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Region of Interest Detection in Bridge Inspection
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Problems with bridge inspections currently performed

* Access is difficult, dangerous, and disruptive
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Problems with bridge inspections currently performed

* Requires heavy lifting equipment
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Problems with bridge inspections currently performed

* Manual inspection is time-consuming & costly
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Inspect bridges using robotics

* Faster, safer, better, and less expensive
* Big data of inspection videos are collected




Image analysis to provide decision-making support

* 30 frames/second X 3600 seconds/hour = 108,000
frames/hour

* Boring and inefficient to watch long videos collected for
bridge inspection

* What can we help?
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Challenges in processing the videos

* Different viewpoints of camera

* Different scales of an object in images

* Camera vibration

* Different models or types of an object to be inspected
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Multi-scale convolutional neural network (CNN) feature
extraction and matching
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Multi-scale convolutional neural network (CNN) feature
extraction and matching




Issues with the current CNN model

* Deployed from other dataset whose domain is different than
bridges

* Generates false-positive noise
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One-shot learning

* To correctly make predictions given only a single example of
each new class
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Siamese neural network
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Siamese neural network
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Region of interest detection (region vs image)
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Multi-scale Siamese neural network
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Multi-scale Siamese neural
network

* Formula
+ P(h1,h2) = Sigmoid(; :11|{;L22 )
« Loss = —ylog(P) + a(1 — y)log(P?)
* Training:
 Stochastic gradient descent (SGD)
* Learning rate = 0.01
 =0.05
* Fine-tune from Alexnet
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Method comparison
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* After learning, the result become more stable and accurate
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Conclusion

* A video analysis framework that keeps engineers in the loop
of inspection

* Multi-scale convolutional neural network for feature extraction
and matching

* Multi-scale Siamese neural network and one-shot learning




Future work

* Problem: One-shot learning has data limitation
* Limited amount of data

* Unrelated background inside the region leads to false-positive
detection and thus may detect background as region of interest

* Proposed: post-process to smooth the result and denoise
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