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Abstract Abstract 
The human-induced seismicity has called substantial attention in recent years. The effect of seismicity on 
the subsurface structure has been extensively studied. However, the effect of seismicity, especially those 
microseismicity, on surrounding immiscible fluids is rarely investigated. In porous media with two or more 
immiscible fluids, different amplitudes of vibration induced by seismicity have distinct effects on the 
dynamic behavior of fluids. Three types of pore-scale models are prevalent in the analysis of the motion 
of immiscible droplets. The underlying assumptions and accuracy of these models are compared in this 
study in both frequency domain and time domain. The frequency domain analysis shows that the 
resonance can be addressed in all of three models, but the frequency response curves present significant 
differences. These differences are attributed to the missing physics considered in some models. The time 
domain analysis in both small-amplitude oscillation and large-amplitude oscillation is performed. The 
nonlinear feature in large-amplitude oscillation is attributed to the constricted geometry of capillary tube. 
The momentum balance model is identified as so-far the most accurate oscillatory model by the 
comparison with computational fluid dynamics simulations. In addition, the potential approach to 
incorporate this pore-scale model in seismic wave attenuation analysis is found possible. The frequency 
correction function and structural factor are calculated to embed the momentum balance model into Biot 
's poroelastic model. The resonance of dispersed phase can also be addressed theoretically in porous 
media of random packed spheres. 
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Text S1. 
Details of Three Models for Resonance Analysis 

Pressure balance model 

Governing equation 

The model geometry shown in Figure 1c was used to establish theoretical model. The capillary 
tube vibrates with the same frequency as exerted seismic wave. In a response to the vibration, 
the viscous pressure drops in three fluid slugs 1, 2, and 3 (Figure 1c) are equal to the capillary 
pressure variation. The governing equation is: 

∫ ∇𝑃𝑃𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑ℎ
𝑣𝑣 + ∫ ∇𝑃𝑃𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑𝑣𝑣

𝐿𝐿1
+ ∫ ∇𝑃𝑃𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑𝐿𝐿2

ℎ = ∆𝑃𝑃𝑐𝑐(𝑡𝑡) − ∆𝑃𝑃𝑐𝑐(0)  (S1) 

where ∇𝑃𝑃𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 and ∇𝑃𝑃𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣 denote viscous gradient in nonwetting phase and wetting phase, 
respectively. ∆𝑃𝑃𝑐𝑐(𝑡𝑡) and ∆𝑃𝑃𝑐𝑐(0) denote capillary pressure difference at two meniscus at arbitrary 
time t and initial equilibrium state. On the left-hand side, the terms represent viscous pressure 
drops in three slugs respectively. On the right-hand side, it represents the temporal variation of 
the capillary pressure difference in oscillation. 

mailto:wendeng@mst.edu
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Linear analysis 

In the circumstance of small oscillation of the droplet, the linearized approximation is applicable 
and the validity for this approximation will be discussed later. In addition, the droplet is under 
forced vibration stimulated by the external seismic excitation. Equation (9) can be expressed as 
a complex form: 

𝑎𝑎(𝑡𝑡) = 𝑎𝑎(𝜔𝜔)𝑒𝑒−𝑣𝑣𝑖𝑖𝑖𝑖                                        (S2) 
The imaginary part of a(t) is the real acceleration on the tube. a(ω) is used to generalize the 
seismic waves with multiple frequencies. In this study, a(ω)=A. 

Therefore, the transient positions of h and s can be expressed as: 

ℎ(𝑡𝑡) = ℎ0 + Δℎ ∙ 𝑒𝑒−𝑣𝑣𝑖𝑖𝑖𝑖      (S3) 

𝑠𝑠(𝑡𝑡) = 𝑠𝑠0 + ∆𝑠𝑠 ∙ 𝑒𝑒−𝑣𝑣𝑖𝑖𝑖𝑖     (S4) 

The rigorous expression for the small displacement is: ∆ℎ ℎ0⁄ ≪ 1 and ∆𝑠𝑠 𝑠𝑠0⁄ ≪ 1. Considering 
the relation of Δs and Δh by the volume conservation in equation (7), Δs can be expressed as 
(see S2):  

 ∆𝑠𝑠 = Υ(𝛽𝛽,Λ, 𝑑𝑑∗) ∙ ∆ℎ      (S5) 

where 𝛽𝛽 = 𝐿𝐿 𝑟𝑟𝑚𝑚𝑣𝑣𝑛𝑛⁄ , Λ = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑚𝑚𝑣𝑣𝑛𝑛⁄ , 𝑑𝑑∗ = 𝑑𝑑 𝐿𝐿⁄ , Υ(𝛽𝛽,Λ, 𝑑𝑑∗) refers to equation (S43). 

In addition, based on equation (S3), the velocity and acceleration can be formulated as: 

 𝑑𝑑ℎ
𝑑𝑑𝑖𝑖

= −𝑖𝑖𝜔𝜔Δℎ ∙ 𝑒𝑒−𝑣𝑣𝑖𝑖𝑖𝑖      (S6) 

 𝑑𝑑
2ℎ
𝑑𝑑𝑖𝑖2

= −𝜔𝜔2∆ℎ ∙ 𝑒𝑒−𝑣𝑣𝑖𝑖𝑖𝑖      (S7) 

The external pressure difference and capillary pressure difference are combined together. The 
linearized approximation is applied on equation (4), and the simplified form of pressure 
difference is (see S3):  

 ∆𝑃𝑃𝑒𝑒 − ∆𝑃𝑃𝑐𝑐 = −2𝜎𝜎 𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 Δℎ ∙ 𝑒𝑒−𝑣𝑣𝑖𝑖𝑖𝑖    (S8) 

The specific form of 𝑓𝑓(𝛽𝛽,Λ, 𝑑𝑑∗) refers to equation (S48). 

It is noted that ΔPc(0) = ΔPe for this study due to initially stationary state of the nonwetting phase. 
The detailed derivation refers to their work [Hilpert et al., 2000]. Only the final governing 
equation is presented in this study. The transient motion of nonwetting droplet follows: 
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𝜌𝜌𝑛𝑛𝜔𝜔2𝜆𝜆2(ℎ)Δℎ�
1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑛𝑛
�
𝑑𝑑𝜉𝜉

ℎ

𝑣𝑣
+ 𝜌𝜌𝑤𝑤𝜔𝜔2𝜆𝜆2(ℎ)Δℎ�

1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤
�
𝑑𝑑𝜉𝜉

𝑣𝑣

𝐿𝐿1

+ 𝜌𝜌𝑤𝑤𝜔𝜔2𝜆𝜆2(ℎ)Δℎ�
1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤
�
𝑑𝑑𝜉𝜉

𝐿𝐿2

ℎ

= 2𝜎𝜎 �
1

𝜆𝜆𝑚𝑚𝑒𝑒𝑛𝑛(ℎ) −
1

𝜆𝜆𝑚𝑚𝑒𝑒𝑛𝑛(ℎ0)� + 𝜌𝜌𝑛𝑛𝑎𝑎(𝜔𝜔)(ℎ − 𝑠𝑠)

+ 𝜌𝜌𝑤𝑤𝑎𝑎(𝜔𝜔)(𝑠𝑠 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ) 
(S9) 

where Δh is the displacement of the front meniscus, the same as that in equation (S3); This 
equation is formulated in the frequency domain. ℎ � 𝑖𝑖

𝑖𝑖𝑐𝑐
𝑘𝑘� is expressed as: 

ℎ � 𝑖𝑖
𝑖𝑖𝑐𝑐
𝑘𝑘� = −

𝐽𝐽2��𝑣𝑣3𝑖𝑖 𝑖𝑖𝑐𝑐
𝑘𝑘⁄ �

𝐽𝐽0��𝑣𝑣3𝑖𝑖 𝑖𝑖𝑐𝑐
𝑘𝑘⁄ �

  (𝑘𝑘 = 𝑛𝑛,𝑤𝑤)     (S10) 

𝜔𝜔𝑐𝑐𝑘𝑘 = 𝜇𝜇𝑘𝑘
𝜌𝜌𝑘𝑘𝜆𝜆2(𝑚𝑚)

(𝑘𝑘 = 𝑛𝑛,𝑤𝑤)      (S11) 

where J0 and J2 denote Bessel function of order 0 and 2, respectively. Equation (S11) represents 
the characteristic frequency for the nonwetting droplet (𝑘𝑘 = 𝑛𝑛) and wetting fluid (𝑘𝑘 = 𝑤𝑤). 
𝜔𝜔 𝜔𝜔𝑐𝑐𝑘𝑘⁄  is the dimensionless frequency. 

In addition, the h and s in other terms can be treated as initial values in the context of small 
oscillation. The simplified equation is: 

[𝜌𝜌𝑛𝑛(ℎ0 − 𝑠𝑠0) + 𝜌𝜌𝑤𝑤(𝑠𝑠0 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ0)]𝑎𝑎(𝜔𝜔) = �𝜌𝜌𝑛𝑛𝜆𝜆2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ� 𝜔𝜔
𝜔𝜔𝑐𝑐
𝑚𝑚�

ℎ0
𝑣𝑣0

𝑑𝑑𝜉𝜉 +

𝜌𝜌𝑤𝑤𝜆𝜆2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ� 𝜔𝜔
𝜔𝜔𝑐𝑐
𝑤𝑤�
𝑑𝑑𝜉𝜉𝑣𝑣0

𝐿𝐿1
+ 𝜌𝜌𝑤𝑤𝜆𝜆2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ� 𝜔𝜔
𝜔𝜔𝑐𝑐
𝑤𝑤�
𝑑𝑑𝜉𝜉𝐿𝐿2

ℎ0
�𝜔𝜔2Δℎ − 2𝜎𝜎 𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 Δℎ 

 (S12) 

Frequency response function 

In harmonic oscillator, the frequency response function can characterize the oscillatory 
properties, i.e. damping ratio, resonance frequency, and output displacement magnification. By 
an analogy, to characterize the oscillation of the droplet in this system, the frequency response 
function is defined as the ratio of the output displacement to the input acceleration amplitude 
in a dimensionless form: 

 𝜒𝜒(𝜔𝜔) = − Δℎ
𝑚𝑚(𝑖𝑖)

(𝜔𝜔𝑐𝑐𝑛𝑛)2      (S13) 

where the negative sign applies in the calculation of χ(ω) which is the acceleration of tube, and 
the acceleration imposed on the nonwetting fluid is the negative of this value. The 𝜔𝜔𝑐𝑐𝑛𝑛 is the 
characteristic frequency of the nonwetting phase as defined in equation (S11), in order to non-
dimensionalize χ(ω). 
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 By reorganizing equation (S12) and substituting into equation (S13), the frequency response 
function can be obtained as: 

𝜒𝜒𝐼𝐼(𝜔𝜔) =
𝜌𝜌𝑛𝑛(ℎ0 − 𝑠𝑠0) + 𝜌𝜌𝑤𝑤(𝑠𝑠0 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ0)

2𝜎𝜎 𝑓𝑓(𝛽𝛽,Λ,𝑑𝑑∗)
𝑟𝑟𝑚𝑚𝑣𝑣𝑛𝑛
2 (𝜔𝜔𝑐𝑐𝑛𝑛)2 −

𝜔𝜔2

(𝜔𝜔𝑐𝑐𝑛𝑛)2 �𝜌𝜌𝑛𝑛𝜆𝜆
2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑛𝑛
�
𝑑𝑑𝜉𝜉ℎ0

𝑣𝑣0
+ 𝜌𝜌𝑤𝑤𝜆𝜆2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤
�

𝑣𝑣0
𝐿𝐿1

𝑑𝑑𝜉𝜉 + 𝜌𝜌𝑤𝑤𝜆𝜆2(ℎ0)∫ 1
𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤

�
𝐿𝐿2
ℎ0

𝑑𝑑𝜉𝜉�

 

 (S14) 
The Roman numeral “I” was used as the superscript to differentiate other frequency response 
functions which will be used in later part. For short abbreviation, the pressure balance model is 
referred to as model I thereafter. 

As an analogy to the second-order harmonic oscillator system, the natural frequency of the 
droplet is: 

 𝜔𝜔0 = � 2𝜎𝜎𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
[𝜌𝜌𝑚𝑚(ℎ0−𝑣𝑣0)+𝜌𝜌𝑤𝑤(𝑣𝑣0−𝐿𝐿1+𝐿𝐿2−ℎ0)]𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2     (S15) 

The dimensionless natural frequency is: 

 𝑋𝑋0 = 𝑖𝑖0
𝑖𝑖𝑐𝑐
𝑚𝑚       (S16) 

It is noted that the dimensionless form of 𝑋𝑋02 is: 

 𝑋𝑋02 = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑂𝑂ℎ2

2𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
(ℎ0−𝑣𝑣0)+𝑚𝑚𝜌𝜌(𝑣𝑣0−𝐿𝐿1+𝐿𝐿2−ℎ0)     (S17) 

where 𝑎𝑎𝜌𝜌 = 𝜌𝜌𝑤𝑤 𝜌𝜌𝑛𝑛⁄  is the density ratio of the wetting phase to the nonwetting phase. Oh is the 
Ohnesorge number that relates the viscous forces to inertial and surface tension forces. The 
natural frequency is function of geometry in the system and fluid properties. 

The dimensionless excitation frequency in the nonwetting phase and wetting phase were 
defined as: 

 𝑋𝑋𝑛𝑛 = 𝑖𝑖
𝑖𝑖𝑐𝑐
𝑚𝑚      (S18) 

 𝑋𝑋𝑤𝑤 = 𝑖𝑖
𝑖𝑖𝑐𝑐
𝑤𝑤      (S19) 

By using equations (S17), (S18) and (S19), equation (S14) can be reformulated as: 

𝜒𝜒𝐼𝐼(𝜔𝜔)

=
1

𝑋𝑋02 − 𝑋𝑋𝑛𝑛2

⎣
⎢
⎢
⎢
⎡𝜆𝜆2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑛𝑛
�
𝑑𝑑𝜉𝜉ℎ0

𝑣𝑣0
+ 𝑎𝑎𝜌𝜌𝜆𝜆2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤
�
𝑑𝑑𝜉𝜉𝑣𝑣0

𝐿𝐿1
+ 𝑎𝑎𝜌𝜌𝜆𝜆2(ℎ0)∫ 1

𝜆𝜆2(𝜉𝜉)ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤
�
𝑑𝑑𝜉𝜉𝐿𝐿2

ℎ0

(ℎ0 − 𝑠𝑠0) + 𝑎𝑎𝜌𝜌(𝑠𝑠0 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ0)

⎦
⎥
⎥
⎥
⎤
 

 (S20) 

  

Force balance model 
Governing equation 
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For a nonwetting droplet driven by a constant background pressure gradient ∇𝑃𝑃, the droplet 
would be trapped near the pore throat as shown in Figure 1c. In the steady state, this constant 
pressure gradient balances the initial capillary force difference as:  

∇𝑃𝑃(ℎ0 − 𝑠𝑠0) = 2𝜎𝜎 � 1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣0) −

1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(ℎ0)�    (S21) 

In the presence of externally oscillatory excitation, the equation of motion of the droplet is 
formulated as: 

𝜌𝜌𝑛𝑛
𝑑𝑑2ℎ
𝑑𝑑𝑖𝑖2

− 2𝜎𝜎
ℎ0−𝑣𝑣0

� 1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣) −

1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(ℎ)� + 𝜌𝜌𝑛𝑛𝑎𝑎(𝑡𝑡) + ∇𝑃𝑃 + 16𝜇𝜇𝑚𝑚

(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚+𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)2
𝑑𝑑ℎ
𝑑𝑑𝑖𝑖

= 0   (S22) 

Some symbols of variables in their model are converted to make them consistent within this 
study, without change of physical meaning. In their work [Beresnev and Deng, 2010], the 
motion of droplet is depicted by the contact line of rear meniscus. The constant length of 
droplet in constricted capillary tube is assumed. To be consistent with other two models, the 
position h of front meniscus contact line is used to express the equation. In addition, the water 
film is not presented in equation (S22) compared to equation (6) in Beresnev and Deng [2010]. 
On the left-hand side, the terms represent inertial force, volume-averaged capillary force, 
oscillatory body force, constant background pressure gradient, and viscous force, respectively. 
This equation is a second-order nonlinear ordinary differential equation (ODE) of h. The 
numerical solution was sought to obtain the transient motion of the droplet in a response to 
the vibration excitation. To seek the analytical solution of oscillatory characteristics, the linear 
approximation is required. 

Linear analysis 

It is assumed that the oscillation of the droplet is small enough to linearize equation (S22). 
Equations (S2), (S3), (S4), (S5), (S6), and (S7) are also used in this analysis. By applying these 
equations to equations (S21) and (S22), the linearized form is: 

−𝜌𝜌𝑛𝑛𝜔𝜔2Δℎ + 2𝜎𝜎
ℎ0−𝑣𝑣0

𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 Δℎ + 𝜌𝜌𝑛𝑛𝑎𝑎(𝜔𝜔) − 16𝜇𝜇𝑚𝑚

(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚+𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)2 𝑖𝑖𝜔𝜔Δℎ = 0   (S23) 

It is noted that the viscous force used to derive equation (S23) is based on the Poiseuille flow 
profile, but the derivation of other two models is based on the oscillatory flow profile as 
introduced in equation (11). The effect of this distinction will be analyzed on the damping and 
the phase angle of the droplet oscillation. 

Frequency response function 

To characterize the oscillation of droplet in the system, the frequency response function defined 
in equation (S13) is also employed. By substituting equation (S23) into equation (S13), we got 
the frequency response function as: 

𝜒𝜒𝐼𝐼𝐼𝐼(𝜔𝜔) = 1
2𝜎𝜎

𝜌𝜌𝑚𝑚(ℎ0−𝑠𝑠0)
𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)

�𝜔𝜔𝑐𝑐
𝑚𝑚�
2
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − 𝜔𝜔2

�𝜔𝜔𝑐𝑐
𝑚𝑚�
2�1+

16𝜇𝜇𝑚𝑚
𝜌𝜌𝑚𝑚�𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚+𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚�

2
𝑚𝑚
𝜔𝜔�

    (S24) 

This force balance model is referred to as model II in the following discussion. Similar to the 
derivation process used above, the natural frequency of the droplet is defined as: 

𝜔𝜔0
𝐼𝐼𝐼𝐼 = � 2𝜎𝜎

𝜌𝜌𝑚𝑚(ℎ0−𝑣𝑣0)
𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2      (S25) 

The dimensionless natural frequency is: 
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 𝑋𝑋0𝐼𝐼𝐼𝐼 = 𝑖𝑖0
𝐼𝐼𝐼𝐼

𝑖𝑖𝑐𝑐
𝑚𝑚      (S26) 

The dimensionless form of (𝑋𝑋0𝐼𝐼𝐼𝐼)2 is: 

(𝑋𝑋0𝐼𝐼𝐼𝐼)2 = 1
𝑂𝑂ℎ2

2𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
ℎ�0−�̂�𝑣0

      (S27) 

By using equation (S26), the frequency response function in equation (S24) can be expressed 
as: 

     𝜒𝜒𝐼𝐼𝐼𝐼(𝜔𝜔) = 1

�𝑋𝑋0𝐼𝐼𝐼𝐼�
2
−�𝑋𝑋𝑚𝑚𝐼𝐼𝐼𝐼�

2
�1+ 16

(Λ+1)2
𝑚𝑚

𝑋𝑋𝑚𝑚
𝐼𝐼𝐼𝐼�

     (S28) 

Momentum balance model 

Governing equation 

The momentum balance equation of fluid flow was employed to describe the dynamic behavior 
of the nonwetting droplet in a response to the oscillatory force. With the lubrication 
approximation by assuming the slope of the wall is gentle, the flow has only longitudinal 
component as present in equation (11). The nonwetting droplet can be treated as a moving 
boundary control volume. The longitudinal component of momentum balance equation can be 
given as [Deng and Cardenas, 2013]: 

𝜌𝜌𝑛𝑛
𝑑𝑑
𝑑𝑑𝑖𝑖 ∫ 𝑢𝑢�𝑛𝑛𝑑𝑑𝑑𝑑𝑉𝑉 = 𝐹𝐹𝑚𝑚 + 𝐹𝐹𝑝𝑝 + 𝐹𝐹𝑚𝑚 + 𝑃𝑃𝑢𝑢𝐴𝐴𝑢𝑢 − 𝑃𝑃𝑑𝑑𝐴𝐴𝑑𝑑    (S29) 

The left-hand side specifies the rate of change of momentum within the control volume V; 𝑢𝑢�𝑛𝑛 is 
the cross-sectional mean velocity of the nonwetting fluid. On the right-hand side, Fx is the 
viscous force of nonwetting fluid; Fp is the pressure force along the wall; Fa is the oscillatory 
fictitious force; Pu and Pd are the pressure at the upstream and downstream menisci of 
nonwetting droplet; Au and Ad are the cross-sectional areas at the three phase contact line of 
upstream and downstream menisci.  

The detailed calculation of each term refers to their work [Deng and Cardenas, 2013]. In their 
study, the thickness of water film is considered in the governing equation. This thickness is set 
a zero in this simplified form. Only the final governing equation is displayed. The transient 
motion of the nonwetting droplet follows: 

𝜌𝜌𝑛𝑛 �
2
3
𝜆𝜆(𝑠𝑠) + ℎ − 𝑠𝑠 + 𝜆𝜆(ℎ)𝑔𝑔(ℎ)

3 + 𝑔𝑔2(ℎ)
6

�
𝑑𝑑2ℎ
𝑑𝑑𝑡𝑡2

+ 𝜌𝜌𝑛𝑛 �1 −
𝜆𝜆2(ℎ)
𝜆𝜆2(𝑠𝑠)� �

𝑑𝑑ℎ
𝑑𝑑𝑡𝑡
�
2

+ 2𝜌𝜌𝑛𝑛𝜔𝜔

∙ 𝑖𝑖𝑛𝑛𝑡𝑡1(ℎ)
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

 

= ∆𝑃𝑃𝑒𝑒 − ∆𝑃𝑃𝑐𝑐 − 𝜌𝜌𝑤𝑤𝜔𝜔𝜆𝜆2(ℎ)
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

��
1

𝜆𝜆2(𝑑𝑑) ∙ 𝑅𝑅𝑒𝑒 �𝑖𝑖 ∙ ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤
��

𝑣𝑣

𝐿𝐿1
𝑑𝑑𝑑𝑑

+ �
1

𝜆𝜆2(𝑑𝑑) ∙ 𝑅𝑅𝑒𝑒 �𝑖𝑖 ∙ ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐𝑤𝑤
��

𝐿𝐿2

ℎ
𝑑𝑑𝑑𝑑� 
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−2𝜌𝜌𝑛𝑛𝜔𝜔 ∙ 𝑖𝑖𝑛𝑛𝑡𝑡3(ℎ) 𝑑𝑑ℎ
𝑑𝑑𝑖𝑖
− 𝜌𝜌𝑛𝑛𝑎𝑎(𝑡𝑡)(ℎ − 𝑠𝑠) − 𝜌𝜌𝑤𝑤𝑎𝑎(𝑡𝑡)(𝑠𝑠 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ)   

 (S30) 

where the forms of 𝑖𝑖𝑛𝑛𝑡𝑡1(ℎ), 𝑖𝑖𝑛𝑛𝑡𝑡2(ℎ), 𝑖𝑖𝑛𝑛𝑡𝑡3(ℎ) and ℎ � 𝑖𝑖
𝑖𝑖𝑐𝑐
𝑤𝑤� are given as below, respectively: 

 𝑖𝑖𝑛𝑛𝑡𝑡1(ℎ) = 𝑅𝑅𝑒𝑒 �∫ 𝑣𝑣3 2⁄

�𝑖𝑖 𝑖𝑖𝑐𝑐
𝑚𝑚⁄

𝐽𝐽1��𝑣𝑣3𝑖𝑖 𝑖𝑖𝑐𝑐
𝑚𝑚⁄ �

𝐽𝐽2��𝑣𝑣3𝑖𝑖 𝑖𝑖𝑐𝑐
𝑚𝑚⁄ �

ℎ
𝑣𝑣 𝑑𝑑𝜉𝜉�    (S31) 

 𝑖𝑖𝑛𝑛𝑡𝑡2(ℎ) = 𝑅𝑅𝑒𝑒 �∫ 𝑣𝑣

𝜆𝜆2(𝜉𝜉)ℎ� 𝜔𝜔
𝜔𝜔𝑐𝑐
𝑚𝑚�
𝑑𝑑𝜉𝜉ℎ

𝑣𝑣 �     (S32) 

𝑖𝑖𝑛𝑛𝑡𝑡3(ℎ) = ∫ 𝑖𝑖𝑛𝑛𝑡𝑡2(𝜉𝜉)𝜆𝜆(𝜉𝜉)𝜆𝜆′(𝜉𝜉)𝑑𝑑𝜉𝜉ℎ
𝑣𝑣      (S33) 

Equation (S30) is highly nonlinear ODE of h in the time domain. This nonlinear equation depicts 
the oscillation of the nonwetting droplet. Most existing theoretical models are constrained to 
small oscillation, but this model can also capture large oscillation and mobilization of the 
droplet [Deng and Cardenas, 2013]. This equation was numerically solved to analyze the 
mobilization and the small oscillation of the nonwetting droplet at the constriction. Even 
though the governing equation (S30) has been greatly simplified compared to computational 
fluid dynamics (CFD) simulations, the characteristics of oscillation is still implicit in this 
equation. For potential applications of the proposed theoretical model, an explicit form of the 
oscillatory characteristics is always favorable. In this study, linearized approximation is applied 
on the equation (S30) to simplify this formula. 

Linear analysis 

In equation (S30), the second term in the left-hand side has a second-order of Δh which can be 
neglected in this study. By substituting equations (S3), (S6), (S7) and (S8) to equation (S30), we 
can get: 

[𝜌𝜌𝑛𝑛(ℎ0 − 𝑠𝑠0) + 𝜌𝜌𝑤𝑤(𝑠𝑠0 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ0)]𝑎𝑎(𝜔𝜔) = �𝜌𝜌𝑤𝑤𝜆𝜆2(ℎ0)�∫ 1

𝜆𝜆2(𝜉𝜉)∙ℎ�� 𝜔𝜔
𝜔𝜔𝑐𝑐
𝑤𝑤�
𝑑𝑑𝜉𝜉𝑣𝑣

𝐿𝐿1
+

∫ 1

𝜆𝜆2(𝜉𝜉)∙ℎ�� 𝜔𝜔
𝜔𝜔𝑐𝑐
𝑤𝑤�
𝑑𝑑𝜉𝜉𝐿𝐿2

ℎ � + 2𝜌𝜌𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡3(ℎ0) + 𝜌𝜌𝑛𝑛 �
2
3
𝜆𝜆(𝑠𝑠0) + ℎ0 − 𝑠𝑠0 + 𝜆𝜆(ℎ0)𝑔𝑔(ℎ0) 3+𝑔𝑔

2(ℎ0)
6

� +

2𝜌𝜌𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡1(ℎ0)�𝜔𝜔2Δℎ − 2𝜎𝜎 𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 Δℎ      

 (S34) 
Equation (S34) is expressed in the frequency domain. The left-hand side term represents 
driving force per volume in the fluid system. The right-hand side terms represent the inertial 
force, damping force and restoring force per volume, respectively. 

Frequency response function 

By reorganizing equation (S34) and then substituting into equation (S13), the frequency 
response function is: 
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𝜒𝜒𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔)

=
𝜌𝜌𝑛𝑛(ℎ0 − 𝑠𝑠0) + 𝜌𝜌𝑤𝑤(𝑠𝑠0 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ0)

2𝜎𝜎 𝑓𝑓(𝛽𝛽,Λ, 𝑑𝑑∗)
(𝜔𝜔𝑐𝑐

𝑛𝑛)2𝑟𝑟𝑚𝑚𝑣𝑣𝑛𝑛
2 − 𝜔𝜔2

(𝜔𝜔𝑐𝑐
𝑛𝑛)2 �𝜌𝜌𝑛𝑛𝜆𝜆

2(ℎ0)�∫ 1
𝜆𝜆2(𝜉𝜉) ∙ ℎ� � 𝜔𝜔𝜔𝜔𝑐𝑐

𝑤𝑤�
𝑣𝑣0
𝐿𝐿1

𝑑𝑑𝜉𝜉 + ∫ 1
𝜆𝜆2(𝜉𝜉) ∙ ℎ� � 𝜔𝜔𝜔𝜔𝑐𝑐

𝑤𝑤�
𝑑𝑑𝜉𝜉𝐿𝐿2

ℎ0
� + 2𝜌𝜌𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡3(ℎ0) + 𝜌𝜌𝑛𝑛 �

2
3 𝜆𝜆(𝑠𝑠0) + ℎ0 − 𝑠𝑠0 + 𝜆𝜆(ℎ0)𝑔𝑔(ℎ0) 3 + 𝑔𝑔2(ℎ0)

6 �+ 2𝜌𝜌𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡1(ℎ0)�

 

 (S35) 
Momentum balance model is referred as model III in following analysis. It shows that model III 
has the same natural frequency as ω0 in equation (S15), which is different from model II. By the 
non-dimensionalization, the frequency response function in equation (S35) can be expressed 
as: 

𝜒𝜒𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
1

𝑋𝑋02 − 𝑋𝑋𝑛𝑛2

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎𝑎𝜌𝜌𝜆𝜆2(ℎ0)�∫ 1

𝜆𝜆2(𝜉𝜉) ∙ ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐
𝑤𝑤�

𝑑𝑑𝜉𝜉𝑣𝑣0
𝐿𝐿1

+ ∫ 1
𝜆𝜆2(𝜉𝜉) ∙ ℎ � 𝜔𝜔𝜔𝜔𝑐𝑐

𝑤𝑤�
𝐿𝐿2
ℎ0

𝑑𝑑𝜉𝜉� + 2𝑖𝑖𝑛𝑛𝑡𝑡3(ℎ0) + �23 𝜆𝜆(𝑠𝑠0) + ℎ0 − 𝑠𝑠0 + 𝜆𝜆(ℎ0)𝑔𝑔(ℎ0) 3 + 𝑔𝑔2(ℎ0)
6 �+ 2𝑖𝑖𝑛𝑛𝑡𝑡1(ℎ0)

(ℎ0 − 𝑠𝑠0) + 𝑎𝑎𝜌𝜌(𝑠𝑠0 − 𝐿𝐿1 + 𝐿𝐿2 − ℎ0)

⎦
⎥
⎥
⎥
⎥
⎥
⎤
 

(S36) 

Text S2. 
Volume of Droplet 

The volume of droplet at initial stationary state is (see equation 7): 

𝑑𝑑0 = 2𝜋𝜋
3
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚3 + 𝜋𝜋𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚2 (−𝐿𝐿 − 𝑠𝑠0) + 𝜋𝜋 ∫ 𝜆𝜆2(𝑑𝑑)𝑑𝑑𝑑𝑑ℎ0

−𝐿𝐿 + 𝜋𝜋𝜋𝜋(ℎ0)
6

[3𝜆𝜆2(ℎ0) + 𝐻𝐻2(ℎ0)] 
 (S37) 

The displacement of h and s in transient state can be expressed as: 

 ℎ(𝑡𝑡) = ℎ0 + Δℎ      (S38) 

 𝑠𝑠(𝑡𝑡) = 𝑠𝑠0 + ∆𝑠𝑠      (S39) 
Then, the volume of droplet in transient state can be formulated as: 

𝑑𝑑 = 2𝜋𝜋
3
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚3 + 𝜋𝜋𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚2 (−𝐿𝐿 − 𝑠𝑠0 − ∆𝑠𝑠) + 𝜋𝜋 ∫ 𝜆𝜆2(𝑑𝑑)ℎ0+∆ℎ

−𝐿𝐿 𝑑𝑑𝑑𝑑 + 𝜋𝜋𝜋𝜋(ℎ0+Δℎ)
6

[3𝜆𝜆2(ℎ0 + Δℎ) +
𝐻𝐻2(ℎ0 + Δℎ)]          

 (S40) 

For the incompressibility of nonwetting droplet, the volume is conserved. Thus, the 
displacement at the rear meniscus is: 

Δ𝑠𝑠 = 1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 �∫ 𝜆𝜆2(𝜉𝜉)𝑑𝑑𝜉𝜉𝑚𝑚

−𝐿𝐿 + 𝜋𝜋(𝑚𝑚)
6
�3𝜆𝜆2(𝑑𝑑) + 𝐻𝐻2(𝑑𝑑)���

ℎ0

ℎ0+Δℎ
   (S41) 

The linear approximation is applied on the right-hand size of equation (S41). The formula can 
be expressed as: 

Δ𝑠𝑠 = Υ(𝛽𝛽,Λ, 𝑑𝑑∗) ∙ ∆ℎ      (S42) 

Υ(𝛽𝛽,Λ, 𝑑𝑑∗) = 1
2𝜋𝜋2

[𝜉𝜉+ − 𝜉𝜉−𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋𝑑𝑑∗)]2 �2 − 2 �Λ
𝛽𝛽
𝜉𝜉−𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋𝑑𝑑∗)�

2
+

�Λ
𝛽𝛽
�
2
𝜉𝜉+𝜉𝜉−𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋𝑑𝑑∗)� ��1 + �Λ

𝛽𝛽
𝜉𝜉−𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋𝑑𝑑∗)�

2
+ Λ

𝛽𝛽
𝜉𝜉−𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋𝑑𝑑∗)�

2

   

 (S43) 
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The approximation error ε is defined as the ratio of linearized displacement to accurate 
displacement at the rear meniscus. The linearized displacement is calculated from equation 
(S42), and the accurate displacement is calculated numerically based on volume conservation. 
Apparently, ε is function of Δh/h0. The approximation error ε with respect to Δh/h0 is displayed 
in Figure S1. The geometric parameters used: Λ = 4, β = 20, x* = -0.05. It shows that the error is 
within 5% for the relative oscillatory amplitude in 50%. 

 
Figure S1. The linear approximation error with respect to dimensionless amplitude of oscillation at front 
meniscus. 

Text S3. 
Pressure Differences 

In stationary state, the balance of external pressure and capillary pressure is: 

𝑃𝑃𝑤𝑤1 − 𝑃𝑃𝑤𝑤2 = 2𝜎𝜎 � 1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(ℎ0) −

1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣0)�    (S44) 

In transient state, the net pressure of them is: 

Δ𝑃𝑃𝑒𝑒 − Δ𝑃𝑃𝑐𝑐 = 2𝜎𝜎 � 1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(ℎ0) −

1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣0)� − 2𝜎𝜎 � 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(ℎ0+Δℎ) −
1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣0+Δ𝑣𝑣)�  
 (S45) 

In light of rear meniscus locating in flat wall, 𝑟𝑟𝑚𝑚𝑒𝑒𝑛𝑛(𝑠𝑠0) = 𝑟𝑟𝑚𝑚𝑒𝑒𝑛𝑛(𝑠𝑠0 + Δ𝑠𝑠). Therefore, equation 
(S45) can be reformulated as: 

Δ𝑃𝑃𝑒𝑒 − Δ𝑃𝑃𝑐𝑐 = 2𝜎𝜎 � 1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(ℎ0) −

1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚(ℎ0+Δℎ)�    (S46) 

If the rear meniscus also locates in curved region, the variation of rear meniscus needs to be 
considered in equation (S46).  
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The linearized approximation can be applied on equation (S46) to linearize the relation of 
pressure difference and displacement:  

Δ𝑃𝑃𝑒𝑒 − Δ𝑃𝑃𝑐𝑐 = −2𝜎𝜎 𝑓𝑓(𝛽𝛽,Λ,𝑚𝑚∗)
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 ∆ℎ      (S47) 

where, 

𝑓𝑓(𝛽𝛽,Λ, 𝑑𝑑∗) = 𝜋𝜋2

2𝛽𝛽Λ
−𝜉𝜉−𝑣𝑣𝑣𝑣𝑛𝑛(𝜋𝜋𝑚𝑚∗)

[𝜉𝜉+−𝜉𝜉−𝑐𝑐𝑐𝑐𝑣𝑣(𝜋𝜋𝑚𝑚∗)]2
2−2�Λ𝛽𝛽𝜉𝜉

−𝑐𝑐𝑐𝑐𝑣𝑣(𝜋𝜋𝑚𝑚∗)�
2
+�Λ𝛽𝛽�

2
𝜉𝜉+𝜉𝜉−𝑐𝑐𝑐𝑐𝑣𝑣(𝜋𝜋𝑚𝑚∗)

�1+�Λ𝛽𝛽𝜉𝜉
−𝑣𝑣𝑣𝑣𝑛𝑛(𝜋𝜋𝑚𝑚∗)�

2
�
3 2⁄    (S48) 

As in appendix A, the approximation error ε is defined as the ratio of linearized pressure 
difference to accurate pressure difference. The linearized pressure difference is calculated from 
equation (S47). The accurate pressure difference is calculated from equation (S46). Apparently, 
ε is function of Δh/h0. The approximation error is displayed in Figure S2 for a specific geometry: 
Λ = 4, β = 20, x* = –0.05. It shows that the error is within 15% for the relative oscillatory amplitude 
in 20%.  

 
Figure S2. (a) The linearized and accurate pressure difference with respect to dimensionless amplitude of 
oscillation at front meniscus; (b) the approximation error incurred in the linearized approximation. 
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