
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jan 1985

A Parallel Array Scanning Algorithm A Parallel Array Scanning Algorithm

Ralph M. Butler

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Butler, Ralph M. and Wilkerson, Ralph W., "A Parallel Array Scanning Algorithm" (1985). Computer Science
Technical Reports. 7.
https://scholarsmine.mst.edu/comsci_techreports/7

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/7?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A Parallel Array Scanning Algorithm

Ralph M. Butler andRalph W. Wilkerson

CSc-85-5

Department of Computer Science University of North Florida Jacksonville, Florida

Department of Computer Science
University of Missouri-Rolla Rolla, Missouri

A Parallel Array Scanning Algorithm
Ralph M. B u tle r

D epartm ent o f Com puter Science
University of North Florida

Jacksonville, F lorida

Ralph W. W ilkerson

Departm ent of Com puter Science
University of Missouri - Rolla

Rolla, Missouri

1. Introduction
Suppose we are given a vec to r X o f n rea l numbers and we want to find the

maxim um sum found in any contiguous subvector of X. In Jon Bentley 's artic le
[l] on algorithm design and technique, a sim ple vec to r scanning problem and a
series of progressive ly m ore efficien t a lgorithm s to solve this p rob lem were dis
cussed in some detail. Clearly, any algorithm must v is it each location of X at
least once and consequently a lower bound on the running tim e fo r problem is
0 (n), which is in fact attainable as Bentley ’ s paper illustrates. However, the ori
ginal m otivation for this problem was the analagous two dim ensional problem for
an n x n array. That is, find the m axim um sum contained in any contiguous re c
tangular subarray. Currently, the fastest a lgorithm obta ined fo r this problem is
0(7i®)[2] ; the theoretica l lower bound would be at least 0(-n.2). In this note, we
will p resen t a para llel processing approach to this p rob lem which results in
excess o f one o rd er o f magnitude speed up for large prob lem s in the 0 (n 3) a lgo
rithm.

2. An 0 (n 3) sequential algorithm for the two dimensional prob lem
Let us begin by b riefly recounting the procedure used in the one dim en

sional case since it is the basis fo r the 0 (n 3) a lgorithm used in the two dim en
sional case. Let X [l...n] be a vector o f n rea l values and s tart scanning X at X [l]
and scan to the right keeping the maximum sum encountered in a contiguous
subvector in the variable Tnaxsofar. Let us look at the situation inductively by
supposing that if the m axim um sum has been found in X [l . . . i - l] fo r i > 1, then we
can extend the solution to X [l.. . i] by making the following observation. The m ax
imum sum found in X [l.. . i] is e ither the m axim um found in the first i-1 positions
or it is the m axim um found in the subvector that ends in position i. The variable
maxtahere will contain the sum of the values in the subvector that ends in posi
tion i-1. Thus we increase maxtahere by X [i] as long as this sum remains posi
tive e lse we rese t the value o f maxtahere to zero. Finally, maxtahere is com
pared to maxsofar in o rder to find a possibly la rger m axim um sum. The 0 (n)
a lgorithm becom es:

- 2 -

m axsofar = 0;
fo r i = l to n
\

m axtohere = m ax(O jnaxtohgre + X [i]);
m axsofar = m ax(m axsofar, m axtohere);

For the two dimensional problem , suppose we are given an array
Af l...n, l...n] o f n 2 rea l values. We construct an array B [l...n ,0 ...n] such that
B [i,0] = 0 and B [i,j] = B [i, j- l] + A [i,j] for j > 0. Observe that B [i,j] is nothing
m ore that the sum of the first j entries of the i-th row o f A for j > 0, or m ore p re

cisely B [i,j] = A [i,k] fo r j > 0. Now, for 1 < t < s ^ n consider the d ifference
fc = i

D i{t,s) = B [i,s] - B [i,t-1] =

the i th row of A.

J] A [i,k] = sum of the t th
k=t

through the s th en tries of

R eca ll that any rectangu lar subarray o f A m ust span ad jacent columns of A
and hence consecutive values of D i{t,s) fo r som e fixed values o f s and t. The
application of the linear tim e m axim um sum scanning a lgorithm to the two
dim ensional p rob lem is now straightforward. For a fixed choice o f the values s
and t, 1 < t == s == n, consider the values D x(t.s), ... , Dn { t.s), in that order. By
applying the linear tim e algorithm to these values, we can determ ine the m ax
imum sum rectangu lar subarray betw een the t and s columns of A. Hence, by
repeating this process for all choices of s and t -with 1 < t < s < n, one can d e te r
m ine the rectangu lar subarray o f A with m axim um sum. The 0 (n 3) a lgorithm is
given below.

fo r i = 1 to n
\

B[i,0] = 0;
fo r j = 1 to n
i

B [j,i] = A [j,i] + B[j,i-1];
l

l
maxsum. — 0;
for i = 1 to n
i

for j = 1 to n

m axsofar = 0;
m axtohere = 0;
fo r k = 1 to n
\

m axtohere = m ax(0 ,m axtohere + B [k ,j] - B [k,i-1]);
m axsofar = m ax(m axs ofar, m axtohere);

5
m axsum = m ax(m axsum , m axsofar);

J

- 3 -

3. Parallel Environments
During the developm ent of a parallel a lgorithm an a ttem p t should be m ade

to rem ain independent of:
(1) any particu lar m achine’s arch itecture, and
(2) the number of processes devoted to the p rob lem solution.

In particular, the parallel algorithm should execu te c o r re c t ly on a machine that
supports only one process, as well as on a m achine that supports severa l
processes. This approach has a d istinct advantage in that it supports porting the
code to a wide variety of machines. A nice s ide-effect is that because of the
independence of the num ber o f processes devoted to the p rob lem the algorithm
can be tested on a sequential machine before uploading it to a m ultiprocessor.

For example, initial testing of the code fo r this a lgorithm was done on a Vax
11/780. For parallel testing, the code was p orted to a D enelcor HEP at first, and
then la ter to a Sequent Balance 8000 and an Encore Multimax.

Lusk and Overbeek [4] have discussed the p ortab ility issues at some length.
They have developed a set o f m acros that support p ortab ility b y hiding
m achine-dependent details from the program m er. The m acros provide m oni
tors as the synchronization mechanism. They allow the p rogram m er to think in
term s o f h igh-level m onitor operations and to ignore the low-level details o f a
particu lar machine. Because m onitors p lay such an im portan t ro le in the design
of this algorithm , a discussion of them follows.

4. Monitors
A m onitor is an abstract concept consisting o f th ree parts:
(1) a shared resource, or a data structure represen ting the resource,
(2) the code to in itia lize the shared stuctures, and
(3) the code which perform s the c r it ica l section operations on the

resource.
The operations o f a m on itor m ay be ca lled by any process at any tim e. It Is
necessary, however that only one process be p erm itted to en ter the m on itor at
one tim e. In other words, from a process ’ s poin t of view, the m on itor is a seri
ally reusable resource. This does not im ply that the invoking processes are
com p lete ly serialized: th ey are m ere ly seria lized through their c r itica l sections
in which they access a shared resource through the m onitor. Perm ission to
en ter the m on itor is typ ica lly gained through the use o f som e lock ing m echan
ism, e.g. a test-and-set prim itive. This is the portion of code that is usually
machine dependent and is best hidden in m acros.

It is convenient to think o f a m onitor as an enclosure p ro tectin g som e item
or group of item s. The item s must be p ro tec ted because they are shared among
processes, and only one process at a tim e should be allowed to use them . In
applications such as the array scan, the item s being p ro tec ted are a group of
subproblem s that must be solved. One reason that on ly one process at a tim e
m ay access them , is that m ore than one process m ight access the sam e sub
problem and a ttem pt to solve it.

5. The Parallel Algorithm

5.1. Overview
At the start of the program, an integer (n) is read indicating how many total

processes are to be used to solve the problem. Then the array defining the
problem is read in. Next, the problem is broken into a set o f subproblem s that

- 4 -

m ay be solved individually by para llel processes. The subproblem s are p laced in
a m on itor for p rotection to ensure that the p rocesses w ill each obtain a unique
subproblem to solve. Then, n-1 parallel p rocesses are spawned. There are n-1 of
them because the n th process is the m ainline which will also work on a subprob
lem.

Upon being spawned, each process goes to the m on itor and attem pts to ge t
a p rob lem to solve. At first, the pool o f p rob lem s is em pty, and the processes
are forced to wait. When the mainline has p laced all subproblem s in the pool,
and com p leted o th er in itia lization functions, it marks the pool as available. This
re leases the processes allowing them to en ter the m onitor, obtain a subproblem ,
and leave to solve it. A fter marking the pool as full, thus starting the para llel
processes, the mainline attem pts to en ter the m on itor and ge t a subproblem to
solve.

Each process solves the subproblem it re tr ie ved and then returns to the
m on itor for m ore work to do. Eventually, the entire p rob lem is solved. The
mainline can d e tec t this by going to the m on ito r fo r work to do and being
notified that th ere is no m ore. It then notifies the o ther processes and they all
term inate.

A t this point, the p rogram is coded such that it solves one array p rob lem
and then ends. I f it w ere to read in m u ltip le arrays fo r solution however, it
would n o t re s ta rt the para lle l processes e ve ry tim e. Instead, it would m ere ly le t
the processes wait at the m onitor while the mainline read in a new problem ,
broke it into subproblem s, and added them to the pool. The mainline would then
m ark the pool as full again so that the processes could all begin executing again.
This approach is p re fe rab le to re-spawning th e processes a fte r each problem ,
because spawning a process is an expensive operation on some machines.

5.2. Partitioning into Subproblems
Partition ing a p rob lem into subproblem s is an in teresting issue. On the one

hand, if the subproblem s are too small, the expense o f crea ting and managing
separate processes to handle them becom es too high. On the other hand, if
som e o f the problem s are too large, one p rocess m ay finish its work and be
fo rced to wait while another continues on a v e ry large p rob lem that should have
been broken down. The addition o f two in tegers is usually too sm all to deserve a
to ta lly separate process. For this algorithm , the solution o f the entire array
would typ ica lly be too la rge a problem .

The partition ing schem e which we have chosen is to allow each process to
apply the linear tim e algorithm to each Z\(s,t) described above in section 2 on
the sequential algorithm . As described in that section, each subproblem m ay be
rep resen ted by an in teger pair (s ,t), where s and t are used as subscripts into
the a rray under exam ination. It is these in te ge r pairs that are m anipulated by
the m onitor, not the rows and columns of the array. Indeed, the m on itor actu
ally p ro tects a pair of variables nam ed s and t, increm enting them each tim e it
needs a new in teger pair. It also checks fo r in crem enting beyond the a rray ’s
boundaries, indicating end o f problem . P ro tec tin g the variables in the m onitor
ensures that a process gets a unique pair of values (and thus a unique subprob
lem) each tim e it enters the m onitor.

The pair o f in tegers is in itia lized to s = 1, t = 0 b e fo re a p rob lem is begun.
Then, the c r itica l section code of the m on itor a lters the va lu e (s) each tim e a
process requests the next pair of values. The cr itica l section is invoked by a
m acro invocation such as: GETPROB(i,j,n) w here i is a variab le loca l to the invok
ing process which will take on the next value o f s, j takes on the next value of t,
and n is the dim ension o f the a rray being processed.

- 5 -

The GETPROB m acro represen ting the c r itica l section is coded as:

if (s > 0)
i

t = t + 1;
if (t > $3)
l

s = s + 1;
t = s;

i f (s <= $3)
l

$1 = s;
$2 = t;

i
l

where the $n variables are m acro variables, e.g. $1 in the m acro corresponds to
. in the GETPR0B(i,j,n) invocation.

5.3. The Parallel Processes
As m entioned above, it is desirab le to m aintain independence o f th e num ber

3f p rocesses devoted to the problem . Thus, if there is on ly one process avail
able, it must be capable o f solving every subproblem by itself. This means that
die process should obtain a subproblem , solve it, and re tu rn to the m on itor for
more work to do until th ere is no m ore. Pseudo-code fo r such a process is as
rollows:

while (m ore subproblem s to solve)
i

GETPROB(i,j,n);
p rocess subproblem (i,j);
i f (th is subproblem gives best resu lt so fa r)
$

LOCK; / * lock out other processes */
b es t_soJar = this calcu lated value;
UNLOCK;

J

Coding the process in this m anner perm its a single copy of it to handle
every subproblem if necessary. Thus, using a single copy of the process, the
entire p rogram can be tested on a sequential machine. On a m ultiprocessor,
multiple copies o f the process can be used to solve the prob lem . Their activities
are synchronized by the m on itor which ensures that no two p rocesses work on
the sam e problem , and that no subproblem is skipped.

6. Results
Table 1 summarizes test results that w ere run on the D enelcor HEP at

Argonne National Laboratory. For the test cases, we considered n x n arrays of
random in tegers where n took on the values 5, 10, 20, 40, 50, and 100. In each
case the problem was solved using 1, 2, 4, 8, 12, and 16 processes. All tim es
given Eire in m illiseconds. The tim es are fo r solving prob lem s and do not include
initialization, etc.

- 6 -

E xecu tion T im e in M illiseconds
n u m b e r o f processes

1 2 4 8 12 16
5 3.3 2.1 1.2 1.0 1.2 1.2

10 22.3 11.5 6.0 3.5 3.1 3.2
20 147.8 74.5 38.0 20.3 16.0 17.0
40 1049.0 528.7 268.9 143.3 121.3 121.0
50 3579.2 1801.3 913.8 472.5 328.3 261.4

100 27037.6 13614.8 6901.4 3553.7 2467.2 1956.9

N ote that on the sm aller problems, only m odest speed ups w ere rea lized at
first, and decays even began to creep in as m ore processes w ere added. This is
due to the fact that, under the chosen partition ing schem e, the sm aller p rob
lem s did not partition into as m any subproblem s as there 'were processes. Thus,
the ex tra p rocesses en tered the m on itor only to d iscover there was nothing for
them to do.

The a lgorithm showed substantial speed ups (o ve r 13) fo r the la rger p rob
lems, where th ere were m ore subproblem s than processes. Indeed, these speed
ups are about the best that can be obtained [3] on a single-PEM HEP such as we
were using. In the la rger problem s o f course, there was alm ost always som e
thing in the pool when a process would en ter the m onitor asking for work.

We were able to port the code to a Sequent Balance 8000 machine and
obtain a few prelim inary tim ings. The obtained tim ings were d ifferen t from
those on the HEP, but the re la tive speed ups w ere approxim ately the same.

References

1. J. Bentley, “ A lgorithm design techniques,” C om m un ica tion s o f the ACM, vol.
27, no. 9, pp. 885-871, Septem ber, 1984.

2. J. Bentley, “ P erspective on P erfo rm ance ,” C om m un ica tion s o f the ACM,
vol. 27, no. 11, pp. 1087-1092 , Novem ber, 1984.

3. H arry F. Jordan, H E P A rch itectu re , P rog ra m m in g and P e rfo rm a n ce , pp. 1-
40, MIT Press, Para lle l MIMD Computation: HEP Supercom puter and its
Applications, 1985.

4. Ewing L. Lusk and Ross A. Overbeek, “ Im p lem entation o f Monitors with Mac
ros: A Program m ing Aid for the HEP and Other Para lle l P rocessors ," Techn
ica l R eport ANL-83-97, Argonne National Laboratory, Argonne, Illinois,
D ecem ber 1983.

	A Parallel Array Scanning Algorithm
	Recommended Citation

	tmp.1600974007.pdf.BuLCA

