

INSPECTING AND PRESERVING INFRASTRUCTURE THROUGH ROBOTIC EXPLORATION

A Training Framework of Robotic Operation and Imaging Analysis for Decision-Making in Bridge Inspection and Preservation

INSPIRE UTC 2018 Annual Meeting, Rolla, August 14-15

Investigators: Ruwen Qin, Zhaozheng Yin

Student: Tianyi Zhao

Region of Interest Detection in Bridge Inspection

- Background
- Multi-scale convolutional neural network feature extracting and matching
- Multi-scale Siamese neural network and one-shot learning
 - One-shot learning
 - Siamese neural network
 - Region of interest detection
 - Multi-scale Siamese neural network
 - Results
- Method comparison
- Conclusion and future work

- Background
- Multi-scale convolutional neura network
- Multi-scale Siamese neural network and one-shot learning
 - Siamese neural network
 - Region of interest detection
 - Multi-scale Siamese neural network
 - Results
- Method comparison
- Conclusion and future work

Problems with bridge inspections currently performed

Access is difficult, dangerous, and disruptive

Problems with bridge inspections currently performed

Requires heavy lifting equipment

Problems with bridge inspections currently performed

Manual inspection is time-consuming & costly

Inspect bridges using robotics

- Faster, safer, better, and less expensive
- Big data of inspection videos are collected

Image analysis to provide decision-making support

- 30 frames/second × 3600 seconds/hour = 108,000 frames/hour
- Boring and inefficient to watch long videos collected for bridge inspection
- What can we help?

from the video

Challenges in processing the videos

- Different viewpoints of camera
- Different scales of an object in images
- Camera vibration
- Different models or types of an object to be inspected

- Background
- Multi-scale convolutional neural network feature extracting and matching
- Multi-scale Siamese neural network and one-shot learning
 - Siamese neural network
 - Region of interest detection
 - Multi-scale Siamese neural network
 - Results
- Method comparison
- Conclusion and future work

Multi-scale convolutional neural network (CNN) feature extraction and matching

Multi-scale convolutional neural network (CNN) feature extraction and matching

Issues with the current CNN model

- Deployed from other dataset whose domain is different than bridges
- Generates false-positive noise

Improve the image retrieval algorithm

- Background
- Multi-scale convolutional neural network feature extracting and ma
- Multi-scale Siamese neural network and one-shot learning
 - One-shot learning
 - Siamese neural network
 - Region of interest detection
 - Multi-scale Siamese neural network
 - Results
- Method comparison
- Conclusion and future work

One-shot learning

 To correctly make predictions given only a single example of each new class

Siamese neural network

Siamese neural network

Region of interest detection (region vs image)

Multi-scale Siamese neural network

Multi-scale Siamese neural network

- Formula
 - $P(h1, h2) = Sigmoid(\frac{h1 h2}{|h1||h2|})$
 - Loss = $-y \log(P) + \alpha(1-y) \log(P^2)$
- Training:
 - Stochastic gradient descent (SGD)
 - Learning rate = 0.01
 - α =0.05
 - Fine-tune from Alexnet

Result

region of interest

input image

thresholding

Mask overlap on original image

Result

similarity map

Mask overlap on original image

- Background
- Multi-scale convolutional neural network feature extracting and matching
- Multi-scale Siamese neural network and one-shot learning
 - Siamese neural network
 - Region of interest detection
 - Multi-scale Siamese neural network
 - Results
- Method comparison
- Conclusion and future work

Method comparison

• After learning, the result become more stable and accurate

- Background
- Multi-scale convolutional neural network feature extracting and matching
- Multi-scale Siamese neural network and one-shot learning
 - Siamese neural network
 - Region of interest detection
 - Multi-scale Siamese neural network
 - Results
- Method comparison
- Conclusion and future work

Conclusion

- A video analysis framework that keeps engineers in the loop of inspection
 - Multi-scale convolutional neural network for feature extraction and matching
 - Multi-scale Siamese neural network and one-shot learning

Future work

- Problem: One-shot learning has data limitation
 - Limited amount of data
 - Unrelated background inside the region leads to false-positive detection and thus may detect background as region of interest
- Proposed: post-process to smooth the result and denoise

Acknowledge

- Financial support provided by INSPIRE UTC, and CS and EMSE departments
- Video Data of Bridge Inspection provided by Dr. Genda Chen

Q&A

