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 11 

 12 
Linear Approximation 13 
 14 
To obtain the analytical solution of this oscillatory problem by an approximation, the capillary force 15 
difference needs to firstly be linearized. For the right interface, the capillary pressure is: 16 

𝑃𝑐
+ =

2𝜎𝑐𝑜𝑠𝜃+

𝑅
    (SI1) 17 

The volume of right spherical cap is: 18 

𝑉(𝜃+) =
𝜋𝑅3(2+𝑠𝑖𝑛𝜃+)𝑐𝑜𝑠𝜃+

3(1+𝑠𝑖𝑛𝜃+)2     (SI2) 19 

When the mean displacement x(t) is small, the linearization can be applied on the Eq. (SI1) to yield: 20 

𝑑𝑃𝑐
+

𝑑𝑥
=

𝑑𝑃𝑐
+

𝑑𝜃+ (
𝑑𝑉(𝜃+)

𝑑𝜃+ )
−1

𝑑𝑉

𝑑𝑥
=

2𝜎𝑠𝑖𝑛𝜃0(1+𝑠𝑖𝑛𝜃0)2

𝑅2     (SI3) 21 

The θ0 in Eq. (SI3) is the equilibrium contact angle before motion, which is a constant. Therefore, the 22 
capillary pressure across the right meniscus is linearized. It is noted that the linear relationship 𝑃𝑐

+ =23 
𝑑𝑃𝑐

+

𝑑𝑥
𝑥 holds under the linearization from Eq. (SI3). In comparison to Eq. (SI1), the linear relation of x and 24 

θ+ can be readily attained. However, the complete relation of x and θ+ is given by Eq. (17). Therefore, the 25 
condition of linearization can refer to Eq. (17). By plotting Eq. (17), it shows that θ+ - θ0 < 20° is the 26 
condition for the validity of linearization of Eq. (SI3) with error less than 5%. Consequently, the 27 
oscillation at which the contact angle variation (θ+ - θ0) is less than 20° can be called small oscillation, 28 
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since the linearization is applicable at this condition. If the oscillation causes larger contact angle 29 
variation, it is called large oscillation. 30 

Similarly, the capillary pressure across the left meniscus can also be linearized. The difference of two 31 
capillary pressure is: 32 

𝑃𝑐
− − 𝑃𝑐

+ = −
4𝜎𝑠𝑖𝑛𝜃0(1+𝑠𝑖𝑛𝜃0)2

𝑅2 𝑥    (SI4) 33 

Substituting Eq. (SI4) into Eq. (20), the new governing equation becomes: 34 

𝜌𝑜𝐿𝑜
𝑑2𝑥

𝑑𝑡2 + {2𝜌𝑜𝜔𝐿𝑜ℋ1(𝑥) + 𝜌𝑤𝜔𝐿𝑤𝑅𝑒 {
𝑖∙𝐽0(√𝑖3𝜔 𝜔𝑐

𝑤⁄ )

𝐽2(√𝑖3𝜔 𝜔𝑐
𝑤⁄ )

}}
𝑑𝑥

𝑑𝑡
+

4𝜎

𝑅2 𝑠𝑖𝑛𝜃0(1 + 𝑠𝑖𝑛𝜃0)2𝑥 = (𝜌𝑜𝐿𝑜 +35 

𝜌𝑤𝐿𝑤)𝐴𝑠𝑖𝑛(𝜔𝑡)     (SI5) 36 

This equation is linear equation of dependent variable x now. It can be analyzed by an analogy to linear 37 
oscillator. For a succinct expression of notations, the new variables are defined as: 38 

𝑐 =
1

𝜌𝑜𝐿𝑜
{2𝜌𝑜𝜔𝐿𝑜ℋ1(𝑥) + 𝜌𝑤𝜔𝐿𝑤Re {

𝑖∙𝐽0(√𝑖3𝜔 𝜔𝑐
𝑤⁄ )

𝐽2(√𝑖3𝜔 𝜔𝑐
𝑤⁄ )

}}   (SI6) 39 

𝜔0
2 =

4𝜎

𝜌𝑜𝐿𝑜𝑅2 𝑠𝑖𝑛𝜃0(1 + 𝑠𝑖𝑛𝜃0)2    (SI7) 40 

𝐴0 =
(𝜌𝑜𝐿𝑜+𝜌𝑤𝐿𝑤)

𝜌𝑜𝐿𝑜
𝐴    (SI8) 41 

Then, the Eq. (SI5) can be expressed as a standard form of linear oscillator: 42 

𝑑2𝑥

𝑑𝑡2 + 𝑐
𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 𝐴0𝑠𝑖𝑛(𝜔𝑡)   (SI9) 43 

where c is the damping constant; ω0 is the natural frequency; A0 is the driving acceleration magnitude per 44 
mass. It is worth noting that the natural frequency in Eq. (SI7) is a bit different from that found from 45 
frequency response function or susceptibility function [Hilpert et al., 2000]. Because this defined 46 
frequency is merely to resemble linear oscillator, it will be not the exact natural frequency in the 47 
oscillatory system.  48 

The general solution of Eq. (SI9) is composed of two parts: the complementary function xc(t) and the 49 
particular integral xp(t): 50 

𝑥(𝑡) = 𝑥𝑐(𝑡) + 𝑥𝑝(𝑡)    (SI10) 51 

The complementary function xc(t) is found by equating the driving acceleration A0 to zero in Eq. (SI9) and 52 
solving the associated homogeneous ordinary differential equation. The particular integral xp(t) is directly 53 
solved from Eq. (SI9). The complementary function and particular integral correspond to the unsteady-54 
state and steady-state response of the dynamic system in Eq. (SI9) in a similarity to linear oscillator. In 55 
what follows, the unsteady-state response and steady-state response are analyzed, respectively. 56 

Unsteady-state response is the solution of equation: 57 
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𝑑2𝑥

𝑑𝑡2 + 𝑐
𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 0    (SI11) 58 

The complementary function to this equation can be written [Ogata, 1998]: 59 

𝑥𝑐(𝑡) = 𝛼𝑒−𝑐𝑡 2⁄ 𝑐𝑜𝑠(𝜔1𝑡) + 𝛽𝑒−𝑐𝑡 2⁄ 𝑠𝑖𝑛(𝜔1𝑡)   (SI12) 60 

where 𝜔1 = (𝜔0
2 −

𝑐2

4
)

1 2⁄

, and α and β are arbitrary constants. The premise for solution (SI12) is c < 2ω0. 61 

It corresponds to an underdamped harmonic oscillation. For the critical damped and overdamped 62 
scenarios, the unsteady-state response in Eq. (SI11) does not oscillate at all, and any motion simply 63 
decays away exponentially in time. Therefore, it is insignificant on the amplitude of complete solution 64 
x(t), and it will not be discussed in this study. For the complementary function in Eq. (SI12), the 65 
oscillatory frequency ω1 is smaller than the undamped resonant frequency ω0 and this difference is 66 
controlled by the damping constant c. The amplitude of the oscillation decays exponentially with time at 67 
the rate of c/2.  68 

The steady-state response is the particular integral of Eq. (SI9) as time approaches infinity. The form of 69 
steady-state solution is [Ogata, 1998]: 70 

𝑥𝑝(𝑡) =
𝐴0

[(𝜔0
2−𝜔2)

2
+𝑐2𝜔2]

1 2⁄ 𝑠𝑖𝑛(𝜔𝑡 − 𝜑)   (SI13) 71 

where  72 

𝜑 = tan−1 (
𝑐𝜔

𝜔0
2−𝜔2

)     (SI14) 73 

The particular integral has a constant amplitude independent on t. The sum of particular integral and 74 
complementary function is identical to a superposition of two oscillatory modes, one with frequency ω 75 
and the other with frequency ω1. 76 

Combining Eqs. (SI12) and (SI13), the general solution of Eq. (SI9) is: 77 

𝑥(𝑡) =
𝐴0

[(𝜔0
2−𝜔2)

2
+𝑐2𝜔2]

1 2⁄ 𝑠𝑖𝑛(𝜔𝑡 − 𝜑) + 𝛼𝑒−𝑐𝑡 2⁄ 𝑐𝑜𝑠(𝜔1𝑡) + 𝛽𝑒−𝑐𝑡 2⁄ 𝑠𝑖𝑛(𝜔1𝑡)  (SI15) 78 

The arbitrary constants α and β are determined by the initial conditions in Eqs. (21) and (22), which are: 79 

𝛼 = −
𝐴0

[(𝜔0
2−𝜔2)

2
+𝑐2𝜔2]

1 2⁄ 𝑐𝑜𝑠𝜑   (SI16) 80 

𝛽 = −
𝐴0

[(𝜔0
2−𝜔2)

2
+𝑐2𝜔2]

1 2⁄ [
𝜔𝑠𝑖𝑛𝜑+𝑐∙𝑐𝑜𝑠𝜑 2⁄

𝜔1
]    (SI17) 81 

The general solution x(t) is the time-dependent mean displacement in the capillary tube in response to 82 
excitation. The conversion to dynamic contact angle can be referred to Eqs. (16) and (17). The 83 
presentation of dynamic contact angle is more practical and straightforward. Therefore, the dynamic 84 
contact angle from approximate analysis and theoretical model will be compared. 85 

Comparison with Previous Studies 86 
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Because different acceleration amplitudes are required for unsteady-state response and steady-state 87 
response, Charlaix and Gayvallet [1992] conducted experiments on investigation of pinned oscillation 88 
and sliding oscillation by different magnitudes of excitation as shown in Fig. SI1. A single interface was 89 
harmonically driven by periodic pressure force. 90 

In this study, the frequency response 𝑣̅(𝜔) ∆𝑃(𝜔)⁄  is analyzed with respect to driving frequency at small 91 
amplitude oscillations and large amplitude oscillations. Overdamped system and underdamped system are 92 
separately considered based on different fluid properties. Only overdamped system is covered in this 93 
section for the comparison. The geometric parameters we used are: Lo = 4.5 cm, Lw = 0.5 cm, and R = 94 
0.75 mm. The nonwetting phase used is mineral oil and the wetting phase is fluid solution of 70% 95 
glycerol and 30% water. The fluid properties for overdamped system are: μo = 1.94×10-2 Pa·s, μw = 96 
2.47×10-2 Pa·s, ρo = 970 kg/m3, ρw = 1180 kg/m3, and σ = 0.039 N/m. The ΔP(ω) is composed of capillary 97 
pressure and viscous pressure drop in their analysis. The Eq. (20) has to be tuned to fit this condition. The 98 
rearranged equation is: 99 

𝜌𝑜𝐿𝑜
𝑑2𝑥

𝑑𝑡2 + 2𝜌𝑜𝜔𝐿𝑜ℋ1(𝑥)
𝑑𝑥

𝑑𝑡
+ 𝜌𝑤𝜔𝐿𝑤

𝑑𝑥

𝑑𝑡
∙ 𝑅𝑒 {

𝑖∙𝐽0(√𝑖3𝜔 𝜔𝑐
𝑤⁄ )

𝐽2(√𝑖3𝜔 𝜔𝑐
𝑤⁄ )

} −
2𝜎

𝑅
(𝑐𝑜𝑠𝜃− − 𝑐𝑜𝑠𝜃+) =100 

𝜌𝑤𝐿𝑤𝐴𝑠𝑖𝑛(𝜔𝑡) + 𝜌𝑜𝐿𝑜𝐴𝑠𝑖𝑛(𝜔𝑡)       (SI18) 101 

The left-hand side is identical to ΔP(t) they used. For the one interface condition, the left interface can be 102 
set as vertical, θ– = 90°, meaning no capillary pressure in the left meniscus. Therefore, the frequency 103 

response in our model is 𝑣̅(𝜔) ∆𝑃(𝜔)⁄ =
𝑎𝑚𝑝{𝑑𝑥 𝑑𝑡⁄ }

𝑎𝑚𝑝{𝜌𝑤𝐿𝑤𝐴𝑠𝑖𝑛(𝜔𝑡)+𝜌𝑜𝐿𝑜𝐴𝑠𝑖𝑛(𝜔𝑡)}
, where amp{·} is used to denote 104 

amplitude of oscillatory curve. The velocity can be numerically calculated from Eq. (SI18), and the 105 
denominator is constant equal to (ρwLw + ρoLo)A. It is noted that the equilibrium contact angle was not 106 
specified in Charlaix and Gayvallet’s work. By reproducing the same result, the equilibrium contact angle 107 
we deduced from their work is 46°. The experimental data is well fitted by Eq. (3) in their work with 108 
C(θ0) as an adjustable parameter. Their fitting equations for single fluid and interface are displayed in Fig. 109 
SI1. The peak of red and blue curves is around 18 Hz which is identical for our theoretical model and 110 
experimental data. The small difference near the peak is attributed to the consideration of short length of 111 
water phase in geometry. Lw is intended to be short to be neglected in their fitting equation. The 112 
normalization of the mean displacement is defined as X0 = 3x0/2R, where x0 is the amplitude of mean 113 
displacement oscillation. In the mean displacement X0 < 0.1, Charlaix and Gayvallet [1992] indicated that 114 
the model can be treated as linear, but this statement of linear analysis is not necessary convincing to 115 
follow. Because the mean displacement in the flow is difficult to control and measure, the use of driving 116 
amplitude and frequency as controlling parameters is more convenient. The corresponding relation of 117 
acceleration amplitude and driving frequency can be obtained by the analysis of using Eq. (SI18). 118 

Another experiment on the resonance of drop in vertical tube was conducted by Hilpert and Miller 119 
[1999]. The gravity was considered in the equilibrium contact angle of upper meniscus and lower 120 
meniscus. In certain oscillation, the upper meniscus shifted to sliding motion while the lower contact line 121 
is in pinned oscillation. The steady-state response was analyzed but the explanation on the sliding motion 122 
was not explained. Based on the model in this study, it could be attributed to unsteady-state response of 123 
oscillation.  124 

The unsteady-state response of oscillation is rarely considered in previous literature. The validation of this 125 
model can be done by a comparison with existing theories in terms of steady-state response. Hsu et al. 126 
[2012] validated the resonance model by laboratory experiments, and a pressure balance model in quasi-127 
static analysis was established. In their model, the linear approximation of capillary force was 128 
implemented in the assumption of small displacement oscillation. In this section, the comparison of our 129 
model in Eq. (SI5) with the steady-state frequency response to Hsu et al.’s model is implemented. For the 130 
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oscillatory motion of drop, the mean displacement follows: 𝑥 = 𝑥0𝑒−𝑖𝜔𝑡. The pressure drop in Hsu et 131 
al.’s work is identical to the left-hand side terms of Eq. (SI5). Therefore, in consistency with their 132 
definition of frequency response function, the function becomes: 133 

𝑥0

𝐴
(𝜔𝑐

𝑜)2 = {
4𝜎𝑠𝑖𝑛𝜃0(1+𝑠𝑖𝑛𝜃0)2

(𝜌𝑜𝐿𝑜+𝜌𝑤𝐿𝑤)𝑅2(𝜔𝑐
𝑜)2 −

𝜔2

(𝜔𝑐
𝑜)2 [

𝜌𝑜𝐿𝑜+2𝜌𝑜𝐿𝑜∙𝑐1+𝜌𝑤𝐿𝑤∙𝑐2

𝜌𝑜𝐿𝑜+𝜌𝑤𝐿𝑤
]}

−1

    (SI19) 134 

where  135 

𝑐1 =
1

√𝑖3𝜔 𝜔𝑐
𝑜⁄

𝐽1(√𝑖3𝜔 𝜔𝑐
𝑜⁄ )

𝐽2(√𝑖3𝜔 𝜔𝑐
𝑜⁄ )

   (SI20) 136 

𝑐2 = −
𝐽0(√𝑖𝜔 𝜔𝑐

𝑤⁄ )

𝐽2(√𝑖𝜔 𝜔𝑐
𝑤⁄ )

    (SI21) 137 

The coefficients c1 and c2 are now complex value. The dimensionless resonant frequency of the 138 

underdamped system in Eq. (SI19) is √
4𝜎𝑠𝑖𝑛𝜃0(1+𝑠𝑖𝑛𝜃0)2

(𝜌𝑜𝐿𝑜+𝜌𝑤𝐿𝑤)𝑅2 , which is the same as Eq. (12) in Hsu et al. 139 

[2012]. 140 

Eq. (SI19) is a dimensionless frequency response of the drop in the straight capillary tube. Both wetting 141 
and nonwetting phase are prepared immersion liquid. The fluid properties in Hsu et al.’s model are: ρw = 142 
869 kg/m3, ρo = 2055 kg/m3, μw = 1.3×10-2 Pa·s, μo = 1.03×10-2 Pa·s, σ = 1.48×10-2 N/m, θ0 = 140°. The 143 
geometric parameters are: R = 1 mm, Lw = 6.2×10-3 m, Lo = 2.38×10-2 m. The experimental data and 144 
frequency response from both models are presented in Fig. 8. The red curve is wider near the resonant 145 
frequency and it means a larger damping than that predicted by Hsu et al.’s model [Hsu et al., 2012]; this 146 
damping effect of our model is closer to the experimental data. Compared to experimental data, the peak 147 
is higher, which could be attributed to a noticeable gravitational effect in experiment. 148 

 149 

Fig. SI1. (a) The frequency response 𝑣̅(𝜔) ∆𝑃(𝜔)⁄ obtained at low displacement amplitude in 150 
overdamped system. The black curve and red curve come from Eq. (3) in Charlaix and Gayvallet [1992] 151 
(abbreviated as C&G in legend), fitting well with experimental data. The blue curve is calculated from 152 
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our model in Eq. (SI18). (b) Absolute value of the non-dimensional frequency response of a drop in a 153 
capillary tube. The measured data and predicted curve are from Hsu et al. [Hsu et al., 2012]. 154 

Seismic Acceleration Amplitude 155 

The seismic acceleration for compressional wave and shear wave in liquid systems can be given as [Pride 156 
et al., 2008; Zeng and Deng, 2020]: 157 

𝐴𝑝 ≈  2𝜔𝑐𝑝
𝜀0

𝜆+1
 and 𝐴𝑠 = 𝜔𝑐𝑠

𝜀0

𝜆+1
    (SI22) 158 

where subscripts p and s denote compressional and shear waves, respectively; ε0 is the initial seismic 159 
strain at seismic source, with a type range from 10-10 to 10-3 for an earthquake; λ is the distance from 160 
seismic source; cp and cs are compressional and shear wave speed, respectively, which usually can be 161 
given as cp = 3000 m/s and cs = 1000 m/s; Ap and As are the acceleration amplitudes of compressional 162 
wave and shear wave, respectively. The frequency band is from 1 Hz to 104 Hz. The acceleration induced 163 
by internally dynamic events follows [Pride et al., 2008]: 164 

𝐴𝑖 =
𝜇𝑜Δ𝑄

4𝜋𝑘𝜌0𝜆2      (SI23) 165 

where ΔQ is the perturbed volumetric flow rate, k is the hydraulic permeability in porous media. 166 
Subscribe i denotes the ‘internal’ oscillatory source in porous media, compared to the previous ‘external’ 167 
source. ΔQ depends on the pore and throat sizes, and 1/5 fraction of steady-state flow rate is used at here 168 
[Zeng and Deng, 2020].  169 

Dataset  170 

A spreadsheet titled ‘data.xlsx’ is contained in this Supporting Information in a separate file. The 171 
spreadsheet includes the data of Figures 1-7 and SI1 in paper and Supporting Information. In that file, all 172 
data are presented in the same tab and ordered in the same sequence as manuscript. The figure legend and 173 
x-y titles are also listed. If there is any question about the data file, feel free to contact the corresponding 174 
author Dr. Wen Deng. 175 
 176 
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