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ABSTRACT

In this paper, several minimal perfect hashing function 
generating methods are examined. One of them, the mincycle 
method by Sager is evaluated by the Monte Carlo method. The 
results are represented in graphs and tables.
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I. INTRODUCTION
Monte Carlo (sampling) method[l] is one of the most basic 

techniques used in digital computer simulation. It is used to 
draw values from a pool of possible ones as input fed into the 
simulation program. This pool is called the sample space, and 
values are called samples. Each sample in the sample space is 
assigned a probability, which determines the frequency or the 
likelihood that it be drawn. In this application a random 
number generator is used to obtain these values according to 
their probabilities. The result of the simulation program 
then describes the system being simulated under various 
circumstances.

This technique exploits the nature of the cumulative 
distribution function F(y) of a random variable (sample) y to 
generate a value of y. The cumulative distribution function 
is a function that gives the probability of a value of y less 
than or equal to a specified value c; ie.

P (y<=c ) = F(c)

Note that the range of the quantity F(c) is 0 <=F(y) <= 1. In 
Monte Carlo method a number r in the set of F(c)'s is randomly 
chosen. The value of y corresponding to this particular value 
of F(y) = r is the desired value of the random variable 
(sample) y. For example, suppose we want to simulate the 
outcome of throwing a die. Now the cumulative distribution
function is:
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F ( y )

y / 6

,
undefined

y {1/ 2, 3, 4, 5, 6} 

otherwise

For example, if (i-l)/6 <= r < i/6, where i {1,2,3,4, 5,6 } , 
then y = i is the corresponding value to r. As another 
example, we can use the Monte Carlo method to reach an 
approximate value of II. Before we begin we bear in mind that 
the ratio between the area of a circle of radius r and the area 
of a square with length of side r is II. So the ratio between 
areas enclosed by equations:

2square-root-of(1 - x ) 
0 
0

and

y  = 

y  =
x =

y = 0
y  =  1
x = 0 
x = 1

is JI/4. Then we use the Monte Carlo method to sample points in 
region { (x, y) | 0 <= x < 1, 0 <= y < 1} with uniform probability
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density. Now the number of sample points satisfying the 
inequility:

2y <= square-root-of(1 - x )

to that of total sample points taken is an approximation of
n/4.

Hashing is a method to store and retrieve a set of items 
in a table. Each item in the set has a key, w, which uniquely 
specifies the item. Then the location of the item with key w is 
given by h(w) . Here h is called the hash function. But such 
is not always the case, because usually we will have h(w^) = 
h(Wj) for some i <> j . This situation is called (hash) 
collision and further work has to be done to get the item 
desired. This process is called collision resolution.

Collision resolution reduces system performance. A 
function which makes

h(wi ) <> h(Wj) for all i <> j

then h is called a perfect hash function. Use of such hash 
functions eliminates the need for collision resolution. In 
this case the location of the item whose key is w is simply 
given by h(w) and no provision for hash collision resolution 
is necessary. This may be good enough, but when the size of 
the table on which the items are to be stored is taken into
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account, perfect hash is still not optimal since the table may 
contain wasted empty locations. The improvement to perfect 
hashing is minimal perfect hashing. Now, the size of the 
table is exactly the number of items to be stored into it. The 
resultant function and table is determined by the keys of the 
items. So when these methods are applied, retrieval of items 
from a static table is facilitated. Such hash functions are 
dependent on their domain and are not easy to find. Several 
methods have been developed to compute minimal perfect hash 
functions. But these methods invariably involve so much 
computation that they are only suitable to be applied to 
static sets, ie. where the sets of the keys are not to be 
changed.

A few years ago it was believed that general computation 
of minimal perfect hash function for a set of keys was 
difficult. Knuth [2] gave an example that to compute a 
perfect hash function which maps a set of 31 keys into a set 
comprised of 41 integers, may take 10 million computations. 
Since then, several schemes have been found that do this job 
in much fewer computations. This paper takes one of them and 
uses Monte Carlo method to provide the keys and tries to 
figure out how much time it would require to compute a minimal 
perfect hash function.
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II . MINIMAL PERFECT HASH FUNCTION GENERATION ALGORITHMS
1). Sprugnoli's [3]:

Sprugnoli gave two methods, they are called, 
respectively, quotient reduction method and remainder 
reduction method. These two methods gives perfect hash 
functions but not minimal perfect hash functions, actually 
sometimes the hash function computed results in rather 
sparse hash tables.
i. Quotient reduction method.

The basic form of this hash function is:

h(w) = the-integer-part-of ((w+s)/n)

Where w is the key and s and n are parameters of this 
function. s is called the translation term and can be 
decomposed into s = q*n + s' for some q and s' ( 0 <= s ' < n 
). The term q*n is used to set 1i(Wq ) to 0 and s' is to 
adjust the w's to different intervals [kn, (k+l)n] so that 
h(wi ) <> h(Wj ) for every i <> j .
ii. Remainder reduction method:

The form of this hash function is:

h(w) = the-integer-part-of (((d+wq) mod M)/N)

Where d, q, N, M are parameters to be chosen for this 
function for it to posses the properties we desire.
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2) . Cichelli's[4] :
Cichelli gives a minimal perfect hash function in the 

form: hash value <-- key length + the associated value of
the key's first character + the associated value of the 
key's last character. To apply his method, the keys are 
first sorted into descending order by the sum of the 
frequencies of the occurrences of each key's first and last 
letter. This ordering is then modified such that any word 
(key) whose hash value is already determined by the 
previous words (keys) is placed next. After ordering the 
keys, an exhaustive search is used to find the values 
associated to each letter.

Cichelli asserts that this method is applicable to 
sets of keys up to four times as large as those said to be 
feasible by the method described by Sprugnoli. This 
method does not guarantee success.

3) . Jaeschke's[5]:
This minimal perfect hash function is of the form:

h(wi ) = (the-integer-part-of C/w^ ) mod n 
where n = |W| and W = [wi | l<=i<=n} .

When w ^ 's are not pairwise prime this C may not exit, 
in which case a transformation Dw+E is employed so that 
Dw1+E, Dw2+E,..., Dwn+E are pairwise prime. This method 
works well for n=|W| up to 15. For larger n, grouping is
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used to keep the number of keys in each group less than 15 
so that when this method is applied to each group 
computation time will remain minimal.

Jaeschke gave an algorithm to compute the C as 
following:

1. The w's are sorted into ascending order before 
computation begins.

2. Compute the smallest common multiple of W: smc.
Set L = n * smc.

3. C0 = (n-2)w. w /w -w.0 ' ' 1 n ' «n
4. Set C = C,
5. For all i in [l..n] compute C/w^. If C/wi <> C/ŵ . 

for all j in [1..n] and j <> i then the algorithm 
terminates successfully.

6. If C > L then the algorithm terminates 
unsuccessfully.

7. Compute

'0 = max {j | Exists i such that (C/w^) mod n = (C/w^) 
mod n} .

i_ = max{i| (C/w. ) mod n = (C/w. ) mod n}° 1 Jo
a ( C, W) = min {w . - C mod w . , w . - C mod w . }

10 10 D0 30
C = C + a(C,W) 
goto step 5

4). Changs's[6] method:
Chang's hashing function is h(wi) = C mod p(wi ) . Where 

p(w) is a prime number function that transform w into a
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prime number and if <> then p(w^) <> p(w^). This 
method is based on the Chinese remainder theorem which
states that:

Let r^, r2 '.... / rn k® integers and m^, m^, , mn
be n pairwise prime integers. Then, there exists an 
integer C such that C = r^ (mod m^) , C = r2 (mod 
m2 ) ............ C 2 rn (mod ) .n

Now that we let r^ = i and rrn = p(w^), then h(w^) = C mod 
p(w^) is clearly a minimal perfect hash function. With 
this, Chang proved the following theorem:

Let itk and m^ be relatively prime where i#j and 
l<=i, j< = n. Let m^<m2<. - -<mn - E ̂ < = 1  <=n moci mj= -j
if NL = IIj and M^b_^ = 1 (mod rru ) .

Then b ^ 's are calculate using the famous Euclidean 
algorithm!7]. For a set of p(w)'s, there are infinite 
number of C's that satisfy this Chinese remainder theorem, 
we therefore would like C to be the smallest among 
them. Since we have C=E..^.^_ b.M.i which satisfies C= i 
(mod iru). Let C' t C (mod nu) = i (mod nu ) . Then C-C' = 0 
(mod m i) for all i. Then C-C' is a multiple of H1<_i<_n 
nu , which implies there is at most one solution between 0 
and n1<=i<_n Thus C = £1<=i<=n b±M i± mod ni<=.<=n m.
is smallest positive integer such that C = i(mod m ^ ) . 
After w's are transformed into prime numbers , m's, the 
following algorithm is used to find C.
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1. [Compute All M^ ' s ]
Compute Mj =IK ̂  nu f°r all l<=j<=n.

2. [Compute All b i ' s]
For all i, 1<= i <=n compute
M* . = M. mod m .1 a l
Dend = m.i
Dsr = M ' .l
j = 1= Dend /Dsr
Rmd = Dend - Qj * Dsr 
while Rmd ? 1 do 

Dend = Dsr 
Dsr= Rmd 
3 = j+1Q -= Dend / Dsr 
3Rmd = Dend - Q . * Dsr 

3end while

do j = 1 to k-1
= -B . * 

3V iend do
b. = B,_

•k-1 + B3-1

. [Compute C ] 
Compute C = El<=i <=n b.*M.*il l mod II. . m .1 0 = 3  <=n j

Chang's method is unique in that:
1) . It is conceptually very simple.
2) . It guarantees a minimal perfect hash function.
3) . It does not require back tracking.

But in using this method users are confronted with two 
problems:
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1) . Each item must, have a unique numerical key.
2) . The C' s produced by this method are very large[8] . 

Actually, their magnitude increase exponentially.
5 ) . Sager's Method[8]:

In this method words are transformed into edges in a 
graph and the overall topology of the graph represents the 
interdependence of these words. First the algorithm 
accepts as input set of words, ie. character strings , W = { 
w^ | l<=i<=n }. Then each word, w^, is hashed into 3
independent positive integers: IIq (w ^), h^(w^),
h2 (Wi>. Now, h 1(wi )'s and h2 (w2 )'s are the vertices and 
each word in W defines an edge of the graph G = <V,E>. 
Where V and E are set of vertices and edges of the graph 
respectively. Further, to make sure that each word 
defines an edge, fh^w)! w  ̂ W} and {h2 (w)| w t W} are 
disjoint. The algorithm tries to associate a number with 
each vertices in V so to make

H(w) = (hQ (w)+goh1 (w)+goh2 (w)) mod n

the desired function where the function g associates a 
number to each vertex.

The method used to find this g is by an exhaustive 
search which potentially makes this algorithm 
intractable. But because the words are ingeniously 
ordered before this search begins, usually only a small
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portion of the whole space is searched before the algorithm 
reaches a solution. Actually, experimental result shows, 
when V is sufficiently large, there is virtually no 
backtracking, that is the search succeeds on practically 
the first hit. The overall algorithm is composed of 3 
parts, part 1 hashes the words into positive integers, part 
2 orders the words, then in part 3 this sequence of words 
determines which number in [0. . . |W|—1] will be assigned to 
each vertex.

To understand how this ordering is done, consider the 
sequence of graphs: GQ , where for all i t
[ 0. . k ] :

G.l
= The partiton of V generated by the smallest 
equivalence relation containing {<h1(w), h2 (w)>| 
w t W± },

E. = the multiset of edges over V. whose l i
characteristic function is =
card( lw W-VT | {h^w), h2 (w)} <L pUq})-

i

= 0
and G^ are computed from G^_-^ as follows:
Choose p and q such that {p, q} is an edge of the 
graph G^  ̂ lying on a maximal number of minimal 
length cycles over Then let = [w(
fh^w) , h2 (w) j c p u q l  and let = Wi_1U X ± .
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The algorithm employed to accomplish this, which
Sager calls the mincycle algorithm, is adapted from the
well known 0(n ) Warshall's algorithm[9] For each ,
using this algorithm as skeleton, mincycle algorithm takes
notes of cycles' mid-points so that these cycles can be
recovered later. Since | | is proportional to N, this

4algorithm is 0(n ) . Actually, this algorithm only has to 
be applied to cycles of lengths greater than 2. Smaller 
cycles, those of length 2 and edges which do not belong to 
cycles, can be detected from a graph with algorithms of 
O (n2 ) .

For part 3, for all i £ [ 1. . . k] , let - W^_^ and
choose arbitrarily a canonical member of X^ and let = 
{Xj | j t [ 1 • • * i 1 } • Now for all i [ 0. . . k] and for all w
(r , let path(w) = y^, y^, . . . , yfc be the unique sequence of 
edges over such that the sequence of edges

{h1 (yQ ), h 2 (yQ } , {h1 (y1 ), h ^ w - J  , . . . , {1^ (yt ) , h 2 (yt ) }

form a path from h^(w) to h2 (w) over the graph G. Then 
given H(w) = (hQ (w) + (Z0<=:j<=t (-l)-’u(y..) )) mod N an
injection from W^__^ into [0...N-1], to extend it to the 
domain , search for an n t [0. . .N-l] that makes H(w) an 
injection from into [0...N-1]. Where path(w) = yQ , 
y1# . . . ,ytand U: Y^ -+ [0. . .N-l] is

Where path(w)
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U(Xj)= ( (H(Xj ) - ) ) mod n if 0<j<i
V n if j = i.

The detail of behavior for this method is discussed in 
the next chapter.



14

III. OBSERVATION ON THE PERFORMANCE OF SAGER'S METHOD
To see how this method performs, for each chosen |W| and 

number of vertices |V|, random numbers of uniform 
distribution are used as hQ(w)'s, h^(w)'s and I^CwJ's, and 
minimal perfect hash function is generated by an 
implementation of this method which was was coded by Mr. John 
Pulley in the summer of 1984. This implementation is coded 
in Turbo Pascal and is to be run on an IBM PC. Time used to 
order W (Part 2) and to exhaustively search the function (Part
3) are recorded separately. |W| ranges from 100 to 1200 by 100 
and for each |W| , the number of vertices |V| ranges from 75% to 
150% of |W| . For smaller |W| , behavior of this algorithm when 
the number of vertices is small is also investigated. The 
results are depicted in Fig.l through Fig.13. The behavior 
of this method is greatly influenced by the ratio between 
number of vertices (|V|) and number-of-words (|W|). 
i) . High | V | / | W | :

The experimental results show that for number of 
vertices, |V|, of about 75% of |W| and above, little 
backtracking is encountered in computing the minimal perfect 
hash function in part 3. In these cases time consumed by this 
part of the program is insignificant compared to that comsumed 
by the ordering part. The time consumed by ordering 
decreases as |V| increases, due to increase of non-cycle edges 
and long cycles. The appearance of large cycles means that 
with each application of the mincycle algorithm more vertices
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are removed and the mincycle algorithm does not have to be 
applied as many times. But the main factor that makes 
ordering time decrease is the increase of non-cycle edges.

When |V| is large, large proportion of all edges, normally 
more than 30%, are non-cycle edges. Non-cycle edges also 
reduce the problem of computing minimal perfect hash function 
to that of computing perfect hash function since vertices that 
only appear in these edges can be assigned to any number as its 
U value in part 3 .

As the number of vertices decrease, the ordering time
increases. But the observed complexity is still less than 

40(n ). This is because as non-cycle edges decrease, length 2 
cycles increase.
In all, with this |V|/|W|, this method performs 
marvelously. While other methods consider |W| of 15 as 
large, this method computes minimal perfect hash function for 
|W| as large as 1200 in 5 minutes on an IBM PC (|V|/|W| = 
1.33) .
ii) . Low 1V|/ | W | :

As iV|/ 1W| decreases times spent in both the ordering 
part and the search part of the program increase. The 
increase in the ordering part follows the same pattern as for 
high |V|/ |W|, but time used in the search part increases 
exponentially and thus tends to cause the method to fail. We 
tried to find some boundary value of |V|/|W| below which this 
method is unlikely to succeed, but due to the large variance
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involved this value is not easily found. For example, with 
|V| = 195 and |W| = 300, 62% of tests spent more than 1 hour in 
part 3, at which point we aborted the test, while with |V| = 
194 and same |W| = 300, 80% of the tests finished in 1 hour. 
So the conclusion is that for low |V|/|W| this method tends to 
be unreliable. This situation is depicted in table 1 through 
4.
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IV. CONCLUSION
Sager's minimal perfect hash function is very effective 

and easy to use. Its calculation is very fast with reasonable 
|V|/ |W|. With small |V|/|W|, it tends to be unreliable but 
still has some chance to succeed.

We had hoped to find experimentally a function f so that 
if | V| > f ( |W| ) then the mincycle algorithm could be expected 
to succeed and if |V| <= f(|W|) then the mincycle algorithm 
would behave erratically. The experimental data does not 
point clearly to any such function. However, by examining the 
experimental data we can give the very crude guess:

I V  . I = 0 . 7 6 6  * |W| -  24

More data would be necessary to test this hypothesis, however 
that would be beyond the scope of this thesis. Although this 
guess turns out to be a linear function, it is not at all clear 
that a more refined measure of this function would be linear.
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Fig. 1
Time Used by Part 2 and Part 3 of Mincycle Program, |W| = 300 , large |V|/|W|
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Number of vertices

FI*. 2
Time Used by Mincycle Program, |W| = 200, large |V|/|W|
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F i g .  3
Time Used by Mincycle Program, |W| = 300, large |V|/|W|
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F i g .  4
Time Used by Mincycle Program, |W| = 400, large |V|/|W|
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Fig.5
Time Used by Mincycle Program, |W| = 500, large |V|/|W|
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Fig. 6
Time Used by Mincycle Program, |W| = 600, large |V|/|W)
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F i g .  7
Time Used by Mincycle Program, |W| = 700, large )V|/|W|
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Fig. 8
Time Used by Mincycle Program, |W| = 800, large |V|/|W|
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Time Used by Mincycle Program, |W| = 900, large |V|/|W|
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Fig.10Time Used by Mincycle Program,|W| = 1000, large |V|/|W|
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Time Used by Mincycle Program,|Wj = 1100, large |V|/|W|
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Fig.12Time Used by Mincycle Program,|W| = 1200, large |V|/|W|
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N u m b er  o f  N e r d s  

Fig.14
Recommended minimal number of vertices,|V|, for each number of words, |W|



32

Table I
Performance Tests on Mincycle Method,

|WI = 100, small |V|/|W|

Number of 
vertices

Number of Number of % of test
tests completed tests that completed

44 3 0 0
45 3 1 33
46 3 1 33
47 4 3 75
48 7 2 28
49 19 13 68
50 22 14 64
51 25 22 88
52 23 20 87
53 20 20 100
54 16 15 94
55 15 15 100
56 17 17 100
57 7 7 100
58 7 6 86
59 7 7 100
60 7 7 100
61 6 6 100
62 1 1 100
63 1 1 100
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Table II
Performance Tests on Mincycle Method,

| W | = 200, small |V|/|W|

Number of 
Vertices

Number of 
tests

Number of 
completed tests

% of tests
117 11 6 54
118 22 14 63
119 27 20 74
120 28 15 53
121 20 16 80
122 22 18 82
123 15 13 87
124 15 9 60
125 13 8 62
126 17 10 59
127 12 10 83
128 10 9 90
129 7 7 100
130 10 9 90
131 10 6 60
132 10 4 40
133 12 9 75
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Table III
Performance Tests on Mincycle Method,

| W | = 300, small |V|/|W|

Number of 
vertices

Number of 
tests

Number of 
completed tests

% of completed 
tests

191 14 6 43
192 20 15 75
193 30 17 57
194 44 35 80
195 42 26 62
196 35 24 68
197 12 7 58
198 15 10 67
199 10 7 70
200 10 9 90
201 5 4 80
202 5 3 60
203 5 4 80
204 5 4 80
205 5 4 80
206 10 9 90
207 5 4 80
208 5 5 100
209 5 4 80
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Table IV
Performance Tests on Mincycle Method,

|W| = 400, small |V|/|W|

Number of Number of Number of % of completed
vertices tests completed tests tests
266 10 7 70
267 15 8 53
268 41 23 56
269 45 32 71
270 24 15 62
271 25 18 72
272 15 12 80
273 15 12 80
274 10 9 90
275 10 9 90
276 10 7 70
277 10 8 80
278 10 9 90
279 15 12 80
280 10 9 90
281 10 9 90
282 5 5 100
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