MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jan 1985

A Parallel Array Scanning Algorithm

Ralph M. Butler

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

b Part of the Computer Sciences Commons

Recommended Citation

Butler, Ralph M. and Wilkerson, Ralph W., "A Parallel Array Scanning Algorithm" (1985). Computer Science
Technical Reports. 7.

https://scholarsmine.mst.edu/comsci_techreports/7

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/7?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A Parallel Array Scanning Algorithm

Ralph M. Butler
and
Ralph W. Wilkerson

CSc-85-5

Department of Computer Science
University of North Florida
Jacksonville, Florida

Department of Computer Science
University of Missouri-Rolla
Rolla, Missouri

A Parallel Array Scanning Algorithm

Ralph M. Butler

Department of Computer Science
University of North Florida
Jacksonville, Florida

Ralph W Wilkerson

Department of Computer Science
University of Missouri - Rolla
Rolla, Missouri

1. Introduction

Suppose we are given a vector X of n real numbers and we want to find the
maximum sum found in any contiguous subvector of X. In Jon Bentley's article
[1] on algorithm designh and technique, a simple vector scanning problem and a
series of progressively more efficient algorithms to solve this problem were dis-
cussed in some detail. Clearly, any algorithm must visit each location of X at
least once and consequently a lower bound on the running time for problem is
0(n), which is in fact attainable as Bentley’'s paper illustrates. However, the ori-
ginal motivation for this problem was the analagous two dimensional problem for
an n x n array. That is, find the maximum sum contained in any contiguous rec-
tangular subarray. Currently, the fastest algorithm obtained for this problem is
0(7i®)[2] ; the theoretical lower bound would be at least 0(-n.2). In this note, we
will present a parallel processing approach to this problem which results in
excess of one order of magnitude speed up for large problems in the 0(n3) algo-
rithm.

2. An 0(n 3 sequential algorithm for the two dimensional problem

Let us begin by briefly recounting the procedure used in the one dimen-
sional case since it is the basis for the 0(n3) algorithm used in the two dimen-
sional case. Let X[l...n] be a vector of n real values and start scanning X at X [I]
and scan to the right keeping the maximum sum encountered in a contiguous
subvector in the variable Tnaxsofar. Let us look at the situation inductively by
supposing that if the maximum sum has been found in X[l...i-1] for i > 1, then we
can extend the solution to X[I...i] by making the following observation. The max-
imum sum found in X[l...i] is either the maximum found in the first i-1 positions
or it is the maximum found in the subvector that ends in position i. The variable
maxtahere will contain the sum of the values in the subvector that ends in posi-
tion i-1. Thus we increase maxtahere by XJ[i] as long as this sum remains posi-
tive else we reset the value of maxtahere to zero. Finally, maxtahere is com-
pared to maxsofar in order to find a possibly larger maximum sum. The 0(n)
algorithm becomes:

maxsofar = Q;

fori=1l ton

\ - -
maxtohere = max(Ojnaxtohgre + X[i]);
maxsofar = max(maxsofar, maxtohere);

For the two dimensional problem, suppose we are given an array
Afl...n, 1...n] of n2 real values. We construct an array BJl...n,0...n] such that
B[i,0] = 0 and BJi,j] = BJi,j-1] + Ali,j] for j > 0. Observe that BJi,j] is nothing
more that the sum of the first j entries of the i-th row of A for j > O, or more pre-

cisely BJi,j] = Ali,k] for j > 0. Now, for 1< t < s” n consider the difference
=i

Di{t,s) = BIJi,s] - B[i,t-1] = J] Al[i,k] = sum of the tth through the sth entries of
k=t

the ith row of A.

Recall that any rectangular subarray of A must span adjacent columns of A
and hence consecutive values of Di{t,s) for some fixed values of s and t. The
application of the linear time maximum sum scanning algorithm to the two
dimensional problem is now straightforward. For a fixed choice of the values s
and t, 1< t =s =n, consider the values D Xt.s), ... , Dn{t.s), in that order. By
applying the linear time algorithm to these values, we can determine the max-
imum sum rectangular subarray between the t and s columns of A. Hence, by
repeating this process for all choices of s and t -with 1< t < s< n, one can deter-
mine the rectangular subarray of A with maximum sum. The 0(n3) algorithm is
given below.

fori= 1ton

B[i,0] = O;
forj=1ton
|
Bli.i] = Afl.i] + B[j,i-1];
|

|
maxsum. —O0;

fori= 1ton
|

forj = 1ton

maxsofar = 0;

maxtohere = 0O;

for k = 1to n

\
maxtohere = max(0,maxtohere + B[k,j] - B[k,i-1]);
maxsofar = max(maxsofar, maxtohere);

5
maxsum = max(maxsum,maxsofar);

3. Parallel Environments

During the development of a parallel algorithm an attempt should be made
to remain independent of:

(1) any particular machine’s architecture, and
(2) the number of processes devoted to the problem solution.

In particular, the parallel algorithm should execute correctly on a machine that
supports only one process, as well as on a machine that supports several
processes. This approach has a distinct advantage in that it supports porting the
code to a wide variety of machines. A nice side-effect is that because of the
independence of the number of processes devoted to the problem the algorithm
can be tested on a sequential machine before uploading it to a multiprocessor.

For example, initial testing of the code for this algorithm was done on a Vax
11/780. For parallel testing, the code was ported to a Denelcor HEP at first, and
then later to a Sequent Balance 8000 and an Encore Multimax.

Lusk and Overbeek [4] have discussed the portability issues at some length.
They have developed a set of macros that support portability by hiding
machine-dependent details from the programmer. The macros provide moni-
tors as the synchronization mechanism. They allow the programmer to think in
terms of high-level monitor operations and to ignore the low-level details of a
particular machine. Because monitors play such an important role in the design
of this algorithm, a discussion of them follows.

4. Monitors
A monitor is an abstract concept consisting of three parts:
(1) a shared resource, or a data structure representing the resource,
(2) the code to initialize the shared stuctures, and

(3) the code which performs the critical section operations on the
resource.

The operations of a monitor may be called by any process at any time. It Is
necessary, however that only one process be permitted to enter the monitor at
one time. In other words, from a process’s point of view, the monitor is a seri-
ally reusable resource. This does not imply that the invoking processes are
completely serialized: they are merely serialized through their critical sections
in which they access a shared resource through the monitor. Permission to
enter the monitor is typically gained through the use of some locking mechan-
ism, e.g. a test-and-set primitive. This is the portion of code that is usually
machine dependent and is best hidden in macros.

It is convenient to think of a monitor as an enclosure protecting some item
or group of items. The items must be protected because they are shared among
processes, and only one process at a time should be allowed to use them. In
applications such as the array scan, the items being protected are a group of
subproblems that must be solved. One reason that only one process at a time
may access them, is that more than one process might access the same sub-
problem and attempt to solve it.

5. The Parallel Algorithm

5.1. Overview

At the start of the program, an integer (n) is read indicating how many total
processes are to be used to solve the problem. Then the array defining the
problem is read in. Next, the problem is broken into a set of subproblems that

may be solved individually by parallel processes. The subproblems are placed in
a monitor for protection to ensure that the processes will each obtain a unique
subproblem to solve. Then, n-1 parallel processes are spawned. There are n-1 of
them because the nth process is the mainline which will also work on a subprob-
lem.

Upon being spawned, each process goes to the monitor and attempts to get
a problem to solve. At first, the pool of problems is empty, and the processes
are forced to wait. When the mainline has placed all subproblems in the pool,
and completed other initialization functions, it marks the pool as available. This
releases the processes allowing them to enter the monitor, obtain a subproblem,
and leave to solve it. After marking the pool as full, thus starting the parallel
processes, the mainline attempts to enter the monitor and get a subproblem to
solve.

Each process solves the subproblem it retrieved and then returns to the
monitor for more work to do. Eventually, the entire problem is solved. The
mainline can detect this by going to the monitor for work to do and being
notified that there is no more. It then notifies the other processes and they all
terminate.

At this point, the program is coded such that it solves one array problem
and then ends. If it were to read in multiple arrays for solution however, it
would not restart the parallel processes every time. Instead, it would merely let
the processes wait at the monitor while the mainline read in a new problem,
broke it into subproblems, and added them to the pool. The mainline would then
mark the pool as full again so that the processes could all begin executing again.
This approach is preferable to re-spawning the processes after each problem,
because spawning a process is an expensive operation on some machines.

5.2. Partitioning into Subproblems

Partitioning a problem into subproblems is an interesting issue. On the one
hand, if the subproblems are too small, the expense of creating and managing
separate processes to handle them becomes too high. On the other hand, if
some of the problems are too large, one process may finish its work and be
forced to wait while another continues on a very large problem that should have
been broken down. The addition of two integers is usually too small to deserve a
totally separate process. For this algorithm, the solution of the entire array
would typically be too large a problem.

The partitioning scheme which we have chosen is to allow each process to
apply the linear time algorithm to each Z\(s,t) described above in section 2 on
the sequential algorithm. As described in that section, each subproblem may be
represented by an integer pair (s,t), where s and t are used as subscripts into
the array under examination. It is these integer pairs that are manipulated by
the monitor, not the rows and columns of the array. Indeed, the monitor actu-
ally protects a pair of variables named s and t, incrementing them each time it
needs a new integer pair. It also checks for incrementing beyond the array’s
boundaries, indicating end of problem. Protecting the variables in the monitor
ensures that a process gets a unique pair of values (and thus a unique subprob-
lem) each time it enters the monitor.

The pair of integers is initialized to s = 1, t = O before a problem is begun.
Then, the critical section code of the monitor alters the value(s) each time a
process requests the next pair of values. The critical section is invoked by a
macro invocation such as: GETPROB(i,j,n) where i is a variable local to the invok-
ing process which will take on the next value of s, j takes on the next value of t,
and n is the dimension of the array being processed.

The GETPROB macro representing the critical section is coded as:
if (s > 0)
i
t=1t+ 1
if (t > $3)
|

[S s+ 1
t S;

if (s <= $3)
|
$1

S,
$2 =1t

where the $n variables are macro variables, e.g. $1 in the macro corresponds to
.in the GETPROB(i,j,n) invocation.

5.3. The Parallel Processes

As mentioned above, it is desirable to maintain independence of the number
3f processes devoted to the problem. Thus, if there is only one process avail-
able, it must be capable of solving every subproblem by itself. This means that
die process should obtain a subproblem, solve it, and return to the monitor for
more work to do until there is no more. Pseudo-code for such a process is as
rollows:

while (more subproblems to solve)
|
GETPROB(i,j,n);
process subproblem (i,j);
if (this subproblem gives best result so far)

LOCK; /* lock out other processes */
best_soJar = this calculated value;
UNLOCK;

J

Coding the process in this manner permits a single copy of it to handle
every subproblem if necessary. Thus, using a single copy of the process, the
entire program can be tested on a sequential machine. On a multiprocessor,
multiple copies of the process can be used to solve the problem. Their activities
are synchronized by the monitor which ensures that no two processes work on
the same problem, and that no subproblem is skipped.

6. Results

Table 1 summarizes test results that were run on the Denelcor HEP at
Argonne National Laboratory. For the test cases, we considered n x n arrays of
random integers where n took on the values 5, 10, 20, 40, 50, and 100. In each
case the problem was solved using 1, 2, 4, 8, 12, and 16 processes. All times
given Eire in milliseconds. The times are for solving problems and do not include
initialization, etc.

Execution Time in Milliseconds
number of processes

1 2 4 8 12 16
5 3.3 2.1 1.2 1.0 1.2 1.2
10 22.3 11.5 6.0 35 3.1 3.2
20 147.8 74.5 38.0 20.3 16.0 17.0
40 1049.0 528.7 268.9 143.3 121.3 121.0

50 3579.2 1801.3 913.8 472.5 328.3 261.4
100 27037.6 13614.8 6901.4 3553.7 2467.2 1956.9

Note that on the smaller problems, only modest speed ups were realized at
first, and decays even began to creep in as more processes were added. This is
due to the fact that, under the chosen partitioning scheme, the smaller prob-
lems did not partition into as many subproblems as there 'were processes. Thus,
the extra processes entered the monitor only to discover there was nothing for
them to do.

The algorithm showed substantial speed ups (over 13) for the larger prob-
lems, where there were more subproblems than processes. Indeed, these speed
ups are about the best that can be obtained [3] on a single-PEM HEP such as we
were using. In the larger problems of course, there was almost always some-
thing in the pool when a process would enter the monitor asking for work.

We were able to port the code to a Sequent Balance 8000 machine and
obtain a few preliminary timings. The obtained timings were different from
those on the HEP, but the relative speed ups were approximately the same.

References

1. J. Bentley, “Algorithm design techniques,” Communications of the ACM, vol.
27, no. 9, pp. 885-871, September, 1984.

2. J. Bentley, “Perspective on Performance ,” Communications of the ACM,
vol. 27, no. 11, pp. 1087-1092 , November, 1984.

3. Harry F. Jordan, HEP Architecture, Programming and Performance, pp. 1-
40, MIT Press, Parallel MIMD Computation: HEP Supercomputer and its
Applications, 1985.

4. Ewing L. Lusk and Ross A. Overbeek, “Implementation of Monitors with Mac-
ros: A Programming Aid for the HEP and Other Parallel Processors,” Techn-
ical Report ANL-83-97, Argonne National Laboratory, Argonne, lllinois,
December 1983.

	A Parallel Array Scanning Algorithm
	Recommended Citation

	tmp.1600974007.pdf.BuLCA

