

s = 12 in. 

q = 2.0(2-12/12) = 2.0 kip/in. 

Q = 2.0(24) = 48 kips 

Qt = 48(7)2/(4)(1.003)(3.57i = 46.0 ksi 

OtQ = 8.76 + 46.0 = 54.8 ksi 

0ey = rc2E/(L/ry)2 

= rc2(29500)/[(15)(12)/0.999f = 8.97 ksi 

Qa = Q/A 

= 48/1.003 = 47.9 ksi 

~ = 0.677 (calculated previously) 

OcR = 8.97 + 47.9 = 56.9 ksi 

OR 

OcR = [l/(2xO.677)][ (68.5+54.8) 

-~(68.5 + 54.8)2 - 4(0.677)(68.5)(54.8)] 

= 38.6 ksi 

Use ocR = 38.6 ksi = Fe 

Fe> Fj2 = 25 ksi so, 

Fn2 = F/I-F/4Fe) 

= 50[l-50/(4x38.6)] = 33.8 ksi 

c. Check shear strain of wall material 

Co = L/350 

= (12)(15)/350 = 0.514 in. 

Do = L/700 

= (12)(15)/700 = 0.257 in. 

Eo = L/( dx 10,000) 

= (12)(15)/(7xl0,000) 

= 0.00257 rad 

(Eq. D4.1-26) 

(Eq. D4.1-10) 

(Eq. D4.1-13) 

(Eq. C4-2) 

(Eq. D4.1-21) 

(Eq. D4.1-22) 

(Eq. D4.1-23) 

Let initial trial value of F n3 be based on largest stress for elastic values of E and G 

Assume Fn = 0.5Fy = 0.5(50) = 25 ksi 

E = 29500ksi 

G = 11300 ksi 

(Eq. D4.1-16) 
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O'ey = 8.97 ksi 

Qs = 47.9 ksi 

C 1 = (25)(0.514)/(8.97-25+47.9) = 0.403 

El = {Fn [(O'ex - Fn)(r~o - xJ)o) - Fnxo(Do - xaEo)]}/ 
2 2 [(O'ex - Fn)ro(O'tQ - Fn) - (FnXo) ] 

O'ex = 68.5 ksi 

O'tQ = 54.8 ksi 

El = (25){ (68.5-25)[ (3.57)2 (0.00257)-(2.03)(0.257)] 

-(25)(2.03)[0.257-(2.03)(0.00257)] }/{ (68.5 

-25)(3.57)2 (54.8-25)-[(25)(2.03)]2 ) 

El = -0.0610, use absolute value of 0.0610 

'Y = 0.008 in./in. (Table D4) 

'Y = (n/L)[C1 +(El d/2)] 

= [n/(15)(12)][0.403 + (0.0610)(7)/2] 

= 0.0108 >y = 0.008 

Now, try a new value of Fn3 = 21 ksi 

C 1 = (21)(0.514)/(8.97-21+47.9) = 0.301 

El = (21){ (68.5-21)[ (3.57)2(0.00257)-(2.03)(0.257)] 

-(21)(2.03)[0.257-(2.03)(0.00257)] }/{ (68.5 

-21)(3.57)2(54.8-21)-[(21)(2.03)f ) 

E] = -0.0382, use absolute value of 0.0382 

'Y = [n/(15)(12)][ 0.301 +(0.0382)(7)/2] 

= 0.0076 <Y= 0.008 

Interpolating, and trying a value of F n3 = 21.5 ksi 

C] = (21.5)(0.514)/(8.97-21.5+47.9) = 0.312 

E] = (21.5){ (68.5-21.5)[(3.57)2 (0.00257)-(2.03)(0.257)] 

-(21.5)(2.03)[ 0.257-(2.03)(0.00257)] }/{ (68.5 

-21.5)(3.57)2(54.8-21.5)-[ (21.5)(2.03)]2 ) 

El = -0.0405, use absolute value of 0.0405 

'Y = [n/(l5)(l2)][0.312+(0.0405)(7)/2] 

= 0.0079 < Y = 0.008 

Trying one final value of F n3 = 21.6 ksi 

C] = (21.6)(0.514)/(8.97-21.6+47.9) = 0.315 

E\ = (21.6){ (68.5-21.6)[ (3.57)2(0.00257)-(2.03)(0.257)] 

-(21.6)(2.03)[0.257-(2.03)(0.00257)] }/{ (68.5 

-21.6)(3.57)2(54.8-21.6)-[(21.6)(2.03)r ) 

(Eq. D4.1-17) 

(Eq D4.l-15) 
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El = -0.0409, use absolute value of 0.0409 

y = [1t/(15)(12)][ 0.315+(0.0409)(7)/2] 

=0.008 OK 

Calculate Ae at Fn = 21.6 ksi, the smallest value of Fn1 , F n2' and Fn3 

Web: 

w = 6.663 in. 

A = (1.052/ ~ )(6.663/0.075) --.)21.6/29500= 16.264 

For A> 0.673, 

P = (1-0.22/1.264)/1.264 = 0.653 

~ = pw = (0.653)(6.663) = 4.351 in. 

Flange: 

w = 2.413 in. 

wit = 32.17 

S = 1.28 --.)29500/21.6 = 47.3 

S/3 < w/t< S so, 

Ia = 399t4 {[ (w/t)/S] -0.33} 3 

= 399(0.075)4[ (32.17/47.3)-0.33] 3 

= 0.000542 in.4 

Stiffener: 

w = 0.531 in. 

Is = w3t/12 = (0.531)3(0.075)/12 

= 0.000936 in.4 

A = (1.052/ --.)0.43 )(0.531/0.075) --.)21.6/29500 

= 0.307 < 0.673 

b = d's = 0.531 in. 

ds = d's = 0.531 in. (for Is ~ Ia) 

D/w = 0.7/2.413 = 0.290 

k = [4.82-5(0.290)](0.000936/0.000542)112+0.43 

=4.86 

5.25-5(0.290) = 3.80 < 4.86, so use k = 3.80 

A = (1.052/ --.)3.80 )(32.17)"21.6/29500= 0.470 < 0.673 

b =w=2.413in. 

Ae = 1.003-(6.663-4.351)(0.075) = 0.830 in.2 

Pn = AeFn 

= 0.830 x 21.6 = 17.93 kips 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4-1) 

(Eq. B4.2-6) 

(Eq. B2.1-4) 

(Eq. B4.2-11) 

(Eq. B4.2-9) 

(Eq. B2.1-1) 

(Eq. D4.1-1) 
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<Pc = 0,85 

<PcPn = 0,85 x 17,93 = 15,24 kips 

<PcPn = Pu = 1.2PDL + 1.6PLL 

= [ 1.2(PoL IPLL )+ 1.6]PLL 

= [ 1.2(l/5)+l,6]PLL 

= 1.84PLL 

PLL = <PcPn/l.84 = 15.24/1.84 = 8.28 kips 

Ps = POL+ PLL 

= (1/5+ 1 )PLL 

= 1.2(8.28) = 9.94 kips 

Where 

P u = Required axial strength 

Ps = Service axial load 

POL = Axial load detennined on the basis of nominal dead load 

PLL = Axial load detennined on the basis of nominal live load 

2. Pennitted Service Axial Load with 5 psf Lateral Load (Section D4.3) 

Mux = 1.3(0.9)(5 psf)(2 ft O.C.)(15 ft)2(12 in./ft)/8 

= 3948.75 in.-Ibs 

Muy =0 

(Eq. C5-1) 
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Assume Cmx = 1.0 (braced against joint translation in the plane of loading, subject to transverse load
ing between supports with mernber ends unrestrained) 

l/Unx = 1/(l-Pu/<PcPE) 

<Pc = 0.85 

PE = 1t2EI.,/(K.,Lb)2 

= [1t2 (29500)(7.66)] /[ (12)(15)]2 = 68,8 kips 

<PcPE = 0.85(68.8) = 58.48 kips 

<PcPn = 15.24 kips 

(Eq. C5-4) 

(Eq. C5-5) 

Mnx = Mnxo = Nominal moments about the centroidal axes detennined in accordance 
with Section C3.1 except lateral buckling provisions 

Following Procedure I - Based on Initiation of Yielding 

<I>t> = 0.95 for section with stiffened or partially stiffened compression flanges 

Mnx = SexFy (Eq. C3.1.1-1) 

Fy = 50 ksi 

Calculation of Sex with extreme compression fiber at F y 

Stiffener (compression): Assume maximum stress is Fy initially, although actually it will be less. 
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w = 0.531 in. 

A = (1.052/ "0.43 )(0.531/0.075) "50/29500 (Eq. B2.1-4) 

= 0.468 < 0.673 

Is = 0.000936 in.4 

b = d's = 0.531 in. (max. stress assumption OK) 

ds = d's(IJla) (Eq. B4.2-1l) 

= 0.531(0.000936/0.00392) = 0.127 in. 

See below for calculation of la. 

Flange (compression): 

w = 2.413 in. 

wit = 32.17 

S = 1.28 "29500/50= 31.1 (Eq. B4-l) 

wit ~S so, 

Ia = t4 {[ 115(w/t)/S] +5} (Eq. B4.2-13) 

= (0.075)4 {[ 115(32.17)/31.1] +5} = 0.00392 in.4 

D/w = 0.290 

k = [4.82-5(0.290)](0.000936/0.00392i I3+0.43 = 2.52 (Eq. B4.2-9) 

5.25-5(0.290) = 3.80> 2.52 OK 

A = (1.052/ v'k)( wit) "fIE (Eq. B2.1-4) 

= (1.052/ "2.52 )(32.17)"50/29500 = 0.878 

P = (1-0.22/0.878)/0.878 = 0.854 (Eq. B2.1-3) 

b = (0.854)(2.413) = 2.061 in. (Eq. B2.1-2) 

Assume the web is fully effective initially. 

y I' 
1 

L Distance About 
Effective from Own 
Length Top Fiber Ly Ly2 Axis 

Element (in.) (in.) (in.2) (in.3
) (in.3

) 

0.127 0.232 0.029 0.007 
2 0.206 0.085 0.018 0.001 
3 2.061 0.038 0.078 0.003 
4 0.206 0.085 0.018 0.001 
5 6.663 3.500 23.321 81.622 24.651 
6 0.206 6.915 1.424 9.850 
7 2.413 6.963 16.802 116.990 
8 0.206 6.915 1.424 9.850 
9 0.531 6.566 3.487 22.893 0.012 

Sum 12.619 46.601 241.217 24.663 
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Ycg = 46.601/12.619 = 3.693 in. 

leff = 0.075(241.217+24.663-12.619x3.69j) = 7.03 in.4 

0.169" 

3.693" 

3.307" 

Now, check to see if the web is fully effective. 

f} = [(3.693-0. 169)/3.693]x50 = 47.7 1 ksi(compression) 

f2 = -[ (3.307-0.169)/3.693]x50 = -42.49 ksi (tension) 

'" = f21f} = -42.49/47.71 = -0.8906 

k = 4+2(1-",)3+2(1_",) 

= 4+2[ 1-(-0.8906)] 3 +2[ 1-(-0.8906)] = 21.30 

A = (1.052/ "21.30 )(6.663/0.075)"47.71129500 

= 0.814 > 0.673 

P = (1-0.22/0.814)/0.814 = 0.896 

be = 0.896 X 6.663 = 5.970 in. 

b2 = bJ2 = 5.970/2 = 2.985 in. 

b l = bJ(3-",) = 5.970/(3+0.8906) = 1.534 in. 

b l +b2 = 4.519> 3.524 (compressed portion of the web) 

So, the web is fully effective. 

Sex = 7.03/3.693 = 1.904 in.3 

Mnx = (1.904)(50) = 95.2 kip-in. 

<l>~nx = 0.95(95.2) = 90.44 kip-in. 

U sing the interaction equation, 

PulI5.24+(3948.75/1000)/[90.44(1-Pu /58.48)] ~ 1.0 

(Eq. B2.3-4) 

(Eq. B2.1-4) 

(Eq.B2.1-3) 

(Eq. B2.1-2) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 

Iterating with different values of P u on the left hand side yields a required axial strength, 

Pu (with 5 psf wind load) = 14.36 kips 

p u = 1.2PoL + O.5PLL 

= [1.2(PoL /PLL )+0.5]PLL 

= [1.2(1/5)+O.5]PLL 

=O.74PLL 
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PLL = PJO.74 = 14.36/0.74 = 19.41 kips 

P s = PDL+PLL 

= (1/5+ 1 )PLL 

= 1.2(19.41) = 23.29 kips 

The axial load alone controls, so Ps = 9.94 kips 

Note that (Eq. C5-2) does not control in this case since the simply supported stud has zero end mo
ments (Mux = 0) and ct>cPn < ct>~no (design axial strength for zero length stud). 
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EXAMPLE NO. 17 

TUBULAR SECTION 

Given: 

1. Steel: F y = 50 ksi. 

7.414" 

Compression flange in bending 

R=3/16" 
Thnsion flange in bending 

8.000" 

2. Section: 8 x 8 x 0.105 Square Tube. 

3. Unbraced length of column: 10 ft. 

4. Kx = Ky = 1.0 

5. Service axial load: P = 15 kips. 

0.140" 

0.153 " 

10' 

t=0.105" 

115 Kips 

~60K-in. 
" 

~60K-in. 

115 Kips 
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6. The eccentricity of axial load at each end of member, ey, is 4 in. and member is bent in single curva
ture about x-axis. 

7. ex=O. 

8. Dead load to live load ratio DIL = 1/5 and 1 .20 + 1.6L governs the design. 

Required: 

Check the adequacy of the given section. 

Solution: 

1. Full section properties: 

r = R + t/2 = 3/16+0.105/2 = 0.240 in. 
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Length of arc, u = 1.57r = 1.57 x 0.240 = 0.377 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.240 = 0.153 in. 

Ix = ~ (doubly symmetric section) 

L 
Element (in.) 

Flanges 2x7.414= 14.828 
Comers 4 x 0.377 = 1.508 
Webs 2 x 7.414 = 14.828 

--
Sum 31.164 

A = Lt = 31. 164xO. 105 = 3.272 in.2 

y 
Distance 
to Center 
of Section 

(in.) 

3.948 
3.860 

I' = Ly2+I't = 253.589+67.921 = 321.510 in? 

Ix = Iy =I't = 321.510xO.105 = 33.759 in.4 

rx = ry = -.J33.759/3.272 = 3.212 in. 

Sx = Ix/4.OOO = 33.759/4.000 = 8.440 in.3 

Ly2 
(in.3

) 

231.120 
22.469 

253.589 

I' I 
About 
Own 
Axis 
(in.3

) 

67.921 
67.921 

KxLx/rx = 1.0(10x12)/3.212 = 37.36 < 200 OK (Section C4-(d» 

2. Determination of <PcP n (Section C4): 

Since the square tube is a doubly symmetric closed section, provisions of Section C4.1 apply, i.e., 
section is not subjected to torsional flexural buckling. 

Fe = 1t2E/(KxLx/rx)2 (Eq. C4.1-1) 

= (1t2x29500)/(37.36)2 = 208.60 ksi 

Fy/2 = 50/2 = 25.00 ksi 

For Fe> F/2: 

Fn = FlI-F/4Fe) (Eq. C4-2) 

= 50[ 1-50.00/( 4x208.60)] = 47.00 ksi 

w = 7.414 in. 

wit = 7.414/0.105 = 70.61 < 500 OK (Section B1.1-(a)-(2» 

k = 4.00 (Section B2.1-(a» 

A = (1.052M )(w/t) -.Jf/E, f = Fn (Eq. B2.1-4) 

= (1.052/ -.J4.00 )(70.61) -.J47/29500 = 1.482> 0.673 

p = (1-0.22/ A)/ A (Eq. B2.1-3) 

= (1-0.22/1.482)/1.482 = 0.575 
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b = pw (Eq. B2.1-2) 

= 0.575x7.414 = 4.263 in. 

Ae = A-4(w-b)t 

= 3.272-4(7.414-4.263)(0.105) = 1.949 in.2 

(Eq. C4-1) 

= 1.949x47.00 = 91.60 kips 

<l>c = 0.85 

<l>cPn = 0.85x91.60 = 77.86 kips 

3. POL +PLL =(POJPLL + l)PLL 
= (1/5+ l)PLL = 1.2PLL = P 

PLL = P/1.2 = 15/1.2 = 12.5 kips 

Pu = 1.2PDL + 1.6PLL = (1.2PDJPLL + 1.6)PLL = [ 1.2(1/5)+ 1.6](12.5) = 23 kips 

where 

PDL = Axial load detennined on the basis of nominal dead load 

PLL = Axial load detennined on the basis of nominal live load 

P u/<I>cP n = 23/77.86 = 0.295 > 0.15 

Must check both interaction equations (Eq. C5-1), (Eq. C5-2). 

4. Detennination of <l>cP no (Section C4 for Fn = F y) 

A = (1.052/ ...)4.00 )(70.61)...)50/29500= 1.529> 0.673 

p = (1-0.22/1.529)/1.529 = 0.560 

b = 0.560x7.414 = 4.152 in. 

Ae = 3.272-4(7.414-4.152)(0.105) = 1.902 in.2 

Pno = 1.902x50.00 = 95.10 kips 

<l>cPno = 0.85x95.10 = 80.84 kips 

5. Determination of Mux' Muy (Section C5): 

Since the section is doubly symmetric, the centroidal axes of the effective section at <l>cP n are the 
same as those of the full section. 

Mux = P uey = 23x4 = 92 kip-in. 

Muy = Puex = 0 

Since Muy = 0, the interaction equations (Eq. C5-1) and (Eq.C5-2)reduce to the following: 

P J<I>cPn+CmxMuxl<l>tNnx<Xnx :5 1.0 (Eq. C5-l) 

(Eq. C5-2) 

6. Detennination of ct>t,~x (Section C3.1): 

«PbMnx shall be taken as the smaller of the design flexural strengths calculated according to Sections 
C3.1.1 and C3.1.2: 

a. Section C3.1.1: Mnx will be calculated on the basis of initiation of yielding. 
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Computation of Ix: 
For the first approximation, assume a compression stress of f = F y = 50 ksi in the compression 
flange, and that the web is fully effective. 

Compression flange: k=4.00 (stiffened compression element supported by a web on each lon
gitudinal edge) 

wIt = 7.414/0.105 = 70.61 < 500 OK (Section B1.1-(a)-(2» 

A = (1.052N4.00)(70.61)"50/29500= 1.529> 0.673 

p = (1-0.22/1.529)/1.529 = 0.560 

b = 0.560x7.414 = 4.152 in. 

Effective section properties about x-axis: 

Y 
L Distance 

Effective from 
Length Top Fiber Ly' 

Element (in.) (in.) (in.2) 

Webs 14.828 4.000 59.312 
Upper Comers 0.754 0.140 0.106 
Lower Comers 0.754 7.860 5.926 

Compression Flange 4.152 0.053 0.220 
Tension Flange 7.414 7.948 58.926 

Sum 27.902 124.490 

Distance from top fiber to x-axis is 

Ycg = Ly/L = 124.490/27.902 = 4.462 in. 

L 2 
Y3 

(in. ) 

237.248 
0.015 

46.582 
0.012 

468.348 
752.205 

I' 1 
About 
Own 
Axis 
(in.3

) 

67.921 

67.921 

Since the distance of top compression fiber from neutral axis is greater than one half the section 
depth (i.e., 4.462 > 4.000), a compression stress of 50 ksi will govern as assumed (i.e., initial yield
ing is in compression). 

To check if the web is fully effective (Section B2.3) 

fl = [(4.462-0.293)/4.462](50) = 46.72 ksi(compression) 

f2 = -[ (3.538-0.293)/4.462](50) = -36.36 ksi(tension) 

'if = fz/fl = -36.36/46.72 = -0.778 

k = 4+2[ 1-(-0.778)] 3 +2[ 1-(-0.778)] 

= 18.798 

h = w = 7.414 in., hit = wIt = 7.414/0.105 = 70.61 

hit = 70.61 < 200 OK (Section B 1.2-(a» 

A = (1.052/ "18.798 )(70.61) "46.72/29500= 0.682 > 0.673 

P = (1-0.22/0.682)/0.682 = 0.993 

be = 0.993x7.414 = 7.362 in. 
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b2 = bJ2 (Eq. B2.3-2) 

= 7.362/2 = 3.681 in. 

b I = bJ(3-'I') (Eq. B2.3-1) 

= 7.362/[ 3-(-0.778)] = 1.949 in. 

Compression portion of the web calculated on the basis of the effective section = Ycg-0.293 = 4.462-
0.293 = 4.169 in. 

Since b I+b2 = 5.630 in. > 4.169 in., bI+b2 shall be taken as 4.169 in. 

This verifies the assumption that the web is fully effective. 

I'x = Ly2 + 1'1 - Llcg 

= 752.205 + 67.921 - 27.902(4.462)2 

= 264.613 in? 

Actual Ix = tI' x 

= (0.105)(264.613) = 27.784 in.4 

Se = Ix/Ycg = 27.784/4.462 = 6.227 in.
3 

= SeFy 

= (6.227)(50) = 311.35 kip-in. 

= 0.95 

= 0.95 x 311.35 = 295.78 kip-in. 

(Eq. C3 .1.1-1 ) 

b. Section C3.1.2: Mnx will be calculated on the basis of lateral buckling strength. However for this 
square tube (closed box-type merrlber) the provisions of Section C3.1.2 do not apply. 

Therefore 

<PbMnx= 295.78 kip-in. 

7. Crnx = 0.6-0.4(MtlM2) 

MtfM2 = -(92/92) = -1.0 (single curvature) 

0.6-0.4(M/M2) = 0.6-0.4(-1.0) = 1.0 

8. Determination of 1/anx: 

<Pc = 0.85 
2 2 = 1t EIxI(KxLx) 

= 33.759 in.4 

KxLx = 1.0(1 Ox 12) = 120 in. 

PE = [1t2 (29500)(33.759)]/(120)2 = 682.57 kips 

1/Unx = 1/(1-Pul<PcPE) 

= 1/[ 1-23/(0.85x682.57)] = 1.041 

Unx = 0.960 

9. Check interaction equations: 

pJcj)cPn+CmxMux/<P.,MnxClnx ~ 1.0 

(Eq. C5-5) 

(Eq. C5-4) 

(Eq. C5-l) 
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23n7.86+1x92/(295.78xO.960) = 0.295+0.324 = 0.619 < 1.0 OK 

PuI<I>cPno+Mux/<!>J,Mnx ~ 1.0 

23/80.84+92/295.78 = 0.285+0.311 = 0.596 < 1.0 OK 

Therefore the section is adequate for the applied loads. 

(Eq. C5-2) 
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EXAMPLE NO. 18 

FLAT SECTION WITH BOLTED CONNECTION 

Bolt Diameter=l/2" 

}" I" 

~ 
«I> Po 4" 4> Po 

4 • 

~ 

Given: 

1. Steel: Fy = 33 ksi, Fu = 45 ksi. 

2. Bolts confonning to ASTM A307 with washers under bolt head and nut. 
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3. Detail of connection shown in sketch. 

Required: 

Detennine the maximum design strength, <l>P n' 

Solution: 

Thickness of thinnest part connected, t 

= 0.105 in. < 3/16 = 0.188 in. 

Therefore, Section E3 applies. 

1. Design strength based on spacing and edge distance (Section E3.1) 

a. FJFy = 45/33 = 1.36> 1.15 

For FuiFy > 1.15, <I> = 0.70 

Pn = teFu 

= 0.105(1)(45) = 4.73 kips/bolt 

<l>Pn = 0.7(2 bolts)(4.73 kips/bolt) = 6.62 kips 

b. Distance between bolt hole centers must be greater than 3d. 

3d = 3(0.5) = 1.5 in. <2 in. OK 

(Eq. E3.1-1) 

c. Distance between bolt hole center and edge of connecting member must be greater than 1.5d. 

1.5d = 1.5(0.5) = 0.75 in. <1 in. OK 

2. Design strength based on tension on net section. 

Required tension strength on net section of bolted connection shall not exceed <l>tT n from 
Section C2: 

An - based on Table E3 

An = 0.105 [4-2(1/2+1/16)] = 0.302 in.2 

Tn = AnFy 

= (0.302)(33) = 9.97 kips 

<l>t = 0.95 

<l>tTn = 0.95(9.97) = 9.47 kips 

or <l>Pn from Section E3.2: 

(Eq. C2-1) 

Since t = 0.105 in. < 3/16 in. and washers are provided under both bolt head and nut 

(Eq. E3.2-1) 

where in this case: 

r = 2(<I>Pn/2)/<I>Pn = 1 

d = 0.5 in. 



Examples Based on the March 16, 1991 Edition of the LRFD Cold-Formed Specification 

s = 2 in. 

Pn = [ 1.0-0.9(1)+3(1)(0.5)/2] (45)(0.302) 

= 11.55 kips < 45(0.302) = 13.59 kips OK 

<I> = 0.55 for single shear connection 

<l>P n = 0.55( 11.55) = 6.35 kips 

Therefore, design strength based on tension on net section is 6.35 kips. 

3. Design strength based on bearing (Section E3.3) 

For single shear with washers under bolt head and nut; 0.024 in.~ t = 0.105 in. < 3/16 in. 

From Table E3.3-1 

Pn = 3.00Fudt = 3.00(45)(0.5)(0.105) = 7.09 kips/bolt 

<I> =0.60 

<l>Pn = 0.60(2 bolts)(7.09 kips/bolt) = 8.51 kips 

4. Design strength based on bolt shear (Section E3.4) 

Pn = AbFn (Eq. E3.4-1) 

Ab = (1t/4)(0.5)2 = 0.196 in.2 

Fn = Fnv = 27 ksi (Table E3.4-1, d ~ 1/2 in.) 

P n = (27)(0.196) = 5.29 kips/bolt 

<I> =0.65 

<l>Pn = 0.65(2 bolts)(5.29 kips/bolt) = 6.88 kips 

IV-141 

5. Comparing the values from 1, 2, 3, and 4 above, the design tensile strength on the net section of 
the connected part controls and 

<l>Pn = 6.35 kips 
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EXAMPLE NO. 19 

FLAT SECTION WITH ARC SPOT WELDED CONNECTION 

~I 
Visible Diameter of Weld, d=3/4" 

3/4" Diameter 

• F F 

1~" 

Given: 

1. Steel: Fy = 50 ksi, Fu = 65 ksi. 

2. Total Required Strength, F = 6.8 kips 
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3. Detail of connection shown in sketch. 

Required: 

Design the connection to transmit F = 6.8 kips using arc spot welds having 3/4 in. visible diameter. 

Solution: 

1. Weld Dimensions 

d = 0.75 in. 

da = d-t = 0.75-0.06 = 0.69 in. 

= 0.7d-1.5t but $; 0.55d 

= 0.7(0.75)-1.5(0.06) = 0.44 

0.55d = 0.55(0.75) = 0.41 in. 

0.44 in. > 0.41 in., use de = 0.41 in. > 3/8 in. OK 

2. Determine number of arc spot welds required. 

a. P n = 0.589de2Fxx 

Using E60 electrode, F xx = 60 ksi 

Pn = 0.589(0.41)\60) = 5.94 kips/weld 

<I> =0.60 

<l>Pn = 0.60(5.94) = 3.56 kips/weld 

b. Compute daft = 0.69/0.06 = 11.5 

Compute -VE/Fu=-V29500/65= 21.3 

For daft = 11.5 < 0.815 -VElFu= 17.4 

Pn = 2.20tdaFu 

= 2.20(0.06)(0.69)(65) = 5.92 kips/weld 

<I> =0.60 

<l>Pn = 0.60(5.92) = 3.55 kips/weld (control) 

Number of welds = 6.8 kips/(3.55 kips/weld) = 1.92 welds, use 2. 

3. Check the edge distance and spacing requirements 

a. Fu/Fy = 65/50 = 1.3> 1.15 

For FulFy > 1.15, <I> = 0.70 

emin = PuI<I>Fut 

= (6.8/2)/ [ (0.70)(65)(0.06) ] = 1.25 in. 

1.25 in. edge distance = emin = 1.25 in. OK 

(Eq. E2.2-5) 

(Eq. E2.2-I) 

(Eq. E2.2-2) 

(Eq. E2.2-6) 
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b. Edge distance shall not be less than 1.5d. 

1.5d = 1.5(0.75) = 1.13 in. < 1.25 in. OK 

c. Clear distance between weld and end of member shall not be less than 1.0d. 

1.0d = 1.0(0.75) = 0.75 in. 

Clear distance = 1.25-0.375 = 0.875 in. > 0.75 in. OK 

d. Thinnest connected part, t = 0.06 in. < 0.15 in. OK 

4. Use 2-3/4 in. diameter spot welds in the configuration shown. No weld washers required because 
t = 0.06 in. > 0.028 in. 
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EXAMPLE NO. 20. 

FLAT SECTION WITH ARC SEAM WELDED CONNECTION 

IV1" IV1" 

112 "xl Y2" 

.. F 4 " 

- ...... ~---i"III---Width of Weld, d 

Given: 

1. Steel: Fy = 50 ksi, Fu = 65 ksi. 

2. Total Required Strength, F = 4.1 kips 
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3. Detail of connection shown in sketch. 

Required: 

Design the connection to transmit F = 4.1 kips using arc seam welds. 

Try d = 1/2 in .. 

Solution: 

1. Required strength shall not exceed either 

<I> =0.60 

Pn = (1tde2/4+Lde)(0.75Fxx) 

Try E60 electrode, F xx = 60 ksi 

L = 1.5 in., or maximum 3d, 3(0.5) = 1.5 in. OK 

da = 0.5-0.06 = 0.44 in. 

de =0.7d-1.5t 

= 0.7(0.5)-1.5(0.06) = 0.260 in. 

Pn = [ 1t(0.26)2 /4+(1.5)(0.26)] [0.75(60) ] 

= 19.94 kips 

<l>Pn = 0.60(19.94) = 11.96 kips. 

OR 

<I> =0.60 

Pn = 2.5tFu(0.25L+0.96da) 

= 2.5(0.06)(65) [ 0.25(1.5)+0.96(0.44)] = 7.77 kips 

<l>Pn = 0.60(7.77) = 4.66 kips (control) 

<l>Pn = 4.66 kips> F = 4.10 kips OK 

2. Determine minimum edge distance in line of force. 

a. FJFy = 65/50 = 1.3> 1.15 

For FJFy > 1.15, <I> = 0.70 

emin = P uI<I>F ut 

= 4.1/ [ (0.70)(65)(0.06)] = 1.50 in. 

1.50 in. edge distance = emin. = 1.50 in. OK 

b. Edge distance shall not be less than 1.5d. 

1.5d = 1.5(0.50) = 0.75 in. < 1.50 in. OK 

(Eq. E2.3-1) 

(Eq. E2.3-3) 

(Eq. E2.3-5) 

(Eq. E2.3-2) 

(Eq. E2.2-6) 
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c. Clear distance between weld and end of member shall not be less than 1.0d. 

1.0d = 1.0(0.50) = 0.50 in. Clear distance = 1.50-0.25 = 1.25 in. > 0.50 in. OK 

3. Use arc seam welded connection per sketch with E60 electrode and d = 1/2 in. 

IV-147 
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EXAMPLE NO. 21 

FLAT SECTION WITH LAP FILLET WELDED CONNECTION 

Given: 

F=6.1 k .. 

I. Steel: Fy = 50 ksi, Fu = 65 ksi. 

2V2" 

2. Total Required Strength, F = 6.1 kips 

3. Detail of connection shown in sketch. 

Required: 

I 

2 

F=6.1 k 
~ 

Check to see if longitudinal fillet welded connection is adequate to transmit F = 6.1 kips. 

Solution: 

1. L/t= 2/0.06 = 33.33 > 25 

For Lit ~ 25, 

<I> =0.55 

Pn = 0.75tLFu (Eq. E2.4-2) 
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= 0.75(0.06)(2)(65) = 5.85 kips 

<l>Pn = 0.55(5.85) = 3.22 kips/weld 

2. Note: t = 0.06 in. < 0.150 in .. Therefore, (Eq. E2.4-4)does not apply. 

3. (3.22 kips/weld)(2 welds) = 6.44 kips < 6.1 kips OK 

IV- ]49 
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EXAMPLE NO. 22 

FLAT SECTION WITH SINGLE FLARE BEVEL GROOVE WELDED CONNECTION 

1/8 3.5 

Given: 

1. Steel: Fy = 50 ksi, Fu = 65 ksi. 

2. Total Required Strength, F = 6.1 kips 

3. Detail of connection shown in sketch. 

4. Transverse loading. 

Required: 

Design the welded connection to transfer F = 6.1 kips. 

Solution: 

1. For flare-bevel groove welds, transverse loading, the required strength F shall not exceed <l>P n 

<I> =0.55 

P n = 0.833tLFu (Eq. E2.5-1) 
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Solve for L 

L = F/0.833 

<l>tFu = 6.1/ [0.833(0.55)(0.06)(65)]= 3.41 in. 

2. Use 3.5 in. long flare bevel groove weld per sketch. 

3. Size of weld 1/8 in. (l/16 in. min) 
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EXAMPLE NO. 23 

C-SECTION BRACING UNDER GRAVITY LOADING 

~·~1· _____ 3_0' ____ ~·~1· _____ 3_0' ____ ~.~ 

Given: 

1. Steel: F y = 50 ksi. 

2. 60 ft. wide building, 20 ft. bays, simply supported purlins on 5-foot centers. 

3. Roof slope 1: 12. 

4. Same channel as in ex. # 15. 

5. Dead load = 3 psf; live load = 15 psf 

Required: 

Design of bracings of the roof system under gravity loads, using Section D3.2.1 of Specification. 

Solution: 

P =0.05W 

W = (1.2x3+ 1.6x15)x30x20 = 16560 lbs. 
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P = 0.05( 16560) = 828 Ibs 

A total restraint force of 828 lbs. must be supplied in each bay. It is up the designer to decide 
what devices can be used to supply this force. 
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EXAMPLE NO. 24 

Z-SECTION BRACING UNDER GRAVITY LOADING 

Given: 

Same roof system as Example 23, with Z-section instead of channel. 

Z-section is the one used in Example 4. 

Required: 

Design of bracings of the roof system under gravity loads, using Section 03.2.1 of Specification. 

Solution: 

b 

d 

= (3/32+0.06)(tan 22.5°)+ 1.625 = 1.689 in. 

= 6.000 in. 

= 0.060 in. 

np = 7 

S = 4.76°, sinS = 0.083 

W = (1.2x3+ 1.6x 15)x30x20 = 16560 lbs. 

1. Single span system with restraints at supports: 

PL = 0.5 [0.220bI.50 l(ng·72do·90tO.6o)-sinS]W (Eq. 03. 2.1-1) 

PL = 0.5 [0.22( 1.689) 1.5 1(7o.72x6.0000.9xO.0600.6)-D.083] 16560 

PL = 3731bs. 

2. Single span system with third point restraints: 

PL = 0.5 [0.474bI.22 1 (ng.57 dO.89tO.33)-sinS]W (Eq. 03.2.1-2) 

PL = 0.5 [0.47 4( 1.689) 1.22/(7°.57 x6.0000.89xO.060o.33)-D.083] 16560 

PL = 573 lbs. 

3. Single span system with midspan restraint: 

PL = [0.224b1.32/(ng·65do.83to.50)_sinS]W (Eq.D3.2.1-3) 

PL = [0.224( 1.689) 1.32 1(7°.65 x6.0000.83xO.060°.5~-o.083 ]16560 

PL =553Ibs. 
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Each brace will be designed to resist one of the P L forces, detennined above, depending on the 
restraint condition of the span. 

IV-I55 
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EXAMPLE NO. 25 

WALL PANEL 

3.000" 

Given: 

1. Steel: Fy = 50 ksi. 

3.000" 

2. Section: Shown in sketch above. 

3.000" 

14.000" 

R=1/8" 
(TYP) 

3.000" 

3. Dead load to live load ratio D/L = 1/5 and 1.20 + 1.6L governs the design. 

Required: 

Section properties for positive and negative bending. 

Solution: 

1. Linear Properties. 

Elements 4 and 10 

90° comers, r = R + t/2 = 0.125 + 0.030/2 = 0.140 in. 

Length of arc, u = 1.57r = 1.57xO.140 = 0.220 in. 

Distance of c.g. from center of radius, 

2.000" 
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c1 = 0.637r = 0.637xO.140 = 0.089 in. 

0.350" 

Element (2) 
0.932" 

Element 7: 

r = 0.140 in., S = 45° = 0.785 rad. 

Cl = rsinS/8 = 0.140xO.707/0.785 = 0.126 in. 

n = 0.350-2xO.140(1-cos45°) = 0.350-0.082 = 0.268 in. 

lb = 0.268/sin45° = 0.379 in. 

la = Sr = 0.785xO.140 = 0.110 in. 

I' ( straight portions) = 2x 1/12xlbxn2 

= 2x1/12xO.379xO.2682 = 0.0045 in? 

I'(arcs) = 4xO.110x(0.350/2-0.140+0.126)2 = 0.0114 in.3 

I' ~ I'(straight portions)+I'(arcs) = 0.0045+0.0114 = 0.0159 in.3 

I ~ I't = 0.0159xO.030 = 0.000477 in.4 

Check adequacy of intermediate stiffener according to Section B5. 

For wIt = (3.000-0.140-0.932/2)/0.030 = 79.8 (Element 6) 

Imin = [3.66 'J'(w/t)2-(0.136E/Fy)] t4 

= [3.66 'J'(79.8)2-(0.136x29500/50) ] (0.030)4 

= 0.000235 in.4 < 0.000477 in.4 satisfactory 

Lsf = 41a+21b = 0.440+0.758 = 1.198 in. 

R=l/8" 

(Eq. B5-1) 
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Element 1 

y I' 
I 

Distance from About 
L Center of Top Own 

Length Flange Ly' Ly2 Axis 
(in.) (in.) (in.2) (in.3

) (in?) 

90° Comer 0.220 0.140-0.089 = 0.051 0.011 
Straight Segments 0.500 0.265 0.133 0.035 0.003 

Semi -Circled 0.440 0.390+0.089 ~.479 0.211 0.101 
Sum 1.160 0.355 0.136 0.003 

Ycg = 0.355/1.160 = 0.306 in. 

I'x = I' 1 +Ly2_Ly2
cg= 0.003+0. 136-1. 160xO.3062 = 0.139-0.109 = 0.030 in? 

Ix = I'xt = 0.030xO.030 = 0.00090 in.4 

2. Section Modulus for Load Determination - Positive Bending 
Since the neutral axis will be below the center of the cross section, the compression stress will 
govern. 

Element 1 from Section B3.1(a) 

w = 0.25 in. 

k = 0.43 

f 

A 

=Fy 

= (1.052/ ...J0.43 )(0.25/0.030} ...J50(29500 = 0.550 

p = 1 for A ~ 0.673 

b = w = 0.25 in. 

Element 2 from Section B4.2(a) 

wit = [ 3-3(0.140) ] /0.030 = 86 f = Fy 

S = 1.28 ...JE/f = 1.28...J295OO/50 = 31.091 

D/w = [0.25+2(0.125)+1.5(0.030)] / [3-3(0.140)] = 0.211 

n = 1/3 for wit > S 

Ia = (0.030)4 [ 115(86/31.091)+5 ] = 0.000262 in.4 

Is = 11 = 0.00090 in.4 

k = 3.57(0.00090/0.000262)113+0.43 = 5.814 > 4 

A = (1.052/ -{4 )(86) ...J 50/29500 = 1.862 

(Eq. B2.1-4) 

(Eq. B2.1-1 ) 

(Eq. B4-1) 

(Eq. B4.2-13) 

(Eq. B4.2-10) 

(Eq. B2.1-4) 
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p = (1-0.22/1.862)/1.862 = 0.474 

b = pw = 0.474 [ 3-3(0.140) ] = 1.223 in. 

As = A's = 1. 160xO.030 = 0.0348 in.2 for Is~Ia 

Element 9 from Section B3.2(a) 

w = 0.415-0.030-0.125 = 0.26 in. 

k = 0.43 

f < Fy, use Fy as conservative value 

A = (1.052/ ...J0.43 )(0.26/0.030)...J 50/29500 = 0.572 

P = 1 for A ~ 0.673 

b = w = 0.26 in. 

Element 3 from Section B4.2(a) 

wit = [2-2(0.140) ] /0.030 = 57.333, f = Fy 

S = 1.28 ...JE/f = 1.28...J29500/50 = 31.091 

D/w = [0.415-0.5(0.030) ] / [2-2(0.140) ] = 0.233 

n = 1/3 for w /t > S 

Ia = (0.030)4 [ 115(57.333/31.091)+5 ] = 0.000176 in.4 

Is = bh3/12 = (0.030)(0.415-0.125-0.030)3/12 = 0.000044 in.4 

k = 3.57(0.000044/0.000176)113+0.43 = 2.679 < 4 

A = (1.052/ ...J2.679 )(57.333) ...J 50/29500 = 1.517 

P = (1-0.22/1.517)/1.517 = 0.564 

b = pw = 0.564 [2-2(0.140) ] = 0.970 in. 

ds = (lJla)d's 

= (0.000044/0.000 176)(0.26) = 0.065 in. 

Effective section properties about x axis: 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4.2-12) 

(Eq. B2.1-4) 

(Eq. B2.1-1) 

(Eq. B4-l) 

(Eq. B4.2-13) 

(Eq. B4.2-1 0) 

(Eq . B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B4.2-11) 

IV-159 
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L 
Effective Length 

Element (in.) 

1 1.160 
2 1.223 
3 0.970 
4 0.660 
5 3.440 
6 4.788 
7 2.396 
8 2.068 
9 0.065 

10 0.440 
Sum 17.210 

Yeg = Ly/L = 23.041/17.210 = 1.339 in. 

I' x 
2 I 2 

= Ly + I 1 - Ly eg 

y 
Distance 

from 
Top Fiber 

(in.) 

0.321 
0.015 
0.015 
0.066 
1.015 
2.015 
1.840 
2.015 
0.188 
1.964 

= 41.315 + 0.878 - 17.210(1.339)2 = 11.337 in? 

= I' xt 

= 11.337(0.030) = 0.340 in.4 

Sx= Ix/Yeg = 0.340/1.339 = 0.254 in.3 

Mn = SeFy = 0.254(50) = 12.70 kip-in. 

<Pb = 0.95 

<Pt>Mn = 0.95xI2.70 = 12.07 kip-in. 

Element 5 from Section B2.3(a) 

Yeg = 1.339 in. 

f l = [( 1.339-0.125-0.030)/1.339 ] (50) = 44.212 ksi 

L~ 
(in.2) 

0.372 
0.018 
0.015 
0.044 
3.492 
9.648 
4.409 
4.167 
0.012 
0.864 

23.041 

f2 = - [(2.030-0.125-0.030-1.339)/1.339] (50) = -20.015 ksi 

'V' = f2lfl = -20.015/44.212 = -0.453 

k = 4+2(1-'V')3+2(1-'V') 

= 4+2 [ 1-(-0.453) ]3 +2 [ 1-(-0.453)] = 13.041 

A = (1.052/-vk)(w/t) ...Jf/E, f= fl 

= (1.052/...J13.041){ [2.030 

I' 1 
About 
Own 

Ly2 Axis 
(in.3

) (in.3
) 

0.120 0.030 

0.003 
3.544 0.848 

19.440 
8.112 -

8.397 
0.002 
1.697 

41.315 0.878 

(Eq. C3.1.1-l) 

(Eq. B2.3-4) 

(Eq. B2.1-4) 
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-2(0.155) ] /0.030} "44.212/29500 = 0.647 

For A = 0.647 < 0.673 

be = W = 1.720 in. 

b2 = bel2 

= 1.720/2 = 0.860 in. 

b1 = bel(3-'V) 

= 1.720/ [ 3-(-0.453) ] = 0.498 in. 

We = 1.339-0.030-0.125 = 1.184 in. 

b1+b2= 0.498+0.860 = 1.358 in. > We = 1.184 in. 

Thus element 5 is fully effective so properties above are correct. 

3. Moment of Inertia for Deflection Determination - Positive Bending 

<l>t>Mn = 1.2MDL + 1.6MLL 

= [1.2(MDL /MLL )+ 1.6 ] MLL 

= [1.2(1/5)+ 1.6] MLL 

= 1.84MLL 

MLL = <l>bMn/1.84 = 12.07/1.84 = 6.56 kip-in. 

= (1/5+ 1 )MLL 

= 1.2(6.56) = 7.87 kip-in. 

where 

(Eq. B2.l-l) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 

= Moment determined on the basis of nominal dead load 

= Moment determined on the basis of nominal live load 

Computation of Ieff, first approximation: 

* Assume a compressive stress of f = 30 ksi in the top fibers of the section. 

IV-161 

* Since the web was fully effective at a higher stress gradient, it will be fully effective at this 
stress level. 

Element 2 from Section B4.2(b) 

w = 3-3(0.140) = 2.580 in. 

Ac = 0.256+0.328(2.580/0.030) "50/29500 = 1.417 

S = 1.28 "E/f= 1.28"29500/30 = 40.138 

Ia = (0.030)4 [115(86/40.138)+5] 0.000204 in.4 

k = 3.57(0.00090/0.000204)113+0.43 = 6.282 > 4 

(Eq. B2.1-10) 

(Eq. B4-1) 

(Eq. B4.2-13) 

(Eq. B4.2-10) 
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k =4 

A = (1.052/ ..J4)(86)..J30/29500 = 1.443 

P = (0.41+0.59 ..J50/30 -0.22/1.443) /1.443 = 0.706 

b = pw = 0.706(2.580) = 1.821 in. 

As = A's = 0.0348 in.2 

Element 3 from Section B4.2(b) 

w = 2-2(0.140) = 1.720 in. 

A.c = 0.256+0.328( 1.720/0.030) ..J 50/29500 = 1.030 

S = 1.28 ..JE/f = 1.28 ..J295OO/30 = 40.138 

Ia = (0.030)4 [115(57.333/40.138)+5 ] = 0.000137 in.4 

k = 3.57(0.000044/0.000137)1/3+0.43 = 2.875 < 4 

k = 2.875 

A = (1.052/..J2.875)(57.333)..J30/295oo = 1.134 

P = (0.41+0.59 ..J50/30 -0.22/1.134) /1.134 = 0.862 

b = pw = 0.862( 1. 720) = 1.483 in. 

ds = (IJla)d's 

= (0.000044/0.000137)(0.26) = 0.084 in. 

Effective section properties about x axis: 

(Eq. B2.1-4) 

(Eq. B2.1-9) 

(Eq. B2.1-2) 

(Eq. B4.2-12) 

(Eq. B2.1-10) 

(Eq. B4-l) 

(Eq. B4.2-13) 

(Eq. B4.2-10) 

(Eq. B2.l-4) 

(Eq. B2.1- 9) 

(Eq. B2.1-2) 

(Eq. B4.2-1l) 



Exam21es Based on the March 16, 1991 Edition of the LRFD Cold-Formed S2ecification IV-163 

Y I' 
I 

Distance About 
L from Own 

Effective Length Top Fiber Ly' Ly2 Axis 
Element (in.) (in.) (in.2) (in.3

) (in.3
) 

1 1.160 0.321 0.372 0.120 0.030 
2 1.821 0.015 0.027 
3 1.483 0.015 0.022 
4 0.660 0.066 0.044 0.003 
5 3.440 1.015 3.492 3.544 0.848 
6 4.788 2.015 9.648 19.440 
7 2.396 1.840 4.409 8.112 
8 2.068 2.015 4.167 8.397 
9 0.084 0.197 0.017 0.003 
10 0.440 1.964 0.864 1.697 

Sum 18.340 23.062 41.316 0.878 

Ycg = Ly/L = 23.062/18.340 = 1.257 in. 

I I L2 I' L2 x = Y + 1 - Y cg 

= 41.316 + 0.878 - 18.340(1.257)2 = 13.216 in.3 

Ix = I/xt = 13.216(0.030) = 0.396 in.4 

Sx = Ix/Ycg = 0.396/1.257 = 0.315 in.3 

M = Sef = 0.315(30) = 9.45 kip-in. > Ms = 7.87 kip-in. 

To determine compression stress f in the top fibers of the section at M = 7.87 kip-in., extrapolate 
using 

M = 12.70 kip-in., f = 50 ksi 

M = 9.45 kip-in., f = 30 ksi 

M = 7.87 kip-in., f = ? 

(12.70-9.45)/(50-30) = (9.45-7.87)/(30-0 

0.1625(30-0 = 1.58 

f = (0. 1625x30-1.58)/0. 1625 = 20.28 ksi 

For the second approximation, assume a compression stress of f = 20.28 ksi in the top fibers of 
the section. 

Element 2 from Section B4.2(b) 

w = 2.580 in. 

A.c = 1.417 
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S = 1.28 ...)E/f= 1.28...)29500/20.28 = 48.819 (Eq. B4-1) 

Ia = (0.030)4 [ 115(86/48.819)+5] = 0.000168 in.4 (Eq. B4.2-13) 

k = 3.57(0.00090/0.oo0168i/3+0.43 = 6.677 > 4 (Eq. B4.2-10) 

k =4 

A = (1.052/ ...)4)(86) ...)20.28/29500 = 1.186 < Ac (Eq. B2.1-4) 

P = (1.358-0.461/1.186)/1.186 = 0.817 (Eq. B2.1-8) 

b = pw = 0.817(2.580) = 2.108 in. (Eq. B2 .1-2) 

As = A's = 0.0348 in? (Eq. B4.2-12) 

Element 3 from Section B4.2(b) 

w = 1.720 in. 

Ac = 1 .030 

S = 1.28 ...)E/f= 1.28...)29500/20.28 = 48.819 (Eq. B4-1) 

Ia = (0.030)4 [115(57.333/48.819)+5 ] = 0.000113 in.4 (Eq. B4.2-13) 

k = 3.57(0.000044/0.000113)113+0.43 = 3.037 < 4 (Eq. B4.2-10) 

k = 3.037 

A = (1.052/ ...)3.037 )(57.333) ...)20.28/29500 = 0.907 < Ac (Eq. B2.1-4) 

P = (1.358-0.461/0.907)/0.907 = 0.937 (Eq. B2.1-8) 

b = pw = 0.937(1.720) = 1.612 in. (Eq. B2.1-2) 

ds = (lJla)d's (Eq. B4.2-11) 

d = (0.000044/0.000113)(0.26) = 0.101 in. 

Effective section properties about x axis: 
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Y I' 
I 

Distance About 
L from Own 

Effective Length Top Fiber Ly' L 2 Axis Y
3 Element (in.) (in.) (in.2

) (in. ) (in.3
) 

1 1.160 0.321 0.372 0.120 0.030 
2 2.108 0.015 0.032 
3 1.612 0.015 0.024 
4 0.660 0.066 0.044 0.003 
5 3.440 1.015 3.492 3.544 0.848 
6 4.788 2.015 9.648 19.440 
7 2.396 1.840 4.409 8.112 
8 2.068 2.015 4.167 8.397 
9 0.101 0.206 0.021 0.004 
10 0.440 1.964 0.864 1.697 

Sum 18.773 23.073 41.317 70.878 

Ycg = LylL = 23.073/18.773 = 1.229 in. 

II L2 I' L2 x = Y + 1 - Y cg 

= 41.317 + 0.878 - 18.773(1.229)2 = 13.839 in? 

= 13.839(0.030) = 0.415 in.4 

Sx = Ix/Ycg = 0.415/1.229 = 0.338 in.3 

M = Sef = 0.338(20.28) = 6.85 kip-in. < Ms = 7.87 kip-in. 

To determine compression stress f in the top fibers of the section at M = 7.87 kip-in., interpolate 
using 

M = 9.45 kip-in., f = 30 ksi 

M = 6.85 kip-in., f = 20.28 ksi 

M = 7.87 kip-in.,f =? 

(9.45-6.85)/(30-20.28) = (7.87-6.85)/(f-20.28) 

0.2675(f-20.28) = 1.02 

f =(1.02+0.2675x20.28)/0.2675 = 24.09 ksi 

For the third approximation, assume a compression stress of f = 24.09 ksi in the top fibers of the 
section. 

Element 2 from Section B4.2(b) 

w = 2.580 in. 
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Ac = 1.417 

S = 1.28 "E/f= 1.28"29500/24.09 = 44.792 

Ia = (0.030)4 [115(86/44.792)+5 ] = 0.000183 in.4 

k = 3.57(0.00090/0.000183)1/3+0.43 = 6.501> 4 

k =4 

A = (1.052/ '-'4)(86) "24.09/29500= 1.293 < Ac 

p = (1.358-0.461/1.293)/1.293 = 0.775 

b = pw = 0.775(2.580) = 2.000 in. 

As = A's = 0.0348 in? 

Element 3 from Section B4.2(b) 

w = 1.720 in. 

Ac = 1.030 

S = 1.28 "E/f -= 1.28 "29500/24.09 = 44.792 

Ia = (0.030)4 [ 115(57.333/44.792)+5] = 0.000123 in.4 

k = 3.57(0.000044/0.000123)1/3+0.43 = 2.964 < 4 

k = 2.964 

A = (1.052/ "2.964 )(57.333) s"24.09/29500 = 1.001 < Ac 

P = (1.358-0.461/1.001)/1.001 = 0.897 

b = pw = 0.897(1.720) = 1.543 in. 

ds = (lJ!a)d's 

d = (0.000044/0.000123)(0.26) = 0.093 in. 

Effective section properties about x axis: 

(Eq. B4-1) 

(Eq. B4.2-13) 

(Eq. B4.2-10) 

(Eq. B2.1-4) 

(Eq. B2.1-8) 

(Eq. B2.1-2) 

(Eq. B4.2-12) 

(Eq. B4-1) 

(Eq. B4.2-13) 

(Eq. B4.2-10) 

(Eq. B2.l -4) 

(Eq. B2.1-8) 

(Eq. B2.1-2) 

(Eq. B4.2-11) 
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Yeg 

I' = x 

= 

I = x 

= 
S = x 

Y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) (in.) 

1 1.160 0.321 
2 2.000 0.015 
3 1.543 0.015 
4 0.660 0.066 
5 3.440 1.015 
6 4.788 2.015 
7 2.396 1.840 
8 2.068 2.015 
9 0.093 0.202 
10 0.440 1.964 

Sum 18.588 

= LylL = 23.068/18.588 = 1.241 in. 

2' 2 Ly + I 1 - Ly eg 

41.317 + 0.878 - 18.588(1.241)2 = 13.568 in.3 

I' t x 

13.568 (0.030) = 0.407 in.4 

IxlYeg = 0.407/1.241 = 0.328 in.3 

L~ 
(in.2) 

0.372 
0.030 
0.023 
0.044 
3.492 
9.648 
4.409 
4.167 
0.019 
0.864 

23.068 

M= Sef = 0.328(24.09) = 7.90 kip-in. =: Ms = 7.87 kip-in. 

Therefore 

Ix= 0.407 in.4 

4. Section Modulus for Load Detennination - Negative Bending 

Ly2 
(in.3

) 

0.120 

0.003 
3.544 

19.440 
8.112 
8.397 
0.004 
1.697 

41.317 

IV-167 

I' 1 
About 
Own 
Axis 
(in.3

) 

0.030 

0.848 

0.878 

Since the N .A. may be closer to the compression flange than to the tension flange, the compres
sion stress is unknown, and therefore the effective width of the compression flange and section 
properties must be detennined by an iterative method. 

Elements 1,2, 3,4,5,9, and 10 do not vary with stress level. Assume compression stress will 
govern, i.e., f = F y = 50 ksi in the bottom compression fibers of the section. 

Element 6 from Section B5( d) 

wIt = [ 3-0.140-0.5(0.932) ] /0.030 = 79.8 > 60 

k =4 

A 

p 

= (1.052/ -../4)(79.8) ...)50/29500 = 1.728 

= (1-0.22/1.728)/1.728 = 0.505 

(Eq. B2.1-4) 

(Eq. B2.1-3) 



IV -168 Examples Based on the March 16, 1991 Edition of the LRFD Cold-Formed Specification 

b = pw = 0.505(2.394) = 1.209 in. Since wIt > 60, 

be = 0.030 [(1.209/0.030)-0.10(79.8-60)] = 1.150 in. 

Element 7 from Section B5(d) 

60 < wIt = 79.8 < 90 

ex = 3- [2(1.150)/2.394] 

-{ (1/30) [ 1-(1.150/2.394) ] (79.8)} = 0.657 

Lef = exLst = 0.657(2.396) = 1.574 in. 

Element 8 from Section B5(d) 

wIt = (3-0.932)/0.030 = 68.933 > 60 

k =4 

A = (1.052/ -v4)(68.933) --.)50/29500 = 1.493 

P = (1-0.22/1.493)/1.493 = 0.571 

b = pw = 0.571 (2.068) = 1.181 in. 

be = 0.030 [(1.181/0.030)-0.10(68.933-60)]= 1.154 in. 

Effective section properties about x axis: 

y 
Distance 

L from 
Effective Length Top Fiber 

Element (in.) (in.) 

1 1.160 0.321 
2 2.580 0.015 
3 1.720 0.015 
4 0.660 0.066 
5 3.440 1.015 
6 2.300 2.015 
7 1.574 1.840 
8 1.154 2.015 
9 0.260 0.285 
10 0.440 1.964 

Sum 15.288 

Ycg = Ly/L = 14.767/15.288 = 0.966 in. 

Yc = 2.030-0.966 = 1.064 in. > 2.030/2 = 1.015 in. 

Therefore, compression stress controls as assumed. 

Ly 
(in.2

) 

0.372 
0.039 
0.026 
0.044 
3.492 
4.635 
2.896 
2.325 
0.074 
0.864 

14.767 

(Eq. B2.1-2) 

(Eq. B5-3) 

(Eq. B5-5) 

(Eq. B5-4) 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

(Eq. B5-3) 

L/ 
(in.3

) 

0.120 
0.001 

0.003 
3.544 
9.339 
5.329 
4.685 
0.021 

~ 
24.739 

I' 1 
About 
Own 
Axis 
(in.3

) 

0.030 

0.848 

0.878 
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I'x = Ly2 + 1'1 - Ly2eg= 24.739 + 0.878 - 15.288(0.966)2 = 11.351 in.3 

= 11.351(0.030) = 0.341 in.4 

Sx = Ix/Yeg = 0.341/1.064 = 0.320 in? 

Mn = SeFy = 0.320(50) = 16.00 kip-in. 

<Pb = 0.95 

<l>bMn = 0.95xI6.00 = 15.20 kip-in. 

Element 5 from Section B2.3(a) 

f1 = [(1.064-0.125-0.030)/1.064] (50) = 42.716 ksi 

f2 = - [(0.966-0.125-0.030)/1.064 ] (50) = -38.111 ksi 

'V = fif1 = -38.111/42.716 = -0.892 < -0.236 

k = 4+2(1-",)3+2(1_",) 

= 4+2 [ 1-( -0.892) ]3 +2 [ 1-(-0.892) ] = 21.329 

= (1.052/ -fI( )(w/t) ...JflE ,f = f1 

= (1.052/ ...J21.329 ){ [2.030 

-2(0.155)] /0.030} ...J42.716/29500= 0.497 

For A = 0.497 < 0.673 

be = w = 1.720 in. 

b2 = bel2 

= 1.720/2 = 0.860 in. 

b1 = bel(3-",) 

= 1.720/ [3-(-0.892) ] = 0.442 in. 

We = 1.064-0.030-0.125 = 0.909 in. 

b 1+b2 = 0.442+0.860 = 1.302 in. > We = 0.909 in. 

Thus element 5 is fully effective so properties above are correct. 

5. Moment of Inertia for Deflection Determination - Negative Bending 

<P~n = 1.2MoL + 1.6MLL 

= [ 1.2(MoL /MLL )+ 1.6 ] MLL 

= [ 1.2(1/5)+1.6] MLL 

= 1.84MLL 

(Eq. C3.1.1-1) 

(Eq. B2.3-4) 

(Eq. B2.1-4) 

(Eq. B2.1-1) 

(Eq. B2.3-2) 

(Eq. B2.3-l) 

IV-169 
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MLL = <PbMn 11.84 = 15.20/1.84 = 8.26 kip-in. 

= (l/5+1)MLL 

= 1.2(8.26) = 9.91 kip-in. 

For deflection detennination, the procedure is iterative: one assume the actual compressive stress 
f under this service moment Ms. Knowing f, one proceeds as usual to obtain Se and checks to see 
if (f x Se) is equal to Ms as it should. If not, reiterate until one obtains the desired level of 
accuracy. 

(Refer to Example No.8 for example of procedure to follow.) 
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EXAMPLE NO. 26 

BUILT-UP SECTION - CONNECTING TWO CHANNELS 

2.S" 2.5" 

.060 

Given: 

1. Steel: F y = 50 ksi. 

2. Sections: 2 - 6 x 2.5 x 0.060 channels with stiffened flanges. 

Required: 

1. Detennine the maximum pennissible longitudinal spacing of connectors joining two channels to 
fonn an I -section used as a compression member with unbraced length of 12 ft. 

2. Design resistance welds connecting the two channels to fonn an I-section used as a beam with the 
following load, span, and support conditions: 

a. Span: 10'-0" 

b. Total unifomlly distributed factored load including factored dead load: 0.520 kips per lin. ft. 

c. Length of bearing at ep.d support: 3 in. 

Solution: 

1. Maximum longitudinal spacing of connectors for compression member [Section D 1.1 (a) ] 

For compression members, the maximum pennissible longitudinal spacing of connectors is 

(Eq. D1.1-l) 
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= (1 2x 12)xO.909/(2x1. 18) = 55.46 in. 

rey is from Table 1 and fI is from Table 5 of Part V of the Manual. 

Therefore, the maximum spacing of connectors used for connecting these two channels as a com
pression member is 55 in. 

2. Design resistance welds connecting the two channels to form an I-section used as a beam [Sec
tion 01.1(b)] 

a. Spacing of welds between end supports: 

The maximum permissible longitudinal spacing of welds for a flexural member is 

smax = L/6 (Eq.01.1-2) 

= 12xlO/6 = 20 in. 

Maximum spacing is also limited by 

smax = 2gT J(mq) (Eq.01.1-3) 

in which 

g = 5.0 in. (assumed for 6 in. deep section) 

Ts = 0.65x2.28xO.25 = 0.371 kips (Section E2.6) 

m = 1.148 in. (from Table 1 of Part V of the Manual) 

q = 3xO.520/12 = 0.130 kips per lin. in. 

Therefore 

smax = 2x5.0xO.371/(1.148xO.130) = 24.86 in. 

smax = L/6 controls. Use a spacing of 20 in. throughout the span. 

b. Strength of welds at end supports:Since the weld spacing is larger than the bearing length of 3.0 
in., the required design strength of the welds directly at the reaction is 

Ts = Pm/(2g) (Eq. 01.1-6) 

= 0.520x5x 1.148/(2x5) = 0.298 kips 

which is less than 0.370 kips as provided. 
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EXAMPLE NO. 27 

STRENGTH INCREASE FROM COLD WORK OF FORMING 

8.()()()" 
7.354" 

0.930" 

3.()()()" 

Given: 

1. Steel: Fy = 50 ksi and Fu = 65 ksi. 

2. Section: 8 x 3 x 0.135 channel with stiffened flanges. 

3. Section to be used as a beam. 

Required: 

Detennine the average tensile yield point of steel, F ya' for the flange considering the increase in strength 
resulting from the cold work of fonning. 

Solution: 

1. Check the limitations. 

a. In order to use Eq. A5.2.2-1 for computing the average tensile yield point for the beam flange, the 
channel section must be that the quantity p is unity as determined according to Section B2 for each 
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of the component element of the section, i.e., the channel section must be fully effective (Section
A5.2.2). 

Whether the channel section is fully effective or not can be determined either by computations which 
follow the flow charts for Section B2 provided in Part VI of the Manual (See Examples 2 and 3), or 
by comparision ofSx from Table 1 and Se from Table 10 (based on Fy = 50 ksi) of Part V the Manual,if 
Se = Sx then the channel section is fully effective. The second method is used in this example. 

Se = 4.843 in? (from Table 10) 

Sx = 4.843 in.3 (from Table 1) 

Therefore, section is fully effective. Eq. A5.2.2-1 can be used to determine Fya. 

b. Eq. A5.2.2-2 is applicable only when Fuv/Fyv ~ 1.2, R /t ~ 7,.in and minimum included angle ~ 120°. 
Since 

Fuv/Fyv = 65/50 = 1.3 > 1.2 

R/t = 0.1875/0.135 = 1.389 < 7 

e = 90° < 120° 

Therefore, Eq. A5.2.2-2 can be used to determine Fyc. 

2. Determination of F yc. 

2 
Be = 3.69(Fuv/Fyv)-0.819(Fuv/Fyv) -1.79 

= 3.69(1.3)-0.819(1.3)2-1.79 = 1.623 

m = 0.192(Fuv/Fyv)-0.068 

= 0.192(1.3)-0.068 = 0.182 

Fyc = BeFyv/(R/t)ffi 

= 1.623(50)/(0.1875/0.135)°182 = 76.44 ksi.in 

3. Determination of Fya. 

r = R+t/2 = 0.1875+0.135/2 = 0.255 in. 

Cross-sectional area of comer = 1.57xO.255xO.135 = 0.054 in.2 

Total comer cross-sectional area of the controlling flange 

= 0.054x2 = 0.108 in? 

Full cross-sectional area of the controlling flange 

= 0.108+(2.354xO.135) = 0.426 in.2 

C = 0.108/0.426 = 0.254 

Fya = Fyc+( 1-C)Fyf 

= 0.254(76.44)+(1-0.254)(50) = 56.72 ksi 

(Eq. A5.2.2-3) 

(Eq. A5.2.2-4) 

(Eq. A5.2.2-2) 

(Eq. A5.2.2-l) 
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EXAMPLE NO. 28 

FLANGE CURLING 

Given: 

1. Steel: Fy = 50 ksi. 

8.000" 
7.414" 

x 

0.153" 

0.140" 2.000" 

2. Section: 8 x 2 x 0.105 channel with unstiffened flanges. 

3. Compression flange braced against lateral buckling. 

x 

4. Dead load to live load ratio D/L = 1/5 and 1.2D + 1.6L governs the design. 

Required: 

Determine the amount of curling for the compression flange. 

Solution: 

I. Determination of the design flexural strength, <I>.,Mn: 

IV-175 

The elastic section modulus of the effective section, Set calculated with the extreme compression or 
tension fiber at F y can be determined by either computations which follow the flow charts for Sec-
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tion B2 in Part VI of the Manual (see Example 1), or by taking the Se value provided in Table 11 
in Part V of the Manual. The latter method is used in this example. 

Se = 2.304 in.3 

(Eq. C3.1.1-l) 

= 2.304 x 50 = 115.20 kip-in. 

<Pb = 0.90 

<l>t>Mn = 0.90 x 115.20 = 103.68 kip-in. 

2. Determination of the average stress in compression flange, fay' at the service moment Ms: 

<Pt>Mn = 1.2MoL + 1.6MLL 

= [ 1.2(MoL /MLL )+ 1.6 ] MLL 

= [1.2(1/5)+1.6] MLL 

= 1.84MLL 

MLL = <l>bMn/1.84 = 103.68/1.84 = 56.35 kip-in. 

= (1/5+ l)MLL 

= 1.2(56.35) = 67.62 kip-in. 

where 

MOL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive stress f under this service moment 
Ms' Knowing f, proceeds as usual to obtain Se and checks to see if (f x Se) is equal to Ms as it 
should. If not, reiterate until one obtains the desired level of accuracy. 

Properties of 90° comers: 

r = R + t/2 = 3/16 + 0.105/2 = 0.240 in. 

Length of arc, u = 1.57r = 1.57 x 0.240 = 0.377 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.240 = 0.153 in. 

a. For the first iteration, assume a compression stress of f = F/2 = 25 ksi in the top fibers of the 
section and that the web is fully effective. 

Compression flange: k = 0.43 (unstiffened compression element) 

wIt = 1.707/0.105 = 16.26 < 60 OK (Section B1.1-(a)-(3» 

A = (1.052/ -vk )(w/t) ...Jf{E (Eq. B2.1-4) 
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= (1.052/ ~0.43 )(16.26)~25/29500 = 0.759 > 0.673 

P = w= [1-(0.22/ A ) ] fA (Eq. B2.1-3) 

= [1-(0.22/0.759) ] /0.759 = 0.936 

b =pw (Eq. B2.1-2) 

= 0.936 x 1.707 

= 1.598 in. 

Effective section properties about x axis: 

y I' I 
L Distance About 

Effective from Own 
Length Top Fiber Ly Ly2 Axis 

Element (in.) (in.) (in.2) (in.3
) (in.3

) 

Web 7.414 4.000 29.656 118.624 33.961 
Upper Comer 0.377 0.140 0.053 0.007 
Lower Comer 0.377 7.860 2.963 23.291 

Compression Flange 1.598 0.053 0.085 0.004 
Tension Flange 1.707 7.948 13.567 107.832 

Sum 11.473 46.324 249.758 33.961 

Distance from top fiber to x-axis is 

Yeg = 46.324/11.473 = 4.038 in. 

Since distance of top compression fiber from neutral axis is greater than one half the beam depth, a 
compression stress of 25 ksi will control as assumed. 

To check if web is fully effective (Section B2.3): 

f} = [(4.038-0.293)/4.038] x25 = 23.19 ksi (compression) 

f2 = - [ (3.962-0.293)/4.038 ] x25 = -22.72 ksi (tension) 

'" = fif1 = -22.72/23.19 = -0.980 

k = 4+2(1-",)3+2(1_",) 

= 4+2 [ 1-(-0.980) ]3 +2 [ 1-(-0.980) ] 

= 23.48 

h = w = 7.414 in., hit = wit = 7.414/0.105 = 70.61 

hit = 70.61 < 2oo OK (Section B1.2-(a)) 

A = (1.052/ ~23.48 )(70.61)"23. 19/295oo = 0.430 < 0.673 

(Eq. B2.3-4) 

(Eq. B2.1-1) 
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= 7.414 in. 

b2 = be/2 

= 7.414/2 = 3.707 in. 

b} = be/(3-",) 

= 7 .414/ [ 3-(-0.980)] = 1.863 in. 

b}+b2 = 1.863 + 3.707 = 5.570 in. 

(Eq. B2.3-2) 

(Eq. B2.3-1) 

Compression portion of the web calculated on the basis of the effective section = y cg - 0.293 = 
4.038 - 0.293 = 3.745 in. 

Since b1+b2 = 5.570 in. > 3.745 in., b1+b2 shall be taken as 3.745 in .. This verifies the assumption 
that the web is fully effective. 

I' x 
2' 2 = Ly +1 1-Ly cg 

= 249.758 + 33.961 - 11.473(4.038)2 

= 96.647 in? 

Actual Ix = I' xt 

= 96.647xO.l05= 10.148 in.4 

Se = Ix/Ycg 

= 10.148/4.038 

= 2.513 in? 

M = f x Se = 25 x 2.513 

= 62.83 kip-in. < Ms = 67.62 kip-in. 

Need to do another iteration and also to increase f. 

b. For the second iteration, assume f = 27.18 ksi in the top fibers of the section and that the web is 
fully effective. 

Compression 'flange: 

A. = (1.052/ "0.43 )(16.26)"27.18/29500 = 0.792 > 0.673 

P = [1-(0.22/0.792) ] /0.792 = 0.912 

b = 0.912 x 1.707 = 1.557 in. 

Effective section properties about x-axis: 

L = 11.473 - 1.598 + 1.569 = 11.444 in. 

Ly = 46.324 - 0.085 + 1.569xO.053 = 46.322 in.2 

Ly2 = 249.755 - 0.004 + 1.569(0.053)2 = 249.758 in.3 

1'1 =33.961in.3 
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Ycg = 46.322/11.444 = 4.047 in. greater than one half beam depth. Thus top compression fiber 
controls in determination of Se' 

To check if web is fully effective: 

fl = [(4.047-0.293)/4.047] x27.18 = 25.21 ksi 

f2 = - [(3.953-0.293)/4.047] x27.18 = -24.51 ksi 

'" = -24.51/25.21 = -0.972 

k = 4+2 [ 1-(-0.972)]3 +2 [ 1-(-0.972)] = 23.28 

A = (1.052/ ~23.28 )(70.6l)~25.21!29500= 0.450 < 0.673 

be = 7.414 in. 

b2 = 7.414/2 = 3.707 in. 

b i = 7.414/ [3-(-0.972)] = 1.866 in. 

IV-179 

Compression portion of the web calculated on the basis of the effective section = 4.047 - 0.293 = 
3.754 in .. 

Since b 1+b2 = 5.573 in. > 3.759 in., b1+b2 shall be taken as 3.759 in .. This verifies the assumption 
that the web is fully effective. 

I' x = 249.755 + 33.961 - 11.432(4.047)2= 96.48 in? 

Actual Ix = 96.48 x 0.105 

= 10.130 in.4 

Se = 10.130/4.047 = 2.503 in.3 

M = fx Se = 27.18 x 2.503 

= 68.034 kip-in. = MsOK 

fav = f(b/w) = 27.18(1.569/1.707) = 24.98 ksi 

3. Determination of the curling of the compression flange, cf' 

Wf = 2.000 - 0.105 = 1.895 in. 

Wf = ~0.061tdE/fav 4~(lOOcrld) 

1.895= ~0.061(0.105)(8)(29500)!24.98 4~100Cf/8 

= 7.779 4~12.5cf 

4~12.5cf = 1.895n.779 

12.5cf = (1.895n. 779)4 

Cf = (1.895n.779)4/l 2.5 = 0.00078 in. 

(Eq. B 1.1 b-l) 
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EXAMPLE NO. 29 

SHEAR LAG 

O. 323"---' 

,~ 

,~ 

0: 

"O:t 
Ira 

" 
('f') 

r..: 8.000 

!? 

~ 
7.354" 

- -
~ 

Compression flange in bending " 

y+ , 

--+-~ 
I 

I ~ 

" 
, 

~R=3/16" 
~ Thnsion flange in bending ~ 

8.000" .. - . 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: 8 x 8 x 0.135 square tube. 

3. Span: L = 3 ft., with simple supports. 

4. Loading: Concentrated load at midspan. 

Required: 

Detennine the design flexural strength, <I>.,Mn. 

Solution: 

-0. 161" , 

" 
-0.1 62" 

~t =0.135" 

1. Detennination of the nominal moment,~, based on initiation of yielding (Section C3.1.1). 

Properties of 90° comers: 

r = R + t/2 = 3/16 + 0.135/2 = 0.255 in. 
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Length of arc, u = 1.57r = 1.57 x 0.255 = 0.400 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.255 = 0.162 in. 

Computation of Ix: 

For the first approximation, assume a compression stress of f = Fy = 50 ksi in the compression 
flange, and that the webs are fully effective. 

Compression flange: k = 4.00 (stiffened compression element supported by a web on each 
longitudinal edge) 

wIt =7.354/0.135 = 54.47 < 500 OK (Section B1.1-(a)-(2» 

A = (1.052/ -fI( )(w/t) ~f/E 

=(1.052/ ~4.00 )(54.47) ~50/29500 = 1.180> 0.673 

p = (1-0.22/ 'A)/ 'A 

= (1-0.22/1.180)/1.180 = 0.689 

b =pw 

= 0.689 x 7.354 

= 5.067 in. 

Effective section properties about x axis: 

y 
L Distance 

Effective from 
Length Top Fiber Ly 

Element (in.) (in.) (in.2
) 

Webs 14.708 4.000 58.832 
Upper Comers 0.800 0.161 0.129 
Lower Comers 0.800 7.839 6.271 

Compression Flange 5.067 0.068 0.345 
Tension Flange 7.354 7.933 58.339 

Sum 28.729 123.916 

Distance from top fiber to x-axis is 

Yeg = 123.916/28.729 = 4.313 in. 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

Ll 
(in.3

) 

235.328 
0.021 

49.160 
0.023 

462.806 
747.338 

I' 1 
About 
Own 
Axis 
(in.3

) 

66.286 

66.286 

Since distance of top compression fiber from neutral axis is greater than one half the beam depth, a 
compression stress of 50 ksi will govern as assumed (i.e., initial yielding is in compression). 

To check if webs are fully effective (Section B2.3): 
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f} = [(4.313-0.323)/4.313 ] x50 = 46.26 ksi (compression) 

f2 = - [(3.687-0.323)/4.313] x50 = -39.00 ksi(tension) 

'I' = f2lf} = -39.00/46.26 = -0.843 

k = 4+2( 1_'1')3 +2( 1-'1') (Eq. B2.3-4) 

= 4+2 [ 1-(-0.843) ]3 +2 [ 1-(-0.843) ] = 20.206 

h = w = 7.354 in., hIt = wIt = 7.354/0.135 = 54.47 

hit = 54.47 < 200 OK (Section B 1.2-(a)) 

A = (1.0521'120.206 )(54.47)~46.26/29500 = 0.505 < 0.673 

be =w (Eq. B2.1 -1) 

= 7.354 in. 

b2 = bJ2 (Eq. B2.3-2) 

= 7.354/2 = 3.677 in. 

b} = bJ(3-'I') (Eq. B2.3-1) 

=7.354/ [3-(-0.843)] = 1.914 in. 

Compression portion of the web calculated on the basis of the effective section = Ycg - 0.323 = 4.313 
- 0.323 = 3.990 in. 

Since b1+b2 = 5.591 in. > 3.990 in., b1+b2 shall be taken as 3.990 in .. This verifies the assumption 
that the webs are fully effective. 

I' x 
2 I 2 = Ly +1 }-Ly cg 

= 747.338 + 66.286 - 28.729(4.313)2 

= 279.208 in.3 

Actual Ix = I' xt 

= 279.208xO.135 

= 37.693 in.4 

Se = Ix/Ycg 

= 37.693/4.313 

= 8.739 in.3 

Mn = SeFy = 8.739 x 50 

= 436.95 kip-in. 

2. Determination of the nominal moment, Mn, based on shear lag consideration (Section B 1.1 (c)). 

Wf = (8-2xO.135)/2 = 3.865 in. 

L/Wf = 3x12/3.865 = 9.314 < 30 



Examples Based on the March 16, 1991 Edition of the LRFD Cold-Fonned Specification IV-J 83 

Because the L/w f ratio is less than 30, and the member carries a concentrated load, consideration 
for shear lag is needed. 

From Table Bl.l(c): 

L/Wf = 10, effective design width/actual width = 0.73 

L/Wf = 8, effective design width/actual width = 0.67 

L/Wf = 9.314, effective design width/actual width = ? 

(10-9.314)/(9.314-8) =(0.73-x)/(x-0.67) 

0.686(x-0.67) =1.314(0.73-x) 

x =0.709 

Therefore, the effective design widths of compression and tension flanges between webs are 

0.709(8-2xO.135) = 5.481 in. 

b = 5.481-2R = 5.481-2(3/16) = 5.106 in. 

Because of symmetry and assume webs are fully effective, 

y cg = 4.000 in. 

Effective section properties about x-axis: 

L = 28.729-5.067-7.354+5.106x2 = 26.520 in. 

Ly2 ::: 747.338-0.023-462.806+5.1 06(0.068r +5.106(7.933)2 

::: 605.866 in.3 

I'l =66.286 in.3 

To check if webs are fully effective: 

fl = [(4.000-0.323)/4.000 ] x50 = 45.96 ksi 

= -45.96 ksi 

= -45.96/45.96 = -1.000 

= 4+2 [ 1-(-1.000)]3 +2 [ 1-(-1.000)] ::: 24.000 

::: (1.052N24.000 )(54.47 }V4~.96/29500 ::: 0.462 < 0.673 

::: 7.354 in. 

::: 7.354/2 = 3.677 in. 

= 7.354/ [ 3-(-1.000) ] = 1.839 in. 

Compression portion of the web calculated on the basis of the effective section::: 4.000 - 0.323 = 
3.677 in .. 

Since b1+b2 ::: 5.516 in. > 3.677 in., b1+b2 shall be taken as 3.677 in .. This verifies the assumption 
that the webs are fully effective. 

I' x = 605.866 + 66.286 - 26.520(4.000)2 
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= 247.832 in.3 

Actual Ix = 247.832 x 0.135 

= 33.457 in.4 

Se = 33.457/4.000 = 8.364 in.3 

Mn = 8.364 x 50= 418.20 kip-in. < 436.95 kip-in. (initial yielding) 

3. Detennination of the design flexural strength, ct>bMn. 

Mn = 418.20 kip-in. 

ct>b = 0.95 

ct>~n = 0.95 x 418.20 = 397.29 kip-in. 
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EXAMPLE NO. 30 

FLAT SECTION WITH GROOVE WELDED CONNECTION IN BUTT JOINT 

~~----------I------~} T 

8'()()()" 

Given: 

1. Steel: Fy = 50 ksi. 

2. Electrode: Fxx = 60 ksi. 

3. Detail of connection shown in sketch. 

Required: 

1. Detennine the design tensile strength, <l>Pn, nonnal to the effective area. 

2. Detennine the design shear strength, <l>P n' on the effective area. 

Solution: 

1. Detennination of the design tensile strength, <l>Pn, nonnal to the effective area (Section E2.1 (a)). 

Pn = LteFy 

= (8.000)(0.135)(50) 

= 54.00 kips 

<I> =0.90 

q,Pn = 0.90 x 54.00 

(Eq. E2.1-1) 
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= 48.60 kips 

2. Detennination of the design shear strength, <l>Pn, on the effective area (Section E2.1(b» 

= Lle(0.6Fxx) 

= (8.000)(O.135)(0.6x60) 

= 38.88 kips 

<I> = 0.80 

<I>(Pn)} = 0.80 x 38.88 

= 31.10 kips 

= Lle(Fy/ {3 ) 

= (8.000)(0. 135)(50tV3 ) 

= 31.18 kips 

<I> = 0.90 

<I>(Pnh = 0.90 x 31.18 

= 28.06 kips. 

Since <I>(Pn) 2< <I>(Pn) I , therefore <l>Pn = 28.06 kips.in 

(Eq. E2.1-2) 

(Eq. E2.1-3) 
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EXAMPLE NO. 31 

I-SECTION 

0.323" 
t=0.135" l. 1.677" • I 

l ~ ... "1 
I ~ v;. --. 

• 
AI' 

8.000" 7.354" 

~ 
R=3/16" 

V I I 

4.000" ~I 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: 8 x 4 x 0.135 I-section with unstiffened flanges. 

3. Span: L = 12 ft., with simple supports, and carries unifonn load. 

4. Beam is laterally braced at both ends and midspan. 

Required: 

Detennine the design flexural strength, <I>~n. 

Solution: 

1. Nominal section strength (Section C3.1.1). 

a. Procedure I - based on initiation of yielding. 

IV-I8? 
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The elastic section modulus of the effective section, Se' based on initiation of yielding can be 
determined by either computations which follow the flow charts provided in Part VI of the 
Manual (see Example 1), or by taking the Se value provided in Table 15 of Part V of the Manual. 
The latter method is used in this example. 

Se = 6.246 in.3 

(Eq. C3.1.1-l) 

= 6.246 x 50 = 312.30 kip-in. 

b. Procedure II - based on inelastic reserve capacity 

Since the member is subjected to lateral buckling, therefore this provision does not apply in this 
example. Then, 

= 312.30 kip-in. 

= 0.90 

= 0.90 x 312.30 = 281.07 kip-in. 

2. Lateral buckling strength (Section C3.1.2). 

From Table 6 of Part V of the Manual, Sf = 6.538 in.3
, Iy = 1.4499 in.4 

My = SfFy (Eq. C3.1.2-4) 

lyc 

= 6.538 x 50 = 326.90 kip-in. 

= 1.75+ 1.05 (MdM2)+0.3(MdM2)2 

2 = 1.75+ 1. 05 (O/Mmax)+O. 3 (O/Mmax) = 1.75 < 2.3 

= ly/2 = 1.4499/2 = 0.725 in.4 

= 1[2ECbdlyJL 2 

= 1t
2(29500)(1.75)(8)(0.725)/(6xI2)2 

= 570.06 kip-in. 

0.56My = 0.56 x 326.90 = 183.06 kip-in. 

2.78My = 2.78 x 326.90 = 908.78 kip-in. 

Since 2.78My > Me > 0.56My' therefore. 

Mc = (1 0/9)MyC 1-1 OMy/36Me) 

= (10/9)(326.90) [1-1 0(326.90)/(36x570.06)] 

= 305.36 kip-in. 

Mn = Sc (Me/Sf) 

= Scf 

where 

(Eq. C3.1.2-15) 

(Eq. C3.1.2-13) 

(Eq. C3.1.2-1) 
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f = MJSf= 305.36/6.538 = 46.71 ksi 

Properties of 90 0 comers: 

r == R + t/2 = 3/16 + 0.135/2 = 0.255 in. 

Length of arc, u = 1.57r = 1.57 x 0.255 = 0.400 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.255 == 0.162 in. 

Determination of elastic section modulus of the effective section calculated at a stress of f == 46.71 
ksi in the extreme compression fiber (assume the webs are fully effective): 

Compression flange: k = 0.43 (unstiffened compression element) 

wit = 1.677/0.135 = 12.42 < 60 OK (Section B1.1-(a)-(3» 

'A == (1.052/ -{]( )(w/t) ~f!E 

= (1.052/ ~0.43 )(12.42)~46.7l/29500 = 0.793> 0.673 

P == (1-0.22/ 'A)/ 'A 

= (1-0.22/0.793)/0.793 == 0.911 

b ==pw 

== 0.911 x 1.677= 1.528 in. 

Effective section properties about x axis: 

y 
L Distance 

Effective from 
Length Top Fiber Ly 

Element (in.) (in.) (in.2) 

Webs 14.708 4.000 58.832 
Upper Comers 0.800 0.161 0.129 
Lower Comers 0.800 7.839 6.271 

Compression Flanges 3.056 0.068 0.208 
Tension Flanges 3.354 7.933 26.607 

Sum 22.718 92.047 

Distance from top fiber to x-axis is 

Yeg = 92.047/22.718 = 4.052 in. 

(Eq. B2.1-4) 

(Eq. B2.1-3) 

(Eq. B2.1-2) 

Ly2 
(in.3

) 

235.328 
0.021 

49.158 
0.014 

211.076 
495.597 

I' I 
About 
Own 
Axis 
(in. 3

) 

66.286 

66.286 

Since distance of top compression fiber from neutral axis is greater than one half the beam depth, 
a compression stress of f = 46.71 ksi will govern. 

To check if webs are fully effective (Section B2.3): 
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fl = [(4.052-0.323)/4.052] x46.71 = 42.99 ksi(compression) 

f2 = - [(3.948-0.323)/4.052] x46.71 = -41.79 ksi(tension) 

'V = fVfI = -41.79/42.99 = -0.972 

k = 4+2(1-'V)3+2(1-'V) 

= 4+2 [ 1-(-0.972) ]3 +2 [ 1-(-0.972)] 

= 23.281 

h = w = 7.354 in., hit = wit = 7.354/0.135 == 54.47 

hit = 54.47 < 200 OK (Section B 1.2-(a)) 

A = (1.052/ -../23.281 )(54.47)-../42.99/29500 = 0.453 < 0.673 

be = w 

= 7.354 in. 

b2 = bJ2 

= 7.354/2 = 3.677 in. 

b} = bJ(3-'V) 

= 7.354/ [ 3-(-0.972)] = 1.851 in. 

(Eq. B2.3-4) 

(Eq. B2.1-1) 

(Eq. B2.3-2) 

(Eq. B2.3-1) 

Compression portion of the web calculated on the basis of the effective section = Y cg - 0.323 = 
4.052 - 0.323 = 3.729 in. 

Since b,+b2 = 5.528 in. > 3.729 in., b,+b2 shall be taken as 3.729 in .. This verifies the assumption 
that the webs are fully effective. 

I' x 
2 I 2 = Ly +1 l-Ly cg 

= 495.599 + 66.286 - 22.718(4.052)2 

= 188.885 in? 

Actual Ix = I' xt 

= 188.885xO.135 

= 25.499 in.4 

Sc = Ix/Ycg 

= 25.499/4.052 

= 6.293 in? 

(Mnh = Scf = 6.293 x 46.71 

= 293.95 kip-in. 

<Pb = 0.90 

<Pb(Mnh = 0.90 x 293.95 

= 264.56 kip-in. < <!>h(Mn)} = 281.07 kip-in. 
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Therefore, <l>bMn = 264.56 kip-in. (i.e., lateral buckling strength controls). 
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EXAMPLE NO. 32 

CHANNEL SECTION BRACED 

Complete Flexural Design, 
Unstiffened Compression Flange 

6.354" 

x x 
7.000" ------

0.162" 

Given: 

1. Steel: F y = 50 ksi. 

2. Section: 7 x 1.5 x 0.135 channel with unstiffened flanges. 

3. Span: Section is continuous over three 10ft. spans with 6 in support bearing lengths. 

4. Loading: Live load = 360 lb/ft. Dead load = 40 lb/ft.. 

5. Deflection due to service live load is to be limited to 1/240 of the span. 

Required: 

Check adequacy of the section. 
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Solution: 

1. Nominal section strength, Mn (Section C3.1.1). 

a. Procedure I - based on initiation of yielding. The elastic section modulus of the effective section, Se, 
calculated with the extreme compression or tension fiber at Fy can be determined by either 
computations which follow the flow charts for Section B2 in Part VI of the Manual (see Example 
1), or by taking the Se value provided in Table 11 of Part V of the Manual. The latter method is used 
in this example. 

Se = 2.240 in.3 

Mn = SeFy (Eq. C3.1.1-1) 

= 2.240 x 50 = 112.00 kip-in. 

b. Procedure II - based on inelastic reserve capacity 

For unstiffened compression element, Cy = I.Maximum compressi ve strain = Cyey = ey. Therefore, 
the nominal ultimate moment, Mn, is the same as the Mn determined by procedure I because the 
compression flange will yield first. 

2. Lateral buckling strength, Mn (Section C3.1.2). Since the compression flange is braced against 
lateral buckling, this provision does not apply. 

3. Design flexural strength, <PbMn (based on nominal section strength). 

<Pb = 0.90 

<Pt>Mn = 0.90 x 112.00 = 100.80 kip-in. 

This value can be used for both positive and negative bending. 

wu= 1.2wo + 1 .6WLL = 1.2(0.04)+ 1.6(0.36) = 0.624 kip/ft. 

For a continuous beam over three equal spans, the maximum bending moment is negative and 
occurs over the interior supports. It is given by 

Mu = 0.100wuL
2 = 0.100(0.624)(10)2(12) 

= 74.88 kip-in. < <Pt>Mn = 100.80 kip-in. OK 

4. Strength for shear only (Section C3.2).The required shear strength at any section shall not exceed 
the design shear strength, <Pv V n: 

Kv = 5.34 (unreinforced web) 

~EKv /Fy=~29500(5.34)/50 = 56.13 

hit = 6.354/0.135 = 47.07 

For hit < ~EKv IF y 

<l>v = 1.00 

V n = 0.577Fyht (Eq. C3.2-l) 

= 0.577(50)(6.354)(0.135) = 24.75 kips 
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<I> v V n = 1.00(24.75) = 24.75 kips 

The maximum required shear strength is given by 

V u = 0.600wuL 

= (0.600)(0.624)(10) = 3.74 kips < <l>vVn = 24.75 kips OK 

5. Strength for combined bending and shear (Section C3.3). At the interior supports there is a com
bination of web bending and web shear: 

<l>bMnxo = 100.80 kip-in. 

<l>vVn = 24.75 kips 

For unreinforced webs. 

2 2 (MuI<I>lMnxo) +(V uI<I>v V n) :5; 1.0 

Mu = 74.88 kip-in. 

Vu = 3.74 kips 

(74.88/100.80)2+(3.74/24.75)2 = 0.575 < 1.0 OK 

6. Web crippling strength (Section C3.4) 

R/t = (3/16)/0.135 = 1.389 < 6 OK 

hit = 6.354/0.135 = 47.07 < 200 

Table C3.4-1 applies: 

For end reactions: Eq. C3.4-2 

For interior reactions: Eq. C3.4-4 

k = Fy/33 = 50/33 = 1.515 

C I = (1.22-0.22k) 

= 1.22-0.22( 1.515) = 0.887 

C2 = (1.06-0.06R/t) :5; 1.0 

= 1.06-0.06(1.389) = 0.977 < 1.0 OK 

C3 = (1.33-0.33k) 

= 1.33-0.33( 1.515) = 0.830 

C4 = (1.15-0.15R/t) :5; 1.0 but not less than 0.50 

1. 15-0.15R/t = 1.15-0.15(1.389) = 0.942 ~ 1.0 OK 

> 0.50 OK 

C4 = 0.942 

Ce = 0.7+0.3(9/90)2 

= 0.7+0.3(90/90)2 =1.0 

(Eq. C3.3-l) 

(Eq. C3.4-2l) 

(Eq. C3.4-10) 

(Eq. C3.4-11) 

(Eq. C3.4-12) 

(Eq. C3.4-13) 

(Eq. C3.4-20) 
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For end reaction: 

Pn = t2kC3C4Ca [217-0.28(h/t)] [ 1+0.01 (N/t) ] 

= (0.135)2(1.515)(0.830)(0.942)(1.0) [217-0.28(47.07)] 

x [ 1 +0.0 1 (6/0.135) ] = 6.36 kips 

<Pw = 0.75 

<PwPn = 0.75(6.36) = 4.77 kips 

End reaction is given by 

R = 0.400wuL 

= (0.400)(0.624)( 10) = 2.50 kips < <PwP n = 4.77 kips OK 

For interior reaction: 

Pn = t2kC1C2Ce [538-0.74(h/t)] [ 1+0.007(N/t)] 

= (0.135)2(1.515)(0.887)(0.977)(1.0) [538-0.74(47.07)] 

x[ 1+0.007(6/0.135)] = 15.77 kips 

<Pw = 0.75 

<l>wPn = 0.75(15.77) = 11.83 kips 

Interior reaction is given by 

R = 1.10wuL 

= (1.10)(0.624)(10) = 6.86 kips < <PYn = 11.84 kips OK 

CEq. C3.4-2) 

(Eq. C3 .4-4 ) 
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7. Combined bending and web crippling strength (Section C3.5). At the interior supports there is a 
combination of web bending and web crippling: 

<PbMnxo = 100.80 kip-in. 

<PwPn = 11.84 kips 

Mu = 74.88 kip-in. 

R = 6.86 kips 

For shapes having single unreinforced webs: 

1.07(Pu/<PwPn)+(Mu/<PbMnxo) ~ 1.42 

1.07(6.86/11.83)+(74.88/100.80) = 1.36 < 1.42 OK 

8. Deflection due to service live load. 

Sx = 2.240 in.3 (Table 2) 

Se = 2.240 in.3 (Table 11) 

(Eq. C3.5-1) 

Since Se = Sx' therefore section is fully effective at F y = 50 ksi. For any stress f which is less than 
Fy = 50 ksi, the section will be fully effective, i.e., 

Ix = 7.840 in.4 (Table 2) 
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This value can be used for deflection detennination. 

The maximum deflection occurs at a distance of 0.446L from the exterior supports. It is given by 

~ = 0.0069wL4/EI 

= 0.0069(0.36)(10)4(12)3 /(29500x7 .84) 

= 0.186 in. 

This deflection is limited to 1/240 of the span, i.e., 

L/240 = 10x12/240 = 0.5 in. > 0.186in. OK 

From the above calculations, it can be concluded that the section is adequate. 
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PREFACE 
This document, Part V oftke LRFD Cold-Formed Steel Design Manual, contains two 

groups of design aids: (A) charts and tables prepared to assist in the use of particular design 
provisions of the Specification, and (B) tables of section properties. Included in Group A is an 
extensive series of graphs related to the compression member design procedures contained in 
Part III, Supplementary Information. 

These Charts and Tables should be used in conjunction with the other parts of the 
Design Manual, which include Commentary (Part II), Supplementary Information (Part 
III), and Illustrative Examples (Part IV), in addition to the Specification (Part I). 

American Iron and Steel Institute 
December 1991 
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GROUP A 

CHARTS RELATED 

TO PARTICULAR SPECIFICATION PROVISIONS 

GENERAL NOTES 

(a) The ~ppropriate equations from the Specification are generally shown on each design aid. 

(b) The definitions of the terms used in these charts and tables can be found in the 
Specification. 

(c) The torsional-flexural buckling charts are grouped together by cross-section type for 
convenience; that is, singly-symmetric angle sections, singly-symmetric channel sec
tions, and singly-symmetric hat sections. 

(d) The torsional-ilexural buckling design charts are based on a square corner approximation 
for all section properties. 

(e) In the titles and labels for the torsional-flexural buckling design charts, "a" and "0"" are 
used interchangeably. . 
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CHART V-3.4 
Torsional-Flexural Buckling 

(See Part III, Section 2 for application) 
Cl'/i2 for Hat Sections (Singly-Symmetric) 
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GROUP B 
TABLES OF SECTION PROPERTIES 
GENERAL NOTES 

(a) The specific sections listed in these tables are not necessarily stock sections. They are 
included primarily as a guide in the design of cold-formed steel structural members. 

(b) The effective section modulus values are calculated as the ratio of effective moment of 
inertia at the indicated stress level and the distance to the extreme fiber. In calculating 
the maximum moment capacity of these sections, additional checks such as the provi
sions of Chapter C of the Specification and the information on laterally unbraced com
pression flanges in Part III should also be taken into account where applicable. 

(c) As a general rule, tabulated section properties are shown to three significant figures, 
while dimensions are given to three decimal places. However, in some cases space limita
tions made it impractical to adhere strictly to this guideline. 

(d) The weight of these sections is calculated based on steel as weighing 40.8 pounds per 
square foot per inch thickness. 

(e) Where they apply, the algebraic formulae presented in Part III formed the basis of the 
calculations for these tables. 

(f) The properties of Tables 5, 6, 14, and 15 apply only when the channels are adequately 
joined together. See Chapter D of the Specification. 

(g) Tables 1-9 incl. are Full Area Tables. The effective section properties listed in Tables 
10-15 incl. were computed for bending about x-axis using F y = 33ksi and 50ksi. 

(h) The Full Area Tables were prepared at Cornell University by Shyh Hann Ji. 
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TABLE 1 
CHANNEL 

WITH 
STIFFENED FLANGES 

See notes on page V-~[) 

Wgt. 
Size t d R Area f:t Axis x-x 

D B Ix S, r, 

In. In. In. In. In. In. 2 Lb. In. ~ In.:l In. 

12.0 3.50 0.135 1.01 0.1875 2.706 9.20 56.267 9.378 4.56 
0.105 0.90 0.1875 2.097 7.13 43.836 7.306 4.57 

10.0 3.50 0.135 1.01 0.1875 2.436 8.28 36.526 7.305 3.87 
0.105 0.90 0.1875 1.887 6.41 28.506 5.701 3.89 
0.075 0.72 0.09375 1.344 4.57 20.533 4.107 3.91 

9.0 3.25 0.135 1.00 0.1875 2.230 7.58 27.158 6.035 3.49 
0.105 0.84 0.1875 1.717 5.84 21.077 4.684 3.50 
0.075 0.70 0.09375 1.228 4.18 15.287 3.397 3.53 
0.060 0.61 0.09375 0.976 3.32 12.182 2.707 3.53 

8.0 3.00 0.135 0.93 0.1875 2.009 6.83 19.372 4.843 3.11 
0.105 0.81 0.1875 1.553 5.28 15.125 3.781 3.12 
0.075 0.70 0.09375 1.116 3.79 11.046 2.761 3.15 
0.060 0.60 0.09375 0.885 3.01 8.791 2.198 3.15 

8.0 1.625 0.105 0.82 0.1875 1.266 4.31 10.646 2.662 2.90 
0.075 0.82 0.09375 0.927 3.15 7.996 1.999 2.94 
0.060 0.60 0.09375 0.720 2.45 6.190 1.548 2.93 
0.048 0.50 0.09375 0.569 1.94 4.889 1.222 2.93 

7.0 2.75 0.135 0.88 0.1875 1.793 6.10 13.266 3.790 2.72 
0.105 0.88 0.1875 1.410 4.79 10.553 3.015 2.74 
0.075 0.70 0.09375 1.003 3.41 7.659 2.188 2.76 
0.060 0.60 0.09375 0.795 2.70 6.099 1.742 2.77 

6.0 2.50 0.135 0.82 0.1875 1.574 5.35 8.575 2.858 2.33 
0.105 0.82 0.1875 1.240 4.22 6.843 2.281 2.35 
0.075 0.82 0.09375 0.909 3.09 5.124 1.708 2.37 
0.060 0.60 0.09375 0.705 2.40 4.012 1.337 2.39 

6.0 1.625 0.105 0.82 0.1875 1.056 3.59 5.246 1.748 2.23 
0.075 0.82 0.09375 0.777 2.79 3.972 1.324 2.26 
0.060 0.60 0.09375 0.600 1.68 3.085 1.028 2.27 
0.048 0.50 0.09375 0.473 1.61 2.441 0.814 2.27 

5.0 2.00 0.135 0.70 0.1875 1.272 4.32 4.684 1.874 1.92 
0.105 0.70 0.1875 1.005 3.42 3.761 1.504 1.93 
0.075 0.60 0.09375 0.726 2.47 2.797 1.119 1.96 
0.060 0.50 0.09375 0.573 1.95 2.227 0.891 1.97 
0.048 0.50 0.09375 0.461 1.57 1.804 0.722 1.98 

4.0 2.00 0.135 0.70 0.1875 1.137 3.87 2.752 1.376 1.56 
0.105 0.70 0.1875 0.900 3.06 2.219 1.110 1.57 
0.075 0.60 0.09375 0.651 2.21 1.664 0.832 1.60 
0.060 0.50 0.09375 0.513 1.74 1.330 0.665 1.61 
0.048 0.50 0.09375 0.413 1.40 1.079 0.539 1.62 

e 

y 

'i y 

Properties of FUll Section 

Axis y-y m 

Iy Sy ry x 

In.4 In. 3 In. In. In. 

4.037 1.560 1.222 0.912 1.487 
3.090 1.181 1.214 0.883 1.461 
3.823 1.533 1.253 1.006 1.582 
2.929 1.160 1.246 0.975 1.553 
2.035 0.792 1.231 0.932 1.473 
3.072 1.344 1.174 0.965 1.507 
2.300 0.987 1.157 0.921 1.458 
1.627 0.689 1.151 0.888 1.393 
1.265 0.530 1.138 0.862 1.364 
2.356 1.127 1.083 0.909 1.409 
1.794 0.844 1.075 0.876 1.375 
1.290 0.600 1.075 0.851 1.321 
0.997 0.458 1.061 0.822 1.288 
0.391 0.331 0.556 0.411 0.707 
0.319 0.261 0.587 0.415 0.707 
0.222 0.176 0.555 0.369 0.645 
0.166 0.135 0.541 0.347 0.618 

1.777 0.940 0.996 0.859 1.320 
1.438 0.761 1.010 0.859 1.335 
1.000 0.517 0.999 0.815 1.251 
0.772 0.393 0.986 0.786 1.217 
1.293 0.764 0.906 0.808 1.228 
1.051 0.621 0.921 0.808 1.244 
0.805 0.478 0.941 0.814 1.232 
0.583 0.333 0.909 0.752 1.148 
0.360 0.323 0.584 0.481 0.795 
0.293 0.256 0.615 0.486 0.791 
0.205 0.172 0.585 0.437 0.722 
0.154 0.128 0.571 0.412 0.693 

0.648 0.478 0.714 0.644 0.986 
0.533 0.393 0.728 0.643 1.001 
0.389 0.283 0.733 0.622 0.949 
0.298 0.212 0.721 0.594 0.915 
0.244 0.173 0.727 0.594 0.921 
0.598 0.464 0.725 0.712 1.054 
0.492 0.382 0.740 0.712 1.069 
0.361 0.275 0.745 0.689 1.009 
0.277 0.206 0.734 0.660 0.972 
0.226 0.169 0.740 0.660 0.979 

e 

[] 1m 4 1 
. t D 

SHEAR 
CENTER R ~ 

J C .... j 

In.4 In. 6 In. 

0.01640 119.00 6.78 
0.00771 89.90 6.84 
0.01480 79.90 5.59 
0.00693 60.10 5.64 
0.00252 39.60 5.58 
0.01360 53.20 5.03 
0.00631 38.50 5.10 
0.00230 25.90 5.03 
0.00117 19.80 5.06 
0.01220 32.60 4.51 
0.00571 24.10 4.56 
0.00209 16.50 4.48 
0.00106 12.50 4.51 
0.00465 5.79 4.95 
0.00174 4.43 4.69 
0.000864 2.96 5.00 
0.000437 2.20 5.13 

0.01090 19.20 3.99 
0.00518 15.70 3.99 
0.00188 10.10 3.95 
0.000954 7.56 3.98 
0.00956 10.50 3.48 
0.00456 8.64 3.49 
0.00170 6.51 3.41 
0.000846 4.31 3.46 
0.00388 3.16 3.29 
0.00146 2.43 3.15 
0.000720 1.58 3.33 
0.000363 1.56 3.41 

0.00773 3.73 2.89 
0.00369 3.10 2.90 
0.00136 2.10 2.83 
0.000687 1.54 2.86 
0.000354 1.26 2.86 
0.00691 2.38 2.52 
0.00331 1.99 2.53 
0.00122 1.33 2.48 
0.000615 0.958 2.49 
0.000317 0.789 2.49 

TABLE 1 

ro xo 

In. In. 

5.27 -2.33 
5.26 -2.29 
4.79 -2.52 
4.77 -2.48 
4.73 -2.37 
4.40 -2.40 
4.36 -2.33 
4.34 -2.24 
4.31 -2.20 
3.98 -2.25 
3.97 -2.20 
3.95 -2.14 
3.92 -2.08 
3.12 -1.07 
3.18 -1.08 
3.14 -0.986 
3.13 -0.943 

3.58 -2.11 
3.62 -2.14 
3.57 -2.03 
3.54 -1.97 
3.19 -1.97 
3.22 -2.00 
3.25 -2.01 
3.16 -1.87 
2.60 -1.22 
2.65 -1.24 
2.60 -1.12 
2.58 -1.08 

2.58 -1.56 
2.61 -1.59 
2.60 -1.53 
2.57 -1.48 
2.58 -1.49 
2.41 -1.70 
2.45 -1.73 
2.42 -1.66 
2.39 -1.60 
2.40 -1.61 
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TABLE 1 {continued) 
CHANNEL 

WITH 
STIFFENED FLANGES 

See notes on page V-25 

Wgt. 
Size t d R Area 

ro~t 
Axis x-x 

D B Ix Sx rx 

In. In. In. In. In. In.2 Lb. In.4 In. 3 In. 

4.0 1.625 0.075 0.60 0.09375 0.594 2.02 1.443 0.722 1.56 
0.060 0.50 0.09375 0.468 1.59 1.151 0.576 1.57 
0.048 0.50 0.09375 0.377 1.28 0.936 0.467 1.58 
0.036 0.50 0.09375 0.285 0.97 0.713 0.356 1.58 

3.625 1.625 0.075 0.60 0.09375 0.566 1.93 1.146 0.631 1.42 
0.060 0.50 0.09375 0.445 1.51 0.915 0.505 1.45 
0.048 0.50 0.09375 0.357 1.21 0.744 0.410 1.44 
0.036 0.50 0.09375 0.271 0.922 0.567 0.314 1.45 

3.5 2.00 0.135 0.70 0.1875 1.069 3.64 2.003 1.145 1.37 
0.105 0.70 0.1875 0.847 2.88 1.620 0.926 1.38 
0.075 0.60 0.09375 0.613 2.08 1.222 0.698 1.41 
0.060 0.50 0.09375 0.483 1.64 0.979 0.559 1.42 
0.048 0.50 0.09375 0.389 1.32 0.795 0.454 1.43 

3.0 1.75 0.105 0.70 0.1875 0.742 2.52 1.017 0.678 1.17 
0.075 0.53 0.09375 0.528 1.79 0.767 0.512 1.21 
0.060 0.53 0.09375 0.426 1.45 0.628 0.418 1.21 
0.048 0.41 0.09375 0.332 1.13 0.499 0.332 1.22 

2.5 1.625 0.075 0.60 0.09375 0.482 1.64 0.480 0.383 1.00 
0.060 0.50 0.09375 0.378 1.29 0.387 0.310 1.01 
0.048 0.50 0.09375 0.305 1.04 0.316 0.253 1.02 
0.036 0.50 0.09375 0.231 0.786 0.242 0.193 1.02 

e 

y 

'=e y 

Properties of FUll Section 

Axis y-y m 

Iy Sy ry x 

In.4 I 3 n. In. In. In. 

0.218 0.202 0.608 0.539 0.818 
0.166 0.150 0.599 0.511 0.758 
0.137 0.123 0.603 0.510 0.791 
0.106 0.0949 0.609 0.511 0.799 
0.211 0.199 0.611 0.564 0.843 
0.161 0.147 0.602 0.536 0.807 
0.132 0.121 0.608 0.536 0.813 
0.102 0.0939 0.615 0.536 0.819 

0.568 0.456 0.729 0.753 1.092 
0.468 0.375 0.743 0.753 1.107 
0.344 0.271 0.749 0.729 1.043 
0.264 0.203 0.739 0.699 1.005 
0.216 0.166 0.745 0.699 1.011 

0.318 0.300 0.654 0.689 1.015 
0.224 0.202 0.651 0.644 0.918 
0.185 0.167 0.658 0.644 0.926 
0.138 0.120 0.644 0.607 0.877 
0.183 0.189 0.618 0.656 0.924 
0.141 0.142 0.612 0.626 0.886 
0.116 0.116 0.616 0.626 0.890 
0.0895 0.0896 0.622 0.626 0.897 

e 

1-81 t 
TABLE 1 (continued) l 

rm~41 I 

. - I-t 0 
SHEAR ~ 

CENTER ~ I 

J C ... j ro xo 

In.4 I 6 n. In. In. In. 

0.00113 0.817 2.26 2.12 -1.32 
0.000558 0.586 2.29 2.10 -1.27 
0.000290 0.485 2.29 2.12 -1.28 
0.000123 0.376 2.30 2.13 -1.29 

0.00107 0.672 2.13 2.07 -1.37 
0.000531 0.479 2.15 2.04 -1.31 
0.000274 0.395 2.15 2.05 -1.33 
0.000118 0.307 2.16 2.05 -1.34 

0.00650 1.85 2.39 2.36 -1.78 
0.00311 1.55 2.40 2.39 -1.81 
0.00115 1.02 2.35 2.36 -1.73 
0.000579 0.728 2.35 2.32 -1.67 
0.000299 0.601 2.36 2.33 -1.69 
0.00273 0.861 2.10 2.13 -1.65 
0.000989 0.495 2.04 2.05 -1.52 
0.000512 0.413 2.05 2.07 -1.54 
0.000255 0.277 2.05 2.01 -1.46 
0.000895 0.343 1.86 1.94 -1.54 
0.000450 0.233 1.86 1.90 -1.48 
0.000233 0.195 1.87 1.92 -1.50 I 
0.0000991 0.153 1.87 1.92 -1.51 
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TABLE 2 

CHANNEL 
WITH UNSTIFFENED FLANGES 

See notes on page V-25 

Size Wgt. 
t R Area ~er Axis x-x 

oot 
D B Ix Sx rx 
In. In. In. In. I 2 n. Lb. In.4 I 3 n. In. 

8.0 2.00 0.135 0.18750 1.554 5.284 13.076 3.269 2.901 
0.105 0.18750 1.216 4.135 10.335 2.584 2.915 
0.075 0.09375 0.880 2.993 7.599 1.900 2.938 
0.060 0.09375 0.706 2.402 6.127 1.532 2.945 

7.0 1.50 0.135 0.18750 1.284 4.366 7.840 2.240 2.471 
0.105 0.18750 1.006 3.421 6.218 1.777 2.486 
0.075 0.09375 0.730 2.483 4.603 1.315 2.511 
0.060 0.09375 0.586 1.994 3.718 1.062 2.518 

6.0 1.50 0.135 0.18750 1.149 3.907 5.334 1.778 2.155 
0.105 0.18750 0.901 3.064 4.240 1.413 2.169 
0.075 0.09375 0.655 2.228 3.150 1.050 2.193 
0.060 0.09375 0.526 1.790 2.547 0.849 2.200 
0.048 0.09375 0.423 1.437 2.055 0.685 2.205 

5.0 1.25 0.105 0.18750 0.744 2.529 2.399 0.960 1.796 
0.075 0.09375 0.543 1.846 1. 797 0.719 1.820 
0.060 0.09375 0.436 1.484 1.456 0.583 1.827 
0.048 0.09375 0.351 1.192 1.177 0.471 1.832 

4.0 1.125 0.105 0.18750 0.613 2.083 1.286 0.643 1.449 
0.060 0.09375 0.449 1.527 0.973 0.486 1.472 
0.075 0.09375 0.361 1.229 0.791 0.395 1.479 
0.048 0.09375 0.291 0.988 0.640 0.320 1.485 

3.0 1.125 0.105 0.18750 0.508 1.726 0.636 0.424 1.120 
0.075 0.09375 0.374 1.272 0.487 0.324 1.141 
0.060 0.09375 0.301 1.025 0.397 0.265 1.147 
0.048 0.09375 0.243 0.825 0.322 0.215 1.153 

2.0 1.125 0.105 0.18750 0.403 1.369 0.241 0.241 0.773 
0.075 0.09375 0.299 1.017 0.188 0.188 0.792 
0.060 0.09375 0.241 0.821 0.154 0.154 0.798 
0.048 0.09375 0.195 0.661 0.126 0.126 0.804 

e 

y [B\ 

'f r:[i . t D 
SHEAR 

CENTER R __ 1_ 

y 

Properties of Full Section 

Axis y-y 
x m J Cw j 

Iy Sy ry 
In.4 I 3 n. In. In. In. In.4 In. 6 In. 

0.4853 0.3019 0.559 0.393 0.596 0.00944 5.56 4.84 
0.3862 0.2385 0.563 0.381 0.600 0.00447 4.45 4.86 
0.2830 0.1732 0.567 0.366 0.597 0.00165 3.27 4.89 
0.2290 0.1396 0.569 0.360 0.599 0.000848 2.66 4.89 
0.2044 0.1681 0.399 0.284 0.416 0.00780 1.82 4.61 
0.1639 0.1335 0.404 0.272 0.421 0.00370 1.47 4.62 
0.1211 0.0975 0.407 0.257 0.418 0.00137 1.09 4.65 
0.0983 0.0788 0.410 0.251 0.420 0.000704 0.888 4.66 
0.1973 0.1657 0.414 0.310 0.447 0.00698 1.26 3.61 
0.1582 0.1316 0.419 0.298 0.451 0.00331 1.02 3.62 
0.1171 0.0962 0.423 0.283 0.447 0.00123 0.758 3.65 
0.0951 0.0777 0.425 0.277 0.449 0.000632 0.618 3.66 
0.0770 0.0627 0.427 0.272 0.451 0.000325 0.503 3.66 
0.0894 0.0900 0.347 0.256 0.376 0.00273 0.399 3.00 
0.0667 0.0661 0.350 0.241 0.372 0.00102 0.299 3.04 
0.0543 0.0535 0.353 0.235 0.374 0.000524 0.245 3.04 
0.0441 0.0432 0.355 0.230 0.376 0.000269 0.199 3.05 
0.0623 0.0713 0.319 0.251 0.356 0.00225 0.175 2.27 
0.0467 0.0525 0.323 0.235 0.351 0.000842 0.132 2.30 
0.0382 0.0426 0.325 0.229 0.353 0.000434 0.108 2.31 
0.0310 0.0345 0.327 0.225 0.355 0.000223 0.0885 2.31 
0.0573 0.0688 0.336 0.292 0.398 0.00187 0.0873 1.60 
0.0432 0.0508 0.340 0.275 0.390 0.000701 0.0663 1.62 
0.0353 0.0412 0.342 0.269 0.392 0.000362 0.0547 1.63 
0.0287 0.0334 0.344 0.264 0.393 0.000186 0.0448 1.64 
0.0497 0.0645 0.351 0.355 0.450 0.00148 0.0326 1.17 
0.0379 0.0480 0.356 0.335 0.438 0.000561 0.0251 1.19 
0.0310 0.0389 0.358 0.329 0.440 0.000290 0.0208 1.20 
0.0253 0.0315 0.360 0.324 0.441 0.000149 0.0171 1.21 

e 

TABLE 2 

ro Xo 

In. In. 

3.09 -0.922 
3.11 -0.929 
3.13 -0.92& 
3.14 -0.929 
2.58 -0.633 
2.60 -0.640 
2.62 -0.638 
2.63 -0.641 

2.30 -0.689 
2.32 -0.696 
2.34 -0.692 
2.35 -0.696 
2.35 -0.698 
1.92 -0.580 
1.94 -0.575 
1.95 -0.579 
1.96 -0.582 
1.58 -0.555 
1.60 -0.549 
1.61 -0.553 
1.62 -0.555 
1.33 -0.637 
1.35 -0.627 
1.35 -0.631 
1.36 -0.634 
1.13 -0.752 
1.14 -0.735 
1.15 -0.738 
1.15 -0.741 
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e 
TABLE 3 

Z-SECTION 
WITH 

STIFFENED FLANGES 

See notes on page V-25 

Wgt. 
t d R Area i.er 

Size DOt Axis x-x 

D B Ix Sx 

In. In. In. In. In. In. 2 Lb. In.4 In. 3 

12.0 3.50 0.135 1.01 0.1875 2.706 9.20 56.267 9.378 
0.105 0.90 0.1875 2.097 7.13 43.836 7.306 

10.0 3.50 0.135 1.01 0.1875 2.436 8.28 36.526 7.305 
0.105 0.90 0.1875 1.887 6.41 28.506 5.701 
0.075 0.72 0.09375 1.344 4.57 20.533 4.107 

9.0 3.25 0.135 1.00 0.1875 2.230 7.58 27.158 6.035 
0.105 0.84 0.1875 1.717 5.84 21.077 4.684 
0.075 0.70 0.09375 1.228 4.18 15.287 3.397 
0.060 0.61 0.09375 0.976 3.32 12.182 2.707 

8.0 3.00 0.135 0.93 0.1875 2.009 6.83 19.372 4.843 
0.105 0.81 0.1875 1.553 5.28 15.125 3.781 
0.075 0.70 0.09375 1.116 3.79 11.046 2.761 
0.060 0.60 0.09375 0.885 3.01 8.791 2.198 

7.0 2.75 0.135 0.88 0.1875 1.793 6.10 13.266 3.790 
0.105 0.88 0.1875 1.410 4.79 10.553 3.015 
0.075 0.70 0.09375 1.003 3.41 7.659 2.188 
0.060 0.60 0.09375 0.795 2.70 6.099 1.742 

6.0 2.50 0.135 0.82 0.1875 1.574 5.35 8.575 2.858 
0.105 0.82 0.1875 1.240 4.22 6.843 2.281 
0.075 0.82 0.09375 0.909 3.09 5.124 1.708 
0.060 0.60 0.09375 0.705 2.40 4.012 1.337 

5.0 2.00 0.135 0.70 0.1875 1.272 4.32 4.684 1.874 
0.105 0.70 0.1875 1.005 3.42 3.761 1.504 
0.075 0.60 0.09375 0.726 2.47 2.797 1.119 
0.060 0.50 0.09375 0.573 1.95 2.227 0.891 
0.048 0.50 0.09375 0.461 1.57 1.804 0.722 

4.0 2.00 0.135 0.70 0.1875 1.137 3.87 2.752 1.376 
0.105 0.70 0.1875 0.900 3.06 2.219 1.110 
0.075 0.60 0.09375 0.651 2.21 1.664 0.832 
0.060 0.50 0.09375 0.513 1. 74 1.330 0.665 
0.048 0.50 0.09375 0.413 1.40 1.079 0.539 

3.5 2.00 0.135 0.70 0.1875 1.069 3.64 2.003 1.145 
0.105 0.70 0.1875 0.847 2.88 1.620 0.926 
0.075 0.60 0.09375 0.613 2.08 1.222 0.698 
0.060 0.50 0.09375 0.483 1.64 0.979 0.559 
0.048 0.50 0.09375 0.389 1.32 0.795 0.454 

3.0 1. 75 0.105 0.70 0.1875 0.742 2.52 1.017 0.678 
0.075 0.5:3 0.09375 0.526 1.79 0.767 0.512 
0.060 0.53 0.09375 0.426 1.45 0.628 0.418 
0.048 0.41 0.09:n5 0.:3:32 1.13 0.499 0.332 

e 

'1-
t=B-j I 
r-u d 1 

-H --.-, 

~ 
x, y ]:=B-

Beam Strength Properties of Full Section 

Axis 
Axis y-y Ixy X2- X2 

rx Iy Sy ry rrnin 

In. In.4 In. 3 In. In.4 In. 

4.56 5.968 1.739 1.485 13.152 1.006 
4.57 4.535 1.316 1.471 10.097 0.999 

3.87 5.968 1.739 1.565 10.867 1.013 
3.89 4.535 1.316 1.550 8.356 1.006 
3.91 3.109 0.898 1.521 5.842 0.996 

3.49 4.869 1.530 1.477 8.506 0.945 
3.50 3.594 1.124 1.447 6.423 0.931 
3.53 2.516 0.783 1.431 4.557 0.927 
3.53 1.941 0.603 1.410 3.566 0.918 

3.11 3.779 1.288 1.371 6.358 0.868 
3.12 2.846 0.965 1.354 4.868 0.860 
3.15 2.028 0.685 1.348 3.500 0.862 
3.15 1.552 0.523 1.324 2.725 0.851 

2.72 2.901 1.082 1.272 4.638 0.794 
2.74 2.355 0.873 1.292 3.728 0.805 
2.76 1.607 0.592 1.266 2.612 0.796 
2.77 1.227 0.451 1.242 2.033 0.785 

2.33 2.156 0.886 1.170 3.236 0.716 
2.35 1.758 0.718 1.191 2.611 0.728 
2.37 1.353 0.549 1.220 1.977 0.746 
2.39 0.950 0.385 1.161 1.463 0.718 

1.92 1.071 0.554 0.917 1.681 0.567 
1.93 0.884 0.454 0.938 1.369 0.579 
1.96 0.637 0.325 0.937 0.998 0.583 
1.97 0.480 0.244 0.915 0.772 0.573 
1.98 0.393 0.199 0.924 0.629 0.577 

1.56 LOn 0.554 0.970 1.315 0.555 
1.57 0.884 0.454 0.991 1.072 0.566 
1.60 0.637 0.325 0.990 0.786 0.570 
1.61 0.480 0.244 0.967 0.610 0.561 
1.62 0.393 0.199 0.976 0.498 0.565 

1.37 1.071 0.554 1.001 1.131 0.541 
1.38 0.884 0.454 1.021 0.924 0.552 
1.41 0.637 0.325 1.020 0.680 0.556 
1.42 0.480 0.244 0.997 0.529 0.546 
1.43 0.393 0.199 1.005 0.432 0.550 

1.17 0.618 0.364 0.913 0.611 0.486 
1.21 0.418 0.244 0.890 0.437 0.480 
1.21 0.346 0.201 0.900 0.360 0.485 
1.22 0.251 0.145 0.868 0.274 0.472 

e 
TABLE 3 

90°-6 J Cw 

Deg. In.4 In. 6 

13.80 0.0164 162.00 
13.60 0.00771 123.00 

17.71 0.0148 108.00 
17.44 0.00693 82.20 
16.92 0.00252 54.80 

18.68 0.0136 71.60 
18.15 0.00631 52.50 
17.76 0.00230 35.70 
17.43 0.00117 27.50 

19.60 0.0122 43.70 
19.21 0.00571 32.80 
18.91 0.00209 22.70 
18.49 0.00106 17.30 

20.91 0.0109 25.60 
21.14 0.00518 20.80 
20.40 0.00188 13.70 
19.92 0.000954 10.40 

22.62 0.00956 13.90 
22.88 0.00456 11.40 
23.18 0.00170 8.53 
21.85 0.000846 5.87 

21.47 0.00773 4.90 
21.79 0.00369 4.06 
21.38 0.00136 2.80 
20.73 0.000687 2.09 
20.86 0.000354 1.72 

28.70 0.00691 3.00 
29.04 0.00331 2.50 
28.43 0.00122 1.72 
27.57 0.000615 1.27 
27.72 0.000317 1.05 

33.80 0.00650 2.24 
34.13 0.00311 1.87 
33.37 0.00115 1.28 
32.38 0.000579 0.947 
32.52 0.000299 0.780 

35.96 0.00273 0.990 
34.11 0.000989 0.617 
34.30 0.000512 I 0.,514 
32.82 0.000255 0.362 
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TABLE 4 

Z-SECTION 
WITH 

UNSTIFFENED FLANGES 

See notes on page V-25 

Size Wgt. 
t R Area per Axis x-x 

Foot D B Ix Sx rx 
In. In. In. In. In. 2 Lb. In.4 In. 3 In. 

8.0 2.000 0.135 0.1875 1.554 5.284 13.076 3.269 2.901 
0.105 0.1875 1.216 4.135 10.335 2.584 2.915 
0.075 0.09375 0.880 2.993 7.599 1.900 2.938 
0.060 0.09375 0.706 2.402 6.127 1.532 2.945 

7.0 1.500 0.135 0.1875 1.284 4.366 7.840 2.240 2.471 
0.105 0.1875 1.006 3.421 6.218 1.777 2.486 
0.075 0.09375 0.730 2.483 4.603 1.315 2.511 
0.060 0.09375 0.586 1.994 3.718 1.062 2.518 

6.0 1.500 0.135 0.1875 1.149 3.907 5.334 1.778 2.155 
0.105 0.1875 0.901 3.064 4.240 1.413 2.169 
0.075 0.09375 0.655 2.228 3.150 1.050 2.193 
0.060 0.09375 0.526 1.790 2.547 0.849 2.200 
0.048 0.09375 0.423 1.437 2.055 0.685 2.205 

5.0 1.250 0.105 0.1875 0.744 2.529 2.399 0.960 1.796 
0.075 0.09375 0.543 1.846 1.797 0.719 1.820 
0.060 0.09375 0.436 1.484 1.456 0.583 1.827 
0.048 0.09375 0.351 1.192 1.177 0.471 1.832 

4.0 1.500 0.060 0.09375 0.406 1.382 0.965 0.483 1.546 

4.0 1.125 0.105 0.1875 0.613 2.083 1.286 0.643 1.449 
0.075 0.09375 0.449 1.527 0.973 0.486 1.472 
0.060 0.09375 0.361 1.229 0.791 0.395 1.479 
0.048 0.09375 0.291 0.988 0.640 0.320 1.485 

3.0 1.500 0.060 0.09375 0.346 1.178 0.494 0.330 1.198 
3.0 1.125 0.105 0.1875 0.508 1.726 0.636 0.424 1.120 

0.075 0.09375 0.374 1.272 0.487 0.324 1.141 
0.060 0.09375 0.301 1.025 0.397 0.265 1.147 
0.048 0.09375 0.243 0.825 0.322 0.215 1.153 

2.0 1.125 0.105 0.1875 0.403 1.369 0.241 0.241 0.773 
0.075 0.09375 0.299 1.017 0.188 0.188 0.792 
0.060 0.09375 0.241 0.821 0.154 0.154 0.798 
0.048 0.09375 0.195 0.661 0.126 0.126 0.804 

1.5 1.500 0.048 0.09375 0.207 0.702 0.084 0.112 0.641 
0.036 . 0.09375 0.156 0.530 0.0652 0.0862 0.646 

e 

j , r 1 
~:!-----1 x, y 

Properties of FUll Section 

Axis y-y Axis X2-X2 

Ixy 90°-6 
Iy Sy ry rmin 

In.4 In. 3 In. In.4 In. Deg. 

0.6496 0.3362 0.647 1.9872 0.467 8.87 
0.5171 0.2655 0.652 1.5752 0.472 8.90 
0.3779 0.1926 0.655 1.1453 0.477 8.80 
0.3058 0.1552 0.658 0.9249 0.479 8.81 
0.2647 0.1848 0.454 0.9548 0.337 7.07 
0.2124 0.1467 0.459 0.7612 0.342 7.11 
0.1564 0.1070 0.463 0.5561 0.347 7.02 
0.1271 0.0864 0.465 0.4503 0.349 7.04 
0.2647 0.1840 0.480 0.8157 0.345 8.92 
0.2124 0.1467 0.485 0.6508 0.349 8.95 
0.1564 0.1070 0.489 0.4758 0.355 8.82 
0.1271 0.0864 0.491 0.3854 0.357 8.84 
0.1029 0.0697 0.493 0.3115 0.359 8.85 
0.1203 0.1004 0.402 0.3704 0.288 9.00 
0.0891 0.0735 0.405 0.2719 0.294 8.83 
0.0726 0.0595 0.408 0.2209 0.296 8.85 
0.0590 0.0481 0.410 0.1789 0.298 8.87 
0.1271 0.0865 0.561 0.2558 0.370 15.74 
0.0864 0.0806 0.376 0.2367 0.260 10.77 
0.0643 0.0591 0.378 0.1744 0.267 10.50 
0.0525 0.0480 0.381 0.1420 0.269 10.52 
0.0427 0.0388 0.383 0.1151 0.271 10.54 
0.1271 0.0865 0.607 0.1906 0.365 23.06 
0.0864 0.0806 0.413 0.1759 0.263 16.30 
0.0643 0.0591 0.415 0.1300 0.271 15.80 
0.0525 0.0480 0.417 0.1059 0.273 15.80 
0.0427 0.0388 0.420 0.0860 0.275 15.80 
0.0864 0.0806 0.463 0.1150 0.250 28.07 
0.0643 0.0591 0.464 0.0855 0.262 27.12 
0.0525 0.0480 0.466 0.0699 0.264 27.03 
0.0427 0.0388 0.469 0.0569 0.266 26.95 
0.1029 0.0697 0.709 0.0760 0.287 41.53 
0.0781 0.0527 0.710 0.0580 0.291 41.70 

e 

J 

In.4 

0.00944 
0.00447 
0.00165 
0.000848 

0.00780 
0.00370 
0.00137 
0.000704 

0.00698 
0.00331 
0.00123 
0.000632 
0.000325 
0.00273 
0.00102 
0.000524 
0.000269 
0.000485 
0.00225 
0.000842 
0.000434 
0.000223 
0.000413 
0.00187 
0.000701 
0.000362 
0.000186 
0.00148 
0.000561 
0.000290 
0.000149 
0.000159 
0.0000670 

TABLE 4 

Cw 

In. 6 

7.56 
6.06 
4.46 
3.62 
2.43 
1.96 
1.46 
1.19 

1. 72 
1.39 
1.03 

0.842 
0.685 
0.543 
0.407 
0.333 
0.272 

0.335 
0.240 
0.181 
0.149 
0.122 
0.171 
0.123 
0.0936 
0.0771 
0.0632 

0.0467 
0.0359 
0.0298 
0.0245 
0.0270 
0.0209 
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e 
TABLE 5 

TWO CHANNELS 
WITH 

STIFFENED FLANGES BACK-TO-BACK 

See notes on page V-25 

Size 
Wgt. Axis x-x 

t d R Area per 
D B Foot Ix Sx 

In. In. In. In. In. In. 2 Lb. In.4 In. 3 

12.0 7.00 0.135 1.01 0.1875 5.411 18.40 113.0 18.756 
0.105 0.90 0.1875 4.193 14.26 87.7 14.612 

10.0 7.00 0.135 1.01 0.1875 4.871 16.56 73.1 14.611 
0.105 0.90 0.1875 3.773 12.83 57.0 11.402 
0.075 0.72 0.09375 2.687 9.14 41.1 8.213 

9.0 6.50 0.135 1.00 0.1875 4.461 15.17 54.3 12.070 
0.105 0.84 0.1875 3.433 11.67 42.2 9.368 
0.075 0.70 0.09375 2.456 8.35 30.6 6.794 
0.060 0.61 0.09375 1.952 6.64 24.4 5.414 

8.0 6.00 0.135 0.93 0.1875 4.018 13.66 38.7 9.686 
0.105 0.81 0.1875 3.105 10.56 30.3 7.563 
0.075 0.70 0.09375 2.231 7.59 22.1 5.523 
0.060 0.60 0.09375 1.770 6.02 17.6 4.395 

7.0 5.50 0.135 0.88 0.1875 3.586 12.19 26.5 7.581 
0.105 0.88 0.1875 2.820 9.59 21.1 6.030 
0.075 0.70 0.09375 2.006 6.82 15.3 4.377 
0.060 0.60 0.09375 1.590 5.40 12.2 3.485 

6.0 5.00 0.135 0.82 0.1875 3.149 10.71 17.2 5.717 
0.105 0.82 0.1875 2.480 8.43 13.7 4.562 
0.075 0.82 0.09375 1.817 6.18 10.2 3.416 
0.060 0.60 0.09375 1.410 4.79 8.02 2.674 

5.0 4.00 0.135 0.70 0.1875 2.544 8.65 9.37 3.747 
0.105 0.70 0.1875 2.009 6.83 7.52 3.009 
0.075 0.60 0.09375 1.451 4.93 5.59 2.238 
0.060 0.50 0.09375 1.146 3.90 4.45 1. 781 
0.048 0.50 0.09375 0.922 3.14 3.61 1.443 

4.0 4.00 0.135 0.70 0.1875 2.274 7.73 5.50 2.752 
0.105 0.70 0.1875 1.799 6.12 4.44 2.219 
0.075 0.60 0.09375 1.301 4.42 3.33 1.664 
0.060 0.50 0.09375 1.026 3.49 2.66 1.330 
0.048 0.50 0.09375 0.826 2.81 2.16 1.079 

3.5 4.00 0.135 0.70 0.1875 2.139 7.27 4.01 2.289 
0.105 0.70 0.1875 l.694 5.76 3.24 1.852 
0.075 0.60 0.09375 1.226 4.17 2.44 1.397 
0.060 0.50 0.09375 0.966 3.28 1.96 1.119 
0.048 0.50 0.09375 0.778 2.65 1.59 0.909 

3.0 3.50 0.105 0.70 0.1875 1.484 5.05 2.03 1.356 
0.075 0.53 0.09375 1.055 3.59 1.53 1.023 
0.060 0.53 0.09375 0.853 2.90 1.26 0.837 
0.048 0.41 0.09:375 0.665 2.26 0.997 0.665 

e 

~-y~ 
~3Et L' R' 

Y 

Properties of Full Section 

Axis y-y 
J 

rx Iy Sy ry 

In. In.4 In. 3 In. In.4 

4.56 12.578 3.594 1.525 0.0329 
4.57 9.448 2.699 1.501 0.0154 

3.87 12.575 3.593 1.607 0.0296 
3.89 9.447 2.699 1.582 0.0139 
3.91 6.403 1.829 1.544 0.00504 

3.49 10.299 3.169 1.519 0.0271 
3.50 7.511 2.311 1.479 0.0126 
3.53 5.192 1.597 1.454 0.00461 
3.53 3.981 1.225 1.428 0.00234 

3.11 8.032 2.677 1.414 0.0244 
3.12 5.968 1.989 1.386 0.0114 
3.15 4.196 1.399 1.371 0.00418 
3.15 3.189 1.063 1.342 0.00212 

2.72 6.202 2.255 1.315 0.0218 
2.74 4.957 1.803 1.326 0.0104 
2.76 3.333 1.212 1.289 0.00376 
2.77 2.527 0.919 1.261 0.00191 

2.33 4.641 1.856 1.214 0.0191 
2.35 3.720 1.488 1.225 0.00911 
2.37 2.814 1.125 1.244 0.00341 
2.39 1.962 0.785 1.180 0.00169 

1.92 2.351 1.175 0.961 0.0155 
1.93 1.898 0.949 0.972 0.00738 
1.96 1.340 0.670 0.961 0.00272 
1.97 0.999 0.500 0.934 0.00137 
1.98 0.812 0.406 0.939 0.000708 
1.56 2.349 1.175 1.016 0.0138 
1.57 1.897 0.949 1.027 0.00661 
1.60 1.340 0.670 1.015 0.00244 
1.61 0.999 0.500 0.987 0.00123 
1.62 0.812 0.406 0.992 0.000634 
1.37 2.349 1.174 1.048 0.0130 
1.38 1.897 0.949 1.058 0.00623 
1.41 1.:~40 0.670 1.045 0.00230 
1.42 0.999 0.500 1.017 0.00116 
1.43 0.812 0.406 1.022 0.000598 

1.17 1.340 0.766 0.950 0.00545 
1.21 0.885 0.506 0.916 0.00198 
1.21 0.724 0.414 0.921 0.00102 
1.22 0.520 0.297 0.885 0.000511 

Cw 

In. 6 

478.00 
361.00 
336.00 
253.00 
167.00 
225.00 
163.00 
110.00 
84.00 

138.00 
103.00 
70.70 
53.50 

82.30 
67.20 
43.50 
32.70 

45.50 
37.30 
28.10 
18.90 

15.90 
13.20 
9.05 
6.68 
5.49 

10.40 
8.69 
5.91 
4.34 
3.57 

8.09 
6.77 
4.59 
3.36 
2.77 
3.64 
2.22 
1.86 
1.29 

TABLE 5 

, 

'8=1-
Iy ry 

In.4 In. 

44.31 2.86 
34.90 2.88 

37.95 2.79 
29.91 2.82 
21.79 2.85 

29.43 2.57 
23.22 2.60 
16.96 2.63 
13.66 2.65 

22.28 2.35 
17.60 2.38 
12.88 2.40 
10.39 2.42 

16.38 2.14 
12.96 2.14 
9.51 2.18 
7.68 2.20 

11.60 1.92 
9.20 1.93 
6.78 1.93 
5.48 1.97 
5.98 1.53 
4.76 1.54 
3.53 1.56 
2.86 1.58 
2.31 1.58 
4.97 1.48 
3.97 1.48 
2.96 1.51 
2.40 1.53 
1.94 1.53 

4.46 1.44 
3.57 1.45 
2.67 1.48 
2.16 1.50 
1.75 1.50 
2.31 1.25 
1. 74 1.28 
1.41 1.29 
1.14 1.31 
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TABLE 6 

2 CHANNELS 
WITH 

UNSTIFFENED FLANGES BACK-TO-BACK 

See notes on page V-25 

Size Weight 
t R Area per Axis x-x 

Foot 
D B Ix - Sx 

In. In. In. In. In.2 Lb. In.4 In.3 

8.0 4.00 0.135 0.1875 3.108 10.57 26.151 6.538 
0.105 0.1875 2.433 8.27 20.670 5.168 
0.075 0.09375 1.761 5.99 15.198 3.799 
0.060 0.09375 1.413 4.80 12.254 3.064 

7.0 3.00 0.135 0.1875 2.568 8.73 15.680 4.480 
0.105 0.1875 2.013 6.84 12.436 3.553 
0.075 0.09375 1.461 4.97 9.206 2.630 
0.060 0.09375 1.173 3.99 7.435 2.124 

6.0 3.00 0.135 0.1875 2.298 7.81 10.669 3.556 
0.105 0.1875 1.803 6.13 8.481 2.827 
0.075 0.09375 1.311 4.46 6.300 2.100 
0.060 0.09375 1.053 3.58 5.094 1.698 
0.048 0.09375 0.845 2.87 4.110 1.370 

5.0 2.50 0.105 0.1875 1.488 5.06 4.798 1.919 
0.075 0.09375 1.086 3.69 3.595 1.438 
0.060 0.09375 0.873 2.97 2.913 1.165 
0.048 0.09375 0.701 2.38 2.354 0.942 

4.0 2.25 0.105 0.1875 1.225 4.17 2.572 1.286 
0.075 0.09375 0.898 3.05 1.946 0.973 
0.060 0.09375 0.723 2.46 1.581 0.791 
0.048 0.09375 0.581 1.98 1.281 0.640 

3.0 2.25 0.105 0. 1875 1.015 3.45 1.273 0.849 
0.075 0.09375 0.748 2.54 0.973 0.649 
0.060 0.09375 0.603 2.05 0.794 0.529 
0.048 0.09375 0.485 1.65 0.645 0.430 

2.0 2.25 0.105 0.1875 0.805 2.74 0.482 0.482 
0.075 0.09375 0.598 2.03 0.375 0.375 
0.060 0.09375 0.483 1.64 0.308 0.308 

~ 
0.048 0.09375 0.389 1.32 0.251 0.251....-

r-~I IBI 

f3E -'I Lt R 

Properties of FUll Section 

Axis y-y 

rx Iy Sy ry 

In. In.4 In. 3 In. 

2.901 1.4499 0.7249 0.683 
2.915 1.1247 0.5624 0.680 
2.938 0.8017 0.4008 0.675 
2.945 0.6409 0.3204 0.673 

2.471 0.6162 0.4108 0.490 
2.486 0.4767 0.3178 0.487 
2.511 0.3390 0.2260 0.482 
2.518 0.2708 0.1805 0.480 

2.155 0.6149 0.4100 0.517 
2.169 0.4761 0.3174 0.514 
2.193 0.3388 0.2258 0.508 
2.200 0.2707 0.1804 0.507 
2.205 0.2163 0.1442 0.506 

1.796 0.2764 0.2212 0.431 
1.820 0.1964 0.1571 0.425 
1.827 0.1568 0.1254 0.424 
1.832 0.1253 0.1002 0.423 

1.449 0.2018 0.1793 0.406 
1.472 0.1432 0.1273 0.399 
1.479 0.1143 0.1016 0.398 
1.485 0.0914 0.0812 0.397 

1.120 0.2012 0.1788 0.445 
1.141 0.1430 0.1271 0.437 
1.147 0.1142 0.1015 0.435 
1.153 0.0913 0.0812 0.434 

0.773 0.2006 0.1783 0.499 
0.792 0.1428 0.1269 0.489 
0.798 0.1141 0.1014 0.486 
0.804 0.0912 0.0811 0.484 

J 

In.4 

0.0189 
0.00894 
0.00330 
0.00170 

0.0156 
0.00740 
0.00274 
0.00141 

0.0140 
0.00662 
0.00246 
0.00126 
0.000649 

0.00547 
0.00204 
0.00105 
0.000538 

0.00450 
0.00168 
0.000867 
0.000446 

0.00373 
0.00140 

0.000723 
0.000373 

0.00296 
0.00112 
0.000579 
0.000299 

TABLE 6 

Cw 

In. 6 

20.10 
16.10 
11.90 
9.64 

6.23 
5.05 
3.75 
3.06 

4.55 
3.69 
2.75 
2.24 
1.82 

1.44 
1.08 
0.886 
0.723 

0.655 
0.495 
0.408 

I 0.334 

0.362 
0.275 
0.227 
0.186 

I 
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0.0988 
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e 
TABLE 7 

See notes on page V-25 

Size 

D B 
In. 

4.0 
3.0 

2.5 

2.0 

In. 

4.0 

3.0 

2.5 

2.0 

TABLE 8 

In. 

0.135 
0.135 
0.105 
0.135 
0.105 

0.135 
0.105 
0.075 
0.060 

See note~ on page V-25 

D 

In. 

4.0 

3.0 

2.5 

2.0 

Size 

B 

In. 

4.0 

3.0 

2.5 

2.0 

In. 

0.135 

0.135 
0.105 

0.135 
0.105 
0.135 
0.105 
0.075 
0.060 

d 

In. 

1.10 
0.93 
0.81 
0.82 
0.82 

0.82 
0.82 
0.60 
0.50 

R 

In. 

0.1875 

0.1875 
0.1875 

0.1875 
0.1875 

0.1875 
0.1875 
0.09375 
0.09375 

EQUAL LEG ANGLE 
WITH STIFFENED FLANGES 

e 
~l :fb-. 

y, y 

e 

If ~ 
TABLE 7 

Properties of FUll Section 

R Area 
Wgt. 
per 
Foot 

Axis x-x and Axis y-y 
J Cw 

In. 

0.1875 
0.1875 
0.1875 
0.1875 
0.1875 

0.1875 
0.1875 
0.09375 
0.09375 

In.z 

1.278 
0.962 
0.735 
0.797 
0.632 

0.662 
0.527 
0.360 
0.280 

Lb. 

4.345 
3.271 
2.498 

2.711 
2.148 

2.252 
1. 791 
1.226 
0.951 

In.4 

2.594 
1.083 
0.828 
0.613 
0.500 

0.325 
0.268 
0.184 
0.141 

s 
In.:! 

0.957 
0.541 
0.407 
0.371 
0.302 

0.255 
0.209 
0.137 
0.103 

EQUAL LEG ANGLE 
WITH UNSTIFFENED FLANGES 

r 

In. 

1.425 
1.061 
!.062 
0.876 
0.889 

0.700 
0.713 
0.714 
0.710 

x=y 

In. 

1.290 

0.999 
0.964 
0.847 
0.843 

0.725 
0.721 
0.659 
0.631 

r
Yl 

In. 

1.922 
1.457 
1.434 
1.219 
1.226 

1.008 
1.014 
0.972 
0.950 

In.4 

0.00776 
0.00584 
0.00270 

0.00484 
0.00232 

0.00402 
0.00194 
0.000676 
0.000336 

. '11 r 
-ttb 11, y 

In. 6 

1.1058 
0.3503 
0.1910 

0.1579 
0.1335 

0.0972 
0.0828 
0.0244 
0.0118 

Properties of FUll Section 

Area 
Wgt. 
per 
Foot 

Axis x-x and Axis y-y 

In. 2 

1.047 

0.777 
0.608 

0.642 
0.503 

0.507 
0.398 
0.290 
0.233 

Lb. 

3.560 

2.642 
2.06R 

2.183 
1. 711 

1.724 
1.354 
0.987 
0.793 

In.4 

1.6947 
0.7003 
0.5536 

0.3985 
0.3161 

0.1989 
0.1585 
0.1170 
0.0947 

s 
In.:l 

0.5774 

0.3206 
0.2520 

0.2202 
0.1735 

0.1387 
0.1096 
0.0799 
0.0644 

r 

In. 

1.272 
0.949 
0.954 

0.788 
0.793 

0.626 
0.631 
0.635 
0.637 

x=y 

In. 

1.065 
0.815 
0.803 

0.691 
0.678 

0.566 
0.554 
0.536 
0.530 

r
Y1 

In. 

1.659 
1.251 
1.247 

1.048 
1.043 

0.844 
0.840 
0.831 
0.829 

J 

In.4 

0.00636 
0.00472 
0.00223 

0.00390 
0.00185 

0.00308 
0.00146 
0.000544 
0.000280 

C" 

In. 6 

0.000 
0.000 
0.000 

0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

ro ·f-" Y, 

I yz r yz I Xo 

In. In.4 In. I In. I In. 

2.80 1.2445 0.987 3.11 -1.940 

2.12 0.5399 0.749 2.33 -1.498 
2.07 0.3944 0.733 2.33 -1.423 

1.77 0.3114 0.625 1.93 -1.258 
1.80 0.2547 0.635 1.95 -1.284 

1.49 0.1829 0.525 1.56 -1.119 
1.53 0.1510 0.535 1.58 -1.144 
1.43 0.0907 0.502 1.56 -1.005 
1.37 0.0658 0.485 1.55 - 0.936 

lL JtB-1 
TABLE 8 

ro 

In. 

2.22 
1.65 
1.66 

1.36 
1.37 

1.07 
1.08 
1.11 
1.11 

Axis y 

I yz 

In.4 

0.6529 
0.2659 
0.2110 

0.1494 
0.1191 

0.0731 
0.0586 
0.0450 
0.0365 

r yz 

In. 

0.790 
0.585 
0.589 

0.482 
0.486 

0.380 
0.384 
0.394 
0.396 

Y, 

,~--" 
Y, 

In. 

2.76 
2.06 
2.07 

1.71 
1.72 

1.36 
1.37 
1.38 
1.38 

xo 

In. 

-1.305 

-0.952 
-0.962 

-0.776 
-0.7~ 

-0.599 
-0.609 
-0.650 
-0.655 

(1 
::r" 
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0" 
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TABLE 9 rB~ TABLE 9 

HAT SECTIONS ! b £1 I 

x-I·+-· R x 
~d~ ~ ~d~ , 

See notes on page V-25 Bo 

Size Wgt 
t d R Area per Ix Sx rx Iv Sy ry y J Cw j ro Xo 

D B Foot i 

In. In. In. In. In. In. 2 Lb. In.4 In. 3 In. In.4 In. 3 In. In. In.4 In. 6 In. In. In. 

10.0 15.00 0.135 1.670 0.1875 5.044 17.149 67.50 10.3279 3.659 210.00 23.2710 6.456 3.461 0.0306 2340.00 11.21 10.87 -7.95 
0.105 1.340 0.1875 3.869 13.155 50.20 7.5430 3.602 160.00 18.2608 6.421 3.346 0.0142 1810.00 11.06 10.72 -7.79 

10.0 10.00 0.105 1.340 0.1875 3.344 11.370 43.60 7.1050 3.611. 66.80 10.7092 4.468 3.863 0.0123 685.00 10.16 10.29 -8.54 
0.075 1.050 0.09375 2.368 8.052 30.20 4.8420 3.572 46.90 7.8514 4.451 3.758 0.00444 493.00 9.99 10.14 -8.38 

10.0 5.00 0.075 1.050 0.09375 1.993 6.777 24.10 4.3405 3.474 11.00 3.1722 2.352 4.458 0.00374 98.40 9.74 10.17 -9.27 
8.0 12.00 0.135 1.670 0.1875 4.099 13.936 36.30 7.0912 2.977 111.00 14.7525 5.208 2.878 0.0249 762.00 9.13 8.85 -6.51 

0.105 1.340 0.1875 3.134 10.656 26.80 5.1291 2.926 83.60 11.5586 5.166 2.767 0.0115 597.00 9.00 8.71 -6.37 
8.0 8.00 0.105 1.340 0.1875 2.714 9.228 23.30 4.8340 2.928 35.20 6.7247 3.602 3.188 0.00997 222.00 8.24 8.35 -6.94 

0.075 0.980 0.09375 1.908 6.486 15.80 3.2011 2.879 24.30 4.9542 3.569 3.059 0.00358 161.00 8.06 8.18 -6.78 
8.0 4.00 0.075 0.980 0.09375 1.608 5.466 12.60 2.8710 2.796 5.74 1.9756 1.889 3.623 0.00301 319.00 7.80 8.17 -7.44 

0.060 0.840 0.09375 1.274 4.330 9.82 2.2149 2.777 4.51 1.6215 1.881 3.566 0.00153 25.80 7.80 8.14 -7.42 
6.0 9.00 0.135 1.670 0.1875 3.154 10.723 16.40 4.4300 2.283 49.70 8.2408 3.971 2.290 0.0192 177.00 7.03 6.79 -5.02 

0.105 1.340 0.1875 2.399 8.157 12.10 3.1629 2.243 36.80 6.4229 3.918 2.185 0.00882 140.00 6.92 6.68 -4.92 
6.0 6.00 0.105 1.340 0.1875 2.084 7.086 10.40 2.9828 2.236 15.70 3.7063 2.744 2.507 0.00766 51.60 6.28 6.37 -5.30 

0.075 0.915 0.09375 1.448 4.923 6.91 1.8989 2.185 10.50 2.7299 2.691 2.360 0.00271 37.70 6.12 6.22 -5.16 
6.0 3.00 0.075 0.915 0.09375 1.223 4.158 5.47 1.7042 2.116 2.51 1.0707 1.431 2.787 0.00229 75.50 5.84 6.14 -5.58 

0.060 0.760 0.09375 0.964 3.278 4.24 1.2947 2.097 1.94 0.8812 1.418 2.726 0.00116 60.40 5.86 6.13 -5.59 
0.048 0.660 0.09375 0.764 2.599 3.32 1.0019 2.084 1.53 0.7221 1.412 2.686 0.000587 48.80 5.86 6.12 -5.58 

4.0 6.00 0.135 1.670 0.1875 2.209 7.510 5.42 2.3437 1.567 16.90 3.7178 2.763 1.686 0.0134 22.60 4.86 4.66 -3.41 
0.105 1.340 0.1875 1.664 5.658 3.96 1.6444 1.543 12.00 2.8447 2.691 1.592 0.00612 17.90 4.79 4.60 -3.40 

4.0 4.00 0.105 1.340 0.1875 1.454 4.944 3.39 1.5510 1.527 5.31 1.6409 1.911 1.814 0.00534 6.89 4.22 4.31 -3.54 
0.075 0.915 0.09375 0.998 3.393 2.23 0.9602 1.494 3.35 1.1788 1.832 1.680 0.00187 4.83 4.17 4.25 -3.53 

4.0 2.00 0.075 0.915 0.09375 0.848 2.883 1.75 0.8631 1.437 0.841 0.4572 0.996 1.970 0.00159 1.15 3.77 4.02 -3.62 
0.060 0.750 0.09375 0.663 2.254 1.34 0.6428 1.423 0.626 0.3704 0.972 1.911 0.000795 0.829 3.86 4.08 -3.70 
0.048 0.618 0.09375 0.520 1.769 1.03 0.4831 1.409 0.476 0.3032 0.956 1.861 0.000400 0.640 3.91 4.10 -3.73 

3.0 4.50 0.135 1.670 0.1875 1.736 5.904 2.47 1.5155 1.192 8.28 2.1885 2.184 1.371 0.0105 5.66 3.73 3.55 -2.53 
0.105 1.340 0.1875 1.297 4.408 1.80 1.0526 1.179 5.69 1.6327 2.095 1.287 0.00476 4.20 3.69 3.52 -2.57 

3.0 3.00 0.105 1.340 0.1875 1.139 3.873 1.53 0.9921 1.159 2.62 0.9563 1.515 1.457 0.00419 1.89 3.12 3.20 -2.57 
0.075 0.915 0.09375 0.773 2.628 1.01 0.6033 1.140 1.54 0.6594 1.413 1.334 0.00145 1.14 3.15 3.22 -2.66 

3.0 1.50 0.075 0.915 0.09375 0.660 2.245 0.784 0.5423 1.089 0.415 0.2611 0.793 1.555 0.00124 0.371 2.64 2.87 -2.53 
0.060 0.750 0.09375 0.513 1. 744 0.599 0.3995 1.081 0.296 0.2054 0.759 1.500 0.000615 0.235 2.79 2.98 -2.68 
0.048 0.618 0.09375 0.400 1.361 0.459 0.2970 1.071 0.218 0.1650 0.738 1.453 0.000308 0.164 2.88 3.05 -2.76 

2.0 4.00 0.105 1.340 0.1875 1.034 3.516 0.670 0.5948 0.805 3.72 1.1484 1.896 0.873 0.00380 1.13 3.08 2.64 -1.65 
0.075 0.915 0.09375 0.698 2.373 0.432 0.3531 0.787 2.19 0.7719 1.772 0.776 0.00131 0.799 2.85 2.54 -1.64 

2.0 2.00 0.075 0.915 0.09375 0.548 1.863 0.328 0.3210 0.774 0.563 0.3062 1.014 0.978 0.00103 0.180 2.06 2.12 -1.70 
0.060 0.750 0.09375 0.423 1.438 0.249 0.2333 0.768 0.400 0.2368 0.973 0.931 0.000507 0.127 2.10 2.15 -1.75 

2.0 1.00 0.060 0.750 0.09375 0.363 1.234 0.193 0.2093 0.728 0.116 0.0975 0.565 1.080 0.000435 0.0542 1.62 1.80 -1.55 
0.048 0.618 0.09375 0.280 0.953 0.147 0.1534 0.725 0.0795 0.0743 0.532 1.039 0.000215 0.0321 1.76 1.91 -1.69 

1.5 3.00 0.105 1.340 0.1875 0.824 2.802 0.303 0.3892 0.606 1.96 0.7149 1.540 0.722 0.00303 0.312 2.47 2.04 -1.19 
0.075 0.915 0.09375 0.548 1.863 0.198 0.2293 0.601 1.06 0.4537 1.392 0.636 0.00103 0.187 2.24 1.96 -1.24 

1.5 1.50 0.075 0.915 0.09375 0.435 1.480 0.147 0.2078 0.582 0.301 0.1893 0.831 0.791 0.000816 0.0606 1.49 1.55 -1.17 
0.060 0.750 0.09375 0.333 1.132 0.112 0.1500 0.581 0.202 0.1406 0.780 O. 750 0.00039~ 0.0376 1.54 1.58 -1.25 

1.5 0.75 0.060 0.750 0.09375 0.288 0.979 0.0855 0.1341 0.545 0.0674 0.0633 0.484 0.863 0.000345 0.0210 1.01 1.20 -0.953 
0.048 0.618 0.09375 0.220 0.749 0.0656 0.0975 0.546 0.0430 0.0455 0.442 0.827 0.000169 0.0122 1.15 1.31 -1.10 
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Charts and Tables for use with the March 16,1991 Edition of the LRFD Cold-Formed Specification V-35 

TABLE 10 TABLE 10 

£J CHANNEL I -4 
WITH 'RJ STIFFENED FLANGES 

See notes on page V-25 

Size t d R Effective Section Properties 

D B Ix, In.4 Sx, In. 3 

In. In. In. In. In. F y =33ksi F y =50ksi F y =33ksi F.v=50ksi 

12.0 3.50 0.135 1.01 0.1875 56.266 55.387 9.378 9.134 
0.105 0.90 0.1875 43.231 40.904 7.139 6.546 

10.0 3.50 0.135 1.01 0.1875 36.525 35.956 7.305 7.110 
0.105 0.90 0.1875 28.110 26.513 5.567 5.071 
0.075 0.72 0.09375 18.864 17.570 3.586 3.201 

9.0 3.25 0.135 1.00 0.1875 27.157 27.157 6.035 6.035 
0.105 0.84 0.1875 20.917 20.029 4.623 4.307 
0.075 0.70 0.09375 14.234 13.551 3.027 2.807 
0.060 0.61 0.09375 10.860 9.703 2.257 1.874 

8.0 3.00 0.135 0.93 0.1875 19.371 19.371 4.843 4.843 
0.105 0.81 0.1875 15.125 14.726 3.781 3.613 
0.075 0.70 0.09375 10.435 9.965 2.516 2.341 
0.060 0.60 0.09375 7.972 7.397 1.879 1.667 

8.0 1.625 0.105 0.82 0.1875 10.647 10.647 2.662 2.662 
0.075 0.82 0.09375 7.996 7.996 1.999 1.999 
0.060 0.60 0.09375 6.190 6.190 1.548 1.548 
0.048 0.50 0.09375 4.889 4.447 1.222 1.041 

7.0 2.75 0.135 0.88 0.1875 13.265 13.265 3.790 3.790 
0.105 0.88 0.1875 10.553 10.548 3.015 3.013 
0.075 0.70 0.09375 7.506 7.033 2.113 1.904 
0.060 0.60 0.09375 5.648 5.368 1.538 1.422 

6.0 2.50 0.135 0.82 0.1875 8.574 8.574 2.858 2.858 
0.105 0.82 0.1875 6.843 6.843 2.281 2.281 
0.075 0.82 0.09375 5.124 4.944 1.708 1.607 
0.060 0.60 0.09375 3.766 3.606 1.205 1.125 

6.0 1.625 0.105 0.82 0.1875 5.246 5.246 1. 749 1. 749 
0.075 0.82 0.09375 3.972 3.972 1.324 1.324 
0.060 0.60 0.09375 3.085 3.085 1.028 1.028 
0.048 0.50 0.09375 2.441 2.334 0.814 0.757 

5.0 2.00 0.135 0.70 0.1875 4.683 4.683 1.873 1.873 
0.105 0.70 0.1875 3.760 3.760 1.504 1.504 
0.075 0.60 0.09375 2.797 2.760 1.119 1.093 
0.060 0.50 0.09375 2.190 2.053 0.865 0.780 
0.048 0.50 0.09375 1. 710 1.632 0.660 0.614 

4.0 2.00 0.135 0.70 0.1875 2.751 2.751 1.375 1.375 
0.105 0.70 0.1875 2.218 2.218 1.109 1.109 
0.075 0.60 0.09375 1.664 1.644 0.832 0.813 
0.060 0.50 0.09375 1.309 1.223 0.646 0.578 
0.048 0.50 0.09375 1.022 0.972 0.492 0.454 

4.0 1.625 0.075 0.60 0.09375 1.448 1.448 0.724 0.724 
0.060 0.50 0.09375 1.155 1.143 0.577 0.566 
0.048 0.50 0.09375 0.938 0.895 0.469 0.433 
0.036 0.50 0.09375 0.695 0.662 0.341 0.316 

3.625 1.625 0.075 0.60 0.09375 1.148 1.148 0.633 0.633 
0.060 0.50 0.09375 0.918 0.908 0.506 0.497 
0.048 0.50 0.09375 0.746 0.712 0.412 0.380 
0.036 0.50 0.09375 0.553 0.527 0.299 0.276 

3.5 2.00 0.135 0.70 0.1875 2.002 2.002 1.144 1.144 
0.105 0.70 0.1875 1.619 1.619 0.925 0.925 
0.075 0.60 0.09375 1.222 1.208 0.698 0.683 
0.060 0.50 0.09375 0.964 0.899 0.544 0.484 
0.048 0.50 0.09375 0.753 0.715 0.413 0.380 

3.0 1.75 0.105 0.70 0.1875 1.016 1.016 0.678 0.678 
0.075 0.53 0.9375 0.767 0.767 0.512 0.512 
0.060 0.53 0.9375 0.628 0.617 0.,tI8 0.405 
0.048 0.41 0.9375 0.485 0.442 0.317 0.272 

2.5 1.625 0.075 0.60 0.9375 0.481 0.481 0.384 0.384 
0.060 0.50 0.9375 0.388 0.385 0.311 0.305 
0.048 0.50 0.9375 0.317 0.303 0.254 0.233 
0.036 0.50 0.9375 0.236 0.224 0.184 0.169 



V-36 Charts and Tables for use with the March 16,1991 Edition of the LRFD Cold-Formed Specification 

TABLE 11 TABLE 11 

CBI 
CHANNEL [---r WITH 

UNSTIFFENED FLANGES R~ 

See notes on page V-25 

Size t d R Effective Section Properties 

D B Ix, In.4 Sx, In.:! 

In. In. In. In. In. Fy=33ksi Fy= 50ksi Fy = 33ksi Fy= 50ksi 

8.0 2.00 0.135 0 0.1875 13.075 12.690 3.269 3.123 
0.105 0 0.1875 10.335 9.580 2.584 2.305 
0.075 0 0.09375 6.764 6.519 1.596 1.513 
0.060 0 0.09375 5.231 4.819 1.211 1.066 

7.0 1.50 0.135 0 0.1875 7.840 7.840 2.240 2.240 
0.105 0 0.1875 6.218 6.119 1.776 1.734 
0.075 0 0.09375 4.366 4.219 1.215 1.155 
0.060 0 0.09375 3.391 3.278 0.926 0.882 

6.0 1.50 0.135 0 0.1875 5.334 5.334 1.778 1.778 
0.105 0 0.1875 4.240 4.168 1.413 1.377 
0.075 0 0.09375 2.976 2.868 0.963 0.912 
0.060 0 0.09375 2.306 2.223 0.731 0.693 
0.048 0 0.09375 1.784 1.716 0.555 0.524 

5.0 1.25 0.105 0 0.1875 2.399 2.399 0.959 0.959 
0.075 0 0.09375 1.760 1.700 0.696 0.661 
0.060 0 0.09375 1.370 1.320 0.531 0.503 
0.048 0 0.09375 1.062 1.024 0.403 0.382 

4.0 1.125 0.105 0 0.1875 1.286 1.286 0.643 0.643 
0.075 0 0.09375 0.971 0.938 0.485 0.460 
0.060 0 0.09375 0.758 0.730 0.371 0.350 • 0.048 0 0.09375 0.588 0.565 0.281 0.265 

3.0 1.125 0.105 0 0.1875 0.636 0.636 0.424 0.424 
0.075 0 0.09375 0.485 0.467 0.323 0.304 
0.060 0 0.09375 0.379 0.363 0.246 0.230 
0.048 0 0.09375 0.293 0.280 0.185 0.173 

2.0 1.125 0.105 0 0.1875 0.240 0.240 0.240 0.240 
0.075 0 0.09375 0.187 0.179 0.187 0.174 
0.060 0 0.09375 0.146 0.139 0.141 0.130 
0.048 0 0.09375 0.113 0.107 0.105 0.097 



Charts and Tables for use with the March 16, 1991 Edition of the LRFD Cold-Formed Specification V-37 

TABLE 12 TABLE 12 

Z-SECTION t=B~ 
WITH J:I STIFFENED FLANGES 

l==a 

See notes on page V-25 

Size t d R Effective Section Properties 

D B Ix, In.4 Sx, In.:l 

In. In. In. In. In. Fy=33ksi F y=50ksi F y=33ksi Fy = 50ksi 

12.0 3.50 0.135 1.01 0.1875 56.266 55.387 9.378 9.134 
0.105 0.90 0.1875 43.231 40.904 7.139 6.546 

10.0 3.50 0.135 1.01 0.1875 36.525 35.956 7.305 7.110 
0.105 0.90 0.1875 28.110 26.513 5.567 5.071 
0.075 0.72 0.09375 18.864 17.570 3.586 3.201 

9.0 3.25 0.135 1.00 0.1875 27.157 27.157 6.035 6.035 
0.105 0.84 0.1875 20.917 20.029 4.623 4.307 
0.075 0.70 0.09375 14.234 13.551 3.027 2.807 
0.060 0.61 0.09375 10.860 9.703 2.257 1.874 

8.0 3.00 0.135 0.93 0.1875 19.371 19.371 4.843 4.843 
0.105 0.81 0.1875 15.125 14.726 3.781 3.613 
0.075 0.70 0.09375 10.435 9.965 2.516 2.341 
0.060 0.60 0.09375 7.972 7.397 1.879 1.667 

7.0 2.75 0.135 0.88 0.1875 13.265 13.265 3.790 3.790 
0.105 0.88 0.1875 10.553 10.548 3.015 3.013 
0.075 0.70 0.09375 7.506 7.033 2.113 1.904 
0.060 0.60 0.09375 5.648 5.368 1.538 1.422 

6.0 2.50 0.135 0.82 0.1875 8.574 8.574 2.858 2.858 
0.105 0.82 0.1875 6.843 6.843 2.281 2.281 
0.075 0.82 0.09375 5.124 4.944 1.708 1.607 
0.060 0.60 0.09375 3.766 3.606 1.205 1.125 

5.0 2.00 0.135 0.70 0.1875 4.683 4.683 1.873 1.873 
0.105 0.70 0.1875 3.760 3.760 1.504 1.504 
0.075 0.60 0.09375 2.797 2.760 1.119 1.093 
0.060 0.50 0.09375 2.190 2.053 0.865 0.780 
0.048 0.50 0.09375 1.710 1.632 0.660 0.614 

4.0 2.00 0.135 0.70 0.1875 2.751 2.751 1.375 1.375 
0.105 0.70 0.1875 2.218 2.218 1.109 1.109 
0.075 0.60 0.09375 1.664 1.644 0.832 0.813 
0.060 0.50 0.09375 1.309 1.223 0.646 0.57H 
0.048 0.50 0.09375 1.022 0.972 0.492 0.454 

3.5 2.00 0.135 0.70 0.1875 2.002 2.002 1.144 1.144 
0.105 0.70 0.1875 1.619 1.619 0.925 0.925 
0.075 0.60 0.09375 1.222 1.208 0.698 O.6g;3 
0.060 0.50 0.09375 0.964 0.899 0.544 0.4H4 
0.048 0.50 0.09375 0.753 0.715 0.413 0.380 

3.0 1.75 0.105 0.70 0.1875 1.016 1.016 0.678 0.678 
0.075 0.53 0.9375 0.767 0.767 0.512 0.512 
0.060 0.53 0.9375 0.628 0.617 0.418 0.405 
0.048 0.41 0.9375 0.485 0.442 0.317 0.272 
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TABLE 13 TABLE 13 
y 

1 
Z-SECTION £I WITH x x 0 

UNSTIFFENED FLANGES 

1-:-
I 
y 

See notes on page V-25 

Size t d R Effective Section Properties 

D B Ix. In. 4 Sx. In. 3 

In. In. In. In. In. F y=33ksi Fy= 50ksi F y=33ksi F y=50ksi 

8.0 2.00 0.135 0 0.1875 13.075 12.690 3.269 3.123 
0.105 0 0.1875 10.335 9.580 2.584 2.305 
0.075 0 0.09375 6.764 6.519 1.596 1.513 
0.060 0 0.09375 5.231 4.819 1.211 1.066 

7.0 1.50 0.135 0 0.1875 7.840 7.840 2.240 2.240 
0.105 0 0.1875 6.218 6.119 1.776 1.734 
0.075 0 0.09375 4.366 4.219 1.215 1.155 
0.060 0 0.09375 3.391 3.278 0.926 0.882 

6.0 1.50 0.135 0 0.1875 5.334 5.334 1.778 0.778 
0.105 0 0.1875 4.240 4.168 1.413 1.377 
0.075 0 0.09375 2.976 2.868 0.963 0.912 
0.060 0 0.09375 2.306 2.223 0.731 0.693 
0.048 0 0.09375 1.784 1.716 0.555 0.524 

5.0 1.25 0.105 0 0.1875 2.399 2.399 0.959 0.959 
0.075 0 0.09375 1.760 1.700 0.696 0.661 
0.060 0 0.09375 1.370 1.320 0.531 0.503 
0.048 0 0.09375 1.062 1.024 0.403 0.382 

4.0 1.50 0.060 0 0.09375 0.858 0.820 0.402 0.376 
4.0 1.125 0.105 0 0.1875 1.286 1.286 0.643 0.643 

0.075 0 0.09375 0.971 0.938 0.485 0.460 
0.060 0 0.09375 0.758 0.730 0.371 0.350 
0.048 0 0.09375 0.588 0.565 0.281 0.265 

3.0 1.50 0.060 0 0.09375 0.434 0.412 0.268 0.248 
3.0 1.125 0.105 0 0.1875 0.636 0.636 0.424 0.424 

0.075 0 0.09375 0.485 0.467 0.323 0.304 
0.060 0 0.09375 0.379 0.363 0.246 0.230 
0.048 0 0.09375 0.293 0.280 0.185 0.173 

2.0 1.125 0.105 0 0.1875 0.240 0.240 0.240 0.240 
0.075 0 0.09375 0.187 0.179 0.187 0.174 
0.060 0 0.09375 0.146 0.139 0.141 0.130 
0.048 0 0.09375 0.113 0.107 0.105 0.097 

1.5 1.50 0.048 0 0.09375 0.067 0.062 0.077 0.070 
0.036 0 0.09375 0.047 0.044 0.051 0.047 
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TABLE 14 TABLE 14 

TWO CHANNELS 

~I' WITH 
S-riFFENED FLANGES L R BACK TO BACK 

See notes on page V-25 

Size t d R Effective Section Properties 

D B Ix, In.4 Sx, In.:J 

In. In. In. In. In. Fy = 33ksi Fy= 50ksi Fy=33ksi Fy=50ksi 

12.0 7.0 0.135 1.01 0.1875 112.53 110.77 18.755 18.269 
0.105 0.90 0.1875 86.463 81.808 14.279 13.092 

10.0 7.0 0.135 1.01 0.1875 73.051 71.912 14.610 14.221 
0.105 O.~O 0.1875 56.221 53.026 11.133 10.142 
0.075 0.72 0.09375 37.727 35.141 7.171 6.401 

9.0 6.5 0.135 1.00 0.1875 54.313 54.313 12.070 12.070 
0.105 0.84 0.1875 41.834 40.058 9.245 8.614 
0.075 0.70 0.09375 28.469 27.102 6.054 5.613 
0.060 0.61 0.09375 21. 720 19.405 4.514 3.749 

8.0 6.0 0.135 0.93 0.1875 38.741 38.741 9.685 9.685 
0.105 0.81 0.1875 30.249 29.453 7.562 7.225 
0.075 0.70 0.09375 20.871 19.931 5.031 4.682 
0.060 0.60 0.09375 15.944 14.794 3.759 3.749 

7.0 5.5 0.135 0.88 0.1875 26.530 26.530 7.580 7.580 
0.105 0.88 0.1875 21.105 21.096 6.030 6.025 
0.075 0.70 0.09375 15.012 14.066 4.226 3.809 
0.060 0.60 0.09375 11.295 10.735 3.075 2.844 

6.0 5.0 0.135 0.82 0.1875 17.149 17.149 5.716 5.716 
0.105 0.82 0.1875 13.685 13.685 4.562 4.562 
0.075 0.82 0.09375 10.248 9.888 3.416 3.213 
0.060 0.60 0.09375 7.532 7.212 2.409 2.251 

5.0 4.0 0.135 0.70 0.1875 9.365 9.365 3.746 3.746 
0.105 0.70 0.1875 7.520 7.520 3.008 3.008 
0.075 0.60 0.09375 5.594 5.520 2.237 2.185 
0.060 0.50 0.09375 4.380 4.107 1.731 1.561 
0.048 0.50 0.09375 3.420 3.264 1.321 1.227 

4.0 4.0 0.135 0.70 0.1875 5.501 5.501 2.750 2.750 
0.105 0.70 0.1875 4.436 4.436 2.218 2.218 
0.075 0.60 0.09375 3.328 3.287 1.664 1.626 
0.060 0.50 0.09375 2.617 2.445 1.291 1.156 
0.048 0.50 0.09375 2.043 1.944 0.983 0.908 

3.5 4.0 0.135 0.70 0.1875 4.004 4.004 2.288 2.288 
0.105 0.70 0.1875 3.239 3.239 1.851 1.851 
0.075 0.60 0.09375 2.444 2.416 1.397 1.366 
0.060 0.50 0.09375 1.928 1.798 1.087 0.969 
0.048 0.50 0.09375 1.506 1.430 0.827 0.761 

3.0 3.5 0.105 0.70 0.1875 2.033 3.033 1.355 1.355 
0.075 0.53 0.9375 1.535 1.535 1.023 1.023 
0.060 0.53 0.9375 1.255 1.234 0.837 0.810 
0.048 0.41 0.9375 0.971 0.884 0.633 0.544 
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TABLE 15 TABLE 15 

TWO CHANNELS 
iSi 

WITH -II UNSTIFFENED FLANGES Lt. R BACK TO BACK , 

See notes on page V-25 

Size t d R Effective Section Properties 

D B Ix, In.4 Sx, In. 3 

In. In. In. In. In. F y=33ksi F y=50ksi F y=33ksi F y=50ksi 

8.0 4.0 0.135 0 0.1875 26.150 25.380 6.537 6.247 
0.105 0 0.1875 20.669 19.161 5.167 4.609 
0.075 0 0.09375 13.529 13.038 3.191 3.025 
0.060 0 0.09375 10.462 9.639 2.422 2.132 

7.0 3.0 0.135 0 0.1875 15.679 15.679 4.480 4.480 
0.105 0 0.1875 12.435 12.239 3.553 3.469 
0.075 0 0.09375 8.733 8.439 2.430 0.311 
0.060 0 0.09375 6.782 6.556 1.852 0.764 

6.0 3.0 0.135 0 0.1875 10.668 10.668 3.556 3.556 
0.105 0 0.1875 8.480 8.336 2.827 2.754 
0.075 0 0.09375 5.952 5.736 1.927 1.823 
0.060 0 0.09375 4.612 4.445 1.462 1.386 
0.048 0 0.09375 3.569 3.431 1.110 1.048 

5.0 2.5 0.105 0 0.1875 4.797 4.797 1.919 1.919 
0.075 0 0.09375 3.520 3.400 1.392 1.321 
0.060 0 0.09375 2.740 2.641 1.062 1.005 
0.048 0 0.09375 2.123 2.047 0.806 0.765 

4.0 2.25 0.105 0 0.1875 2.572 2.572 1.285 1.285 
0.075 0 0.09375 1.941 1.877 0.969 0.921 
0.060 0 0.09375 1.516 1.460 0.741 0.700 
0.048 0 0.09375 1.176 1.131 0.562 0.531 

3.0 2.25 0.105 0 0.1875 1.272 1.272 0.848 0.848 
0.075 0 0.09375 0.971 0.935 0.646 0.609 
0.060 0 0.09375 0.757 0.725 0.491 0.460 
0.048 0 0.09375 0.585 0.560 0.370 0.346 

2.0 2.25 0.105 0 0.1875 0.481 0.481 0.481 0.481 
0.075 0 0.09375 0.374 0.358 0.373 0.348 
0.060 0 0.09375 0.292 0.278 0.282 0.261 
0.048 0 0.09375 0.225 0.213 0.210 0.194 
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PREFACE 
This document, Part VI of the LRFD Cold-Formed Steel Design Manual, contains many 

useful design aids; flow charts for many sections of the Specification are included. These 
charts will be very helpful in getting all users familiar with the new Specification. The 
charts serve to direct the user to the appropriate sections. They will also be useful to 
programmers. 

These Computer Aids should be used in conjunction with the other parts of the Design 
Manual, which include Commentary (Part II), Supplementary Information (Part III), 
Illustrative Examples (Part IV), Design Aids (Part V), and Test Procedures (Part VII). 

American Iron and Steel Institute 
December 1991 
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82.1 Uniformly Compressed Stiffened Elements 

Yes 

No 

Yes 

.. 

No 

Yes 

(continued on next page) 

To A 

No 

S Section modulus 
to compression 
element 
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82.1 Uniformly Compressed Stiffened Elements (continued) 

No 

Yes 

Determine k 

No 

(continued on next page) 

See Sections 
B4.1 and B4.2 
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82.1 Uniformly Compressed Stiffened Elements (continued) 

A 

A, Eq. B2.1-4 

No 

Yes 

Yes 

M = Service Moment 

S = Section Modulus to Compression Element 

No No 

Yes 

AC' Eq. B2.1-10 

(continued on next page) 

Section F 
or Rational 

Analysis 
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82.1 Uniformly Compressed Stiffened Elements (continued) 

No 

p, Eq. B2.l-8 p, Eq. B2.l-9 
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82.2 Uniformly Compressed Stiffened Elements with Circular Holes 

No 

No 

No 
Section F 

No 

~, Section B2.l 

No 

b, Eq. B2.2-1 b, Eq. B2.2-2 
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82.3 Effective Widths of Webs and Stiffened Elements with Stress Gradient 

Yes 

fl & f2 calculated 
at Maximum Moment 
Capacity Using Effective 
Section Properties 

No 

Yes 

fl & f2 Calculated 
at Actual Moment 
Using Effective 
Section Properties 

No 

See Figure B2.3-1 

fr = Greater Stress 
f 2 = Lesser Stress 

(continued on next page) 
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82.3 Effective Widths of Webs and Stiffened Elements with Stress Gradient (continued) 

• 

be' Effective Width 

b, Using Section B2.l 

at Stress fl and w = h 

b2, Eq. B2.3-2 

Use b l & b 2 as 

Effective Widths 

No 

No 

Use hc as 

Effective Width 

Width of Element 

Subject to 

Compression 
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83.1 Uniformly Compressed Unstiffened Elements 

k = 0.43 
w, Figure B3.l-1 

Yes 

Determine 
Effective Width b, 
Using Section B2.l 

No 

Use Procedure I 
in Section B2.l (b) 
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83.2 Unstiffened f,ements and Edge Stiffeners with Stress Gradient 

k 0.43 

f = Maximum 
Compression Stress 
in Element 

Yes 

Determining Effective 
Width, b, Using 
Section B2.1 

No 

Use Procedure I 
in Section B2.l(b) 
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84.1 Uniformly Compressed Elements with an Intermediate Stiffener 

Yes 

la' Eq. B4.1-2 

Yes 

See Section B2.1 
for Stress, f 

S, Is 

See Section B4 

No 

No 

la' Eq. B4.1-6 

k, Eq. B4.1-7 

(continued on next page) 

M = Service Moment 

Se Effective Section 

Modulus 

No 

la' Eq. B4.1-9 

k, Eq. B4.1-10 
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84.1 Uniformly Compressed Elements with an Intermediate Stiffener (continued) 

, 

b, Eq. B4.1-3 

, 

As' Eq. B4.1-4 

, 

Determine Effective 

Width, b, and Effective 

Stiffener Area, N s' 

Using Section B2.1 

As' Eq. B4.1-8 

, 

Determine Effective 

Width, b, and Effective 

Stiffener Area, N s 

Using Section B2.1 

As' Eq. B4.1-11 
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84.2 Uniformly Compressed Elements with an Edge Stiffener 

la' Eq. B4.2-2 

Yes 

See Section B2.1 
for Stress, f 

No 

Yes 

la' Eq. B4.2-6 

n = 112 

(continued on next page) 

No 

No 

C 1, Eq. B4.2-8 

Cl, Eq. B4.2-7 

S Section 
modulus to 
compression 
element 

la' Eq. B4.2-13 

n = 113 
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84.2 Uniformly Compressed Elements with an Edge Stiffener 

b, Eq. B4.2-3 

ds' Eq. B4.2-4 

As' Eq. B4.2-5 

Yes 

No 

Determine Effective Width, 
b, and Effective Stiffener 

Area, N s' Using Section B2.1 

ds' Eq. B4.2-11 

As' Eq. B4.2-12 

Yes 
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85 Effective Widths of Edge Stiffened Elements with Intermediate Stiffeners or Stiffened 
Elements with More Than One Intermediate Stiffener 

Imin, Eq. B5-1 

Effective Width, 
b, Using Section 
B2.1 

No 

No 

Is = Moment of Inertia 
of Stiffener 

Stiffener is 
Inadequate 

(continued on next page) 
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85 Effective Widths of Edge Stiffened Elements with Intermediate Stiffeners or Stiffened 
Elements with More Than One Intermediate Stiffener (continued) 

Yes 

Use the Tho 
Stiffeners 
Closest to 
the Webs 

No 

Use the One 
Stiffener 
Closest to 
the Web 

Ir 

Use All the 
Stiffeners 

Its. Eq, B5-2 I 

Disregard 
Stiffener 
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86.1 Transverse Stiffeners 

No 

Yes 

No 

Yes 

Ac' Eq. B6.l-2 

Ab, Eq. B6.l-4 

(continued on next page) 

Yes 

No 

Section F 

Ac' Eq. B6.l-3 

Ab, Eq. B6.l-5 
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86.1 Transverse Stiffeners (continued) 

P nl' Eq. B6.1-I 

b I , Eq. B6.1-6 

b2, Eq. B6.1-7 

Ae = Ab 

P n2, Using 

Section C4(a) 

Use 4> c = 0.85 

P n = P n2 

No 

Use 4> c = 0.85 

Pn = Pnl 
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86.2 Shear Stiffeners 

cl»v V n' Section C3.2 

Ismin ' Eq. B6.2-1 

No 

No 

No 

No 

V u Required Shear Strength 

Stiffener 
Spacing Section F 

Inadequate 

Moment of Inertia 

of Stiffener 

Stiffener Moment of 
Inertia Inadequate 

(continued on next page) 
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86.2 Shear Stiffeners (continued) 

No 

kv' Eq. B6.2-5 kv' Eq. B6.2-6 

Cv' Eq. B6.2-3 

No 

Cv' Eq. B6.2-4 

No 

Yes No 

(continued on next page) 



Computer Aids for use with the March 16, 1991 Edition of the LRFD Cold-Formed Steel Specification VI-25 

86.2 Shear Stiffeners (continued) 

Yes Section F 

Yes 

1.0 D 1.8 D 2.4 

As!' Eq. B6.2-2 

No Stiffener 
Area Inadequate 

Yes 

Stiffener 
is Adequate 
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C3.1 Strength for Bending Only 

Yes 

No 

(continued on next page) 
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C3.1.1 Nominal Section Strength 

Mnl Mn by Eq. C3.1.1-1 

Yes 

No 

(Procedure II) 

No 

No 

Yes 

Calculate Effective 
Widths Using 
Section B3.1 
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C3.1.1 Nominal Section Strength (continued) 

No 

Yes 

(continued on next page) 

Use Effective 
Widths for 
Calculating Mn 

No 
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C3.1.1 Nominal Section Strength (continued) 

No 

Stiffened or 
Partially Stiffened 

Compression Flanges 

Yes 

No 

Calculate Mn 

Using Maximum 

Compression Strain 

of Cyey 

Mn2 = Calculated Mn 

~ 
~----------~~------------

0.95 

(continued on next page) 
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C3.1.2 Lateral Buckling Strength 

Yes 

a ex' Eq. C3.1.2-7 

aey, Eq. C3.l.2-8 

at' Eq. C3.1.2-9 

No 

(continued on next page) 

Section F 
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C3.1.2 Lateral Buckling Strength (continued) 

No Yes 

No 

Yes Yes 

+ 1 - 1 2.3 

Me' Eq. C3.1.2-6 Me' Eq. C3.1.2-5 

(continued on next page) 
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C3.1.2 Lateral Buckling Strength (continued) 

My, Eq. C3.1.2-4 

No 

Yes 

Mc' Eq. C3.l.2-2 Mc' Eq. C3.1.2-3 

Mn, Eq. C3.1.2-1 

(continued on next page) 
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C3.1.2 Lateral Buckling Strength (continued) 

No Section 
C3.1.2(a) 

No 

Yes 

Me' Eq. C3.1.2-15 Me' Eq. C3.1.2-16 

My, Eq. C3.1.2-4 

(continued on next page) 
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C3.1.2 Lateral Buckling Strength (continued) 

No 

Yes No 

Mc' Eq. C3.1.2-14 Me' Eq. C3.1.2-13 Mc' Eq. C3.1.2-12 

Mn, Eq. C3.l.2-1 

(continued on next page) 
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C3.1.3 Beams Having One Flange Through-Fastened to Deck or Sheathing 

No 

Yes 

No 

Yes 

No 

Yes 

(continued on next page) 
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C3.1.3 Beams Having One Flange Through-Fastened to Deck or Sheathing 

No 

Yes 

~b = 0.90 

Mn' Eq. C3.1.3-1 

No 

Yes 

Section F 
or Rational 

Analysis 
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C3.2 Strength for Shear Only 

No Yes 

No 

Yes 

Yes 

Yes 

(continued on next page) 
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C3.2 Strength for Shear Only (continued) 

, 
4»v = 0.90 4»v = 0.90 4»n = 1.0 

V n' Eq. C3.2-3 V n' Eq. C3.2-2 V n' Eq. C3.2-1 

, Ir 

, 

I ~vVn I 
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C3.3 Strength for Combined Bending and Shear 

by Section C3.1 

cI>bMnxo by Section C3.1.1 

by Section C3.2 

Yes No 

Yes 

(continued on next page) 
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C3.3 Strength for Combined Bending and Shear (continued) 

,Ir 

Section is 
Satisfactory 

,. 

Section is not 
Satisfactory 



Computer Aids for use with the March 16, 1991 Edition of the LRFD Cold-Formed Steel Specification 

C3.4 Web Crippling Strength 

hit :s 200 
R/t :s 6 for beams 
R/t :s 7 for deck 

Nit :s 210 
Nih :s 3.5 

Yes 

Single 
U nreinforced 

Webs 

Yes 

No Section F 

No 
>-------------------------~ To A 

(continued on next page) 
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C3.4 Web Crippling Strength (continued) 

Opposing Loads 
Spaced > 1.5h 

Yes 

Stiffened 
Flanges 

No 

No 

No 

(continued on next page) 

Yes 
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C3.4 Web Crippling Strength (continued) 

, ,r 
" 

r r 

Pn Pn Pn Pn Pn 

Eq. C3.4-1 Eq. C3.4-2 Eq. C3.4-4 Eq. C3.4-6 Eq. C3.4-8 

, ,r ,Ir r r 

, 

B 

(continued on next page) 
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C3.4 Web Crippling Strength (continued) 

! 
A 

Opposing Loads 
Spaced > 1.Sh 

Yes 

No 

No 

(continued on next page) 

No 
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C3.4 Web Crippling Strength (continued) 

r ,Ir ., ,Ir 

I P ll' Eq. C3.4-3 I I P ll' Eq. C3.4-5 I P ll' Eq. C3.4-7 P ll' Eq. C3.4-9 

I IIr 

To B 
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C3.S Combined Bending and Web Crippling Strength 

by Section C3.l.l 

by Section C3.4 

Yes 

Section is 
Satisfactory 

No 

No 

No 

Yes 

Section is not 
Satisfactory 
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C4 Concentrically Loaded Compression Members 

No 

No 

Yes 

at & aex 
by Section C3.1.2(a) 

Yes 

Yes 

(continued on next page) 

No 

Fe1 = Fe by 

Section C4.1 

Fe2 = Fe by 

Section C4.2 
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C4 Concentrically Loaded Compression Members (continued) 

Fe by Rational 

Analysis 

No 

Calculate Ae 

at Fn 

<l»c = 0.85 

P n' Eq. C4-1 

No 

Yes 
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C5 Combined Axial Load and Bending 

No 

ell cP n by Section C4 

ell cP no by Section C4 using F n = F Y 

eIlbMnx & eIlbMny by Section C3 

PE, Eq. C5-5 

Magnification Factor, Eq. C5-4 

No 

Yes 

(continued next page) 
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C5 Combined Axial Load and Bending (continued) 

Yes 

Section is 
Satisfactory 

No 

Section is 
Unsatisfactory 

Yes 

No 

(continued on next page) 

Yes 
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Moment Capacity of Flexural Members 

Assume: 
1. Maximum Compressive 

Bending Stress 
2. Position of Neutral Axis 

Yes 

As & ds 
by Section B4.2 

Yes 

No 

No 

(continued on next page) 

Effective Edge 
Stiffener Length 
and Area 
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Moment Capacity of Flexural Members (continued) 

, 

Effective Stiffeners 
& Thickness by 
Section B5 

As & b by 

Section B4.l 

, 

b by Section 

B2.l 

, 

b i & b2, by 

Section B2.3 

Calculate Effective 
Section Properties 

, 

Calculate Actual 
Compressive Bending Stress 

b by Sections 

B3.l & B2.l 

Effective 
Web Depth 

(continued on next page) 

Effective Stiffener 
Area and Flange 
Area 

Effective Flange 
Width 
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Moment Capacity of Flexural Members (continued) 

Yes 

cIlbMn by Section C3.1 

No 
Revise Compressive 
Stress and Location 
of Neutral Axis 
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C6.1 Bending - Cylindrical Tubular Members 

No Section F 

Yes 

No 

No 

Yes 

Mn, Eq. C6.l-1 Mn, Eq. C6.l-2 Mn, Eq. C6.l-3 



Computer Aids for use with the March 16, 1991 Edition ofthe LRFD Cold-Formed Steel Specification VI-55 

C6.2 Compression - Cylindrical Tubular Members 

Yes 

Fe by Section C4.1 

Yes 

Fn' Eq. C6.2-2 

Ae' Eq. C6.2-3 

No Section F 

No 

(continued on next page) 
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C6.2 Compression - Cylindrical Tubular Members (continued) 

cl>c = 0.85 

Pn' Eq. C6.2-1 
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04.1 Capacity of a Wall Stud 

~--------------~--------~~--------------------------------~To A 

Determine F n 

by Section 

C4 with KL 

Equal to 

Twice the 

Distance 

Between 

Fasteners 

Yes Yes 

0' CR = Smaller 0' CR = Smaller 

value from value from 

Eq. D4.l-6 Eq. D4.l-4 

Eq. D4.l-7 Eq. D4.1-5 

(continued on next page) 

No 

Yes 

O"CR =Smaller 

value from 

Eq. D4.l-2 

Eq. D4.1-3 
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D4.1 Capacity of a Wall Stud (continued) 

B 

, 

Smallest Fn 

I, 
Ae 

., 
~c = 0.85 

P n' Eq. D4.1-1 

, r 

~cPn Section F 

(continued on next page) 
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04.1 Capacity of a Wall Stud (continued) 

! 
A 

c1, El 

Eq. 04.1-20 

c1, El 

Eq. D4.1-18 

Eq. D4.1-19 

No 

(continued on next page) 

c1, El 

Eq. 04.1-16 

Eq. 04.1-17 
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04.1 Capacity of a Wall Stud (continued) 

No 

Yes 

To B Assumed Fn Section F 

(continued on next page) 
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E2.2 Arc Spot Welds 

No No 
cI> =0.50 

P nl' Eq. E2.2-4 

Yes Yes 

cI> =0.60 cI> = 0.50 

P nl' Eq. E2.2-2 p nl' Eq. E2.2-3 

cI> =0.60 

p n2' Eq. E2.2-1 

cI>P n = Smaller Value 

of cI> P nl and cI> P n2 

(continued on next page) 
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E2.2 Arc Spot Welds (continued) 

No 
Section F 

Yes 

4> = 0.65 

P n' Eq. E2.2-7 
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E2.3 Arc Seam Welds 

4> = 0.60 

Pnl, Eq. E2.3-1 

4> = 0.60 

Pn2, Eq. E2.3-2 

,r 
4>P n = Smaller of cl>P nl 

and cl>P n2 
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E2.4 Fillet Welds 

Yes til = 0.60 

P nt' Eq. E2.4-t 

No No 

til = 0.60 til = 0.55 

Pnt' Eq. E2.4-3 Pnt' Eq. E2.4-2 

Yes til =0.60 

P n2' Eq. E2.4-4 

No 

(continued on next page) 
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E2.4 Fillet Welds (continued) 

.cf>P n Smaller of cf>P nl 

and cf>P n2 
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E2.S Flare Groove Welds 

No 
Section F 

Yes Yes 

<I> = 0.55 No 
P nl' Eq. E2.5-1 

Yes Yes 

<I> = 0.55 <I> =0.55 

P nt' Eq. E2.5-2 P nt' Eq. E2.5-3 

(continued on next page) 



Computer Aids for use with the March 16, 1991 Edition of the LRFD Co1d-Formed Steel Specification VI-67 

E2.S Flare Groove Welds (continued) 

Yes 
tP =0.60 

P n2' Eq. E2.5-4 

No 

4>P n = Smaller of 

tPP nl and 4>P n2 
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E3.1 Spacing and Edge Distance 

Yes 

P n' Eq. E3.1-1 

Yes 

No 

Yes 

No 

~ =0.70 

(continued on next page) 

* Clear Distance Between 
Edges of Holes ~ 2d 

* Edge of Hole to End of 
Member ~ d 

Center of Hole to End or 
Boundary ~ 1-1/2 d 
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E3.1 Spacing and Edge Distance (continued) 

Yes 

No 

eminl 3d 
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E3.2 Tension in Connected Part 

No 

p n1' Eq. E3.2-2 

Yes 

Yes 

cl>t = 0.95 

p n2' Eq. E3.2-3 

Use AISC 

p n1' Eq. E3.2-1 

cI> = 0.65, Double Shear 

= 0.55, Single Shear 

(continued on next page) 
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E3.2 Tension in Connected Part (continued) 

<I> P n = Smaller of 

<I>P nl and <I>tP n2 
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E3.3 Bearing 
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Yes 

Yes 

No 
~----------------------------------~ To A 

Yes 
Use AISC 

No 
Section F 

(continued on next page) 
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E3.3 Bearing (continued) 

No 

Yes 

No 

Yes 

~ = 0.55 ~ = 0.65 ~ = 0.60 

P n = 3.33F udt P n = 3.00F udt P n = 3.00F udt 

B 

(continued on next page) 
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E3.3 Bearing (continued) 

1 
A 

Yes 
Use AISC 

No 
Section F 

Yes 

No 

Yes 

(continued on next page) 
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E3.3 Bearing (continued) 

No No 

Yes Yes 

cp = 0.70 cp = 0.65 

P n = 3.00Fudt P n = 2.22F udt 

To B 
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PREFACE 

This document, Part VII of the LRFD Cold-Formed Steel Design Manual, contains test 
procedures applicable to various provisions of the Specification. It consists of three parts: 
Test Method for Rotational-Lateral Stiffness of Beam-to-Panel Assemblies, Test Method for 
Stub Columns, and Standard Methods for Determination of Uniform and Local Ductility. 

American Iron and Steel Institute 
December 1991 
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1. Scope 
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ROTATIONAL-LATERAL STIFFNESS 
TEST METHOD 

FOR 
BEAM-TO-PANEL ASSEMBLIES 

1.1 The purpose of this test is to determine the rotational-lateral stiffness of beam-to-panel 
assemblies. This test method is used primarily in determining the strength of. beams 
connected to panels as part of a structural assembly. * The unattached "free" flange of the 
beam is restrained from lateral displacements and twisting by the bending stiffness of the 
beam elements, the connection between the "attached" flange of the beam and the panel, 
and the bending stiffness of the panel. 

1.2 This test method applies to structural subassemblies consisting of panel, beam, and 
joint components, or of the joint between a wall, floor, ceiling, or roof panel and the 
supporting beam (purlin, girt, joist, stud). 

1.3 This test method is also used to establish a limit of the displacements for avoiding 
joint failure. 

1.4 The combined stiffness of the assembly determined by this method, K, consists of: (a) 
the lateral stiffness of the beam, Ka, which is a function of the geometry of the beam and 
geometric details of the beam-to-panel connection, (b) the local stiffness of the joint 
components in the immediate vicinity of the connection, Kb , which is affected by the type of 
fasteners, the fastener spacing used, and the geometry of the elements connected, and (c) 
the bending stiffness of the panel, Kc' which is a function of the moment of inertia of the 
panel, the beam spacing, and the beam location (edge vs interior). The latter stiffness shall 
be taken into account by theoretical analysis or by using the alternate test procedure 
described in Section 10. 

1.5 For specific geometric conditions the design engineer may require duplicate testing 
using a new specimen with the beam orientation, or the force direction, reversed. 

2. Description of Terms 

2.1 Subassembly-A subassembly is a representative portion of a larger structural assem
bly consisting of a wall, floor, ceiling, or roof panel with one beam connected to the panel 
either continuously or at regular intervals (Figure 1). 

2.2 Panel-The panel used in the subassembly may be made of any structural material, for 
example: aluminum, reinforced concrete, fiberboard, gypsum board, plastic, plywood, 
steel, etc. (Figure 1). 

2.3 Beam-A beam may have an open or a closed cross section. One flange of the beam is 
connected to the panel, and is called the "attached" flange. The other is the "unattached" 
flange (Figure 1). 

* AISI Specification, Section c.a.1.a. 
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! 

2.4 Joint or Connection-A joint or connection includes the local area around a mechanical 
fastener, weld, or adhesively bonded area that connects the beam with the panel. The local 
area also includes filler material such as insulation located between the panel and the beam 
flange. 

2.5 Lateral Load-The total lateral load, P (in kips), is applied to the unattached flange of 
the beam (Figure 2) in a plane parallel to that of the original panel position. 

2.6 Lateral Deflection-The lateral deflection (Figure 2) is the lateral displacement, D (in 
inches), of the unattached flange due to the lateral load, P. 

Panel 

Joint, or 
Connection 

Attached Flange 

/ L Beam, Typical 

Free Flange Subassembly 
Width, Ws 

Figure 1 Wall, Floor, Ceiling, or Roof Assembly 

p~.E 
(a) Loading Diagram 

I I 14 Subassembly Width, Ws .1 
I I 
I I 
i------It~-----i 
! p --J~ ! 

(b) Deflected Subassembly 

Figure 2 Loaded and Deflected Subassembly 
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Dial Gage or 
, Displacement Transducer 

\.. Beam ~ Load, P 
\ I I '\.. 

----,---- cIm:=====t: /:):::::::::::;:::=>f~"~ 

+ I • H0 
r---~---L--------------~~--~-------L----~--------~---

'-- Flange of C-shaped Section 
~------~----------------~--------------------------~---

,,"panel 
Fastener 

Support 

w 

"(a) Elevation 

/panel jBeam Support .~ 
~ 

I III' I ::%---
~ I 

I I ~ 1 ..... / Panel Rib (if any) ~ 
Connectors ~ "I I ~ I ~ ""- - - 1::1 ~=:j ......... 

......... - - 1--1 ~ - --I 

'" I I Fs ~ I .... ~ 
"I I ~ I ~ 

I I ~ I 
%- --
~ 

(b) Plan ~ L_ 

Figure 3 Test Specimen and Horizontal Test Setup 

2.7 Rotational-Lateral Stiffness-The rotational-lateral stiffness, K, is equal to the total 
lateral load applied on the unattached flange of the test beam, divided by the length 
dimension of the beam, LB (Figure 3b), and divided by the lateral deflection of the unat
tached flange of the beam at that load level. Thus, the units of K are: kips of lateral load per 
inch of beam length per inch of deflection, or klin.lin. 

3. Materials 

3.1 Components of the test specimen(s) shall be measured, and the component suppliers 
shall be identified. 

3.2 Physical and material properties of the panel and beam shall be determined according to 
the latest edition of Specification ASTM E370 or other applicable standards. 

4. Test Specimens 

4.1 The overall panel width, W (Figure 3), of the specimen shall be such that the dial-gage 
support and the specimen support are each separated from the beam by a distance, WI' not 
less than the largest of the following distances: (a) 1.5 times the overall panel depth Po, (b) 
the overall width of the attached beam flange W F' and (c) the fastener spacing along the 
flange of the beam, F s' For ribbed panels, WI shall also exceed two times the width of the 
attached flat of the panel. 
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4.2 The clamped width of the specimen, W c, shall be at least equal to two times the panel 
depth, but not less than 2 inches. 

4.3 The end dimension, WE' shall be long enough to conveniently attach a dial gage or an 
extensometer to the end of the panel. 

4.4 The minimum overall panel width shall be equal to: 

(1) 

4.5 The minimum beam and panel length, LB , of the test specimen shall not be less than the 
largest of (a) two times the maximum connector spacing, F s, used in actual field installa
tions, or (b) the nominal coverage width of the panel. The specimen shall contain at least two 
fasteners in each line of connections along the beam. 

4.6 Each specimen shall be assembled under the supervision of a representative of the 
testing laboratory, either at the manufacturer's facilities or at the testing laboratory. 

4.7 Each specimen shall be assembled from new material; i.e., ma~erials not used in 
previous test specimens, and in accordance with manufacturer's specifications. 

4.8 The fabrication and field installation procedures specified for the overall assembly, and 
the tools used, shall also be used in the specimen construction as much as possible. 

4.9 Drilled or punched pilot holes in the panels or beams shall be the same as those used in 
field installations. 

5. Test Setup 

5.1 The test specimens may be tested in a horizontal or vertical position (Figure 3 and 
Figure 4, respectively). The zero-load readings of the deflection-measuring device(s) shall 
be recorded. 

Panel~ 

I I 
Figure 4 Vertical Test Setup U 

I 
Load, P 

'--suPPOrt 
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5.2 The clamped end of the panel shall be the only support of the test specimen. 

5.3 When the test specimen panel is a hollow-core, corrugated, or trapezoidal panel, voids of 
the clamped regions shall be filled with filler materials such a~ wood, gypsum, or similar 
filler materials to ensure that the clamped overall depth of the panel is reasonably main
tained. For foam-filled sandwich panels, if necessary, the filler material over the distance We 
may be replaced with wood, gypsum, or similar filler materials. 

5.4 Loads applied to the unattached flange shall be introduced as close as possible to the 
extreme fiber of the beam, or at the intersection of the outer faces of the unattached flange 
and the web. 

5.5 If the beam does not have a flat face perpendicular to the panel at the locations where 
the load is to be applied and the lateral displacement is to be measured, brackets are to be 
mechanically attached to the beam web to provide a flat surface. Figure 5 shows a typical 
application of a load bracket and/or dial gage bracket. The attachment of either bracket shall 
be accomplished such that the bracket does not stiffen the beam, or reduce its distortion. 

5.6 The total lateral load applied, P, shall be distributed over several locations, if necessary, 
to reduce variations in the lateral deflection along the length of the unattached flange. 

5.7 The load application shall be accomplished by chain or wire, and the necessary precau
tions shall be taken to ensure that the direction of the applied load remains essentially 
parallel to the original plane of the panel (Figure 5). 

/ Bracket. Detail A 

Load, P (Parallel to Original Panel Position) 

[==============--=~~-~--~=~ 
Original Panel Position 

P 
• 

Load 

Detail A 

Figure 5 Dial Gage and Load Bracket 
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5.8 One or more dial gages or displacement transducers shall be used to measure the lateral 
displacements during loading. The gages shall be arranged symmetrically about the mid
width point, and have graduations at not greater than O.OOl-inch intervals. 

6. Test Procedures 

6.1 The dial-gage height, HD, and load height, HL , as shown in Figure 3, shall be arranged 
such as to equal as close as possible the overall beam depth, H. Prior to loading the test 
specimen, the dimensions HD and HL, and the dial-gage readings shall be recorded. 

6.2 No preload is to be used. The load shall be applied in a direction which is critical for the 
intended use of the results. 

6.3 The applied load shall be increased in five or more equal increments to the maximum 
expected value, in order to produce deflection increments of not more than 5 percent of the 
beam depth. 

6.4 If the specimen includes fiberglass insulation or other non-metallic elements in the joint 
between panel and beam, the load shall be held at each increment for 5 minutes before 
reading the lateral movement. 

6.5 After each load increment is added, and the deflection has stabilized, the load and 
lateral movement of the unattached flange shall be measured and recorded. 

6.6 A test shall be terminated at failure (fastener pullout, fastener failure, panel buckling, 
panel failure, beam failure, etc.) and the mode of failure recorded, unless the design 
engineer has determined that the application of the rotational-lateral stiffness, K, occurs at 
lower load or displacement levels and that the test may be terminated earlier. 

7. Number of Tests 

7.1 The minimum number of tests for one set of parameters shall be three. For parametric 
studies using multiple values of one or more parameters a smaller number of tests may be 
used. 

7.2 If used as part of a series of at least three tests, one test is sufficient for a specific 
condition of an all-metallic mechanically-fastened specimen using the same basic compo
nents, but using unique geometrical or physical-property differences such as fastener 
spacings, different beam or panel yield strengths, etc. 

7.3 Three tests are required for any specific condition of welded or adhesively-bonded 
specimens, or for specimens using non-metallic materials. 

7.4 When the rotational-lateral stiffness for three or more panel or beam thicknesses with 
otherwise identical parameters is to be determined, at least two specimens each with the 
minimum and the maximum thickness shall be tested. For a ratio of maximum-to-minimum 
thicknesses greater than 2.5, additional specimens with intermediate thicknesses must be 
tested. One test of every thickness may be used in accordance with Section 7.2. 

7.5 When the rotational-lateral stiffness for a range of screw spacings is to be determined, 
the minimum number of specimens shall be as follows: For a ratio of maximum-to-minimum 
screw spacings equal to or less than 2, at least two specimens each with the minimum and the 
maximum screw spacing shall be tested. For a range of five or more different screw spacings, 
or for a ratio of maximum-to-minimum screw spacings greater than 2, additional specimens 
with intermediate spacings must be tested. One test of every screw spacing may be used in 
accordance with Section 7.2 

7.6 Where the rotational-lateral stiffness for a range of other panel parameters-such as 

VJI-ll 
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yield or ultimate strength, changes in geometry, etc.-are to be determined, a number of 
tests similar to the requirements under Sections 7.2 through 7.5 shall be performed. 

7.7 For unsymmetric or staggered fastener arrays and/or beams unsymmetric about a 
plane parallel to the web, duplicate tests may be required by the design engineer using new 
specimens with the beam orientation, or the force direction, reversed. 

8. Test Evaluation Procedure 

8.1 Typical load-displacement curves (P vs. D) obtained from the tests are as shown in 
Figure 6. For multiple tests of one set of test parameters, the curve reSUlting in the lowest 
value of~, as defined in Section 8.2, shall be used for the test evaluation procedure. * 

P (Load) 

Pu~--------------------------~ 

= O.SPu 
PN~------------~ 

o 
~------------~--------------

(Displacement) 

(a) 

P 

P 

PN~--------------------~ 

(b) 

--~------------------------~------------O 
ON:5 O.SOu 

(c) 

Figure 61Yplcal Load-dlsplacemenl Curves 

*The test stiffness, ~, includes the stiffness effects of the beam, Ke, and the beam-to-panel connection, Kt" but 
excludes the effects of the bending stiffness of the panel, ~, and follows the relationship Kt = (1/K. + l/Kt,)-l. 
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8.2 The test stiffness, ~, at any load level is determined by 

~=P/D/LB (2) 

8.3 The nominal test stiffness. KN, shall be determined by 

(3) 

where PN and DN shall be determined for a point, N, such that either P N shall be equal to 0.8 
times the ultimate load, Pu, for load-displacement curves as shown in Figure 6(a), or the 
displacement DN shall be equal to 0.8 times the ultimate displacement, Du, for load
displacement curves as shown in Figure 6(b), or by a tangent drawn from the origin to the 
P-D curve as shown in Figure 6(c), resulting in P N:::; O.8P u and DN :::; 0.8Du' 

8.4 When the design engineer specifies in advance a desired maximum lateral displacement 
limit of DNU the test may be discontinued when DNL is reached, and KN may be determined 
from PN at DNL, as long as the limits under Section 8.3 are observed and DNL is not exceeded 
in actual design applications. 

8.5 Where either HD or HL are not equal to the overall beam height, H, ~ and KN shall be 
corrected by the factor HDHdH2. 

8.6 In addition,~ and KN shall be adjusted by the stiffness contributions of the panel, Kc , 

derived from the linear-elastic displacement analysis representing the actual design applica
tions, unless such an analysis shows that these contributions are insignificant. Alternately, 
the panel stiffness may be included by using the alternate test method under Section 10. 

8.7 For subassemblies such as shown in Figure 2, the applied lateral test loads cause a 
bending moment distribution in the panel similar to that shown in Figure 7, and a lateral 
displacement of the unattached flange of the beam, Dc, equal to 

(4) 

where W s is the width of the subassembly (Figure 2 and Figure 7), E is the modulus of 
elasticity of the panel material, and I is the effective moment of inertia of the panel cross 
section (obtained from deflection determination calculations for cold-formed metal deck 
panels). 
The panel stiffness is equal to 

(5) 

8.8 The overall rotational-lateral stiffness of the subassembly shall be determined as 

(7) 

8.9 When tests covering ranges of parameters (thickness, yield strengths, screw spacings, 
etc.) are conducted according to Section 7, a linear interpolation may be used to determine 
intermediate K values. 

9. Test Report 

9.1 The test report shall consist of a description of all specimen components, including 
drawings defining the actual and nominal geometry, material specifications, material prop
erties test results describing the actual physical properties of each component, and the 
sources of supply. Differences between the actual and the nominal dimensions and material 
properties shall be noted in the report. 
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--1 ~ p V;,--. J 

i""'I=;;;;;....-----------f.--------__ Moment Diagram 

Figure 7 Bending Moment Diagram for Panel with an Interior Beam 

D= PH2Ws 
12EI 

9.2 In addition, the test report shall contain a sketch or photograph of the test setup, the 
latest calibration date and accuracy of the equipment used, the signature of the person 
responsible for the tests, and a tabulation of all raw and evaluated test data. 

9.3 All graphs resulting from the test evaluation procedure shall be included in the test 
report. 

9.4 A summary statement, or tabulation, shall be included in the summary of the report to 
define the actual and nominal rotational-lateral stiffness derived from the tests conducted, 
including all limitations. 

10. Alternate Rotational-Lateral Stiffness Test· 

10.1 To include the panel-stiffness contribution in the test, rather than by linear-elastic 
analysis, the design engineer may request a test specimen and setup as shown in Figure 8 
and Figure 9, respectively. 

10.2 The test specimens shall be as described under Section 4 except as follows. 

10.2.1 The minimum overall panel width of the specimen, W (Figure 8), shall be 

(6) 

10.2.2 The minimum end dimension, WE' shall equal the width of the attached beam 
flange plus 4 inches to allow the development of local deformation patterns around the 
fasteners as they would develop in a real structure. 

*This method is conservative as compared to the basic methods which analytically account for the stiffness of the 
panel. 
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10.2.3 For specimens representing interior-beam subassemblies, as shown in Figures 1 
and 2, the dimension WI of the test specimen (Figure 8) shall be equal to Y12 of the 
subassembly width, W s (Figures 1 and 2), to assure that the overall rotational-lateral 
stiffness contribution of the test-specimen panel is the same as that of the subassembly. 

10.2.4 For other subassembly conditions, WI shall be determined to represent the actual 
conditions. 

10.3 The test-setup shall be as described under Section 5 except as follows. 

10.3.1 The clamped support as shown in Figures 8 and 9 shall be sufficiently rigid to 
minimize the rotation and translation of the test specimen at the support. 

10.3.2 The lateral-displacement measuring device shall be located on a support fixed 
relative to the clamped support of the test panel, as shown in Figure 9 . 

Dial Gage 

• p 

r Panel 

==::1 
~ 
~ ~ 

W,=Wsl12 I we 
I 

W 

Figure 8 Panel Width for Alternate Test Procedure 

~ Load/Gage Bracket 

• p 

r--------- ----- ] L _____________ '=:-:~-.:::rw. __ ~ 

Figure 9 Test Setup For Alternate Test 

Specimen 
Support 
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10.4 Test procedures shall be the same as described under Section 6. 

10.5 The number of tests shall be determined as described in Section 7. 

10.6 The test-evaluation procedure shall follow the underlying principles used to develop 
Section 8. The test stiffness at any load level shall be determined according to Equation 2 
and the nominal test stiffness shall be determined according to Equation 3. No further 
adjustments are needed. 

10.7 For other interior-beam spacings, for exterior-beam conditions, or for other geo
metrical conditions, the measured displacements shall be adjusted by a linear-elastic 
analysis to represent the actual field conditions, unless such an analysis shows that these 
displacements and their effect on K are insignificant. 

1. Scope 

STUB-COLUMN TEST METHOD(1) 
FOR 

EFFECTIVE AREA OF COLD-FORMED 
STEEL COLUMNS 

1.1 This test method covers the determination of the effective cross-sectional area of cold
formed steel columns. It primarily considers the effects of local buckling and residual 
stresses and applies to solid or perforated columns that have holes (or hole patterns) in the 
flat and/or curved elements of the cross section (1).2 

1.2 The effective area is used to determine the allowable axial loads of cold-formed column 
sections in accordance with the AISI Load and Resistance Factor Design Specificationfor 
Cold-Formed Steel Structural Members, hereafter called AISI Specification. 

1.3 The effective area is a variable section property of columns. It reflects the effects oflocal 
buckling in relatively thin area elements caused by axial stresses, or loads. When the axial 
load is zero, the effective area is equal to the gross cross-sectional area; however, when an 
axial load is applied, the effective area may be less than the gross area. In such a case, the 
effective area will reduce with increasing load. 

1.4 Local buckling reduces the axial load-carrying capacity that would otherwise be limited 
only by general yielding or overall column buckling. The amount of the reduction depends on 
the width-to-thickness ratio of the flat elements of the column cross section, the yield 
strength of the steel sheet from which the column is formed, and the size and frequency of 
holes or hole patterns, if present. 

2. Applicable Documents 

2.1 ASTM Standards: 
A370-Tensile Test Method For Steel Sheets 
E4-Verification of Testing Machines 

2.2 AISI Load and Resistance Factor Design Specification for Cold-Formed Steel Struc
tural Members, 1991 Edition. 

IThis test and evaluation method will be proposed to the appropriate ASTM Committee for review and adoption. 
2Numbers in parentheses refer to references at the end of this test method. 
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3. Terminology 

3.1 ASTM Definitions Standards: 
E6-Definitions of Terms Relating to Methods of Mechanical Testing. 
E380-Standard for Metric Practice. 

3.2 Description of terms specific to this standard: 
Elements = Straight or curved portions of the cross section of a column or stub column. 
Local Buckling = The local buckling mode of a flat element of a column cross section, 
which influences the overall column-buckling behavior. 
Overall Buckling = Buckling of a column as a function of its overall length. 
Stub-Column = An axial compression member of the same cross section and material as 
the column for which the strength needs to be determined, but of sufficiently short 
length to preclude overall column buckling, if possible. 

3.3 Symbols: 

A = the gross cross-sectional area of a column without holes or perforations, or the 
minimum gross cross-sectional area of a column with -holes or perforations. 

Aa = the average of all gross cross-sectional areas of the stub columns in a test unit, or 
the average of gross cross-sectional areas of a stub column. 

Ae = the effective cross-sectional area of a stub column at a load less than the ultimate 
test load, or the effective area of a full-length column. 

Aej = the effective cross-sectional area of a stub column at load Pj' 

Aeu = the nominal effective cross-sectional area at ultimate load adjusted to the nominal 
thickness and the minimum specified yield strength. 

Aeua = the average effective cross-sectional area of a test unit of stub columns at the 
ultimate axial load. 

Aeul = the effective cross-sectional area of a stub column with parameters of Test Unit 1 at 
ultimate load. 

Aeu2 = the effective cross-sectional area of a stub column with parameters of Test Unit 2 at 
ultimate load. 

Al = the minimum gross cross-sectional area of a stub column with parameters of Test 
Unit 1 at ultimate load. 

~ = the minimum gross cross-sectional area of a stub column with parameters of Test 
Unit 2 at ultimate load. 

D = the axial shortening of a stub column at load P. 

Dj = the axial shortening of a stub column at load Pi' 

Du = the axial shortening of a stub column at load P u' 

f = the average axial stress assumed to be uniformly distributed over the effective 
cross-sectional area, Ae' 

fi = the average axial stress assumed to be uniformly distributed over the effective 
cross-sectional area, Aei at load Pi' 
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fo = the average axial stress assumed to be uniformly distributed over the effective 
cross-sectional area, Ae, above which the section is not fully effective. 

F n = the nominal ultimate stress, assumed to be uniformly distributed over the effective 
cross section of a column as calculated from Section C4 of the AISI Specification, at 
which flexural, torsional, torsional-flexural, or local buckling, and/or yielding, may 
occur. 

F u = the ultimate stress, assumed to be uniformly distributed, at which local failure 
occurs in a tested stub column. 

F y = the minimum specified elastic limit or yield stress of column or stub-column 
material. 

F ya = the average elastic limit or yield stress of the sheet steel for a given test unit. 

FYi = the individual elastic limit or yield stress of the sheet-steel specimens in a test unit. 

= load-displacement-reading number for a particular stub-column test (load displace
ment Di at load PJ 

j = total number of load-displacement readings taken for a particular stub-column 
test. 

L = the length of the stub-column test specimen. 

L p = the pitch of a repeating pattern of perforations along the longitudinal column axis. 

n = the ratio of the effective cross-sectional area at the ultimate load to the full cross
sectional area, Aeul A. 

P = the applied axial compression force (column load). 

Pi = the applied load at load-increment i. 

P n = the nominal failure load of a column. 

P u = the ultimate stub-column load at which local failure occurs. 

P ua = the average of all ultimate stub-column loads within a test unit. 

r = the minimum radius of gyration of the cross-sectional area, A. 

t = the nominal base-steel thickness exclusive of coating. 

ta = the average of all base-steel thicknesses within a test unit, exclusive of coating. 

W = the greatest overall width of the cross section including corner(s). 

4. Significance 

4.1 This test method provides requirements for testing, and equations to determine, the 
effective area of a cold-formed column section at ultimate load, Aeu' and the load- or stress
dependent effective area, Ae. These properties are used in the AISI Specification to 
determine the ultimate and less-than-ultimate column strengths. The ultimate column 
strength, P u' is the product of the minimum specified yield stress, F Y' or the buckling stress 
F n' and the corresponding effective cross-sectional area at that stress, Aeu. At an applied 
column strength of P less than P u' the corresponding effective cross-sectional area shall be 
Ae· 
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4.2 The test method also provides a means to observe, measure, and account for local 
buckling deformations when the appearance of a column section under stress must be 
determined. 

4.3 An inherent assumption of the test method is that true stub-column behavior (which 
considers local buckling effects only) is achieved when overall column-buckling effects are 
eliminated. For this condition the ultimate test load on a stub column, P u' equals the product 
of the effective cross-sectional area at ultimate load, Aeu' times the stress that causes local 
buckling, or times the yield stress of the virgin steel sheet. In case overall buckling cannot 
be avoided because of geometrical constraints, the critical column-buckling stress must be 
used. 

4.4 The determination of Ae may be conducted by either one of the two following methods: 

(1) The basic, more simple, and conservative method: 
This method is embodied in the main part of this document and is based on the measured 
test loads of stub columns and their measured and tested physical and mechanical 
properties. 

(2) An alternate and less conservative method: 
This method is based on the shortening of stub columns which occurs during testing. 
Also, this evaluation method requires more calculations. The results of this method lead 
to more accurate results for Ae, and to higher allowable axial loads at lower-than
ultimate stress levels. The evaluation procedure for this method is described in Appen
dix A. 

5. Apparatus 

5.1 The tests shall be conducted on a testing machine that complies with the requirements of 
ASTME4. 

5.2 Linear displacement devices for measuring lateral displacements shall have a O.OOl-inch 
least-reading capability. 

5.3 Measuring devices for determination of the actual geometry of a test specimen shall 
have a O.OOl-inch least-reading capability. 

5.4 If axial shortening is recorded, the measuring device shall have a O.OOOl-inch least
reading capability. 

6. Test Unit 

6.1 A test unit shall include a minimum of three identical stub-column specimens and a 
minimum of two corresponding sheet-type tensile specimens. 

6.2 The specimens within a unit shall represent one type of cold-formed steel section with 
the same specified geometrical, physical, and chemical properties. The specimens may be 
taken from the same column or from different production runs provided the source of the 
specimens is properly identified and recorded. 

6.3 If stub-column specimens are taken from different production runs, at least two 
corresponding sheet-type specimens must be taken and tested from each production run. 

6.4 The stub-column test specimens shall be used to determine: 

(1) The actual geometry of each specimen. 

(2) The ultimate stub-column test load. 
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(3) Axial shortenings at each load level if the alternate test-evaluation method described in 
Appendix A is used. 

(4) Lateral displacements of the specimen at locations of interest (if desired). 

6.5 The tensile test specimens shall be used to define the yield stress of each stub-column 
specimen acording to the requirements described in ASTM A370. 

6.6 For each test specimen and test unit, the measured geometrical and tested physical 
properties of the individual specimens shall meet the requirements stated by the fabricator 
and material producer, respectively. 

6.7 If the average area, thickness, or yield strength of a test unit varies by more than 20 
percent from the respective nominal or specified-minimum value, the test unit is considered 
to be non-representative of the column section, and further evaluations of the effective area 
are considered to be invalid. 

7. Stub-Column Specimens 
The stub-column specimens shall meet length and end-flatness requirements as follows, 
depending on whether or not unconnected or welded endplates are used. 

7.1 Stub-Column Length-The length requirements of the stub-column test specimen, L, 
as shown in Figures I and 2, are that it be (1) sufficiently short to eliminate overall column 
buckling effects, and (2) sufficiently long to minimize the end effects during loading, which 
means that its center portion be representative of the repetitive hole pattern in the full 
column. 

7.1.1 To eliminate overall column-buckling effects, the stub-column length shall not 
exceed twenty times the minimum radius of gyration, r, of the cross section, A, except 
where necessary to meet the requirements of Sections 7.1.2 through 7.1.5. 

7.1.2 For unperforated columns (Figure la) the stub-column length shall not be less than 
three times the greatest overall width of the cross section, W. 

7.1.3 For perforated columns in which the pitch (gage length) of the perforation pattern, 
Lp' for a single hole or a group of holes, is smaller than, or equal to, the greatest overall 
width, W, of the cross section (Figures lb and 19), or for a single hole pattern with a gage 
length larger than the greatest overall width (Figure Ic), the specimen length shall not be 
less than three times the greatest overall width of the cross section, W. For widely spaced 
hole patterns (Figure lc) the significant hole or hole pattern shall be located at or near the 
midlength of the stub column. 

7.1.4 For perforated columns in which the pitch of the perforation pattern, Lp' is greater 
than the widest side, W, of the cross section (Figures ld, Ie, If, and Ih), the specimen 
length shall not be less than three times the pitch of the perforation pattern. 

7.1.5 For perforated sections in which the specimen end planes must pass through the 
normal perforation pattern (Figure Ii), a special section (Figure Ij) may be fabricated to 
obtain full cross-sectional surfaces at the specimen ends. 

7.2 Stub-Column End Surface Preparation-The end planes of the stub-column test spec
imens shall be carefully cut to a flatness tolerance of plus or minus 0.002 inches. When the 
required flatness can be achieved, welding of the stub-column ends to the endplates is not 
required. However, when this flatness cannot be achieved, steel endplates shall be continu
ously welded to both ends of the specimen so that there shall be no gap between the ends of 
the stub column and the endplates. 

7.3 Stub-Column Specimen Source-Stub-column test specimens may be cut from the 
commercially fabricated column product. Alternatively, stub columns may be specially 
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Figure 1 Hypothetical Perforation PaHerns And Suggested Stub Column Lengths 

NOTES: (1) Perforations shown are in a flat portion of 
a member with width W 

(2) L = Length of Stub Column 
(3) L" = Pitch Length of Perforation Pattern 
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fabricated provided care is taken not to exceed the cold work of forming expected in the 
commercial product; however, subsequent proof tests using specimens from commerically 
produced columns are recommended. 

7.4 Tensile Specimen Source-Longitudinal tensile specimens shall be cut from the center 
of the widest flat of a formed section from which the stub-column specimens have been 
taken. If perforations are large and frequent in all flats of the formed section, the tensile 
specimens may be taken from the sheet or coil material used for the fabrication of the stub
column specimens. The tensile specimens shall not be taken from parts of a previously tested 
stub column. 

7.5 Endplate Requirements-Steel endplates shall be at least 0.5 inch thick and have a 
flatness tolerance of plus or minus 0.002 inches. 

8. Stub-Column Test Procedure 

8.1 Vertical alignment of the stub column is essential to ensure that the applied load is 
uniformly distributed over the specimen end surfaces. Care should also be taken to center 
the specimen on the axis of the test machine. 

8.1.1 Steel endplates shall be used to transfer the test loads uniformly into the stub 
columns (Figure 2). 

P 

! 
.~+-- Top Head of Testing Machine 

~~~~~~~~~~~ 

~~-- V2-lnch-Thick Grout Layer, Min. 
~---------~~~~r 

Steel End Plate 

- Stub Column 

Linear Displacement Measuring Device 

Steel End Plate 

,?;;':;':,.:;.~~~~';:':~~~- Y2-lnch-Thick Grout Layer, Min . 

. ~+-- Base of Testing Machine 
~~~~~r~~~ 

r 
p 

Figure 2 Test Setup 
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8.1.2 A Yz-inch-thick layer of grout, similar to gypsum-based concrete capping compound 
used for fast setting, shall be placed between the stub-column endplates and the machine 
heads to facilitate aligning the test specimen (Figure 2). 

8.2 When an axial compression load is applied to the test specimen as a result of grout 
expansion during curing, or if a small preload is purposely applied to ensure proper contact 
between the stub-column end plates and the machine heads, the load shall be treated as part 
of the applied test load. 

8.3 The load increments applied during the test shall not exceed 10 percent of the estimated 
ultimate test load. 

8.4 The maximum loading rate between load increments shall not exceed a corresponding 
applied stress rate of 3 kips per square inch of cross-sectional area per minute. 

8.5 When axial shortening values are recorded, the following procedures shall be required: 

(1) The change in the vertical distance between the inside surfaces of the end plates 
(Figure 2) shall be measured to the nearest O.OOOl-inch at each load increment for each 
specimen. 

(2) The load increments applied during the test shall be the same for each specimen within a 
test unit, with a variation not to exceed one percent. 

9. Calculations 

9.1 For a given test unit, all individual ultimate loads, P u' derived from the stub-column 
tests shall be used to calculate the average ultimate load, P ua' Similarly, all individual yield 
strengths, Fyi, derived from the tensile tests of the same unit shall be used to calculate the 
average yield stress of the same test unit, F ya' 

9.2 The effective areas Aeua, Aeu' and Ae shall be calculated as specified in Sections 9.3 
through 9.6; however, the final value of these effective areas shall not exceed that of the 
minimum gross cross-sectional area, A. 

9.3 For tests in which the length of the stub column does not exceed twenty times the 
minimum radius of gyration of the cross section, r, the average effective area at the ultimate 
load, Aeua' for a given test unit shall be calculated as 

Aeua = P ua/F ya 

9.4 For tests in which the length of the stub column exceeds twenty times the minimum 
radius of gyration of the cross section, the average effective area at the ultimate load shall be 
determined by iteration of the following equations: 

where Aa is the average minimum gross area of the stub columns in the test unit, and F n is 
the flexural or torsional-flexural buckling stress derived from Section C4 of the AISI 
Specification with K = 0.5 (using the average cross-sectional properties of the test unit). The 
exponent n is determined as follows: 

Assuming an initial value for n equal to less than 1.0, Aeua can be calculated from the first 
equation. Using this Aeua in the second equation will provide a new value for n. Repeating 
this process will lead to convergence of the above equations and an acceptable value of Aeua 
for one specific test unit. 
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9.5 The value of Aeua for a specific test unit shall be adjusted to Aeu' which is the effective 
cross-sectional area of a column at ultimate load with a nominal cross section of A and a 
specified minimum yield strength of F y' The adjustment shall be performed in one or two 
steps as follows. 

or 

or 

9.5.1 If the average area of the stub columns in the test unit, Aa, or the average base steel 
thickness, t a, are diferent from the nominal area or thickness, respectively, the effective 
cross-sectional area at ultimate load shall be calculated as follows: 

9.5.2 If the average yield strength of all stub columns in a test unit, F ya' is different from 
the nominal yield strength, F y' the effective cross-sectional area at ultimate load shall be 
the lower of the two values calculated as follows: 

9.5.3. If the average area and the minimum specified yield strength are different from the 
nominal values of a test unit, Aeu derived from the equation in Section 9.5.1 shall be used as 
Aeua in the equations of Section 9.5.2, which will lead to an acceptable value of Aeu' 

9.6 The effective area at any working stress level, Ae, may be determined by 

9.7 For a series of sections, such as in a parameter study during which only one parameter 
(thickness, depth, width, yield strength, etc.) is changed, interpolations between test units, 
or extrapolations beyond test units, shall be acceptable as described in Appendix B. 

9.8 Extrapolations beyond 20 percent of the extreme parameters tested shall not be 
permitted. 
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10. Report 

10.1 Documentation-The report shall include a complete record of the sources and loca
tions of all stub-column and tensile-test specimens and shall describe whether the specimens 
were taken from one or several columns, one or several production runs, coil stock, or other 
sources. 

10.2 The documentation shall include all measurements taken for each stub-column test 
specimen, including (1) cross-section dimensions, (2) uncoated sheet thickness, (3) lon
gitudinal yield strength, (4) end preparation procedure, (5) applicable material specifica
tion, and (6) test and evaluation procedure used. 

10.3 The determination of the selected stub-column length shall be fully documented with 
appropriate calculations. 

10.4 A description of the test setup-including the endplates, the grout layer used for 
alignment, and the instrumentation used to measure laterial displacements and axial 
shortening-shall be included. 

10.5 The report shall include the load increments, rate of loading, and intermediate and 
ultimate loads for each stub column tested. 

10.6 The report shall include complete calculations and results of the effective area, Aeu' for 
each test unit and calculations of Ae, if requested. 

11. Precision 

11.1 The following criteria shall be used to judge the acceptability of the test results. 

11.1.1 Repeatability-Individual stub-column test results shall be considered suspect if 
they differ by more than 10 percent from the mean value for a test unit with at least three 
specimens. 

11.1.2 Reproducability-The results of tests on stub-columns conducted at two or more 
laboratories should agree within ten (10) percent when adjusted for differences in cross 
sectional dimensions and yield strength. 

REFERENCES 

(1) T. Pekoz, "Development of a Unified Approach to the Design of Cold-Formed Steel 
Members, Committee of Sheet Steel Producers, American Iron and Steel Institute, 1000 16th 
Street, NW, Washington, DC 20036, 1986. 
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APPENDIX A 

Use Of Axial Shortening Measurements In Design 

A-1 Axial shortening measurements as part of thin-walled cold-formed steel stub-column tests 
may be used as an alternative method of determining the effective area of a column, Ae, at a 
certain design load or stress. This method provides a more accurate and less conservative 
alternative to design engineers to determine the effective area of a column section, Ae' 
A-2 The calculations by this method shall be made separately for each stub-column specimen 
within a test unit. This shall result in a total of j calculations as a result of a total of j load
displacement tests for each test unit. 
A-3 For a given specimen the effective area at ultimate load, Aeu' shall be calculated from Section 
9.3 or 9.4 letting Aeua = Aeu' Aa = A, F ya = F Y' and P ua = P u' 

A-3.1 Calculations at each load-displacement reading, i, shall be conducted according to the 
following procedure; however, at zero load, the effective area, Ae, shall be equal to the minimum 
gross cross-sectional area, A. This provides results for the effective area at each load point: 

(1) Starting with the lowest load-displacement reading, the effective area, Ai' and the 
assumed uniformly distributed stress fi' shall be calculated for each reading, i, from: 

and A.= PiDu 
el F D. 

y I 

where Di an Du are the axial shortening at loads Pi and Pu' respectively. 

(2) If Aei calculated is greater than A, Aei shall be set equal to A. 

(3) If Aei calculated is less than A, Aei shall be as calculated, and fo' the stress above which 
the section is not fully effective, shall be set equal to fi_l , as calculated for the previous 
load-displacement reading. 

A.3.2 For specimens within a test unit, the lowest Aei values shall be used for further 
evaluations. 

A-4 For any load that causes a stress f higher than fo' an exponential equation may be 
developed as follows.: 

Ar = A[1 - (1 - Aeul A) (f - fo) IF y - fo) ]b 
J j 

where 
1 (X) (Y) -(a) 1 (X) 

b = i-I i~ I 

j 

.1 (X)2 
1=1 

and X = In[(fi -fo)/(Fy -fo)] 

Yi = In(l-A'eJ A) 

a = In(1-Aeul A) 

and In designates the natural logarithm. 

A-5 If the effective areas for a section with specified dimensions and minimum yield strength 
are desired, which are different from the tested specimens, the Aeu and Aei values calculated 
under Section A-3 shall be normalized to the specified parameters according to Section 9.5 
before the curve-fitting procedure of Section A-4 is employed. 

A-6 All calculations pertaining to this procedure shall be included in the report, as discussed in 
Section 10. 
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APPENDIX B 

Parametric Studies 

B-1 For parametric studies intended to develop the effective area for a series of sections with 
the same basic cross section (either C, U, H, or any other shape) and the same hole pattern, 
but with one or more changing parameters, the required number of test units may be less than 
the sum of all sections with different geometries and yield strengths. 

B-1.1 For a series of sections with three different values for one parameter only (dimension 
or nominal yield strength), at least two test units shall be chosen to include the minimum and 
the maximum value of the changing parameter. For the third value, Aeu may be interpolated 
according to Section B-2. 

B-1.2 If more than three different values for one parameter are included in a series of 
sections, additional units with intermediate values shall be tested such that the ratio of the 
changing values in adjacent units is not greater than 1.5 or be less than 0.67. For intermedi
ate values of the changing parameter, Aeu may be interpolated according to Section B-2. 

B-1.3 For a series of sections with the same basic cross section that includes different values 
for several parameters (dimensions and/or yield strength), an appropriate factorial of test 
units shall be established by the responsible professional engineer in accordance with the 
guidelines for changes in an individual parameter, and in compliance with responsible code 
authorities. Interpolations and extrapolations may be made as mutually agreeable, follow
ing the general guidelines set forth in Section B-2 for changes of one parameter only. 

B-1.4 For a section that falls outside a series of tested members with the same basic cross 
section, Aeu may be extrapolated provided the changing parameter does not exceed a value 
of 20 percent below or above the respective minimum or maximum values tested in the 
series. 

B-2 Interpolations and extrapolations are allowed as part of a parametric study, and as 
defined under B-1. 

B-2.1 For a section with a thickness different from the thicknesses tested, but with identical 
overall nominal cross-sectional dimensions and minimum specified yield strength, Aeu for a 
thickness t and an area A may be calculated provided t does not exceed the limits described 
under Section B-1. 2 and B-1.4. Under these conditions, Aeu may be determined by interpola
tion or extrapolation from the results of the nearest two test units with thicknesses tl and t 2 , 

respecti vely: 

where Al and A2 are the minimum gross cross-sectional areas, and Aeul and Aeu2 are the 
nominal effective cross-sectional areas for Test Units 1 and 2, respectively. 

B-2.2. For a section with a yield strength different from the yield strengths tested, but with 
identical cross-sectional dimensions, Aeu for a yield strength F y may be calculated provided 
F y does not exceed the limits described under Section B-1.2 and B-1.4. Under these 
conditions, Aeu may be determined by interpolation or extrapolation from the results of the 
nearest two test units with yield strengths FYI and F y2' and with effective areas Aeul and 
Aeu2, respectively: 
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1. Scope 
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STANDARD METHODS FOR 
DETERMINATION OF 

UNIFORM AND LOCAL DUCTILITY 

This method covers the determination of uniform and local ductility from a tension test. Its 
primary use is as an alternative method of determining if a steel has adequate ductility as 
defined in the AISI Specification. It is based on the method suggested by Dhalla and Winter. 

2. Referenced Documents 

ASTM Standard A370, "Standard Test Methods and Definitions for Mechanical Testing of 
Steel Products." 

AISI Specification for the Design of Cold-Formed Steel Structural Members, 1986 Specifi
cation with the December 11, 1989 Addendum. 

Dhalla, A. K. and Winter, G., "Steel Ductility Measurements:' Journal of Structural 
Division, Proceedings ASCE, Vol. 100, No. ST2, February 1974. 

3. Symbols 
e:l = linear elongation, in., in 3-in. gage length 
e:1e = linear elongation, in., in 2-in gage length not containing I-in. length of fractured 

portion 
eu = linear elongation, in., at ultimate load in standard tension coupon test 
E:~ = percent elongation in 3-in. gage length 
E:3e = percent elongation in 2-in. gage length not containing I-in. length of fractured 

portion 
Ef = percent elongation at fracture in 2-in. gage length of standard tension coupon 
Eu = percent elongation at ultimate load in standard tension coupon test 
Eunifol'm = uniform percent elongation 
Eloral = local percent elongation in 112 in. gage length 
Ell;! = percent elongation in 112 in. gage length 

4. Test Procedure 

4.1 Prepare a tension coupon according to ASTM Standard A370 except that the central 
length of 112 in. (12.7 mm) uniform width of the coupon should be at least 3Y2 in. (88.9 mm) 
long. 

4.2 Scribe gage lines at 1I2-in. (12.7 mm) intervals along the entire length of the coupon. 

4.3 After completion of the coupon test, measure the following two permanent plastic 
deformations: (a) the linear elongation in a 3-in. (76.2 mm) gage length, ea, such that the 
fractured portion is included (preferably near the middle third of this 3-in. gage length); and 
(b) the linear elongation in a I-in. (25.4 mm) gage length containing the fracture. 

4.4 Subtract the latter from the former. This difference gives the linear elongation, e3e , in a 
2-in. (50.8 mm) gage length not containing the I-in. length of the fractured portion. 

4.5 From the two preceding elongation measurements, e3 and e3e , calculate the percentage 
elongations Ea = (ea/3) x 100, and E3e = (e3e /2) x 100. From these percentage elongations, 
the uniform and local ductility parameters are obtained as follows. 
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4.6 Since the fractured portion which includes local elongation is eliminated from E3e , it is a 
measure of the uniform ductility of the material. Thus 

(1) 

4.7 The local elongation is determined over a small length which includes the fractured 
portion. For simplicity, this length is here assumed to be 112 in. (12.7 mm) which is large 
enough to include the necked portion of most thicknesses and type of sheet steels used, and 
is small enough to give valid comparison for different types of steels. Thus 

(2) 

in which 6 = the multiplication factor which converts the local elongation (E3 - E3e) 

measured in 3 in. (76.2 mm) to local elongation in 112 in. (12.7 mm) gage length. 

5. Alternate Test Procedure 

5.1 Prepare a standard tension coupon according to ASTM A370 with a standard 2-in. 
(50.8 mm) gage length. 

5.2 The strain at the tensile strength, i.e., percentage strain Eu at the peak of the stress
strain curve, is a measure of uniform ductility, because up to this strain no necking or local 
elongation has taken place. Therefore, to obtain the uniform ductility the stress-strain 
curve is plotted at least up to the maximum load or the linear elongation, eu ' at maximum 
load is measured directly, so that Eu = (e u/2) x 100. 

5.3 To obtain a measure of the local ductility it is necessary to measure the percentage 
strain at fracture EC' also in a 2-in. gage length. However, the strain which occurs after the 
maximum load has been passed (descending branch) is the necking strain, and is localized at 
the eventual fracture zone, thus (Ef - Eu) is the local percentage elongation referred to in a 
2-in. (50.4 mm) gage length. The following equation converts this (Er E) into the 
percentage elongation in a 112 in. (12.7 mm) gage length: 

(3) 

in which 4 = the multiplication factor to convert a 2-in. gage length local elongation to a 
112 in. gage length. 
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