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1 Coupling and Tranport Plans

Definition 1.1 (Coupling). Given two probability spaces, (Ω1,F1, µ1) and (Ω2,F2, µ2),
a coupling of (µ1, µ2), is a measure π on Ω1 × Ω2 with marginals µ1 and µ2,
that is,

π(F1 × Ω2) = µ1(F1) ∀F1 ∈ F1

π(Ω1 × F2) = µ2(F2) ∀F2 ∈ F2

Alternatively, one can view a coupling as a pair of random variables Xi :
(Ω∗,F∗,P) → (Ωi,Fi, µi) satisfying µi = Xi#P. Just find a pair (X1, X2)

satisfying π = P ◦ (X−1
1 , X−1

2 ); there are existence theorems (Theorem 1.104 in
[3]) which show that, for a given distribution, there exists a random variable
which generates that distribution.

Claim 1.2. π is a coupling of the probability measures (µ1, µ2) iff ∀(φ1, φ2) ∈
L1(Ω1, µ1)× L1(Ω2, µ2), or equivalently L∞(Ω1, µ1)× L∞(Ω2, µ2), we have∫

Ω1×Ω2

(φ1 ⊕ φ2)(x, y)dπ(x, y) =

∫
Ω1

φ1(x) dµ1(x) +

∫
Ω2

φ2(y) dµ2(y)

Proof. “ =⇒ ” Take φi = 1A(i) for some A(i) ∈ Fi, then∫
Ω1×Ω2

φ1 + φ2 dπ = sup
(F (1),F (2))∈F1×F2)

(π(A(1), F (2)) + π(F (1), A(2)))

by definition of Lebesgue integration. Since measures are monotone and A(1)×
F (2) ⊂ A(1)×Ω2 ∈ F1×F2 ∀F (2) ∈ F2 and similarly for F (1)×A(2), the integral
is maximized when (F (1), F (2)) = (Ω1,Ω2), and by the marginal restrictions of
π we have ∫

Ω1×Ω2

φ1 + φ2 dπ = µ1(A(1)) + µ2(A(2))

Then proceed to simple functions and then limits of simple functions.

“⇐= ” Take φi = 1F (i) for F (i) ∈ Fi and φ2 = 0, then

π(F (1) × Ω2) =

∫
Ω1×Ω2

φ1 dπ =

∫
Ω1

φ1 dµ1 = µ(F (1))

Similarly with φ2 we obtain the result.

Definition 1.3 (Transport Plans). The set of transport plans is the set of
couplings on Ω1 × Ω2 for (µ1, µ2), that is,

Π(µ1, µ2) = {π : F1 ×F2 → R+
0 ∪ {∞} | π couples (µ1, µ2)}

Claim 1.4. Given two probability spaces, (Ω1,F1, µ1) and (Ω2,F2, µ2), the set
of transport plans is nonempty.

Proof. (µ1 ⊗ µ2) ∈ Π(µ1, µ2)
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2 Kantorovich’ O. T. & Basic Properties

Let c : Ω1 × Ω2 → R+
0 ∪ {∞} be a loss metric and (Ωi,Fi, µi) a probability

space. The Kantorovich optimal transport problem is finding a π∗ satisfying

π∗ ∈ arg inf
π∈Π(µ1,µ2)

Kc(π) = arg inf
π∈Π(µ1,µ2)

∫
Ω1×Ω2

c(x, y) dπ(x, y)

where the quantity ‘c(x, y) dπ(x, y)’ can be interpreted as “ moving the amount
dπ(x, y) from x to y at a cost c(x, y).” The minimal cost will be denoted
Cc(µ1, µ2) = Kc(π∗). The problem can also be posed with random variables,
using the same notation as in Definition 1.1, we have

(X∗1 , X
∗
2 ) ∈ arg inf

Xi∈Fi
µi=Xi#P

EP [c(X1, X2)]

We want to prove the following:

Theorem 2.1 (Existence of an optimal coupling). Let (Ωi,Fi) (i = 1, 2) be
two Polish probability spaces, i.e. a separable, completely metrizable, topolog-
ical, probability space; let ai ∈ L1(Ωi,R ∪ {−∞}, µi) (i = 1, 2) be two upper
semicontinuous functions. Let c : Ω1 × Ω2 → R ∪ {∞} be a lower semicontinu-
ous cost function, such that c(x, y) = a1(x) + a2(y) for all x, y. Then there is
a coupling of (µ1, µ2) which minimizes the total cost E [ c(X1, X2) ] among all
possible couplings (X1, X2).

Note. The lower bound for c(•, •) in Theorem 2.1 guarantees a lower bound
for the Kantorovich problem, this is because, by Claim 1.2,

inf
π∈Π(µ1,µ2)

∫
a1 + a2 dπ =

∫
a1 + a2 d(µ1 ⊗ µ2) 5 Kc(π∗)

and since the ’ai’s are integrable, we obtain a lower bound.

To prove Theorem 2.1, we will first need a few lemmas.

Lemma 2.2. Let f be a nonnegative lower semicontinuous function on Ω. If
(µn)n=1 converges narrowly to µ, then∫

f dµ 5 lim inf
n↑∞

∫
f dµn

Proof. Since g is lower semicontinuous ∃(fn)n=1 ⊂ C0
b (Ω) such that fn ↑ f by

Lemma C.1. Let ε > 0, by the Beppo-Levi lemma for nonnegative increasing
measurable functions, we have that ∃K ∈ N s.t. ∀k > K∣∣∣∣∫ f dµ−

∫
fk dµ

∣∣∣∣ =

∫
f dµ−

∫
fk dµ 5 ε
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rearranging we obtain ∫
f dµ 5

∫
fk dµ+ ε (?)

Now, by narrow convergence, we have that ∃N ∈ N s.t. ∀n = N∣∣∣∣∫ fk dµ−
∫
fk dµn

∣∣∣∣ < ε

by definition of the absolute value we have

−ε <
∫
fk dµ−

∫
fk dµn < ε

and then we add ε to both sides

0 <

∫
fk dµ−

∫
fk dµn <

∫
fk dµ−

∫
fk dµn + ε < 2ε (??)

“Adding zero” to (?), applying (??), then recalling that
∫
fk dµn 5

∫
f dµn

since fk 5 f ∀ k ∈ N we obtain∫
f dµ 5

∫
fk dµ±

∫
fk dµn + ε

=

∫
fk dµn +

(∫
fk dµ−

∫
fk dµn

)
+ ε

5
∫
fk dµn + 3ε

5
∫
f dµn + 3ε

Now, by taking the lim inf in n and taking ε ↓ 0 we obtain the result

lim inf
n↑∞

∫
f dµ =

∫
f dµ 5 lim inf

n↑∞

∫
f dµn

Lemma 2.3 (Lower semicontinuity of the cost functional). Let Ω1 and Ω2 be
two Polish spaces, and c : Ω1 × Ω2 → R ∪ {∞} a lower semicontinuous cost
function. Let h : Ω1 × Ω2 → R ∪ {−∞} be an upper semicontinuous function
such that c = h everywhere. Let (πk)k∈N be a sequence of probability measures
on Ω1 × Ω2, converging weakly to some π ∈ P(Ω1 × Ω2), in such a way that
h ∈ L1(πk) ∩ L1(π), and ∫

Ω1×Ω2

h dπk
k↑∞−−−→

∫
Ω1×Ω2

h dπ

Then ∫
Ω1×Ω2

c dπ 5 lim inf
k↑∞

∫
Ω1×Ω2

c dπk

3



Proof. Replace c by c − h, a non-negative lower semicontinuous function, and
apply the previous lemma.

Lemma 2.4 (Tightness of transference plans). Let Ω1 and Ω2 be two Polish
spaces. Let P1 ⊂P(F1) and P2 ⊂P(F2) be tight subsets of P(F1) and P(F2)
respectively. Then the set Π(P1,P1) of all transference plans whose marginals
lie in P1 and P2 respectively, is itself tight in P(F1 ×F2).

Proof. Let µ1 ∈ P1, µ2 ∈ P1, and π ∈ Π(µ1, µ2). By Ulam’s tightness theorem
(and by assumption), we have that

∀ε > 0 ∃ compact K(i)
ε ⊂ Ωi ( |= µi) s.t. µi(Ωi \ K(i)

ε ) 5 ε

Let (X1, X2) be a coupling of (µ1, µ2), that is, law(Xi) = Xi#P = µi, then

=⇒ P((X1, X2) 6∈ K(1)
ε ×K(2)

ε )

= P({ ω | X1(ω) 6∈ K(1)
ε } ∩ { ω | X2(ω) 6∈ K(2)

ε })
= P(X−1

1 (Ω1 \ K(1)
ε ) ∩X−1

2 (Ω2 \ K(2)
ε ))

5 P(X−1
1 (Ω1 \ K(1)

ε ) ∪X−1
2 (Ω2 \ K(2)

ε ))

5 P(X−1
1 (Ω1 \ K(1)

ε )) + P(X−1
2 (Ω2 \ K(2)

ε ))

= µ1(Ω1 \ K(1)
ε )) + µ2(Ω2 \ K(2)

ε ))

5 ε+ ε = 2ε |= µi

And since K(i)
ε is compact, we have, by Theorem A.7 (Tychonoff), that K(1)

ε ×
K(2)
ε ⊂ Ω1 × Ω2 too is compact; therefore, Π(P1,P2) is tight.

Proof of Theorem 2.1. Since Ωi is a Polish space, we have, by Theorem B.7
(Ulam), that µi is tight and, by Lemma 2.4, that Π(µ1, µ2) is tight, and so by
Theorem B.9 (Prokhorov) this set has a compact closure. Now, take (πk)k=1 ⊂

Π(µ1, µ2) s.t. πk
k↑∞−−−→ π in the narrow sense; we want to show that π ∈

Π(µ1, µ2), i.e. has margins µ1 and µ2. Let (φ1, φ2) ∈ L1(µ1)× L1(µ2), then we
have ∫

Ω1×Ω2

φ1 + φ2 dπk =

∫
Ω1

φ1 dµ1 +

∫
Ω2

φ2 dµ2
k↑∞−−−→

∫
Ω1×Ω2

φ1 + φ2 dπ

hence ∫
Ω1×Ω2

φ1 + φ2 dπ =

∫
Ω1

φ1 dµ1 +

∫
Ω2

φ2 dµ2

and by Claim 1.2 we conclude that π ∈ Π(µ1, µ2); hence, Π(µ1, µ2) is closed, and
since it has a compact closure, we have that it is compact. Now let (πk)k=1 be

the minimizing sequence for
∫
c dπk which converges to the optimal transport
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cost. Since Π(µ1, µ2) is compact, take a narrowly convergent subsequence to
π ∈ Π(µ1, µ2). Notice that

h : Ω1 × Ω2 3 (x1, x2) 7→ a1(x1) + a2(x2) = h(x1, x2) ∈ R

is L1(πk) ∩ L1(π) and, by assumption, c = h everywhere; moreover,∫
h dπk =

∫
h dπ =

∫
a1 dµ1 +

∫
a2 dµ2

Therefore, with Lemma 2.3 on c− h, we have∫
c dπ 5 lim inf

k↑∞

∫
c dπk

thus π is minimizing.

Theorem 2.5 (Optimality is inherited by restriction). Let (Ωi,Fi, µi) (i = 1, 2)
be two Polish spaces, ai ∈ L1(Ωi, µi), and let c : Ω1 × Ω2 → R ∪ {∞} be a
measurable cost function such that c = a1 + a2; let Cc(µ1, µ2) be the optimal
transport cost from µ1 to µ2. Assume Cc(µ1, µ2) < ∞ and let π ∈ Π(µ1, µ2) be
an optimal transport plan. Let π̃ be a nonnegative measure on F1 × F2 such
that π̃ 5 π and π(Ω1 × Ω2) > 0. Then the probability measure

π′ =
π̃

π̃(Ω1 × Ω2)
=
π̃

Z̃

is an optimal transference plan between its marginals µ′1 and µ′2.
Moreover, if π is the unique optimal transference plan between µ1 and µ2,

then π′ is the unique optimal transference plan between µ′1 and µ′2.

Proof. Suppose π′ is not optimal, then ∃ π′′ such that, for all F (i) ∈ Fi,

π′′(• × F (2)) = µ′1, π′′(F (1) × •) = µ′2

and ∫
c dπ′′ <

∫
c dπ′

Now, consider

π̂ = (π − π̃) + Z̃π′′

= (π − Z̃ π̃
Z̃

) + Z̃π′′

= (π − Z̃π′) + Z̃π′′

= π + Z̃(π′′ − π′)

where Z̃ = π̃(Ω1 × Ω2) > 0 by assumption. It is clear that π̂ is nonnegative
since π̃ 5 π and π′′ = 0. Note that π̂ ∈ Π(µ1, µ2), that is, for all F (i) ∈ Fi

π̂(F (1) × Ω2) = µ1(F (1) + Z̃
(
µ′1(F (1))− µ′1(F (1))

)
= µ1(F (1))

π̂(Ω1 × F (2)) = µ1(F (2) + Z̃
(
µ′2(F (2))− µ′2(F (2))

)
= µ2(F (2))

5



Since
∫
c d(Z̃(π′′ − π′)) < 0, we obtain∫

c dπ̂ =

∫
c dπ +

∫
c d(Z̃(π′′ − π′)) <

∫
c dπ

which contracts the optimally of π; therefore, π′ is optimal. Now suppose π is a
unique optimal transference plan, let π′ and π′′ ∈ Π(µ′1, µ

′
2) be optimal, define

π̂ as above and note that π̂ 5 π (since π is optimal), hence π̂ = π yielding∫
φ dπ̂ =

∫
φ dπ +

∫
φ d(Z̃(π′′ − π′)) =

∫
φ dπ

∀ φ ∈  L1(π), and so, by Claim B.5 (bounded continuous equality, not L1(π),
suppose ∞ at a point where π 6= 0 and π′ = 0) on (µ′1, µ

′
2), π′ = π′′ and so π′

is unique.

6



3 The Wasserstein Distance

We want to be able to say that

Cc(µ1, µ2) = inf
π∈Π(µ1,µ2)

Kc(π)

is the “distance between µ1 and µ2”, but, in general, Cc(•, •) does not satisfy the
axioms of a distance function, i.e. a metric; however, we obtain such a metric
characteristic when c is a metric such as `p for some p ∈ N.

Definition 3.1. Let (Ω, d) be a Polish metric space, and let p ∈ [1,∞). For
any two probability measures µ1, µ2 in (Ω,F), the Wasserstein distance of order
p between µ1 and µ2 is defined by the formula

Wp(µ1, µ2) = C
1
p

dp(•,•)(µ1, µ2) =

 inf
π∈Π(µ1,µ2)

∫
Ω

dp(x, y) dπ

 1
p

= inf
Xi∈F

law(Xi)=µi

(
E [dp(X1, X2)]

1
p

)
Note: In the following I add a compactness assumption to Ω which has not been
there up to now. As I work through [2] and build the presentation for a more
general approach to optimal transport, I will add similar theorems with weaker
assumptions.

Theorem 3.2 (Wp is a metric on P(F)). Let (Ω,F , d) be a measurable compact
Polish metric space, then Wp is a metric on P(F).

Lemma 3.3 (Gluing Lemma). Let (Ωi,Fi, µi) (i = 1, 2, 3) be a compact mea-
sured Polish space with associated transport plans π12 ∈ Π(µ1, µ2) and π23 ∈
Π(µ2, µ3), then ∃ π123 ∈P(F1 ×F2 ×F3) with marginals π12 and π23.

Proof. Let V ⊂ C0
b (Ω1 × Ω2 × Ω3) be the vector space

V = {φ12(x1, x2) + φ23(x2, x3) : φ12 ∈ C0
b (Ω1 × Ω2), φ23 ∈ C0

b (Ω2 × Ω3)}

and define a functions G : V → R by

G(φ12 + φ23) =

∫
Ω×Ω

φ12 dπ12 +

∫
Ω×Ω

φ23 dπ23

We will now show that G is well defined. Let φ12 +φ23 = φ̂12 + φ̂23, lets perturb
x1 by ∆x1

φ12(x1 + ∆x1, x2)− φ̃12(x1 + ∆x1, x2) = φ̃23(x2, x3)− φ23(x2, x3)

= φ12(x1, x2)− φ̃12(x1, x2)

7



and similarly for x3 we obtain, with the equality restriction, that φ12(x1, x2)−
φ̃12(x1, x2) and φ̃23(x2, x3)− φ23(x2, x3) are functions of x2. Thus∫

Ω×Ω

φ12 − φ̃12 dπ12 =

∫
Ω

φ12 − φ̃12 dµ2

=

∫
Ω

φ23 − φ̃23 dµ2

=

∫
Ω×Ω

φ23 − φ̃23 dπ23

and, by rearranging, we obtain

G(φ12 + φ23) = G(φ̃12 + φ̃23)

and so G is well defined. Clearly G is bounded and linear (its an integral), we
must show that it is positive linear. Let

φ12(x1, x2) + φ23(x2.x3) = 0

then, with both sides being functions of x2, we have

φ12(x1, x2) = −φ23(x2, x3) = − inf
x3

φ23(x2, x3)

and that the infimum exists since φ23 is bounded. We now have

∫
Ω1×Ω2

φ12 dπ12 =
∫

Ω1×Ω2

− inf
x3

φ23(x2, x3) dπ12 = −
∫
Ω2

inf
x3

φ23(x2, x3) dµ2

∫
Ω2×Ω3

φ23 dπ23 =
∫

Ω2×Ω3

inf
x3

φ23(x2, x3) dπ23 =
∫
Ω2

inf
x3

φ23(x2, x3) dµ2

Using the above lower bounds, we obtain

G(φ12 + φ23) =

∫
Ω1×Ω2

φ12 dπ12 +

∫
Ω2×Ω3

φ23 dπ23

= −
∫
Ω2

inf
x3

φ23(x2, x3) dµ2 +

∫
Ω2

inf
x3

φ23(x2, x3) dµ2

= 0

Thus, G is a positive linear functional. So, by Theorem C.5 (Hahn-Banach
Positive Extension)[with Θ = C0

b (Ω1×Ω2×Ω3) and Θ′ = V , and ρ(•) = sup
x∈Ω

(•)

8



in the definition], ∃ Ĝ : C0
b (Ω1×Ω2×Ω3)→ R, and by the Theorem C.6 (Riesz

representation) we have ∃ π123 ∈P(F1×F2×F3) corresponding to Ĝ yielding∫
Ω⊗3

φ12 + φ23 dπ123 = Ĝ(φ12 + φ23)

= G(φ12 + φ23)

=

∫
Ω×Ω

φ12 dπ12 +

∫
Ω×Ω

φ23 dπ23 ∀ (φ12 + φ23) ∈ V

and we have, from Theorem B.5, that π123 has marginals π12 and π23 as desired.

Proof of Theorem 3.2. We must show that Wp satisfies the properties of a met-
ric in Definition A.1. It is clear that Wp is non-negative, symmetric, and finite
(since the infimum is achieved). Now, suppose µ1 = µ2 = µ, then there exists
a random variable X : (Ω∗,F∗,P) → (Ω,F) such that µ = X#P, then, with
X1 = X2 = X in the definition of the Kantorovich problem, we obtain∫

Ω∗

dp(X(ω), X(ω)) dP(ω) = 0

so Wp(µ, µ) = 0 ∀ µ ∈ P(F). Now let µ1, µ2 ∈ P(F) (not necessarily equal).
If Wp(µ1, µ2) = 0, then π∗ must concentrate all of its mass on the diagonal
∆Ω ⊂ Ω × Ω; suppose it didn’t, then ∃F ∈ F × F

∣∣
∆c

Ω
s.t. π∗(F ) > 0 and

sup
(x1,x2)∈F

(d(x1, x2)) > 0, so we have

∫
F

dp(x1, x2) dπ∗

 1
p

5Wp(µ1, µ2)

which contradicts Wp(µ1, µ2) = 0. With this, we have that ∀ u ∈ C0
b (Ω)∫

Ω

u(x) dµ1(x) =

∫
Ω×Ω

u(x) dπ∗(x, y) =

∫
Ω×Ω

u(y) dπ∗(x, y) =

∫
Ω

u(y) dµ2(y)

where the second equality comes from the concentration on ∆Ω; thus, µ1 = µ2

by Theorem B.5.
Now let µi ∈ P(F) (i = 1, 2, 3), π12 ∈ K(µ1, µ2), π23 ∈ K(µ2, µ3), and, by

the Lemma 3.3, π123 ∈ P(F⊗3) coupling π12 and π23. Letting π13(•, •) =

9



π123(•,Ω, •) (not necessarily optimal), we obtain

Wp(µ1, µ3) 5

 ∫
Ω×Ω

dp(x1, x2) dπ13

 1
p

=

 ∫
Ω⊗3

dp(x1, x3) dπ123

 1
p

5

 ∫
Ω⊗3

[ d(x1, x2) + d(x2, x3) ]
p
dπ123

 1
p

5

 ∫
Ω⊗3

dp(x1, x2) dπ123

 1
p

+

 ∫
Ω⊗3

dp(x2, x3) dπ123

 1
p

=

 ∫
Ω×Ω

dp(x1, x2) dπ12

 1
p

+

 ∫
Ω×Ω

dp(x2, x3) dπ23

 1
p

=Wp(µ1, µ2) +Wp(µ2, µ3)

which proves the triangle inequality.
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Preliminaries∗

∗This section has not been developed in detail as the focus of this text is optimal transport.
The details are left as a future work.



A Topology

Definition A.1 ( Topology, Open/Closed Sets, and Metrizablility). Let Ω be
a non-empty set, then a collection τ ⊆ 2Ω is a topology if

i. ∅,Ω ∈ τ

ii. T1, T2 ∈ τ =⇒ T1 ∩ T2 ∈ τ

iii. (Ti)i∈I⊂R ⊂ τ =⇒
⋃
i∈I

Ti ∈ τ

Sets in τ are called open, if T c ∈ τ then T is closed, and if T is both open and
closed it is clopen. If ∃ a metric on Ω which induces the topology, then (Ω, τ)
is called metrizable, that is, ∃d : Ω× Ω→ R satisfying ∀ xi ∈ Ω (i = 1, 2, 3)

i. d(x1, x2) = 0 with d(x1, x2) = 0 ⇐⇒ x1 = x2

ii. d(x1, x2) = d(x2, x1)

iii. d(x1, x3) 5 d(x1, x2) + d(x2, x3)

and τ = { {x ∈ Ω : d(x0, x) < r)} : r ∈ R+

0 & x0 ∈ Ω }.

Definition A.2 (Hausdorff Condition). (Ω, τ) is called Hausdorff if ∀ x1 6=
x2 ∈ Ω ∃Ui ∈ τ |3xi s.t. Ux1

⋂
Ux2 = ∅.

Definition A.3 (Polish Space). A topological space (Ω, τ) is Polish if it is a sep-
arable, completely metrizable, topological space, that is, a space homeomorphic
to a complete metric space that has a countable dense subset.

Definition A.4 (Lower Semicontinuity). Let (Ω, τ) be a topological space, a
function f : Ω→ R is lower semicontinuous if one of the following holds

i. {x : f(x) > α} ∈ τ ∀ α ∈ R

ii. {x : f(x) 5 α}c ∈ τ ∀ α ∈ R

iii. If τ is metrized by d, ∀ (x0 ∈ Ω, ε > 0) ∃ δ(x0, ε) = δ > 0 s.t.

d(x0, x) < δ =⇒ f(x) > f(x0)− ε

Definition A.5 (Limit Points and Convergence). A point x∗ is a limit point
of A ⊂ Ω if ∀U ∈ τ |3x∗ A

⋂
U 6= ∅. A sequence (xn)n=1 converges to a point

x∗ ∈ Ω if ∀ U ∈ τ |3x∗ ∃N ∈ N s.t. xn ∈ U ∀n = N ; if τ is metrized by d, then
the former can be formulated as

∀ ε > 0 ∃N ∈ N s.t. d(x∗, xn) < ε ∀ n = N

12



Theorem A.6 (Equivalence of Compactness (Theorem 28.2, pg. 179 [8])). If
a set C ⊂ Ω is compact, then the following are equivalent

i. ∀ ( I ⊆ R, (Ti)i∈I ⊆ τ) s.t. C ⊆
⋃
i∈I

Ti ∃(Cn)N<∞n=1 ⊆ (Ti)i∈I s.t. C ⊆
N⋃
n=1

Ci

ii. ∀ (xn)n=1 ⊆ C ∃(xnk
)k=1 ⊆ (xn)n=1 & x ∈ C s.t. xnk

k↑∞−−−→ x

iii. Every infinite subset of C has a limit point

Theorem A.7 (Tychonoff’s Compactness (Theorem 37.3, pg. 234 [8])). An
arbitrary product of compact spaces is compact in the product topology.
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B Measure Theory

Definition B.1 (σ-Algebra). Let Ω be a non-empty set. A collection F ⊂ 2Ω

is a σ-algebra if

i. Ω ∈ F

ii. A ∈ F =⇒ Ac ∈ F

iii. (Ai)i=1 ⊂ F =⇒
⋃
i=1

Ai ∈ F

Definition B.2 (Measurable Maps / Random Variables). A map X : (Ω,F)→
(Ω′,F ′) is called measurable if

X−1(F ′) ⊂ F

Definition B.3 (Measure / Probability Measure). Let (Ω,F) be a measureable
space, the set function µ : F → R+

0 ∪ {∞} is a measure if

i. µ(∅) = 0

ii. µ(
⊎
Ai) =

∑
i=1

µ(Ai)

The measure µ is called a probability measure if µ(Ω) = 1. The space of all
probability measures on (Ω,F) is denoted P(F).

Definition B.4 (Image Measure / Distribution). Let X : (Ω,F ,P)→ (Ω′,F ′)
be a random variable, then we can endow (Ω′,F ′) with the distribution, often
called the image measure, µ = X#P = P ◦X−1

Theorem B.5 (Eq. 1.2 pg. 18 in [1]). Let (Ω,F) be a measurable Polish space
and µi ∈P(F) (i = 1, 2), then µ1 = µ2 if∫

Ω

φ dµ1 =

∫
Ω

φ dµ2 ∀φ ∈ C0
b (Ω)

Proof. Assume that (X, d) is a metric space and let F be a closed subset of
X. For S ⊂ X and x ∈ S, define d(x, S) := inf{d(x, y), y ∈ S}. Let On :={
x ∈ X, d(x, F ) < n−1

}
. Then On is open and the map

fn : x 7→ d (x,X \On)

d (x,X \On) + d (x, F )

is continuous and bounded. It converges pointwise and monotonically to the
characteristic function of F . So we get by monotone convergence that µ(F ) =
ν(F ) for all closed set F . Now given a Borel set B and ε > 0, we can find a
closed set F and an open set O such that F ⊂ S ⊂ O and µ(O \ S) 6 ε.
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Definition B.6 (Tightness). A family of finite measures P ⊂Pf (F) is called
tight if

∀ε > 0 ∃ compact K ⊂ Ω s.t. sup
µ∈P

(µ(Ω \ K)) < ε

Lemma B.7 (Ulam’s theorem). If (Ω, τ) is a Polish space, and (Ω,B(τ), µ) is
a probability space, then µ is tight.

Proof. Result from measure theory, see Theorem 2.49 in [4].

Definition B.8 (Weak Convergence in Measure). A sequence of measures
(µn)n=1 converges narrowly to µ if ∀ f ∈ C0

b (Ω)∫
f dµn

n↑∞−−−→
∫
f dµ

Lemma B.9 (Prokhorov’s theorem). If (Ω, τ) is a Polish space, then a set
P ⊂P(B(τ)) is precompact for the weak topology if and only if it is tight.

Proof. Result from measure theory, see Theorem 13.29 in [3].
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C Analysis

Theorem C.1 (Baire’s Theorem). If f is a nonnegative lower semicontinuous
function on Ω, then ∃(fn)n=1 ⊂ C0(Ω) such that fn ↑ f pointwise.

Proof. Let
fn(•) = inf

z∈Ω
(f(z) + n · d(•, z))

Then all we must show is that fn is (i) increasing, (ii) continuous, (iii) convergent
to f .

(i) We have the inequality f(z) + n · d(x, z) 5 f(z) + (n + 1) · d(x, z). Now
taking the inf in z on both sides yields

inf
z∈Ω

(f(z) + n · d(x, z)) = fn(x) 5 fn+1(x) = inf
z∈Ω

(f(z) + (n+ 1) · d(x, z))

Also note that z can be x, so we have d(x, x) = 0 and hence

fn 5 f (?)

(ii) Choose x, y, z ∈ Ω, then, by the triangle inequality, we have

f(z) + n · d(z, x) 5 f(z) + n · d(z, y) + n · d(y, x)

Taking the inf in z on both sides and subtracting fn(y) from both sides

fn(x)− fn(y) 5 n · d(y, x)

Since x and y were arbitrary one obtains

|fn(x)− fn(y)| 5 n · d(x, y)

Now let ε > 0 and δ =
ε

n
, then we have

d(x, y) < δ =⇒ |fn(x)− fn(y)| 5 n · d(y, x) < n ·
( ε
n

)
= ε ∀x, y

and we have uniform continuity.

(iii) Lower semicontinuity yields, for a fixed x0 ∈ Ω, that ∀ε > 0 ∃ δ > 0 such
that

d(x0, z) < δ =⇒ f(z) > f(x0)− ε (??)

Now suppose d(x0, z) > δ, then ∃ N ∈ N such that ∀ n = N

f(z) + n · d(x0, z) = n · δ > f(x0)

since f > 0. However, we have, from (?), that fn 5 f ∀ n ∈ N, so

d( x0 , arg inf
z∈Ω

(f(z) + n · d(x0, z)) ) < δ
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But, for all z ∈ Ω s.t. d(x0, x) < δ we have, from (??),

f(z) + n · d(x0, z) = f(z) > f(x0)− ε

and so
inf
z∈Ω

d(x0,z)<δ

(f(z) + n · d(x0, z)) = fn(x0) > f(x0)− ε

Therefore,
f(x0)− ε 5 fn(x0) 5 f(x0)

and so, taking ε ↓ 0 and n ↑ ∞, we have fn(x0) → f(x0). Since x0 ∈ Ω
was arbitrary, we have that fn → f pointwise.

Theorem C.2 (Hahn-Banach Extension). Let (Θ, || • ||) be a normed linear
space, let Θ′ ⊂ Θ be a linear subspace and let ` ∈ (Θ′)∗, then ∃ ˜̀∈ Θ∗ such that
`(ω) = ˜̀(ω) ∀ ω ∈ Θ′.

Definition C.3 (Riesz Space). A Riesz space R is a vector space endowed with
a partial order, that is, ∀ x1, x2, x3 ∈ R

i. x1 5 x2 =⇒ x1 + x3 5 x2 + x3

ii. ∀α = 0, x1 5 x2 =⇒ αx1 5 αx2

iii. ∃ sup(x1, x2)

Definition C.4 (Positive Linear Functional & Sublinear). ` ∈ Ω∗ is positive
linear if

∀ ω = 0 =⇒ `(ω) = 0

and is sublinear if ∀ω1, ω2 ∈ Ω and α ∈ R+
0

i. `(ω1 + ω2) 5 `(ω1) + `(ω2)

ii. `(αω1) = α`(ω1)

Theorem C.5 (Hahn-Banach Positive Extension ([6], Theorem 8.31, pg. 330)).
Let Θ be a Riesz space, Θ′ ⊂ Θ be a Riesz subspace, and let ` ∈ (Θ′)∗ be
positive linear, then ` extends to a positive linear functional on all of
Θ if and only if there is a monotone sublinear functional ρ ∈ Θ∗ satisfying
`(θ′) 5 ρ(θ′) ∀ θ′ ∈ Θ′.

Proof. “ =⇒ ”: Let ˜̀∈ Θ∗ extend ` and set ρ(θ) = ˆ̀(θ+) = ˆ̀(1(θ = 0) · θ)
“⇐= ”: Suppose ρ : Θ→ R is monotone sublinear with `(θ′) 5 ρ(θ′) ∀ θ′ ∈ Θ′.

By the Hahn-Banach Extension Theorem ∃ ˆ̀∈ Θ∗ extending ` and satisfying
`(θ) 5 ρ(θ) ∀ θ ∈ Θ. Then for θ = 0

−ˆ̀(θ) = ˆ̀(−θ) 5 ρ(−θ) 5 ρ(0) = 0
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and multiplying both sides by −1 we obtain

θ = 0 =⇒ ˆ̀(θ) = 0

hence ˆ̀ is a positive extension of `.

Theorem C.6 (Riesz Representation ([5], Theorem 7.3, pg. 22)). Let (Θ, d) be
a metric space, then ∀ positive ` ∈ C0

b (Θ)∗ ∃ tight µ ∈ P(B(Θ, d)) s.t.

`(f) =

∫
Θ

f dµ ∀ f ∈ Cb(Θ)
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