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Chapter 1

Introduction

These notes were written to accompany the courses Math 6461 and Math
6462 (Harmonic Analysis I and II) at Missouri University of Science & Tech-
nology.

The goal of these notes is to provide an introduction into a range of top-
ics and techniques in harmonic analysis, covering material that is interesting
not only to students of pure mathematics, but also to those interested in
applications in computer science, engineering, physics, and so on. We will
focus on giving an overall sense of the available results and the analytic tech-
niques used to prove them; in particular, complete generality or completely
optimal results may not always be pursued. Technical details will sometimes
be left to the reader to work out as exercises; solving these exercises is an
important part of solidifying the reader’s understanding of the material. At
times we will not develop the full theory but rather give a survey of results,
along with citations to references containing full details.

These notes are organized as follows:

e In Chapter [2] we introduce Fourier series, motivating their develop-
ment through an application to solving PDE (a common theme for
us). We then develop the Fourier transform, also providing some ap-
plications to PDE. Other topics are discussed, including questions of
pointwise convergence, the Fourier transform on distributions, and the
Paley—Wiener theorem.

e In Chapter |3| we discuss the question of sampling of signals (e.g. the
Shannon—Nyquist theorem), as well as the discrete and fast Fourier
transform. We close this chapter with a discussion of compressed sens-
ing, providing a relatively complete presentation of the result of Can-
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des, Romberg, and Tao [4] on reconstruction of signals using randomly
sampled Fourier coefficients.

In Chapter [4 we present a survey of results in abstract Fourier trans-
form, relying primarily on the textbook of Folland [9]. In particular,
we demonstrate how many of the preceding topics may be viewed un-
der the same umbrella (i.e. Fourier analysis on locally compact abelian
groups). Most results are stated without proof. We then briefly discuss
the case of Fourier analysis on compact groups and present a few im-
portant examples in detail (namely, SU(2) and SO(n) for n € {3,4}).

In Chapter o, we discuss the continuous and discrete wavelet trans-
forms, as well as the notion of multiresolution analysis. In addition to
wavelet transforms, we also frequently discuss the ‘windowed’ Fourier
transform. Our primary reference is the book of Daubechies [7]. This
chapter provides a relatively brief introduction into a very rich topic
with a wide range of applications.

In Chapter [6 we begin discussing what I have called ‘classical’ har-
monic analysis (although this distinction of ‘classical’ versus ‘modern’
should not be taken too seriously). This includes the theory of interpo-
lation of linear operators, some ‘classical inequalities’ (like convolution
inequalities and Sobolev embedding), the Hardy—Littlewood maximal
function (and vector maximal function), and finally the Calderén—
Zygmund theory for singular integral operators.

In Chapter [T}, we continue the study of ‘classical’ topics in harmonic
analysis. We firstly prove the Mihlin multiplier theorem. We then de-
velop Littlewood—Paley theory (including the Littlewood—Paley square
function estimate and some fractional calculus estimates). Finally, we
study oscillatory integrals (proving, for example, the stationary phase
theorem and providing some applications to PDE).

In Chapter 8| we begin our study of more ‘modern’ topics in harmonic
analysis. We begin with a study of semiclassical analysis. This is not
actually a subfield of harmonic analysis; however, it is closely related
due to the frequent analysis of oscillatory integrals. We give a brief
introduction based on the textbook of Martinez [19]; we get as far as
the proof of L? boundedness for pseudodifferential operators. In the
rest of this chapter, we prove the non-endpoint cases of the Coifman—
Meyer multiplier theorem.



6 CHAPTER 1. INTRODUCTION

e In Chapter [9] we continue our study of ‘modern’ topics and turn to
the question of sharp inequalities and existence of optimizers. We
consider two examples, namely, the Gagliardo—Nirenberg inequality
and Sobolev embedding. For Gagliardo—Nirenberg, we present a proof
based on radial decreasing rearrangements and the compactness of the
radial Sobolev embedding. For Sobolev embedding, we present a proof
based on profile decompositions, thus giving a short introduction into
‘concentration-compactness’ techniques (which have come to play an
important role in the setting of nonlinear PDE).

e In Chapter[I0} we prove some basic results in ‘restriction theory’. This
refers to the question of when it makes sense to restrict a function’s
Fourier transform to a surface. We begin with a result due to Strichartz
for the paraboloid. This result can be interpreted as a space-time
estimate for solutions to the linear Schrédinger equation. We take a
slight detour to prove a wider range of such estimates (which now go
by the name of Strichartz estimates). We then return to restriction
theory and prove the ‘Tomas—Stein’ result (up to the endpoint) for the
case of the sphere.

e Finally, in the appendix, we have collected some prerequisite material
for the reader’s reference.

The material from these notes has been drawn from many different
sources. In addition to the references listed in the bibliography, this in-
cludes the author’s personal notes from a harmonic analysis course given by
M. Visan at UCLA.

The author gratefully acknowledges support from the University of Mis-
souri Affordable and Open Educational Resources Initiative Award, as well
as the students of Math 6461-6462 for their useful feedback and corrections.



Chapter 2

Fourier analysis, part I

2.1 Separation of variables
Consider the following partial differential equation (PDE):

Ou = 0%u (t,z) € (0,00) x (0,1)
u(0,z) = f(z) xz € (0,1) (2.1)
u(t,0) =u(t,1) =0 t€[0,00),

where f: (0,1) — R is some given function. This is the well-known heat
equation. This is an example of an initial-value problem (the solution is
specified at ¢ = 0), as well as a boundary-value problem (the values of the
solution are prescribed at the boundary of the spatial domain (0, 1)).

One approach to solving PDEs like this is the method of separation of
variables, which entails looking for separated solutions of the form

u(t,z) = p(t)q(z).
Using ([2.1) and rearranging, we find that for u to be a solution we must
have , Y
() _ —d'()
p(t) q(x)

As the left-hand side depends only on ¢ and the right-hand side depends
only on x, we are led to the problem

p'(t) = =Ap(t) and —¢"(z) = Ag(x) for some constant .

The equation for p is solvable for any \; indeed, p(t) = e *p(0) does the
job. The problem for ¢ is more interesting, since in addition to the ordinary

7



8 CHAPTER 2. FOURIER ANALYSIS, PART I

differential equation (ODE) it must also satisfy the boundary conditions.
One finds that there are solutions only for special choices of A, namely,
A = (nm)? for some integer n > 0. A corresponding solution is then given
by ¢(z) = sin(nnz).

What we have therefore discovered is that the method of separation of
variables yields a countable family of solutions to the heat equation satisfying
the boundary conditions, namely

e*(m)Qtsin(mrz)cn forany n>0 and ¢, €R.
Furthermore, any linear combination of these solutions solves the PDE and
satisfies the boundary condition. Therefore, we can solve the initial-value
problem in provided we can find ¢, such that

flx) = Z cp sin(nmz).
n=1

The possibility of finding such expansions and understanding the sense in
which they hold are precisely the questions addressed by the study of Fourier
series.

Remark 2.1.1. Separation of variables has led us to the ‘eigenvalue problem
for the Dirichlet Laplacian’. That is, we were led to look for eigenvalues of
—9? on the domain (0,1) with eigenfunctions ¢ satisfying the ‘Dirichlet’
boundary conditions ¢(0) = ¢(1) = 0. This is a good perspective to keep
in mind if one wishes to generalize the discussion above to a wider class of
equations and boundary conditions.

In Section [2.3] we will prove the following theorem.

Theorem 2.1.2. Let F': [-L,L] — C satisfy F(—L) = F(L) and assume
F € L*([-L,L]). There exist ¢, € C such that F can be expanded in the
Fourier sertes
F(x) = Z cnen(z)  as functions in  L*([—L, L]),
nez
where ‘

en(z):=e L .

The Fourier coefficients c, are given by

L
en = (F,en) = 5= /L F(x)ée,(x) dx.

We may also write
cn = F(n).
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Using this result, one can recover sine series and cosine series, which
are often used in the solution of PDEs via separation of variables (see the
exercises).

Note that we may identify periodic functions on [—L, L] with functions
on the torus or on the circle, which we may denote by Tp.

2.2 Fourier series in general

Instead of proving Theorem directly, let us begin with a more general
perspective, inspired largely by the presentation in [14].

Consider the space L?(E) for some measurable E C R?. Recall that L2
admits an inner product given by

(f.g) = /E f@a()de, | flzzm = 171 = V.

If (f,g) = 0, then we call f and g orthogonal. A set {¢q}aca is orthog-
onal if any two of its elements are orthogonal and orthonormal if it is
orthogonal and ||¢s|| = 1 for all @« € A. By convention, we always assume
that orthogonal sets consist only of nonzero elements. Using separability,
one can show that any orthogonal set in L? is necessarily countable (see
the exercises). An orthogonal set {¢y} is complete if (f, ¢;) = 0 for all k
implies f = 0.

Suppose now that {¢;} is an orthonormal set in L?. For f € L2, we
define the Fourier coefficients of f (with respect to {¢x}) by

ck = (f, k) =/ fou.
E
We define the Fourier series of f (with respect to {¢}) by

SIf) = ckdr-
B

We define the partial Fourier series by

N
SN =Y Chdr.
k=1

We will prove the following:

Theorem 2.2.1. Suppose {¢r} is a complete orthonormal set in L?. Then
for every f € L%, the Fourier series S[f] converges to f in L>.
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Remark 2.2.2. If one supposes that there is a decomposition of the form
f =" ckdk, one can already see that we should have ¢, = (f, 1) by taking
the inner product of both sides with ¢, and using orthonormality.

Remark 2.2.3. The space L? admits complete orthonormal sets. To see
this, first take a countable dense subset (L? is separable), and then apply
the Gram—Schmidt algorithm from linear algebra to find an orthonormal
basis for L?2. This means an orthonormal set whose span is dense in L?
(where span means the collection of all finite linear combinations). Using
Cauchy-Schwarz, one can then prove that any orthogonal basis for L? must
be complete (see the exercises).

The key property of Fourier series is that they give the best L? approx-
imation using linear combinations of the {¢y}.

Lemma 2.2.4. Let {¢1} be an orthonormal set in L? and f € L?.

(i) Given N, the best L* approximation to f using the ¢y is given by the
partial Fourier series.

(ii) (Bessel’s inequality) We have c := {c},} € £* and
lelle < (£ 22,
where {ci} are the Fourier coefficients of f.

Proof. Fix N and v := (71, -+ ,7yn) and consider linear combinations of the
form

N
F=F(y)= Z%(ﬁk-
=1

By orthonormality,
N
1F* =" bl
k=1

Thus, recalling ¢ := (f, ¢r), we can write

If =FIP=(f =D b f = D o)
N N
= F12 =D ek + wee] + Y 1wl

k=1 k=1
N

N
= 1FIP+ D lew =l =D lel*.

k=1 k=1
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It follows that N
min If = FIZ= 1A = lexl?
k=1

and
argmin, || f — F()|> = (e, ,en).
This proves (i). Furthermore (evaluating at v = (¢, ..., cn)) we can deduce
N
Dol = 1f17 = If = swll?,
k=1
which yields Bessel’s inequality upon sending N — oo. O

If equality holds in Bessel’s inequality (i.e. |[[c|l2 = || fllz2), we say f
satisfies Parseval’s formula. From the proof of Bessel’s inequality, we
deduce the following:

Proposition 2.2.5. Parseval’s formula holds if and only if S[f] converges
to f in L2

In particular, we have reduced the proof of Theorem [2:2.1]to proving that
Parseval’s formula always holds whenever {¢;} is a complete orthonormal
set.

Before proving this, we need a result that allows us to use Fourier coef-
ficients to define L? functions.

Proposition 2.2.6 (Riesz-Fischer). Let {¢x} be an orthonormal set in L*
and {cy} € (2. There exists an f € L? such that S[f] = Y. crér and f
satisfies Parseval’s formula.

Proof. Write ty = Zgzl cpor. For M < N, orthonormality implies

N

Ity —tal® = D el

k=M+1

Thus {c;} € L? implies {tx} is Cauchy and hence converges to some f € L.
Now observe for N > k

/fék:/(f_tN)ék‘i‘/tN(Ek:/<f_tN)$k+Ck

which tends to ¢ as N — oo by Cauchy—Schwarz and the fact that ty — f
in L2. Thus S[f] = Y cx¢r and ty = sy(f). In particular, Parseval’s
formula follows from the fact that txy — f in L2 O
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This result does not guarantee uniqueness. However, one does have
uniqueness if the set {¢r} is complete. Indeed, if f and g have the same
Fourier coefficients then f — g is perpendicular to each ¢y.

Finally, we turn to the following:

Proposition 2.2.7. An orthonormal set {¢r} is complete if and only if
Parseval’s formula holds for every f € L2.

Proof. If {¢} is complete and f € L?, then Bessel’s inequality implies that
the Fourier coefficients {cx} are in £2. Thus (by Riesz—Fischer) there exists
g € L? with S[g] = Y e and ||g||> = > Jck/?. Because f,g have the
same Fourier coefficients and {¢y} is complete, we get f = g a.e. Thus

IF12 = llgll* = 3 le?.
Conversely, if (f, ¢) = 0 for all k and || f|[* = 3 [(f, ¢)|?, then [|f]| = 0
which shows that the {¢x} are complete. O

Proof of Theorem |2.2.1. Theorem [2.2.1] now follows from the combination
of Proposition and Proposition [2.2.7 O

One can consider even more general settings and prove similar results
in the setting of abstract Hilbert spaces. However, at this point we will

return to the more specific setting of Fourier series for periodic functions on
[—L, L]

2.3 Fourier series, revisited

In light of Theorem to prove Theorem [2.1.2] we need only to verify
that the set {\/%en : n € Z} is orthonormal and complete in L?([—L, L]),
where we recall

inmTx

en(x):=e L

To simplify formulas, let us fix L = 7 in what follows; in particular,
en(x) = ",

A direct computation shows that

™

1 1 i(n—m)m

ﬁ<emem> = Qﬂ./ 6( ) dx = dpm,
-

where

1 n=m
6nm:{

0 otherwise.
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One calls §,,,, the Kronecker delta. Thus the family {\/%en} is orthonor-

mal.
It remains to prove that this set is complete.

Lemma 2.3.1. Let f € L?([—n,7]). If {f,en) =0 for all n, then f = 0.

Proof. By assumption, we have

N

Snf=0, where Syf(z)= 5 Z (f,en)en(z).

n=—N

We can rewrite

Snf(z) = fxDn(z),
where Dy is the Dirichlet kernel given by

If we could prove that Syf — f (in some sense), we would be finished.
However, this is difficult because the kernels Dy do not form a family of
good kernels. In fact, we can compute the Dirichlet kernel explicitly:

o sin([N + 3lz)

Dy(x) = 5- (2.2)

sin(3z)

(see the exercises). One can verify, for example, that the L'-norm of Dy
grows like log N. (Again, see the exercises.)

As we will see, averaging improves the situation. In particular, if we
define the Cesaro means by

N-1

onNS =% Y Suf;

n=0

then we may write
onf(x) = f* Fn(z),
where Fy is the Fejér kernel given by

n

N-1 N-1 ‘
Fy(x)=% > Do) =525 > > e
n=0

n=0 k=—n
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By assumption, we have oy f = 0. On the other hand, we will prove that
Fy are a family of good kernels, so that oxf — f in L? as N — oo (see
Lemma . From this we can conclude f = 0, as desired.

First, a direct computation shows

T N—-1 n
/ Fy(z)de =535 > > 2wl =1.

n=0 k=—n
For the next property, we use the identity

[sin(Xz)]?
P = B o

which we also leave as an exercise. In particular, F(z) > 0, so that

™
/ P (2)] do = 1
—T

as well. Finally, we fix § > 0 and observe that |sin(32)| > ¢ for |z| > 6.
Thus, using the identity above for example, we find

/| |FN(x)|dx§ﬁ—>0 as N — oo.
x|>d

The result follows. O

2.4 Convergence of Fourier series

We have now seen that Fourier series for periodic functions in L?([—L, L))
(or equivalently, for functions on the torus/circle) converge in the sense of
L?. Tt is a natural question to ask in what other senses the Fourier series of
a function converge.

The arguments in the proof of Lemma [2.3.1] show that if f € LP, then
the Cesaro means oy f converge to f in LP. Indeed, the Fejér kernels are
good kernels. Similarly, if f is (uniformly) continuous, then oy f converges
to f uniformly. One can further show that for f € L' and a point z,

Jim o f(z) = Yfa+) + f-), (23)

where f(z+) denotes limits from the right/left (see the exercises). In par-
ticular, oy f(x) will converge to f(z) at any point of continuity.
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As for the convergence of Syf to f, we have so far established con-
vergence in L?-norm. Other notions of convergence are much more subtle.
Let us begin with some negative results, which are essentially consequences
of the fact that the Dirichlet kernels are unbounded in L', along with the
uniform boundedness principle. We will continue to work on the interval
[—, 7] for convenience.

Proposition 2.4.1. The following hold:
(i) The Fourier series of an L' function need not converge in L.

(ii) The Fourier series of a continuous function need not converge uni-
formly.

(iii) There exists a continuous function with Fourier series diverging at a
point.

Proof. Recall that the Fourier series of a function f is given by

sin([N + 3]z)
Svf=f*Dy, D =4 ——— 2
where we recall that

IDn|lr1 2 log N.

We also recall the Fejér kernels Fy = % Zf:tol D,.
(i) For each n, we may view S, as a linear operator from L' to L!. We
define the operator norm of S,, by

I1Sallzi oo = sup{|Sufllpr : f € LY with ||f[| = 1},

Recalling that the Fejér kernels Fly are uniformly bounded in L' (by 1), we
have

[Sn(En )z < [[Snllps i 1EN e < (1Snllzr s
On the other hand, S, (Fn) = on(D,,) (check!), which yields

[Sn(EN)lIr = lon(Dn)llzr = |1Dnllr as N — oo,
where we use that the oy are good kernels. We conclude that

lim HSnHL1—>L1 = OQ. (24)
n—oo
This implies that S,, f must not converge to f for every f € L!. Indeed, if
Spf — f for every f € L' then (2.4) would contradict the uniform bound-
edness principle.



16 CHAPTER 2. FOURIER ANALYSIS, PART I

(ii) Similar to (i), we will show that
lim ||Sy||peo— o0 = 00
n—oo

by showing that
”SnHL°°—>L°° 2 HDnHLl-
We let ¢, (z) = signum[D,(x)], except in small intervals around the 2n
points of discontinuity of signum[D,,(x)]. In particular, we can make 1, be
continuous, with
|Vn|lLee <1 uniformly in  n.

Choosing the total length of the small intervals to be smaller than £/2n for
some small € > 0, we have

2 Pnllzr —e

1Sutballze 2 [Suthn(0)] 2 \ [ Pa@ypn(o) s

For example, we can use the fact that sup, |D} (x)] < n to get a bound of
n for [ |Dpiy| on each small interval and then sum over all intervals. This
completes the proof.

(iii) Finally, consider the functionals ¢, : C([—m,7n]) — C defined by
f = Snf(0). The proof of (ii) shows that ||¢,| — oco. Thus, there must
exist f such that ¢, f(0) — oo, for otherwise we would reach a contradiction
to the uniform boundedness principle. ]

The previous result shows failure of convergence (in general) in L! and
L*°, but in fact LP convergence does hold for 1 < p < oco. Instead of proving
this general fact, let us simply prove the following positive result.

Proposition 2.4.2. Let f be of bounded variation on T. Then
lim S, f(2) = 3[f(z+) + f-)],

where f(x=+) denotes limits from the right/left. In particular, Sy f(x) con-
verges to f(z) at any point of continuity of f.

Remark 2.4.3. This result is related to the well-known Gibbs phenomenon.
In particular, we see that at a jump discontinuity the Fourier series will
converge to the middle of the jump. It turns out that near the jump the
Fourier series will ‘overshoot’ and ‘undershoot’ the function on either side
of the jump in a way that does not diminish as one increases the number of
terms in the series.
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Example 2.4.1. Let f(z) = 0 for |z| € (§,7) and f(x) = a for [z| < §. Then

which we may rewrite as

K
o . 2a Feos((2k + 1
Sary1f(x §+27Z %11 )z).

k=1
In particular, note that Soxi1f(£5) = §, as we expect. However, let us
now consider z = 7 + . Then (employing some trig identities) the series
becomes
sin((2k + 1)e)

2k +1 ’

HMN

with gx (0) = 0 as expected. However we can see that |¢5 (0)| = K, which
suggests that this series can reach size 1 even over an interval of length 1/K.

In fact, more detailed analysis (or studying this example in Mathemat-
ica) would reveal that (for all large K') g (e) reaches size about —.92 for
g = 0+ and +.92 for € = 0—, and hence we see that the Fourier series will
undershoot /overshoot the correct value of the function by a fixed amount,
yielding approximate values

$F5(5-92)

as  approaches 7 from the right/left.

This is just a special case of the more general Gibbs phenomenon, in
which one sees the Fourier series undershooting/overshooting the correct
value at a jump discontinuity by about 9% of the jump on each side.

Proof of Proposition[2.].9. As we will see, the key is to establish some decay
for the Fourier coefficients f(n) of f.
In fact, we claim that

o) S &lflsy for [nl>1. (2.5)
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Indeed, this follows from the integration by parts formula for Riemann-—

Stieltjes integrals (see Proposition |A.1.3):
fo) = | [ (o) ds

— |t [ @) S v

The next step is to restate things in terms of o, f, which are known to
satisfy the conclusion of the proposition (cf. (2.3). First, observe that by
expanding the definition of (n + 1)o,41, we can deduce the identity

onsif(@) =Y [1— L f(k)etts

[k|<n

= Suf(z) = > AL f(k)ette.

k|<n

Now let m > n be an integer to be determined shortly. Similar to the above,
we can write

O f (@) = Suf(x) = D i fR)e™ + 3 (1= ) f(k)et.

Now we can see that any linear combination of the form

aopi1f + (1 —a)omir f

will produce a single copy of S,f plus some ‘error terms’. As any such
combination converges to the desired limit as n,m — oo, we can complete
the proof if we can find a suitable combination for which we can control the
error terms.

The sums involving |k| < n are the most problematic, as they do not
tend to zero individually; for example, applying , the best estimate we
have for the term appearing in o, yields

k|l |7 n
3 n'Jl\f(k)\\ <o

[k|<n

which does not converge to 0 as n — oo. Thus, we choose a combination
in order to make the two sums over |k| < n cancel. In particular (choosing

o= —(2tLl)) we may write

Sf = 2oy i f + ™o o f - i N - B et

n<|k|<m
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Our final step is to show that for m chosen suitably depending on n, this
final term can be made arbitrarily small (uniformly as n — oo). In fact,

using ([2.5)), we can estimate

k A
?n%—% Z (1 - ’rr‘],-‘rl]_)f(k)| S mii_l ﬁ < ;’;—f}llog(%).
n<|k|<m n<|k|<m

3

Given € > 0, the result now follows by choosing m to be the integer part of
(14 6)n for small § = d(e) > 0. O

Remark 2.4.4. In the preceding proof, we used some regularity condition
on f to prove that the Fourier coefficients converged to zero quantitatively
as n — oo. In fact, from Bessel’s inequality we know that the Fourier coeffi-
cients of an L? function always tend to zero as n — oo; this is also sometimes
called the Riemann—Lebesgue lemma. However, without imposing some
regularity conditions, it is possible to have a sequence of Fourier coefficients
converging to zero arbitrarily slowly.

The phenomenon that smoothness yields decay of Fourier coefficients
(and vice versal) is an important fact in Fourier analysis. Revisiting the
proof of , for example, one can see that being k-times continuously
differentiable would imply decay of the Fourier coefficients like |n|=* (by
repeating the integration by parts k times). In fact, more can be said. In
the case of the torus, it is a fact that a function is analytic if and only if its
Fourier coefficients decay exponentially. We will not pursue this result on
the torus, but will prove a related result (the Paley—Wiener theorem) for the
Fourier transform in the next chapter. Also see the exercises, where these
topics are explored a bit more.

To close the discussion, let us finally mention the deep result of Carleson:

Theorem 2.4.5 (Carleson). Fourier series of functions in L? converge
pointwise almost everywhere.

We will briefly discuss this result below in Section [2.5.1

One can extend much of what we have done above to the case of higher
dimensional tori, although we will not pursue the details here. We also
remark that it is possible to study analogues of Fourier series on more general
groups than the torus (e.g. compact Lie groups). We will venture briefly in
this direction in Chapter [@] below. For now, we turn to the extension of the
preceding ideas from [—L, L] to the whole real line.
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2.5 The Fourier transform

We have seen that for a periodic L? function f : [~L, L] — C, we can write
f as a linear combination of waves of frequencies 57, namely,

Z Cn zngrz7 Cn _ 2L / f znTr:E (2.6)

n=—oo

The Fourier transform extends this to the case L — oo. For f: R — C,
we define f : R — C formally by

f6) = 3= [ s de.

That is, f (€) is the ‘Fourier coefficient’ at frequency £ € R. The question is
then whether or not we can recover f from f; i.e. do we have an analogue

of (2.6)7

Suppose that f: R — C satisfies f(z) = 0 for |z| > M, and let L > M.
Then

Z’Vlﬂ'(E 1 ~
L27r/f ?%f(%)v

and hence for fixed x € R we have

A~

Writing e = 7 and G(y) = f(y)e™¥, we can send L — oo (i.e. € = 0) to
formally deduce

[e.e]

f(x)zx/% > 5G(5n)—>J%/IRG(g)dé“:\/lz?/Rf(f)emgdy

n=—oo

Thus we arrive formally at the Fourier inversion formula

flx) = \/% /Rf‘(g)emf d¢, where f(g) = \/% /Rf(x)e—z'zﬁ dr.

We call the function f the Fourier transform of f. This extends naturally
to higher dimensions as follows: for f : R* — C and ¢ € R?,

&.

f(&) =(2n)"2 f( Je™* du,

where z€ really denotes x - & = x1&1 + - - - + x4€4.
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Remark 2.5.1. Recall the viewpoint that the Fourier series of a function
is an expansion in terms of eigenfunctions of —9? (or, in higher dimensions,
the Laplacian). Here we see that the Fourier transform of a function is an
expansion in terms of generalized eigenfunctions of —92 on R (or, in higher
dimensions, the Laplacian). The difference is that the Laplacian has discrete
eigenvalues (or spectrum) on a compact domain, while it has continuous
spectrum on R?. Spectral theory allows for a unified interpretation of Fourier
series/transform, namely, as a spectral resolution of the Laplacian. We
will also see a unification of Fourier series and Fourier transform through
the perspective of Fourier analysis on locally compact abelian groups in
Chapter [4

Remark 2.5.2. There are other normalizations for the Fourier transform.
A common one is to define

f(6) = / ¢ £ (2) .

We will use this normalization in the next chapter and at times below.

We turn to the details. Note that f is not necessarily well-defined for
an arbitrary function f : R? — C, as the integral may not converge. On the
other hand, for any f € L' we have f well-defined as a bounded function on
R%,

We will begin by restricting to a nice function space, which (as we will
see) is very compatible with the Fourier transform.

Definition 2.5.3 (Schwartz space). We define
S(RY) = {f € C°(RY) : 220°f € L> for all multi-indices a, 8}.

The Schwartz space is a topological vector space, with the topology
generated by the open sets

{f € S®RY) : [|2°0°(f — g)llr < e}

for some g € S(RY), ¢ > 0, and multi-indices «, 3. More can be said about
the structure of Schwartz space, but it will not be too relevant for our
discussions here.

If f is a Schwartz function, then f is absolutely integrable, and hence
the Fourier transform of f is well-defined pointwise. In fact, we will show
that f is also a Schwartz function! We begin with the following lemma.

Lemma 2.5.4. Let f € S(R?).
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o Ifg(x) = 0°f(x), then §(&) = (i) f(£).

o If g(x) = (—iz)*f(x), then §(§) = 0“f(£).

Proof. Let us consider the simplest case of d = 1 and a single derivative
or power of x, leaving the rest as an exercise. First, if g(z) = f/(z), then
integration by parts (and the fact that f — 0 as |x| — oo) yields

§(6) = (2m)3 / e /() du

R

= (2 hie [ e (o) = ief6),
R
as desired. Similarly, if g(z) = —iz f(x), then

3(6) = —(2m)3 / ize” 9 f(2) du

R
-1 —ix £
—emh [ f@)le = do = £7(6).
R
This completes the proof. O

This lemma already suggests the connection between the Fourier trans-
form and partial differential equations (PDE): it interchanges taking deriva~
tives and multiplication by x. We leave the following corollary as an exercise:

Corollary 2.5.5. If f € S(R?) then f € S(R?).

Thus, defining the transformation F which takes f € S(R%) and returns
f € S(R%), we can sce that F (also called the Fourier transform) is a well-
defined linear transformation on S. Linearity is straightforward to check and
is left to the reader. In fact, more is true:

Theorem 2.5.6. The Fourier transform F is a bijection on Schwartz space
S(RY), and the Fourier inversion formula holds. That is,

f(x) = (2m)~4 /R FOEde for feSERY.

To prove this theorem, we need a few auxiliary lemmas.

Lemma 2.5.7 (Multiplication formula). For f,g € S(R?%), we have

f@)gx)dz = | Fy)g(y)dy.
Rd ]Rd
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Proof. This is a consequence of Fubini’s theorem. O

Lemma 2.5.8. Let f € S(R?). Then the following hold:

o Ifg(z) = f(—x), then §(&) = f(—¢).
o Ifg(z) = f(z —h), then (&) = e < f(€).
o If g(x) = f(\x), then (&) = 4 f(%).

Proof. Let us verify the third identity and leave the first two as exercises.
This follows from the change of variables formula. Indeed,

/ e T f(\x) dx = % e f(y)dy.
R4 R4

The result follows. O

As a consequence of the first two identities, we observe that

it g(y)=flz—y), then §y)=e"f(-y).
Lemma 2.5.9. Define f(x) = e~ 12*/2 Then f € S(RY and f = f.

Proof. Let us prove this identity for the case d = 1. We leave it to the reader
to see why this implies the general case.
We make an ODE argument. Using the fact that f'(r) = —zf(z) and

Lemma [2.5.4] we find that d%f = —¢f. Therefore f) = 6_52/2f(0). How-

ever,

F(0) = (2#)_§/Re_$2/2 do = 1.
Thus the result follows. O]
In the following, we will define K (z) = (QW)_ge*|z|2/2 and for £ > 0 set
K.(z) ="K (%).

It follows that K. form a family of good kernels as € — 0. Furthermore, by
the scaling property of the Fourier transform proven above, we have that

if G.(x)=K(ex), then G.=K..

We can now prove Theorem [2.5.6
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Proof of Theorem [2.5.6. We begin with the inversion formula for f € S(R%).
Using the lemmas above, we compute

frkua) = [ fe= K. dy
= | fla—y)G:(y)dy
Rd
= / e f(—y)K (ey) dy = / F)e™ K (—ey) dy.
Rd Rd

Sending ¢ to zero (applying dominated convergence and noting K(0) =
(271)_%), we deduce the inversion formula

-4 £ ix
f@=emt | fwe
To see that F is a bijection, we can define F : S — S via

Fola) = ()4 [ eivq()de

and observe that the Fourier inversion formula yields FoF =1 on §.
Combining this with the fact that F f(y) = F f(—y), it follows that FoF =1
on S as well. We conclude that F = F~! and F is a bijection on S. 0

While the Schwartz space is clearly well-suited for the Fourier transform,
it is not the end of the story. Given what we have learned about Fourier
series, it is natural to seek an extension of the Fourier transform to L?(R%).
The key to this is the Plancherel formula. Before we state and prove it,
let us recall the inner product structure on L?(R%), namely,

(o) = [ f@ala)de. and | flle = VD)

Theorem 2.5.10 (Plancherel). For f,g € S(R?), we have

(fr9)={f9)-
In particular, || fllz2 = | fllz2-
We begin with a convolution identity that is of more general use.

Lemma 2.5.11. For f,g € S(RY),

F(f 9)(€) = (2m)2 f(©)3(¢).
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Proof. We compute directly:

N\&

F(f*g)(€

/ / I f(3 — e @TDE 4y dy

where we have used Fubini’s theorem. O

= (2m)2f

Now we can prove the Plancherel formula:

Proof. Define G(z) = g(—x), so that G(¢) = §(¢). Then by the Fourier
inversion formula and the convolution identity above,

/f x)dr = f*G(0)
— (2 >2/ F(f G () d

- [Rece@ = [ Foae e,

as desired. O

&

Using Theorem [2.5.10], we can now extend the Fourier transform to a
linear operator acting on L?. In fact, the Fourier transform acts as a unitary
operator on L2.

Theorem 2.5.12. The Fourier transform estends from S(R?) to a unitary
map on L?(RY).

We will use the following lemma, which is left as an exercise.
Lemma 2.5.13. Schwartz space is dense in L?.

Proof of Theorem[2.5.13. We let f € L? and choose f, € S(R?) such that
fn— fin L?-norm. As .7-" restricted to S(RY) is an isometry, it follows that
{ fn} is Cauchy in L2. We define f to be the L? limit of f, and set Ff = f.

To see that Ff is well-defined, suppose g, is another sequence in S(R%)
that converges to f in L?. Let h, be the intertwining of f, and g, so that
hp — f in L?. Then By, is Cauchy in L? and hence converges. As the
subsequence fn converges to f , it follows that the subsequence g, must also
converge to f

The fact that F is an isometry on L? follows from the corresponding
property on Schwartz space. Let us finally show that 7 maps onto L? (so
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that F is unitary). As the range of F contains a dense subclass of L?
(namely, the Schwartz functions), it suffices to show that the range of F
(which is a linear subspace of L?) is closed. To this end, we let g be in the
L?-closure of the range of F, so that there exist f, € L? so that fn — g. As
F is an isometry, {f,} is Cauchy in L2. Denoting f by the limit, we apply
the isometry property one more time to deduce that fn — f . This implies
f = g, which completes the proof. ]

In fact, the Fourier transform extends from S(RY) to LP(R?) for all
1 < p <2, with a corresponding bound (known as the Hausdorff-Young
inequality):

HfHLp/SHfHLp forall 1<p<2, where %—Fl%:l.

In fact, this is the only range for which this is possible. That is, if the
estimate

[ llze S 1 fllze

holds for all Schwartz functions, then ¢ = p’ and 1 < p < 2. We will discuss
the Hausdorff-Young inequality later in the setting of interpolation; as for
the second point, we leave it as an exercise.

2.5.1 Remarks about pointwise convergence

Let us briefly discuss the question of pointwise convergence of the Fourier
transform; this is closely related to the problem of convergence of Fourier
series (cf. Theorem above). We will not discuss the full proof of
Carleson’s theorem; we refer the reader to [I3], [12] for a streamlined proof.
Instead, let us show how the result is implied by a ‘weak type (2,2) bound’
for a suitable ‘maximal operator’ (cf. Definition below, for example).
In particular, this discussion may serve in part to preview some of the topics
to be covered later in these notes.

Recall (from Theorem that we have the Fourier inversion formula

N . A
f(z) = lim }/Nemff(g) d¢, z€R, (2.7)

for all Schwartz functions f € S(R). Carleson’s theorem [2] ] states that the
same convergence holds almost everywhere for functions f that are merely
in L2(R).

Recall that the integral appearing on the right-hand side of can be
written in terms of the convolution of f with the Dirichlet kernel Dy (x) =
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%. Thus, the convolution is a combination of the singular integral part
% (which would fall under the purview of Calderon-Zygmund theory, cf.
Section below) and the oscillatory part sin Nz, which requires some
additional techniques.

Following [I3], we will work with the (equivalent) one-sided inversion
formula

fla)= Jim / e f(€) d, (2.8)

which again holds on R for any Schwartz function f. As Schwartz functions
are dense in L? (Exercise , the problem reduces to proving that the
set of functions for which almost everywhere convergence holds is closed.

For such purposes, it is common to introduce a suitable maximal func-
tion. In particular, we define the Carleson operator

N . A~
/_ T f(€) d&‘,

We can then show that a weak type (2,2) bound for C implies the desired
result. (One can compare this to the fact that the weak type (1,1) bound for
the Hardy—Littlewood maximal function implies the Lebesgue differentiation
theorem, for example; see Proposition m)

Cf(z) = sup
N

Proposition 2.5.14. Suppose that C obeys the weak type (2,2) bound
{Cf > M <A1z

Then holds almost everywhere for any f € L.

Proof. Let f € L? and £ > 0. Choose g € S such that

3
2

If =gl <e2.

Now, setting

Ly = limsup

N—oo

J@ -7 | ””ﬁf(&)df,

we note that since (2.8)) holds for g (for all x), we may write
Ly<C(f—g9)+If—gl
Using the weak type (2,2) bound, we find

{C(f—g9) > 2eH Se?lf —glFz Se
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Similarly, by Tchebychev’s inequality,

{If =gl > 3¢} Se?lf —glz2 S e

Thus
{Ly>e} e

for any € > 0. It follows that Ly = 0 almost everywhere, which implies the
desired result. ]

Actually proving the weak type bound for the Carleson operator is quite
an undertaking. We again refer the interested reader to [13], 12] and end our
discussion of Carleson’s theorem here.

2.6 Applications to PDE

In this section, we discuss a few applications of the Fourier transform to the
solution of some linear partial differential equations.

Ezample 2.6.1. Consider the Poisson/Laplace equation
—Au=f, u:R>-5R,

where f:R3 — R is a given function. Here A is the Laplacian,
3
2
Au = Z oz
j=1

Applying the Fourier transform and Lemma [2.5.4] we find that the equation
is equivalent to

Q

S

)

<.

€2a=f, sothat a=I[¢|72f = (2m) 2 F(K  £)(€),

where K = F~1(|¢|72). In particular, u(z) = (27r)_%K * f(z).

Here we reach a bit of a subtle point: the function |¢|~2 is not a Schwartz
function, nor is it even an L? function! Let us ignore this subtlety for
the moment—it can be resolved by the theory of distributions (see below).
Instead, let us see if we can compute a formula for K anyway.

There is an elegant way to compute K(z) exactly using the gamma

function (see the exercises). Let us instead argue by symmetry to deduce
the form of K (z). First, we observe by Lemma that

N2 =227 = K(\z) = MK (2).
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Next, because |¢|2 is invariant under rotations, so is K (see the exercises).
Consequently, K is constant on the unit sphere. It follows that

K(z) = |x]*1K(‘§—|) =c|z|”!  for some c€R.
To compute ¢, let us go back to the PDE. Noting that
u(z) = (27r)_%c\x|_1 xf, wewant —|z|"lxAf= 0_1(277)_%]”.

Using translation invariance, it is enough to evaluate both sides at = = 0.
Thus, we are left to find ¢ such that

_ /Ra || tAf(z) do = C(27T)_%f(0)-

A computation using integration by parts (see the exercises) yields
—/ o[~ Af(2) dx = 4 (0).
R3

Thus (27T)_%c*1 = 4m, and we conclude
u(x) = ﬁlrl x [ solves —Au={f

in three dimensions.

Ezample 2.6.2 (Heat equation). We next consider the heat equation on
(0,00) x R4
u— Au=0  (t,z) € (0,00) x RY,
{ u(0,2) = f(z) = €R%

We apply the Fourier transform in the z variables only. We find
w(t,€) = F(Au)(t,€) = w(t,&)=—l¢ult, ).

For each &, this is an ODE in ¢ that we can solve:

~

a(t, €) = a(0,€)e1EF = U F(¢).
Thus
ult,z) = FUf e 1) (2) = (2m) 2 [f « FHe 1)) (2),

and again we need to compute an inverse Fourier transform.
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Fortunately, we have already done this computation! Recall that
Fe P72y (g) = 1€/
Thus (by Lemma [2.5.8]), we have
FlePP) (€)= (2n) e,

We conclude that the solution to the heat equation is given by

u(t,x) = (471'75)7%67"'2/# x f(x) = (47Tt)(2i/ eil‘”*yw‘uf(y) dy.
R4

2.7 The Fourier transform of distributions

In computing the solution to the Poisson equation, we quickly ran into
the problem of taking Fourier transforms or inverse Fourier transforms of
functions that are not even L?. In fact, one can extend the Fourier transform
quite naturally to the setting of ‘tempered distributions’, which includes a
much larger class of functions than Schwartz space or L2. Without delving
too deeply into this topic, let us introduce some of the main points.

A tempered distribution u is a continuous linear functional acting on
Schwartz space, that is, u : S(R?) — C. The set of all tempered distributions
is denoted S’(R%), or just by S’. In this setting, one often calls the elements
of § (which are the arguments of elements of S’) test functions.

Schwartz functions themselves may be embedded in the set of tempered
distributions through the mapping 7': S — &’ given by

Tu(f):/ufdx for wu,f€S.

As an exercise, one should check that the map T is injective, and hence we
can identify a function u with the distribution Tu. In fact, the mapping T'
makes sense for any function that is integrable against Schwartz functions,
hence a very large class of functions may naturally be viewed as distributions
(e.g. any LP function multiplied by any polynomial).

Not all distributions are given by functions. A classical example is the
Dirac delta distribution §y € &', defined by

do(f) = f(0) for feS.

We remark that if K, is a family of good kernels, then K,, — §p ‘in the
sense of distributions’.
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The multiplication formula (Lemma [2.5.7)) reveals how to extend the
Fourier transform to the space of distributions. Recalling that

[ta=[Fo tran gges,

we define the Fourier transform of a distribution u € &’ to be the distri-
bution @ € &' satisying

a(f) =u(f) forall feS.

This definition guarantees that @ agrees with the usual definition of the
Fourier transform in the case that u actually arises from a Schwartz function
under the mapping T introduced above. Thus the Fourier transform F
extends to a mapping F : &' — §'.

Similarly, if we define F* : &' — S’ by F*u(f) = w(F~1f), we can
deduce that FF* = F*F = Id, and hence F* = F~! and F is a bijection
on S’

To define operations on distributions, one first observes how these op-
erations behave on Schwartz functions. For example, given a multiindex «
and u, f € S, integration by parts yields

J@ s =l fuory

Then for a distribution u € &', we define 9%u € S’ by
o°u(f) = (=1)1*u(8*f) for feS.

Note that this allows us to take derivatives of non-differentiable functions!

Similarly, a computation shows that the correct definition of f * u (for
f €S and ue ') should be

(f*u)(g9) =u(f*g), where f(z)=f(-z), g€S.

Alternately, one can define f % u as a function via

(f *u)(x) = u(ref), Tof(y) = fly— ). (2.9)

One can check that these two definitions agree.

Finally, for u € 8’ and a (moderately well-behaved) function f, we can
define fu € 8’ via [fu](g) = u(fg).
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Using the definitions introduce above, one can verify all of the nice prop-
erties of the Fourier transform continue to hold in the setting of distributions,
e.g.

0w = (i€)*a, F(fu) = (2m)? fi,
and so on. The moral is that one can often perform ‘formal’ computations
with the Fourier transform, even if the functions involved are not Schwartz.
The resulting computations will typically be valid, provided they are inter-
preted in the appropriate sense.

Let us conclude this section with an example.

Ezxample 2.7.1. Consider ¢y € S’. Then
So(f) = 80(f) = FO) = 2y 2 [ £

Thus 6y = (27?)7%

2.8 The Paley—Wiener theorem

For the final topic of this section, let us return to the idea that Fourier
transformation exchanges decay and smoothness.

We present a classical result on the line known as the Paley—Wiener
theorem.

Theorem 2.8.1 (Paley-Wiener theorem). For f € L%(R), the following are
equivalent:

(i) f is the restriction to R of a function F defined on a strip {z + iy :
z € R, |yl < a} C C that is holomorphic and satisfies

/]F(x +iy)|Pdz <1 for all |yl < a.

(i) e"llf e L2(R).
Proof. Suppose (ii) holds. We then define
F:) = [ (e ae,

which satisfies F|g = f by the Fourier inversion formula. This defines a
holomorphic function on the strip {|y| < a} due to the exponential decay of
f. Furthermore, by Plancherel,

/ Pz +iy)Pdr = / FOPe e de < || feél|2,
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uniformly for |y| < a. This implies (i).

Next suppose (i) holds. Denoting f,(x) = F(x +1iy) (so that fo = f), we
will show f,(€) = f(£)e €. Then by Plancherel’s theorem (just as above),
we will have

/M@Wé@%sl

for |y| < a, yielding (ii).

We would be able to say fy(é) = f(&)e & immediately if (ii) already
held. We therefore utilize a family of good kernels to introduce compactly
supported approximating functions (which, in particular, satisfy (ii)).

We utilize the following family, which form a family of good kernels:

Ky(2) = \K(O\),

where

. 1 .
Kla) = (522 = o [ (1—fel)e g

(check!).
We set

Gi(z) = K\xF(z) = / F(z —w)Ky(w) dw.
R
Then G is holomorphic in {|y| < a}. We now define

Iy(x) = Gr(v +iy) = Ky * fy(v).

In particular ) X
Iy (&) = K\(&) fy(§) for each A.

Now observe that each gy (&) has compact support, specifically, in [—\, A].
In particular, (ii) holds for gy, and hence

ry(€) = gr0()e™™.
As f((%) is supported in [—A, A, it follows that
Frg(€) = foy(&)e™™ for [¢] <.
Sending A — oo yields the result. O

Using this theorem, we can prove the following important fact:

Corollary 2.8.2. Let f € L%(R) and let f € L2(R) denote the Fourier
transform of f. Then f and f cannot both be compactly supported (unless

f=0).
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Sketch of proof. Suppose f and f are both compactly supported. Then
e?lél f € L? for any a > 0. Thus f is the restriction of an entire function F.
However, F' vanishes on R\[—M, M], and hence (by the uniqueness theorem
of complex analysis) F' = 0. This implies f = 0. O

2.9 Exercises

Exercise 2.9.1. The 1d Dirichlet Laplacian on (0,1) is the operator —d2
defined on the set of smooth functions f : (0,1) — R satisfying f(0) =
f(1) = 0. The 1d Neumann Laplacian is also defined to be —92 but on the
set of smooth functions f(0,1) — R satisfying f'(0) = f/(1) = 0.
(i) Find the eigenfunctions and eigenvalues for the Dirichlet Laplacian.
(ii) Find the eigenfunctions and eigenvalues for the Neumann Laplacian.

Ezercise 2.9.2. Using Fourier series, show the following:
(i) For f:(0,1) — R smooth and satisfying f(0) = f(1) = 0, we have

[e.e]
f(z) = Zan sin(nmx) for some a, € R.
n=1

Moreover, find a formula for the coefficients a,.
(ii) For f:(0,1) — R smooth and satisfying f'(0) = f’(1) = 0, we have

f(z) = Z by, cos(nmz) for some b, € R.
n=0

Moreover, find a formula for the coefficients b,.

Ezercise 2.9.3. Suppose {¢;} is a complete orthonormal set in L? and f, g €
L% Let {fx} and {gx} be the Fourier coefficients of f,g. Use Parseval’s
theorem to prove the following:

k

Exercise 2.9.4. Show that any orthogonal set in L? is at most countably
infinite.

Exercise 2.9.5. Show that any orthogonal basis in L? is complete. In par-
ticular, there exists a complete orthonormal basis for L?.
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Ezercise 2.9.6. Compute the formula for the Dirichlet kernel by showing

N

§ : einz

n=—N

_ sin[(V + %)x]

sin(1z)
Compute the formula for the Fejér kernel by showing

N-1 .
1 Z Zn: ik — 1 [Sm(%x)]z
2T N T 2N s 1
§ n=0 k=—n " [Sln(ix)P

Hint. Write ™ = (¢'*)" and sum the geometric series.

Exercise 2.9.7. Prove Fejér’s theorem: for f € L(T),

lim o, f(z) = 3[f(a+) + f(z—)],

n—oo

provided these limits exist. Hint: Use the facts that the Fejér kernels are
good kernels that are positive, even, and decay away from x = 0.

Ezercise 2.9.8. Let f be a function on the torus with Fourier coefficients

f(n).
(i) Show that if f is k-times differentiable and f*) € L', then

F < mi =3\ £()
If(n)\_ogljlgk\nl 19 L

(ii) Show that if f is Holder continuous of order av € (0, 1] then

[f()] < ||~
Ezercise 2.9.9. Let f be a function on the torus. Show that f is analytic if
and only if there exist K > 0 and a > 0 such that |f(n)| < Ke~"l,

Ezercise 2.9.10. This exercise appears as Theorem 1.4.1 in [I5]: Let {a,}5° _
be an even sequence of nonnegative numbers such that a,, — 0 as |n| — oc.
Suppose that for n > 0 we have

ap+1 — Ap—1 — 2a, > 0.

Show that there exists a nonnegative function f € L'(T) such that the
Fourier coefficients of f are given by f(n) = ay,.

Ezercise 2.9.11. Show that the Dirichlet kernels satisfy ||Dy||;:1 2 logn for
large n.
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Ezercise 2.9.12. Let f be a Schwartz function. Show that for any multii-
indices a, 8 and any 1 < p < oo we have z*0° f € LP.

Exercise 2.9.13. Show that Schwartz space is dense in L?.

FEzxercise 2.9.14. Show that if an estimate of the form

[fllze < 1 f1ee

holds for Schwartz functions, then ¢ = p’ and 1 < p < 2. Hint For the first
part, use a scaling argument. For the second, consider f(x) = e~ (1+it)lel*/2
and send t — oo.

Ezxercise 2.9.15. Let A be a d x d invertible matrix with real entries. Show
that if g(x) = f(Ax), then

(&) = | det A| 1 F((A)719).
FEzxercise 2.9.16. Show that
_d—a

Fla= 2 D5 |2|*] = n~30(5)lE 7.

This appears in [26, Lemma 1, p.117]. It can be computed using the Gamma
function

F(z):/ e 't*"Lat,
0

as we now sketch. First, show that
% et _ _—(%=2)dean [ a—d
. e t 2 T = ™ 2 F(72 )|.’L‘| .

Now compute the Fourier transform, using the fact that the Fourier trans-
form of a Gaussian is a Gaussian (which follows from computing the appro-
priate Gaussian integral):

—2mizé > —nt|x|? 452 di e —aq Qo —amra
e ; e t2 Gdr= ; e vt 2 G =1 2[¢]7T(9),

where the last equality comes from a change of variables.
Ezercise 2.9.17. Show that for f € C°(R3),

- / lz| YA f(z) dz = 47 £(0).

Exercise 2.9.18. Solve the Poisson equation —Au = f in dimensions d > 4.
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Ezercise 2.9.19. Use the Fourier transform to solve the wave equation Oy u —
Ozzu = 0 with initial condition (u(0,x), dyu(0,x) = (f(x), g(z)) in one space
dimension.

Exercise 2.9.20. Let ¢ € R%. Use the Fourier transform to solve the transport
equation
ou+c-Vu=0

with initial condition u(0,x) = f(x).

Exercise 2.9.21. Solve the linear Schrodinger equation
i0u+ Au =0, u(0,z)= f(z)

on both the torus and R%.

Ezercise 2.9.22. For f a Schwartz function, define the tempered distribution
Tf by

74(9) = [ foda.

Show that the mapping f +— T'f is injective.

Exercise 2.9.23. Let T be the mapping as in Exercise 2.9.22] Show that if
f is a Schwartz function then [T'f]" = T[f’]. (The notation on the left refers
to the distributional derivative of T'f.)

Ezercise 2.9.24. Compute the second distributional derivative of the func-
tion f(z) = |z|

Ezercise 2.9.25. Compute the Fourier transform of 9%dg.
Ezercise 2.9.26. Give full details for the proof of Corollary



Chapter 3

Fourier analysis, part 11

In this section, we continue our study of the Fourier transform and con-
sider several applied topics. We will use the following normalization for the
Fourier transform:

f() = /R o2 £ (1) dt,

and similarly for Fourier series.

3.1 Sampling of signals

Consider a time-dependent signal (e.g. an audio recording). This is mod-
eled as a function f : R — R, which we write as f = f(¢) to keep the
interpretation of ‘time’ clear. In practice, we should consider signals that
are compactly supported in time, but let us return to this point later.

We will consider the problem of reconstructing a signal f using a col-
lection of samples {f(tx)}3> .- We will assume that the sampling rate is
constant, e.g. tx = kr for some r > 0. (The sampling rate would then be
1/r, i.e. the number of samples taken per second.) In practice, one can
only take finitely many samples, in which case we would like as good of an
approximation of f as possible.

We begin with the observation that this problem is essentially hopeless
unless we restrict to bandlimited signals, that is, signals with compact
Fourier support.

Ezample 3.1.1. Fix 0 < r < 1. Let

2rx

f(z) = X[-1,1] (r) and g(z)= X[—l,l}(w> cos(<7F).

38
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Then
g(kr) = X[—l,l}(kr) cos(2mk) = X[—l,l](kr) = f(kr)

for all £ € Z. Thus f and g are indistinguishable by sampling at the points
tk = kr.

The previous example hints at the general principle that in order to
faithfully represent a signal with sampling rate r—!, the sample should not
contain frequencies higher than »~!. (Actually, both signals above contain
arbitrarily high frequencies due to the fact that they are compactly sup-
ported in time.)

Let us turn to the positive result. We define the function

sin Tx

sinc(x) := 0L,

Theorem 3.1.1 (Shannon-Nyquist sampling theorem). Let r > 0. Let
f € S(R) and suppose (&) =0 for all |§| > % Then

F(t) =" fkr)sinc[2(t — kr)].

kEZ

In particular, to reconstruct a function that is bandlimited to frequencies
€] < %, one must use a sampling rate at least twice the highest frequency
(i.e. %) This is called the Nyquist frequency associated to the sampling

-1
rate v~ .

Note that a function with compactly supported Fourier transform is an-
alytic (cf. the Paley—Wiener theorem); thinking of such functions as ‘infinite
degree polynomials’, it is perhaps not surprising that the function may be

reconstructed using only countably many sample points.

Remark 3.1.2. The appearance of the sinc function in Theorem [3.1.1] may
seem a bit mysterious. One approach for deriving the formula appearing in
the Shannon—Nyquist theorem is to use the fact that

f=xp L [ = f]
2r2r r
and take the inverse Fourier transform. Here Il denotes the distribution

Tn(p) = Y @(kN),

kEZ

and the effect of convolution with Il is to periodize the function, cf.

Iy * () = 3 (e — kN).
keZ
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Computing the inverse Fourier transform of X[—d, 1] (see Lemma be-

277 2r

low) and II1 (see Exercise , one can deduce the formula appearing in
Theorem B.L1l See Exercise B.5.2

We turn to Theorem Let us begin by recording the key property
of the sinc function.

Lemma 3.1.3. The function sinc belongs to L*(R). Its Fourier transform
s given by

Flsinc](§) = X[-1 l}(‘f)-

272

In particular, for any r >0 and k € Z,
Flsine(L(- — kr))(€) = rxi_ 1 1 (€)e 28,

Proof. That sinc € L? follows from the fact that it is bounded near z = 0
and decays like |z|~! for large x.
Next, we compute

212 ~1/2 T

/ .
F g yl@) = /1 " it d§ = sin(nz) _ sinc(z),

which yields the desired identity. The final identity then follows from apply-
ing the scaling and translation identities for the Fourier transform, obtained
by a change of variables. O

Corollary 3.1.4. For r > 0, the family {sinc(1(- — kr))}rez forms an
orthonormal basis for the subspace of L? defined by

H={geL?:§ issupported in [, =]}
Proof. By Plancherel’s theorem and Lemma[3.1.3] the family is orthonormal.
Now if ¢ € H is orthogonal to every element of this family, then then
again applying Plancherel’s theorem we see that the Fourier series of g is
identically zero, and hence g is zero. This shows that the family is complete,
as needed. O

The next lemma is an important result of independent interest. It is
known as the Poisson summation formula.

Lemma 3.1.5 (Poisson summation formula). For ¢ € S, we have

Y _wk) =) ¢(k).

keZ keZ
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Proof. Let

= olt—k

keZ

Note that ®(0) gives the left-hand side of the Poisson summation formula.
Next, observe that ®(t) is periodic of period one. Thus it has a Fourier

series expansion
— § :(I)(m)e%rzmt.
meZ

The Fourier coefficients @(m) as computed as follows:

bm) = [ ey (1)
=> / “Emimbo(t — k) dt

kEZ

k+1 i
=S [ e dr = plm),
kezZ "~ —

where we have changed variables and used e 2™ = 1. In particular, we
now see that ®(0) also equals the right-hand side of the Poisson summation
formula, and thus the result follows. ]

We next prove a lemma from which Theorem will follow directly.

Lemma 3.1.6. Let r > 0 and f € S(R). Define

Zf (kr) sinc[2(t — kr)].

keZ
Then g € L?, g(kr) = f(kr) for all k € Z, and

98 =x_1 1,0 fe-

2r’ 27’ keZ

Proof. That g € L? follows from the fact that it is a linear combination
of orthogonal functions with rapidly decaying coefficients; this latter fact
follows from the assumption that f € S. Next,

=" flkr)sinclt — k] = f(kr M:f(fr).

keZ kEZ f k)
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Now we compute the Fourier transform. By Lemma [3.1.3] we have

9O = rx_ 1 1)(§) Y flkr)e >,

T kez

Applying the Poisson summation formula to the function
W) = flar)emiE

(for fixed 7 > 0 and £ € R) now yields

9(6) = Zf — &

2r 27‘

as was needed to show. O

Proof of Theorem[3.1.1] Define g(t) as in Lemma In particular,

9 =x_1 1O fle-1

2r’ 27' ke7

Thus, if f is supported in [—2—1,'«, %], it follows that § = f. This yields the
result. O]

We have seen that to reconstruct a signal using a discrete set of samples,
we need two things: (i) we need the signal to be bandlimited, and (ii)
we need (countably) infinitely many samples. In practice, neither of these
will be satisfied. Indeed, since our signals will be compactly supported in
time, they cannot be bandlimited. This is the content of Corollary
Furthermore, clearly we can only take finitely many samples of any signal.

Thus, in practice one should either decide upon a feasible sampling rate
(or a feasible maximum frequency that one hopes to capture) and then take
as many samples as possible with the appropriate sampling rate.

If one uses too low of a sampling rate, one can run into the problem
of ‘aliasing’. This can be understood by considering Lemma In
particular, for a Schwartz function f we take samples at the points kr and
define the function

t)=>_ f(kr)sinc[L(t - kr)]

kEZ

as a possible candidate for reconstructing f. In particular, note that g(kr) =

f(kr).
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Suppose that f is supported in [—%, %] If r~1 > N then we see that
g(&) will contain one single copy of f (£), confirming what we already know:
for a sufficiently high sample rate of a bandlimited signal, we can reproduce
f by a discrete set of samples. On the other hand, if r~! < N, then ¢ will
contain extra (shifted) copies of f . In particular, certain frequencies will be
‘counted twice’ (or more than twice); this is called aliasing. Thus, if the
sample rate is too low, the function g will not be a faithful reproduction of

the signal. Indeed, in this case we will not have § = f.

3.2 Discrete Fourier transform

Recall that given a continuous signal f : R — R, we will generally only
be able to take finitely many samples, say {f(t,) ,]f;ol. In this section we
describe how to define a corresponding discrete version of the Fourier trans-
form of f.

Let us write the sampled signal as the following distribution on R:

N-1

fd(t) = Z f(tn)é(t - tn)v

n=0

where t, = nr for some r > 0. In order for this to faithfully reproduce f,
we should assume that f is supported on [0,77!], say. (Previously it was
[— 5, 5], but let us shift here for convenience.) We should also assume that
the bulk of the support of f is the interval [0, N7].

Now note that
N-1

fa(€) = fltn)e T,

n=0

We would like to use finite samples of fd to approximate fd. Since f is
supported mostly in [0, N7|, we should take a sample rate of Nr. Thus we
set s, = g (for m = 0,..., N — 1, which should cover the entire support

of f4) and define

N-1

Fd(Sm) = fd(sm) = Z f(tn)e_zmsmtna

l.e.
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We regard {Fy(sm,)} as an approximate discrete version of f. In fact, by
considering the Riemann sum approximation to the continuous integral, we
expect

Nr
Fug) ~ o [ s a7 ).

With this motivating example in mind, we proceed to the definition of
the discrete Fourier transform.

Definition 3.2.1. Let f € CV have entries f[n], n = 0,...,N — 1. The
discrete Fourier transform of f is the vector

f=Ffech

with entries
N-1

flm] =" 72N fln).

n=0

Note that F : CN¥ — C¥ is a linear transformation and hence is rep-
resented by an N x N matrix F with entries F,,, = ¢~ 2mimn/N (
index m,n € {0,1,..., N —1}). Writing

where we

W=wy = 62m/N,

we can also write Fp,, = w™ ™

It is also convenient to introduce the vector w with entries w[k] = w*,
where k € {0,..., N —1}. Then the n'* column of F is given by w™", where
this notation refers to component-wise operation. In particular,

N—-1
Ff=7 w"fn].

n=0
To make sure the notation is clear, here is F in the case N = 2:

1 1
wl w2
w2 Wt

‘F:

—_ = =

Just as in the continuous case, the discrete Fourier transform is invert-
ible. To invert the matrix JF, it suffices to solve the equations

Fx =20, foreach k=0,...,N—1,
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where 0;, has a 1 in the k" position and zero elsewhere. (The columns of
F~1 are then the solutions i.) By analogy with the continuous case, we
might expect that we should take x = wk. Let us check:

N-1 N-1
f@k — Z g—ngk[n] — Z g—nwlm.

Now w™"[m] = w™™™, and so
g—n[m]wkn wn(kz—m)‘
Now we claim that
N-1
> W) = Ny, (3.1)
n=0
which will imply
fgk = N(Sk,
whence
Fl=3%F
=+ F.
For (3.1)), we just need to check that the sum is zero when k # m, i.e.
N-1
Z(wﬁ)":0 forany e {-N-1,...,—1,1,...,N —1}.
n=0

In fact, this is a geometric series with w! # 1, and so equals

N-1

_yEN
>y =

n=0

Since w” = 1, the numerator is zero, as desired.
Given f € CV, its Fourier transform f can naturally be extended to
a periodic sequence of period N, i.e. f(m +/{N) = f(m) for any ¢. This
follows from the fact that w *m+N) = ,=km T particular we can view
N-1
flm] = wkmfk] for all m € Z.
k=0

Because the inverse Fourier transform has the same general structure as
the Fourier transform, it is also natural to assume that the original discrete
signal f is also periodic of period N. This will be helpful below.

We now turn to some properties of the discrete Fourier transform that
parallel what we already know for the continuous Fourier transform.
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Lemma 3.2.2 (Plancherel). We have the following:
Ff-Fg=N(f-9)

where f-g = Y, flklglk] denotes the standard complex inner product on
CN.

Proof. We have

N—-1N-1
Ff-Fg= Flilglkle™ - w™
j=0 k=0
By the computations above,
N-1
ww =W ) = Ngy,
=0

where dj; is the Kronecker delta. Thus

N—-1
Ff-Fg=N>_ flklglkl=Nf-g,
k=0

as desired. O

We also note the following identities (left as an exercise):

F(fl—a]) =w™Ff,

Flutf] = Ffl—dl. (32)

This requires the interpretation of f, F f as periodic sequences. Furthermore,
the product of two vectors should be interpreted as component-wise product,
ie. (vw)lk] = v[k]w[k].

We next turn to convolution of sequences. This also requires the inter-
pretation of f € CV as an infinite periodized sequence. The convolution
of f and g and is then defined by

N-1
f*glm] = flklglm — k], me{0,...,N —1}.
k=0

The convolution of two periodized elements of CV is then another periodized
element of CV.
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Lemma 3.2.3. The following identities hold. First,
F(f+g) = (Ff)(Fg),

where as usual the product on the right is component-wise product. Next,
F(fg) = NT\Ff = Fg,

where again fg denotes component-wise product.

Proof. We have

NFHfo)m] = fin]gnlw™

[
=
S
Q
=

S

2

3
T
z

n,k,l
=N [lklgll)dem—r)
k¢
= NZf[k:]g[m — k| = Nf*g[ml],
k

and the desired identity follows from applying /. Now, an analogous com-
putation shows that

Flaxb)=NF taF b

Thus
FUNTIFf«Fg) = fg.

which implies the second identity upon applying F. O

Applying convolutions to signals (or, equivalently, multiplying their dis-
crete Fourier transforms by functions) allows us to perform various ‘filters’
on our signal (e.g. low-pass, high-pass, band-pass filters, and many other
variations). We will not pursue this topic here, but would like to remark
that this is a starting point for many important applications.

We would also like to make the following observation, which is useful
to keep in mind in applications. For real signals (i.e. vectors in RN ), the
Fourier transform has some symmetry properties. In particular, the discrete
Fourier transform splits at index N/2. Note that

N-1

FFN/2l =) (-1 f[K],

k=0



48 CHAPTER 3. FOURIER ANALYSIS, PART II

and in particular is real. One finds in general that
FIE +k = FF - 4

for k = 0,..., % — 1. Note Ff[0] is just the sum of the components of
f. One calls Ff[0] the ‘DC’ component; the frequencies m = 1,..., % -1
the ‘negative frequencies’; and the frequencies m = % +1,...,N —1 the
‘positive frequencies’. All of the information about Ff is contained in the

DC component, negative frequencies, and the value F f[N/2].

3.3 Fast Fourier transform

In the previous section, we saw that the discrete Fourier transform and its
inverse are simply linear transformations on C" and hence are represented
by N x N matrices. In applications, however, it can be rather costly to
perform matrix multiplications. In general, multiplication of an N x N
matrix by an N x 1 vector has computational complexity O(N?).

The fast Fourier transform gives an efficient method for computing the
discrete Fourier transform. This approach actually appears in work of Gauss
(modeling orbits by Fourier series). The algorithm as it will be described
here is more commonly associated to Cooley and Tukey.

In the following, we will typically assume that N = 27 for some j € N.
We will write 7 = F, for the discrete Fourier transform on sequences of
length p. We recall w, = e~ 27/a,

Lemma 3.3.1. Let f € CN with N even. Then form =0,1,...,N/2,
Fn flm] = Fnjafelm] +wy™ Fnyafolml,
FNnflm+ N/2] = Fnjafelm] — wy™ Funjafolml,
where
feln] = fi2n] and foln] = f2n+1] for n=0,....5 —1.
Proof. Let m € {0,1,...,N/2}. Then, splitting into even and odd parts,

N/2—1 N/2—1
Fnflm] = Z f[%]e—Qmm(zk)/N+ Z f[2k+1]e—2m’m(2k+1)/N'
k=0 k=0

The first term equals

N/2—1
D felkle RN = Fyy o folml.
k=0
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The second term is treated similarly to produce Fy/o folm], except there
—2mim /N

appears an extra power of e =wy".

Next consider Fy f[m + N/2]. In this case we only need to observe that
627ri(m+N/2)(2k)/N _ 627rim(2k:)/N€27rik _ e?m’m(?k)/N

which leads to the Fy/o fe[m] term again. On the other hand,

e2mi(m+N/2)(2k+1)/N _ 2mim(2k+1)/N 2mi(k+3) _ _ 2mim(2k+1)/N

9

which accounts for the minus sign in the formula above. This completes the
proof. O

For N = 27, this lemma can be iterated until one is reduced to computing
F1, which is trivial. Computing the discrete Fourier transform this way is
the fast Fourier transform algorithm.

We will look at the fast Fourier transform in more detail below. First,
let us see what computational advantage it has.

Proposition 3.3.2. Let F(N) be the number of operations it takes to com-
pute the discrete Fourier transform with the fast Fourier transform algo-
rithm. Then

F(N) ~ NlogN.

Recalling that computing the discrete Fourier transform using matrix
multiplication takes O(N?) elementary operations (e.g. additions and mul-
tiplications), we see that the fast Fourier transform provides a huge compu-
tational advantage.

Proof. Using Lemma we find that
F(N)=2F(N/2)+¢N for some c¢>0.

Rearranging, this yields

E(N) _ F(N/2)
TN T N T6
. ey . _ F(29) o
Assuming N = 27 and setting a; = =5, this simply reads

a; = aj_1+c, sothat a; = jc+ ap.

But a9 = F(1), the number of operations needed to compute the discrete
Fourier transform of a single point. In particular, ag = 0, so that a; = jc.
Thus

F(N)=¢NlogN,

as claimed. ]
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Let us now look closer at the fast Fourier transform algorithm. As we will
see, this algorithm amounts to a factorization of Fx. Recalling Lemma|3.3.1
we need to define an operation that sorts a vector into its even and odd
indices.

Definition 3.3.3. For f € CV with N even, let
w0 f[k] = f[2k] and = f[k] = f[2k + 1]

for k € {0,1,..., % —1}. In particular, 7°f € CV/? and #'f € CN/2. We
denote sequential applications in a contravariant fashion, namely

7701f _ 71'17T0f,

and so on. In particular, the input will always be a vector in C™, but the
input is a vector in CV/? | where 7 is the number of digits appearing in
superscripts.

Next let us write Iy for the N x N identity matrix and Qpy for the N x N
diagonal matrix with Qn[m, m] = wf},. Then Lemma may be written

as
fN/270f> (IN/2 Qny2 >
Fnf=B , By = .
vf N < ]:N/27Tlf N IN/Z —QN/Q

Now we repeat the process, yielding
Fnjam f
Fnyamt f

./—"]Vf = BN . diag(BN/z) s
Fnjamt0f

Fnjamt f

where diag(Bp/s) is the N x N block diagonal matrix with By in the
upper left and lower right blocks.
Now continue this until we reach a vector with N applications of F; = Id.

This leads to
log N—1

Fn = [ H diag(BN/zk)] (=" )y (3.3)
k=0

where diag should always be taken with a suitable interpretation, and c(k)
denotes the unique sequence of log N binary digits corresponding to the
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element k € {0,1,...,N — 1}. For example, if N = 8 then ¢(4) = 100,
¢(5) = 101, and so on. By uniqueness, we may also define the map ¢! taking
sequences of binary digits to the corresponding integer (so that ¢=1(101) = 5
in the example just given).

Let us continue from (3.3). The vector (wetk) f)N_, consists of some
rearrangement of the entries of f. We can understand exactly which rear-
rangement occurs through the following lemma.

Lemma 3.3.4. Given a sequence d = dy - --d; of binary digits, define Rd =
dj---dy to be the reversal of d. Then

nlf = fle (Rd)]

1

for any vector f € (C2j, where ¢~ s the map from sequences to integers

introduced above. Equivalently,
adiopdhif = f[cfl(dj...dl)}'

Proof. We proceed by induction. If j = 1 then d = Rd and so the claim
boils down to to 7¢f = f[d] for d € {0,1} and f € C2?, which is true by
definition.

Now suppose the result holds up to level 5 — 1. Then

i = (e ey d)

There are two cases, namely d; € {0,1}. Let us first assume d; = 0. In this
case,

(x°f)[k] = f[2k], sothat (7°f)[c " (d;---do)] = f[2¢ " (d;- - dy)].
It therefore remains to show that
2¢71(d) = ¢ 1(d0)

for any binary sequence d, where we note the slight abuse of notation in the
map ¢! above. Indeed, multiplying a number by 2 just increases each power
of 2 in its binary expansion, which equivalently shifts the binary sequence
to the left.

If d; = 1 then (7! f)[k] = f[2k + 1], so that

(r' P)le™(dj- - do)] = f[2¢7(dj - - do) + 1.
Thus we need to check
2¢Hd) + 1 =cd1).

In fact, multiplying by 2 appends a zero to the sequence (as we just saw),
and adding one changes this zero to a one. This completes the proof. O
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Returning to the setting of (3.3,
7B f = fle” (Re(R))).

Thus we see that to perform the fast Fourier transform consists of first
sorting the indices of f according to the rule above and subsequently multi-
plying by log N explicit block diagonal matrices. (This also provides another
derivation of the O(N log N) computational complexity of the fast Fourier
transform.)

Note that the sorting described above defines a linear transformation on
RY and hence is represented by an N x N matrix P. In particular, imposing

(PG = fle™ (Re()]

P[.7k]:{1 c(k) = Re(j)

leads to

0 otherwise.

Thus for each row there will be precisely one nonzero entry (with value 1).

Example 3.3.1. If N = 8, the fast Fourier transform is computed by

3
7

0]

f14]

B, 0 0 0 f12]

By 0 0 By 0 0 £l6]
BS( 0 B4> 0 0 By 0 fl1]
0 0 0 By £15]

f13]

17

The sorting matrix has the form

[N eNeNoll =)
_ O O O O oo
O R OO O oo

OO O O o oo
OO O = O OO
(il elalaBel e
OO OO RO OO
_ o O O oo oo

00 0

Remark 3.3.5. If N is not of the form 27, a common trick is to ‘pad’ with
zeros until N is of this form. Despite increasing the dimension, this can still
result in a computational advantage. We will not pursue this topic here.



3.4. COMPRESSED SENSING 53

3.4 Compressed sensing

We next turn to an introduction to the area of compressed sensing. In
many applications, signals are in some sense ‘sparse’, and because of this
it is often possible to (i) reconstruct signals using far fewer measurements
than expected and (ii) compress these signals significantly without losing
information (for purposes of data storage, for example). This is a field that
has developed rapidly in recent years and has many important applications.
We will primary present the results of [4]; we also use [10] as a reference. At
times, certain standard probabilistic estimates may be used without proof.
Most of the proof will be presented; however, some very technical elements
will be relegated to the exercises.

We focus on the problem of recovering sparse signals from small sets of
Fourier coefficients. Sparseness can be measured using the ‘¢ norm’ (it is
not a norm, nor even a quasi-norm): for f € CV,

[flleo = [supp(f)],  supp(f) = {j : fli] # O}

Here | - | denotes counting measure.
We begin with the following preliminary result.

Theorem 3.4.1. Let f € CV satisfy ||fl,0 = s. If N > 2s, then f can be
reconstructed from its first 2s Fourier coefficients {f[n] : n =0,1,...,2s —

1.

Remark 3.4.2. More generally, if N is prime, and ||f||,0 = s then f can
be reconstructed from any collection of 2s Fourier coefficients. We will be
content to prove Theorem See [24].

Proof of Theorem[3.7.1. We need to determine S = supp{f} and {f[j] : j €
S}. The proof will actually demonstrate how one may reconstruct f.
Consider
p(t) _ % H(l B e—27rik/N€27rit/N)‘
keS

This is a trigonometric polynomial, i.e. a polynomial in e2™t/N - Note
that p(t) =0 for t € S.
Furthermore, since f[j] =0 for ¢ € S, we have

p(t)f(t)=0 forall 0<t<N-—1.

In particular,
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where pf denotes component-wise product. We may rewrite this as

N-1 )
> R f(G—k) =0 (3.4)
k=0
forj=0,...,N —1.
Now observe (by considering the inverse Fourier transform) that p(k) is
the coefficient of p(t) appearing with e2™**/N _In particular, p(0) = 1 and

(since p is a trigonometric polynomial of degree < s) p(k) =0 for k > s.
Rewriting (3.4) for s < j < 2s — 1 leads to

[0]

Fls]+ P fls — 1] + - +pls]
+ pls]f[1]

0,
p[s] 0,

f
f

fl2s — 1]+ p[1]f[2s — 2] + - + p[s] f[s — 1] = 0.

We rewrite this as a linear system

fls=1 fls=2] - f[0] pl1] fls]
: : : = — : . (3.5)

fles=2] - o fls—1] pls] f2s —1]

Now, the matrix on the left and the vector on the right are known quan-
tities. In particular, given f € CV and knowledge of its first 2s Fourier
coefficients, we can write down the system , which must have at least
one solution (namely {p[k]};_,). However, this solution may not be unique.
In the following, we find some solution § to , which we extend to CV
by setting ¢[0] = 1 and ¢[k] = 0 for k > s.

Then, reversing the steps above, we have § * f[j] =0 for s < j <
2s — 1. In particular ¢f (component-wise product) has Fourier transform
vanishing on s consecutive indices. We claim that this implies ¢f = 0. To
see this, we first note that since f = 0 outside of S, to compute the vector
of Fourier coefficients ¢f[j] for s < j < 2s — 1 it suffices to multiply the
vector {qf[j]}jes by the s x s submatrix A of Fy defined by choosing the
rows s through 2s — 1 of F and the columns defined by indices in S. Thus
it remains to check that A is invertible.

To see this, note that A is of the form A[i,j] = w= ()% where i =
0,...,s—1land S ={n; : j =0,...,s — 1}. In particular, after factoring
out w™*™ from each column, A is the transpose of a Vandermonde matrix
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(i.e. a matrix whose rows are geometric progressions) corresponding to the
parameters w™ "0, ... w~™s-1. Thus det A is a nonzero multiple of the product
over 0 < j <k <s—1of w™ —w ™ and so the result follows provided
W™ # w™ for any j,k. In fact, this follows from the fact that 0 < nj,n; <
N—landnj;énk.

We conclude that A is invertible, and hence ¢f[j] = 0 for j € S. In
particular, ¢[j] = 0 for j € S. Now, recalling that §[k] = 0 for £ > s (so
that ¢ is a trigonometric polynomial of degree < s), we see that the fact
that g[j] = 0 for j € S actually identifies S. That is, S is given precisely by
the zeros of q.

Finally, to find f[j] for j € S, note that f[k] for k = 0,...,2s — 1
are given by 2s linear equations involving the unknowns f[j]. Solving this
system yields f[7]. O

Remark 3.4.3. Let us summarize the proof above. To reconstruct a signal
f with ||f||,0 = s from its first 2s Fourier coefficients, proceed as follows:

e Find a solution ¢ to the linear system (3.5)). Extend to CV by setting
G[0] = 1 and §[k] = 0 for k > s.

e Find the zeros of ¢ = F~'¢. This identifies S.

e Solve the linear system that produces the first 2s Fourier coefficients
of f from the unknowns f[j], j € S.

The results just discussed suggest that in general, one should expect
that knowledge of a signal’s Fourier coefficients on a set 2 should suffice
to construct signals with support of around the same size as ). Strictly
speaking, this is not true.

Ezample 3.4.1. Suppose N is a perfect square. Define f by f[jv/N] =1 for
j =0,1,.../N — 1 and f[k] = 0 otherwise. Then |/f|,0 = v'N. Let us
compute the Fourier transform. We have

~ N_l . \/N_l ..
f[k] _ Z e—27rz€k/Nf[€] _ Z e—27rzgk/\/ﬁ‘
=0 =0

Now, if £k = pv/ N for some p, then the sum yields v N. Otherwise, summing
the geometric series (as we did when computing the inverse Fourier transform
in general) yields zero. Thus

f=VNFf.
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In particular, we may choose €2 to be the set of frequencies precisely avoiding
{pV/N:p=0,...,v/N —1}. Then |Q] = N —+/N, but knowing the Fourier
coefficients on 2 cannot distinguish f (supported on a set of much smaller
size v/N) from the zero signal.

The result that we will present essentially restores the intuition intro-
duced above (which was just shown to be wrong, strictly speaking). The
key is that one must incorporate a probabilistic viewpoint.

Before stating the result, let us first note that the reconstruction problem
under consideration is equivalent to the following /° minimization problem:

minimize ||g|[0 subject to  glg = fla- (Po)

This turns out to be computationally expensive and not particularly robust
(e.g. if one is dealing with noisy measurements). In practice, one instead
may consider the following ¢! minimization problem:

minimize ||g||;n  subject to  glg = fla- (Py)

The result we will prove will ultimately construct solutions to (P)).
Before moving on to the main result, let us quickly show that solving
(P1) yields ‘sparse’ signals (in the real-valued case, at least).

Proposition 3.4.4. Suppose there exists a unique minimizer g to the prob-

lem over RN, Then ||g||po < |9].

Proof. The problem consists of minimizing the ¢! norm subject to a con-
straint of the form Ag = f for A € CI?*N_ In fact, A is just a submatrix of
Fn.

Let g be the unique minimizer and S = supp(g). Writing a; for the
columns of A, we will show that {a; : j € supp(g)} is independent, which
implies |supp(g)| < |92, as desired.

Suppose Av = 0 for some v with suppv C S. Suppose toward a contra-
diction that v # 0.

As g is the unique minimizer of and A(g + v) = Ag, we have

lgller < llg + tvlln =Y sign(gli] + toli]) (9ls] + tv[s])
jes

for any ¢ # 0. Choosing

t| < min |g[4]]||v]| 7
|t] rjrgg\a[ﬂlll@!b ,
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we are guaranteed that sign(g[j] + tv[j]) = sign(g[j]) for each j. Thus

lgller <D sign(gliDgls] +¢ Y sign(gl])vlj]

jes JjeS
= llgller + 1t sign(gli])ols]-
JjES
This gives a contradiction upon sending [¢| — 0. O

Let us finally state the main result of this section.

Theorem 3.4.5 (Candés-Romberg-Tao). Let f € CN and M > 1. There
exists Cpr > 0 such that the following holds:

Suppose [ is supported on some set S. Choose Q of size |2 = N,
uniformly at random. If

|Q| = N, > Cy|S]|log N,

then with probability at least 1 — O(N~M) the minimizer of (P1)) is unique
and equals f.

Remark 3.4.6. In Theorem the Fourier coefficients are randomly

sampled. In particular, given N,,, we choose (2 uniformly at random from

all sets of this size. Thus each of the (]i,\: ) possible subsets are equally

likely. The result says that the fraction of such subsets from which we can
reconstruct f is at least 1 — O(N M), provided N, > Cy/|S|log N.

Remark 3.4.7. This theorem is optimal. Consider again the function in
Example 3.4.1] To have a chance of recovering f, the set  must overlap
W = supp f in at least one point. Now, choosing ) uniformly at random,

T e () (3)

Now, we should already be assuming that || > |S| = v/N. Under this
assumption, we get the following lower bound:

POQAW =0)> (1- ZH)YY
See Exercise Therefore, if we hope for P(QNW = ) < N~ we need

VNlog(1 - 2y < —M1log N.
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Supposing we also want to avoid the case when || is comparable to N (so

that [Q] < $N), we can view log(1 — 2|TQ) as comparable to —@, whence

Q| >p VNIlog N~ log N|S|.
In particular, the log N appearing in Theorem [3.4.5 cannot be avoided.

We turn to the proof of Theorem In the following, we denote
the restricted Fourier transform by Fs_.q; that is, if e : £2(S) — £2(C") is
extension by zero, then Fg_,q : £2(S) — (2() is given by

Fsoaf = Fn(ef)la forall fe*(S5).

For complex vectors f € CV supported on a set S, we let the sign vector
sgn(f) be defined by

= f or n
Sgn(f)[n] - ]f[n” f € S?

with sgn(f) =0 off S.
We will prove the following proposition, which we will then use in the
proof of Theorem [3.4.5)

Proposition 3.4.8. Let Q C {0,...,N — 1}. Suppose f € CV and S =
supp(f). Suppose that there exists P € CN such that

° suppf’CQ,
e P[t] =sgn f[t] on S,
o |Plt]| <1 fort¢sS.

Then if Fs—q is injective, and the minimizer to (Pi|) is unique and equals
f. (Conversely, if f is the unique minimizer of (Pi)) then there exists P as
above.)

Proof of Proposition[3.4.8. Let us prove only the forward direction, which
is most directly useful for us.

Suppose such a vector P exists. Suppose that g satisfies g|lq = f|Q Set
h =g — f. Then on S we have

9] = |f + k| > | f| + Re[hsgn(f)] = | f| + Re[hP].
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To establish this inequality, write f = |fle? (i.e. € = sgn(f)) and h =
|h|e’; then the inequality is equivalent to

1£] + 1] cos B + i|h|sin B8] > | f| + [hlcos B, f=a—6.
Outside of S, we have
lg| = |h| > Re[hP],

since |P| < 1.
It follows that

N-1 B
lgller = [l fller + Y Re(h[n] Pln]).

n=0

Applying Plancherel, using the properties of P, and recalling h =0 on Q,
we deduce that

i Re(h[n]P[n]) = L i Re (hln] P[n]) = 0.
n=0 n=0

It follows that ||g||;r > ||f]ls1, so that f is a minimizer of (P4)).
Now suppose that ||g|l; = ||fll¢s- Then (considering the argument
above) we must have

|h[n]| = Re(h[n]P[n]) for n¢S.

However, since |P[n]| < 1 for n ¢ S, this implies h = 0 off of S. By
the assumption that Fs_.q is injective, we also have that h = 0 on S. In
particular, f = g, and hence f is the unique minimizer of ([P1)). O

The strategy will now be to construct a suitable polynomial satisfying
the first two properties in Proposition [3.4.8] and to show that it satisfies the
desired upper bound with high probability. We would like to choose

P := féN%QFSHQ(FEHQFS%Q)_IG* sgn(f), (3.6)

where the notation means the following. First, * denotes adjoint (i.e. conju-
gate transpose). In particular, recalling that e is extension by zero, we have
that e* : £2(CN) — ¢2(S) is simply restriction to S.

If we can define such P (given S and ), then P automatically has
Fourier support in 2. Furthermore, we claim that e*P = e* sgn(f). In fact,
this follows from

* *

" Fon o = (Fevoe)” = Fsoq-
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Thus, fixing f and its support S, the proof of Theorem boils down
to proving that if £ is chosen uniformly at random from sets of size 2/
|S]log N, then

1. The operator Fg_,q is injective with probability 1 — O(N~M) and

2. The function P defined by (3.6]) satisfies |P| < 1 off of S with proba-
bility 1 — O(N—M),

Indeed, if item (1) is satisfied then F§_,oFs_q is necessarily invertible.
(Both are equivalent to Fs_,q having full column rank.)

It turns out to be simpler to prove these when one uses a different prob-
abilistic model than simply selecting € uniformly at random. In particular,
let us first consider the Bernoulli model. Given 0 < 7 < 1, we create the
random sequence

I, =

{1 with probability 7 (3.7)

0 with probability 1 — 7.
We then can then define a random set of Fourier coefficients by Q = {w :
I, = 1}. The size |Q| is random and follows a binomial distribution with
E(|2])) = 7N. In fact, when N is large, one has |Q2] ~ 7N with high

probability (by large deviation estimates).
We will prove the following two propositions.

Proposition 3.4.9 (Invertibility). Let S € CV and M > 1. Choose
according to the Bernoulli model with parameter 7. Suppose

TN 2 |S|log N.
Then F§_ . qFs—aq is invertible with probability at least 1 — O(N—M),

Proposition 3.4.10 (Bounds). Under the assumptions of Pmpositian
the function P defined by (3.6)) satisfies |P| < 1 off the set S with probability
at least 1 — O(N—M).

Assuming these two results, let us complete the proof of Theorem [3.4.5]

Proof of Theorem assuming Propositions[3.4.9 and [3.4.10., Let F ()
be the event that no polynomial P exists as in Proposition if we choose
the set Q of Fourier coefficients.
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Let Q be of size N,, drawn uniformly, and ' be drawn according to the
Bernoulli model with 7 = % Writing € for a set of frequencies chosen

uniformly at random with |Q| = k, we have

N

N
P(F(Q)) = Y P(F(Q) : 1] = ) P(] = k) = Y P(F(%)) P(Y] = k).
k=0 k=0

Now note that P(F(2)) is decreasing in k (it only gets easier to reconstruct
using larger sets). We also claim that

P(|| < TN) > 1,

which follows from the fact that 7N is an integer and hence the median of
the random variable |Q'|. Thus

N, N,
B(F() > 3 B(F(Q) B = k) > P(F(Q) 3B = k) > L B(F()).
k=1 k=1

In particular, if we can bound the probability of failure for the Bernoulli
model, then the probability of failure for the uniform model will be no more
than twice as large. O

The key to proving both Proposition [3.4.9] and [3.4.10] is to establish
certain probabilistic estimates for random matrices. From this point on, we
assume the Bernoulli model holds and also assume |[TN| > M log N.

Define '
Hft]==) Y ™Iy (38)

wEN SDs#£t

and set Hy = e*H. Writing I for the identity operator on ¢2(S) (so that
e*e = Ig), we have

1 1 *
€ — @H =1 CN_m]:S—m,
1 _ 1 *
Is — @HO - @‘FSHQFS—)Q'

In particular, introducing Hy separates the diagonal term of Fg_ o Fs 0
(which equals || identically) from the oscillatory off-diagonal. To define P
as in (3.6)), then we wish to have

P = (e~ gyH)(Is — 1y Ho)~"e" sgn(f). (3.9)

To prove invertibility (cf. Proposition [3.4.9), we need to estimate the
operator norm of Hy. We will prove the following below:
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Lemma 3.4.11 (Moment bounds). Let 7 < (1 +¢)~! and ng = Wﬁ\lﬂ.
If n < ng, then

E{tr(H")} < 2(e(14—7-) ) NS

To prove the upper bound in Proposition we will also need esti-
mates on H. The crucial estimate will be the following:

Lemma 3.4.12 (Moment bounds, IT). Let 7 < (1+¢)~! and ng = WJY_T).
Forn =km < nyg,

E{|H" sen(f)I**} < 2(5555) " " T N[ S|

uniformly on S.

Assuming these moment bounds for now, let us complete the proof of

Proposition and (3.4.10). Then, finally, we will prove the moment
bounds and thereby complete the proof of Theorem [3.4.5

Proof of Proposition[3.4.9. We fix M > 0. We need to prove invertibility of
the matrix
1
IS - WH(M

where Hy = e*H and H is as in (3.8)). For this, we essentially need to show
that we have the following bound on the operator norm:

[Hol < ¢l

for some ¢ < 1 (see Exercise [3.5.5)). Recall that E{|Q|} = 7N. We first deal
with the probability that |Q2] is far from its expectation.
We will use a standard large deviation estimate, namely

P{|0| < E(IQ)) — t} < exp{—giay}

for any t > 0. Applying this with the choice

t =7Nep, where ey := QMTlg,gN (3.10)

yields
P{By} < NM  where By ={|Q < (1—epn)TN}.

Next, let Ap; denote the event {||Ho|| > %} We would like to bound
P{Aps}. For this we will rely on Lemma and the fact that (since Hy
is self-adjoint)

| Hol*" = [|Hg||* < te(H").



3.4. COMPRESSED SENSING 63

See Exercise . In particular, for any n < lev), we use Tchebychev
and Lemma m to estimate

P{||Ho|l > 75} = P{|[HolI*" > (“7)*"}
<P{tr<H2"> ()%

(TN e B HE")}

2( ) nn+l(TN)n’S’n+l.

| /\

<

(TN)2" e(l T)

Recalling the assumed lower bound 7N 2/ |S|log N, we see that we may
choose n ~js log N, say n = (M + 1)log N. Choosing constants appropri-
ately, the upper bound above is of the form

8n|S — — —
2n(TN7(11‘_‘T))n|S|e n < |FNINTWHD) < ymM

In conclusion, we have shown that on A§, N Bf,, we have

TN 12
[Holl < 7 < - < clQ|

for some uniform 0 < ¢ < 1. In fact, this holds with the Frobenius norm
of Hy. This shows the desired invertibility with the desired probability and
completes the proof. O

So far we have established that we may define the function (3.6 with high
probability. We turn to the proof of the upper bounds in Proposmon 3.4.10
which will again rely on Lemma and Lemma [3.4.12

Proof of Proposition[3.4.10. We need to prove bounds for
P = (e~ & H)(Is — i Ho) e se().

on the complement of S. We begin by writing

1 —1 1
(s~ Ho) ™" = (Is — (Z mmHo)
[e') n—1

p=1

where we have used the identity (1—-M)~! = (1-M™)"'(1+M+---+M"1).
In the following, we denote
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and regard this as a remainder term. In fact, writing |Ho|p = \/tr HoH
for the Frobenius norm, we have the following implication:

IHollp < al2] = |IR|lF < 125
Using the Cauchy—Schwarz inequality, we can write
1
[Rlloo < [S[Z]|R]|F,
where
|Rlloc :=sup Y [R[i ]| = sup ||Ralp.
L llz]lgoo <1

Indeed here S is the number of columns of R. In particular, we have the
following implication:

|Hollr < alQ] = [|Rlloo < |S|7 12 (3.11)

1—am™*

As we will see, this will deal with the contribution of R in the formulas
above. Thus we will focus on proving estimates for the truncated series

n—1
1 m
—lmmHo .

m=0

We claim that we may write
P=Py+ P, offof S,
where

Py =Dy sgn(f), P = ‘—HHRG*(I—F D,,_1)sgn(f),

1

m=1
To this end, note that by (3.9) we have

P = —H(Is — gy Ho)"'¢"sgn(f) off of S.

Continuing from above, some rearrangement shows that the claim boils down
to the identity

n—1 n—1

e 310 (He ) sgn(f) = 3 |97 (e H)™ sg(f).

m=0 m=0
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We prove this by induction. In particular, if m = 0 then e*sgn(f) = sgn(f)
since f is supported on S. Next, if e*(He*)™ sgn(f) = (e*H)™ sgn(f), then

(e*H)™lsgn f = e*H[e*(He*)™sgn f] = e*(He*)™ " sgn f,

as desired.
Now, choosing any ag,a; > 0 with ag+ a1 = 1, we begin with the bound

Plsup IP(O)] > 1) < (1Pl > a0) + (1 Pi o > a1)
t

Let us first focus on proving bounds for Py; we will return to P; below.
For the Py term, we will use the moment bounds in Lemma[3.4.12] Recalling
the proof of Proposition we have the set By on which | < (1 —

en )TN, where €)7 is as in (3.10]).

On the complement of By, we have
n
POl < Vi, Yo = ey HHG sen(f)]-
m=1

We suppose n = 27 — 1 for some J and let Bj be positive numbers such that

J-1
Z 2JB]' < ap.
j=0

Then, by Tchebychev,

J—12it11 J—127t11

P(Y Ym>a0) <> Y PVm>8) <Y S B BP0,
m=1

where K := 2777, Now, for 2/ < m < 2/t we have n < Kjm < 2n. Thus,
recalling |S| < 7N/n (with n ~ys log N), we can apply Lemma [3.4.12] to get
a bound like

(Y[} S (1= ear) 20"

for some 0 < a < 1. 1f we choose 6;Kj = 50_”7 then summing the above
gives
P{|Py(t)] > ao} <2(1 — EM)_anze_"a"BO_Q”.

With 5y ~ .42, one has Zj 2jﬁj < .91 and hence one can conclude

P{|Po(t)| > a0} < en := 2(1 — epr) " 2"nPe "0 (.42) 72",
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where ag ~ .91. In particular, we have a set A(t) with P{A(t)} > 1—¢, and
|Po(t)] < .91 on A(t) N Bf,. As a consequence,

P{sup |Po(t)| > ap} < N™M + Ne,. (3.12)
t

We now need to deal with P;. For this, we observe

P = ﬁHRe* (sgn(f) + Qo), Qo = Dy_1sgn(f),

so that
[Pilloc < g 1 Rlloo (1 + [[Qolloo)-

Note the argument just given for Py applies equally well to Q.

Consider the event £ = {||Ho||r < «|2|} for some o > 0. As we saw in
the proof of Proposition the probability of E exceeds 1 — O(N~M).
Using the crude bound || H||» < [S||©2] (since H has |S| columns and each
entry is bounded by |©2]) and (3.11]), we have

3 n
il Bllocll Hlloo < |S]2 %5 on  E.

1—am

Putting together the pieces and recalling the bound (3.12)) (for Qo), we see
that

1P floo < 215]2 1% < ay (3.13)

o
with probability 1 — O(N~M), provided that the second inequality holds.
Recall that a; ~ .09 is just a fixed constant here.

It remains to put together the pieces and complete the proof of Propo-
sition Recall that we choose n ~ (M + 1)log N and that we have a
free parameter o appearing in the definition of €,, which needs to be cho-
sen small. The choice is ultimately dictated by the fact that we want the
probability in to be O(N -M ). In particular, we should take

o = .42(1 — EM).

It remains to check that the final inequality in (3.13]) holds. Using the crude
bound |S| < N, we need

oyt 420 —ean))”

1= [42(1 = ea)]" = 0

where we recall

em = \/% and n~ (M +1)logN.

In particular, the inequality above holds for IV, M reasonably large. This
completes the proof. ]
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Finally, we turn to the probabilistic estimates in Lemma |3.4.11| and
Lemma [3.4.12] The proofs are similar, so let us focus on Lemma [3.4.11

Proof of Lemma|[3.4.11 Let us write the matrix elements of the |S| x |S]|
matrix Hy as follows:

0 t=t, '
, , where c¢(u) := Z p2miwu/N
C(t -t ) ! # ! ’ weN

Hy(t,t') = {

In particular, the diagonal entries of HZ" are given by

HE" (t1,t1) = > c(ty —t2) -~ cltan — 1),

tg,...,tzn:tj;ﬁtj_;,_l

where we write to,11 = t1. It follows that

E{tr(Hg")}

2n
- ¥ E{ Yo ep{F D wl —th)}]
j=1

t1,...,t2n:tj75tj+1 W1 5eee W2 €EQ

2n 2n
= > > exp{ 2% ij(tj—tj+1)}E{H ij-},
J=1 J=1

t1,..tontj#tj 11 0<wi,...,won <N—1

where I, is the random variable defined in and we have used the
linearity of expectation.

Now, for any w = {wi,...,wa,}, we may define an equivalence relation
R(w) on A ={1,...,2n} by imposing that

JR(w)k iff w; =w.
We claim that the expectation above depends only on the equivalence class

of R(w), denoted A/R(w). This is because the I, are independent and
identically distributed. In particular,

2n
E{H zw]} _ /R
j=1

(The number of elements in the equivalence class A/R(w) tells you how
many times you should really multiply the probability 7 to compute the
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expected value.) With this in mind, we rewrite

E{tr(Hg")} _ Z Z AR Z exp{Qm ij tj+1 }

b1, stonitj #tj41 REP(A) weQ(R)
(3.14)

where P(A) is the set of all equivalence relations on A and

QR)={w: Rw) =R} ={w:w, =wp <= aRb}.

In particular, the equation implicitly contains sums defined by im-
posing w, # wp for some a,b. The next step will be to rewrite the sums in
a way that avoids such ‘exclusions’, so that we can end up writing sums as
products that are easily understood. Here is the relevant identity:

Lemma 3.4.13 (Inclusion-exclusion formula).
> sla= SR I G S e
weQ(R R'<R A'CA/R! weQ< (R

where
R <R if aRb = aR'b

and

Q<(R) ={w: R(w) <R} ={w:aRb = w, = wp}.

The proof of this lemma is outlined in Exercise
Let us continue from (3.14]), writing the inner sum as

Z +IA/R| Z flw
ReP(A) weQ(R)

where

flw) = exp{% ng ti1)}

We apply Lemma [3.4.13] to this expression. By rearranging the sums over
R € P(A) and over R' < R, we may rewrite the expression above as

Y T(R) D) fw),
R'eP(A) weQ< (R
where

Z ARl (_1)lA/RI=IA/ R H (|4’ /R] — 1)

R>R’ A'€A/R!
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We now claim that (by splitting A into equivalence classes of A/R’ and
further splitting the relations R” on A’ € A/R’ by number of equivalence
classes), we may rewrite this as

A
= JI > sqa) k)b =04 -1, (3.15)
A’€A/R! k=1

where S denotes the Stirling number of the second kind, i.e.
S(n,k)=#{ReP(A): |A/R| =k}, with #A=n.

See Exercise We denote the sum appearing above by Fj4/((7), i.e.

n

Fo(r) := > (k—1)1S(n, k)(-1)" k. (3.16)

k=1

Using this notation, let us continue from above to finally express the desired
expected value in a way that is amenable to estimation. So far, we have
arrived at

Efw(dgy= > > 1] Aw® Zf

RGP ) 1000y t2n tjft]-y—l AIGA/R UJGQ<

with f as above. Now let us work on this final sum. Note that for any
equivalence class A’ € A/R and w € Q<(R), we have w, = wj for any a,b €
A’. Denote this common value by wa:. Denote also tar = >, 4/ (ta — tas1)-
Then we can write

exp{zm Zw] ]+1 = H exp{%wA/tA/}.

A'€A/R
Using this,
Z f H Zexp{ NWA’tA’};
weQ<(R) A'€A/R wyr
where the sum is over all possible wys € {0,..., N —1}. But now we observe

that the inner sum equals N when 4, = 0 and equals zero otherwise. In
conclusion:

E{tr(H;M}= > > NWE T Fa= (3.17)

REP(A) T(R) A'€A/R
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where
T(R) = {tl, cooyton 8t 1 + tji1 and tyg =0 for all A e A/R}

This formula implies that we may disregard any R such that some equiv-
alence class in A/R is a singleton. Indeed, if A’ € A/R equals {j}, then
ta =t;j—tj41 # 0 (because of the constraint on the set 7(R)). Disregarding
such relations, we can get the bound

#T(R) < ’S|2n—|A/R|+1'

This follows from the fact that there are |A/R| many constraints on the t;
coming from the condition ¢4 = 0, and one more coming from Z?il(tj —

tj+1) = 0. Thus, continuing from (3.17)),

E{tr(H3")} <) NMsPt Y0 T Fay(), (3.18)

k=1 REP(Ak) A’€A/R

where P(A, k) contains equivalence relations on A with k equivalence classes
and no singleton classes. We will now estimate F,(7) and then the final inner
sum and product.

We claim

—_ log— <1-mn,

_ )i i
Fo(r) < G(n) := {1 n—1)(log(n—1)—loglog =7 —1) (3.19)

e B log == >1—mn.

Sketch of proof. Recall the definition of F), in (3.16|). Now, note that rhe
Stirling numbers satisfy the recurrence relation

S(n+1,k)=8S(n,k—1)+kS(n, k).

Indeed, if a € A and R € P(A) has k equivalence classes, then either a not
equivalent to any other element of A (so R has k — 1 equivalence classes on
A\{a}) or A is equal to one of the k equivalence classes of A\{a}. Using
this recurrence and induction, one can prove the identity

o 7% pn—l1

Fo(r) =) (=1)""*g(k), where g(gc):m (3.20)
k=1

for 0 < 7 < 1, say. We leave this as an exercise (see also [4]). Now g is

increasing for 0 < z < z, and decreasing for x > z*, with
* n—1
T log(=T)”
The different ranges of 7 correspond to x* < 1 or £* > 1; in either case one
gets the appropriate bound by looking at the alternating series. O

x
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Continuing from (3.18)), we replace F|4/(7) with G(|A'[). We are then
faced with estimating

Qen)= Y I Gl

REP(Ak) A’€A/R

We claim
Q(n, k) < G(2)k(2n)"*, (3.21)

where we note that G(2) = 1=-. This will complete the proof as follows.

Noting NGO

Tnjg] 2 1

)

we can apply (3.21)) to see

E{tr(HOQn)} < ZNk‘S‘Qn—k+1G(2)k(4n)2n—k
k=1

< ISP An) Y (st
k=1

< n’S|2n+1 (4n)2n(]:;?‘g2‘) )n

< n|S|"HLN"G(2)"(4n)",

which is the desired estimate (recalling G(2) = 1= and 7 < l%re)
It remains to verify (3.21]), which we only sketch (and leave the details
as an exercise). The key is to establish the recursive estimate

Qn,k) < (n=1)[Q(n —1,k) + G(2)Q(n — 2,k — 1)]

for n > 3, k > 1, for then can be deduced by induction (in n > 3,
for fixed k). For the recursive estimate, fix any a € {1,...,n} and let
ReP({1,...,n}). Two situations are possible:

(i) [a]r contains only one other element (note that there are n — 1
choices). Removing [a]g from the product gives the (n—1)G(2)Q(n—2,k—1)
term.

(ii) [@] g has more than two elements, so that removing « from {1,...,n}
yields an equivalence class in P’ = P({1,...,n}\{a}, k). Now let R’ € P’
and write Aq,..., A for the corresponding classes. Then « is attached to

—-n

T Actually, we will miss by the factor e™™ if n is not too large. However, in the appli-
cation above, n was of size ~ log N, which may be expected to be large. Recovering this
factor in general requires an additional argument; see [4].
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one of these classes A4;, and we claim that G([a]r) < |A4i|G(|A4;]). Indeed,
this follows from G(n + 1) < nG(n) (a consequence of log convexity of G).
Thus the total contribution to Q(n, k) is bounded by

> Zk:|Ai| II G(lA").

R'eP i=1 Are{1,...n\{a}/R

As Y7y i |Ai| = n — 1, the contribution becomes (n — 1)Q(n — 1,k). This
completes the proof. O

3.5 Exercises
Ezercise 3.5.1. Prove that

FUIN] = N7 My (3.22)
Hint. Use the Poisson summation formula to treat the case N = 1. Then

compute the general case by scaling.

FEzercise 3.5.2. Derive the formula appearing in Theorem [3.1.1] by following
the scheme outlined in Remark [3.1.2

Exercise 3.5.3. Prove the identities ([3.2)).

Ezercise 3.5.4. Suppose n > b > a > 0 are integers with n—b—a > 0. Show
that

br>(1-2)
(3)
(Hint: You can use induction on a.)

Ezercise 3.5.5. Show that a matrix I — A is invertible if | A|| < 3, where |||
denotes operator norm.

Ezercise 3.5.6. Let H € CN*N and let H* denote the adjoint (i.e. conjugate
transpose) of H. Let ||H|| denote the operator norm of H. Show that | H||
equals the largest (in magnitude) eigenvalue of H.

Show also that
[H| = [|H*[| = /I HH*|.

and that

IH| < |H|F := /tr(HH?).
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Ezercise 3.5.7. Prove exercise Lemma by completing the following
argument. The details are found in Section IV B of [4].

One can pass from A to A/R to assume that R is simply equality =.
After relabeling A as A = {1,...,n}, the formula reduces to

Yoo Sl =) yWECTT A= Yo f ) (3:23)

w1,...wn distinct R A’€eA/R weQ< (R

where the sum is over all equivalence relations R on A. This formula may
be proved by induction. The base case n = 1 follows because both sides
equal > f(w). Suppose the formula has been proven up to level n —1. Then
rewrite the left-hand side as

) [Z fw'swn) = 2 f(w’,wj)], (3.24)

W1 ,eeywn—1 distinct = wn

and apply the inductive hypothesis to get a new expression for the left-hand
side. Here ' = (w1, ...,wp—1).

Now work on the right-hand side of the formula above that will eventually
lead to the same formula just derived. Note that any equivalence class R on
A can be restricted to an equivalence class Ry on Ag = {1,...,n—1}. Then
R can be formed from Ry either by adding {n} as a new equivalence class
(in which case we write R = {Ro, {n}}), or by having nRj for some j € Ay,
in which case we write R = {Ro, {n}}/(n = j). In the latter case, there may
be multiple ways to recover R; in particular there are |[j]g,| ways, where
[-] denotes equivalence class. It follows that for any function F' defined on
equivalence classes R of A, we can write

S F(R) ZF{Ro,{n}HZZHJ]R‘ ({Ro. {n}/(n = §)}).
R

Ro j=1

Apply this identity to the right-hand side of (3.23)). This produces two terms
that can be shown to match the two terms arising from (3.24]). To make the
second terms match, one must utilize the identity

Tlrg] 11 (1A =1 = I ga-

A'€A/({Ro,{n}}/(n=j)) A'€{1,..,n—1}/Ro

Using the above as a guide, complete the proof.

Ezercise 3.5.8. Prove (3.20)).
Ezercise 3.5.9. Prove equation (3.15)).



Chapter 4

Abstract Fourier analysis

In this section, we will take a tour through some topics in abstract harmonic
analysis. Our goal will not be to present a thorough theoretical presentation,
but rather to show how many of the preceding topics can be understood as
special cases of a more general theory. In particular, many preliminary
results will simply be quoted as needed; the interested reader is encouraged
to pick up [9] to find complete details. We will also explore related topics
in some new settings (e.g. in the setting of compact Lie groups).

4.1 Preliminaries

Definition 4.1.1. A topological group is a group G with a topology
such that the group operation and inverse operation are continuous (from
G x G — G and from G — G, respectively).

We will restrict our attention to groups whose topology is Hausdorff
(i.e. around any two distinct points one can find disjoint neighborhoods).
We will typically consider either compact or locally compact groups. Here
locally compact means that every point has a compact neighborhood.

Definition 4.1.2. A left Haar measure on G is a nonzero Radon measure
i (i.e. a Borel measure, finite on compact sets, outer regular on Borel sets,
and inner regular on open sets) on G that satisfies pu(zE) = p(E) for all
Borel sets £ C G and every x € G. A right Haar measure instead
satisfies u(Ex) = p(E).

Ezample 4.1.1. If G = R\{0} (with multiplication), then % is a Haar mea-
sure on G.

74
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Ezample 4.1.2. If G = GL(n,R) (the group of invertible nxn matrices), then
|det T'|~™dT is a left and right Haar measure on G (where dT is Lebesgue
measure on the space of n X n matrices).

Ezample 4.1.3. If G is the ax+0b group of all affine transformations x — ax+b
on R (with @ > 0 and b € R), then a=2dadb is a left Haar measure and
a~'dadb is a right Haar measure on G. This measure will appear in the
setting of wavelets.

The basic facts we need about Haar measure are the following:

e Every locally compact group possesses a left Haar measure ([9, Theo-
rem 2.10]). Left Haar measure is unique up to a multiplicative constant
([9 Theorem 2.220]).

e If ) is a left Haar measure and x € E, then A\ (F) := A(Ez) is again a
left Haar measure. Thus there exists A(x) so that A, = A(z)A. This
defines a function (the modular function) A : G — (0, 00).

We need some facts about Banach algebras as well.

Definition 4.1.3. A Banach algebra refers to a Banach space with a
product * such that ||z xy|| < ||| |ly|]|. An involution is a map x +— x* such
that

(x+y) =2 +y*, (o) =" (zp)* =y*2*, (@) ==z

A Banach algebra equipped with an involution is called a *-algebra. An
algebra is called unital if it contains a unit element. If A and B are *-
algebras, a *-homomorphism from A to B is a homomorphism ¢ such

that ¢(z*) = ¢(x)*.

Ezample 4.1.4. If H is a Hilbert space, then L(H) (the space of bounded
operators on H) is a unital Banach algebra using the operator norm and
composition of operators. The involution is given by 7' — T* (the adjoint
of T). In fact, this makes L(H) a C* algebra, which means ||z*z| = ||z|?
for all z.

We need a few facts about Banach algebras as well.
e The spectrum of a commutative Banach algebra is the set of all

nonzero homomorphisms from the algebra to C. For unital Banach
algebras, the spectrum is compact (in the weak star topology).
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e If G is a locally compact group, then the space L' (G) forms a Banach
x algebra under the product given by convolution, defined by

fgla) = / F()gyz) dy,

where dy denotes Haar measure, and involution given by f*(z) =
A(xz7Y) f(z~1), where A is the modular function.

Fourier analysis on groups is closely connected to the topic of repre-
sentation theory.
We first define the notion of *-representation.

Definition 4.1.4. A xrepresentation of an algebra A on a Hilbert space H
is a *-homomorphism ¢ from A to L(H) (the space of bounded operators
on H). We call ¢ nondegenerate if there is no nonzero v € H such that
¢(x)v =0 for all x € A.

Next, we have the notion of a unitary representation of a group.

Definition 4.1.5. A unitary representation of a group G is a homomor-
phism 7 from G into the group U(H,) of unitary operators on some nonzero
Hilbert space H, that is continuous with respect to the strong operator
topology. The dimension of the representation space H is called the degree
of .

The definition above means 7(zy) = 7(z)7(y) with 7(z7!) = 7n(z)~! =
m(x)*, with

x = 7m(x)u

continuous from G to H, for any u € H.

If 1 and 7y are unitary representations of the same group G, we define
an intertwining operator for m; and 7 to a bounded linear map T :
Hr — Hpy, such that Tm(z) = ma(x)T for all z € G. The set of such
operators is denoted by C(mq,m2). We call 71 and 79 unitarily equivalent
if C'(my,m2) contains a unitary operator U, so that mo(z) = Umy(z)U L.

Group representations essentially allow group elements to be represented
by matrices, with the group operation replaced by matrix multiplication.
This has applications in algebraic problems, as it can reduce questions about
group theory to problems in linear algebra. Group representations are also
widely found in modern physics, where the groups in question are typically
symmetry groups for some physical model.
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The two notions of representation above are related, in the sense that any
unitary representation m of G corresponds to a *-representation of Ll(G),
which we may still denote by 7. In particular, for f € L'(G) we define the
bounded operator 7(f) € L(H) by

ﬂ(f):/Gf(.fC)ﬂ'(CU) dz,

where dr denotes Haar measure. We interpret this operator in the weak
sense, namely

(m(flu,v)u, = /Gf(ZL‘)<7T($)U,U>HW dz.

A closed subspace M of H; is called invariant for the representation m
if ()M C M for all x € G. If m admits a nontrivial invariant subspace,
then 7 is called reducible. Otherwise, 7 is irreducible.

If G is an abelian group (i.e. xy = yz for all z,y € G), then every
irreducible representation of G is one-dimensional (see [9, Corollary 3.6]).
This still leaves the question of the existence of such representations (besides
the trivial representation my(x) = Id). For this, we quote the following
theorem, known as the Gelfand-Raikov theorem (see [9, Theorem 3.34]).

Theorem 4.1.6 (Gelfand-Raikov). Let G be a locally compact group. Then
for any distinct x,y € G, there exists an irreducible representation m such

that w(x) # w(y).

4.2 Locally compact abelian groups

Let G be a locally compact abelian group and suppose 7 is an irreducible
representation of G. In particular, 7 is one-dimensional and hence we may
take H, = C. In this case we may write

m(x)z = (x,§)z, z¢€C,

where z — (x,£) denotes a continuous homomorphism from G into T (the
circle group). We call £ a character of GG, and denote the set of all characters
by G, which we call the dual group of G. Indeed, G forms an abelian group.
The group operation is given by

<$7£1§2> = <$,§1><{B,§2> (:L' € Gvfj S é)?
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with

(2,671 = (271,6) = (2,¢).

We give G the weak* topology (inherited as a subset of L°(G)). It turns
out (cf. [9, Theorem 3.31]) that this coincides with the topology of ‘compact
convergence’ on G, under which the group operations are continuous. This
also guarantees (via [0, Proposition 1.10(c)] and Alaoglu’s theorem) that G
is locally compact.

In fact, G can be identified with the spectrum of L'(G). Indeed, ¢ gives
a nondegenerate *-representation of L!(G) on C via

§(f) = /G @ &) f(z) de. (4.1)

Proposition 4.2.1. If G is compact and its Haar measure is normalized so
that |G| = 1, then G is an orthonormal set in L*(G).

Proof. Let £ € G. Then |£]? = 1. As |G| = 1, this yields

1€l 2y = 1.

Now, if ¢ # 7, then there exists g € G so that (xg,&n~ 1) # 1. Writing dx
for Haar measure, we then have

/ (o, &) () d = / (6071 da
= <wo,£n1>/<$51$,£nl>daz
— (0,07} [ (win )

where we have used the translation invariance of Haar measure. This implies

[t =o
as desired. 0

We will next prove the following result.

Proposition 4.2.2. If G is discrete then G is compact. If G is compact
then G is discrete.
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Proof. If G is discrete, then L'(G) has a unit element. Indeed, we take
§(1) = 1 and 6§ = 0 otherwise. Thus the spectrum of L'(G) (which is
identified with @) is compact.

Next, suppose G is compact. Using Proposition we observe that

fe-{o 0

{feL™@):|[f|> 5 nG={1}.

We claim that this implies that {1} is open in G. Indeed, because G is
compact, we have that the constant function 1 is in L'(G) (so that [ f may
be viewed as 1(f) through the identification of (L!)* with L°). This in turn
implies that every singleton set in G is open, i.e. G is discrete. O

In particular,

The next result puts the Fourier transform, Fourier series, and the dis-
crete Fourier transform under the same umbrella.

Theorem 4.2.3. We have the following:
o R =R with (z,¢) = 2™t
o T =7 with (o, n) = ™.
o 7 =T with (n,o) = o™.

o If Zy. is the additive group of integers modulo k, then Z, = Zi, with
<m’n> — 627rimn/k'

Remark 4.2.4. If we write a € T as a = ¢*™® for some z € [—1,1] then
we recover the familiar pairing (o, n) = e?7n,

Proof. If ¢ € R, then »(0) = 1 (these represent the identity elements in R
and T, respectively). Thus there exists a > 0 so that

A ::/0 6(t) dt # 0.

Now (as ¢ is a homomorphism)

a a+x
Ag(z) = /O oo+ tyde= [ ot)at
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which implies (by the fundamental theorem of calculus) that ¢ is differen-
tiable, with

¢ (x) = A_l[gb(a +z)—¢(z)] = cp(x), c:= A_l[gzb(a) —1].

Thus ¢(t) = e; however, since |¢| = 1 we may write ¢ = 2mi¢ for some
el

Next, since T can be identified with R/Z (via the identification of x €
R/7Z with o = €*™), the characters of T are the characters of R that are
trivial on Z, so the result follows from above.

Now if ¢ € Z then a := ¢(1) € T and ¢(n) = [¢(1)]* = o™ (by the
homomorphism property).

Finally, the characters of Zj are the characters of Z that are trivial on
kZ. Thus they are of the form ¢(n) = o™ where a is a k™ root of unity. [

One can also check that if G, . .., G, are locally compact Abelian groups,
then
(G1 X+ xGp) =G X -+ X Gy

rFhis allows us to extgnd the previous result to see R = R"™, T = 7",
7™ = T™, and finally G = G for any finite Abelian group G.
To define the Fourier transform on G, we make use of (4.1)). In par-

A~

ticular, the Fourier transform is the map from L!(G) to C(G) given by

Ff(&)

f(&) = /G<x,§>f(x) dz.

Even in this generality, the Fourier transform enjoys many of the familiar
properties that we are used to. For example, it defines a norm-decreasing
+-homomorphism from L'(G) to Co(G). Tt can also be extended to complex
Radon measures on G via

AE) = /G @ &) du(x).

This defines a bounded continuous function on G. The reverse works as
well: if u is a complex Radon measure on G, then

bu(z) = /G (, €)dpu(€)

defines a bounded continuous function on G; furthermore, the mapping p —
¢, is linear and injective. A fundamental result in the theory (known as
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Bochner’s theorem, cf. [9, Theorem 4.19]) states that if ¢ is a continuous
function of positive type on G (i.e. fG[f* * f]l¢ > 0 for all f € LY(Q)), then
there exists a unique positive measure p on G such that O =y

One also has suitable notions of Fourier inversion formulas in this
generality. For example, if f = ¢, for some complex Radon measure p on
G and additionally f € LY(G), then f € LY(G) and

f(2) = / () F(€) d

provided Haar measure d¢ on G is suitably normalized relative to the given

Haar measure on G. We can also write dus(&) = f(£) d€. One calls d¢ the
dual measure of the given Haar measure on G.

Ezample 4.2.1. If we identify R with R via (z,&) = €2™€*_ then Lebesgue
measure is its own dual. Indeed, the inversion formula holds with both dx
and d€ given by Lebesgue measure. If we instead identify R with R with
(z,€) = €*, then the dual of dz is 5 d¢. If we use the Haar measure

\/% dx, then the measure is again its own dual.

We also have the following result related to Proposition 4.2.2

Proposition 4.2.5. If G is compact and Haar measure is chosen so that
|G| = 1, then the dual measure on G is counting measure. If G is discrete
and Haar measure is taken to be counting measure, then the dual measure

on G satisfies |G| = 1.

Proof. Suppose G is compact. Let g = 1. Then (using Proposition 4.2.1))
we have g = xqy. It follows that

g(z) = (#,6)§(¢).

tedd

where we have used that (z,1) = 1. This shows that the dual measure on
G must be counting measure.

On the other hand, if G is discrete then we let g = x(1j. Then g =1
and

o(z) = /G<sc,§> de,

provided d¢ is chosen so that ]G‘ | = 1. Here we are using Proposition m
again, together with the fact that £ — (z,&) is a character on G for each
z €. O]
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Ezample 4.2.2. The groups T and Z are dual. The dual measures can be
taken to be normalized Lebesgue measure % and counting measure. Then
Fourier inversion becomes
27
foy=[ fOe ™, f0)=> fn)e.

0 nez

Ezxample 4.2.3. If G = Zj, then the dual of counting measure is counting
measure divided by k (so that |Zx| = 1). Fourier inversion reads

k
Z f(m)e%rimn/k:.

m=0

=

k
fm) =>" fnye=?mmn/k - f(n) =
n=0

The general form of the Plancherel theorem is given by the following (see
[9, Theorem 4.26]).

Theorem 4.2.6 (Plancherel). The Fourier transform on Ll(CI’) N L?(G)
extends uniquely to a unitary isomorphism from L%*(G) to L*(G). Conse-
quently, if G is compact and |G| = 1, then G is an orthonormal basis for
L*(G).

We turn to our final main result concerning Fourier analysis on locally
compact Abelian groups, namely, the Pontrjagin duality theorem. Recall
that by definition, elements of G are characters on G. We can also view
elements of G as characters on G. Indeed, for x € G we can define a
character ®(x) on G via

(€, @(z)) = (x,8).

It follows that ® defines a group homomorphism from G to G. The Pontr-
jagin duality theorem (see [9, Theorem 4.32]) states the following:

Theorem 4.2.7 (Pontrjagin duality). If G is a locally compact Abelian
group, then ® is an isomorphism of topological groups.

According to this theorem, we may freely write (x,&) or (£, z) for the
pairing between G and G.
One consequence of this theorem is the other form of Fourier inversion:

if f e LY(G) and f € L(G), then

f(a) = /G (2. €) F(€) de

almost everywhere. We also have the dual form of Proposition that
is, if G is compact then G is discrete, and if GG is discrete then G is compact.
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Fourier analysis in the setting of groups can be applied to express an
arbitrary unitary representation of a locally compact Abelian group in terms
of irreducible representations (i.e. characters). We close this section by
stating the following result (see [9, Theorem 4.45]).

Theorem 4.2.8. Suppose w is a unitary representation of a locally com-
pact Abelian group G. There exists a unique reqular H,-projection-valued
measure P on G so that

ﬂ(x):/é@,f)dP(f) for ze€G,
w(f)= [ &DiP© for feL'O)
G
where £(f) = [{e,€) () da.

4.3 Compact groups

We next discuss some of the basic results of representation theory and
Fourier analysis for compact (but not necessarily Abelian) groups. We will
focus on introducing the relevant terms and stating the necessary results;
we will then work through some specific examples.

We begin with the following (see [9, Theorem 5.2]).

Theorem 4.3.1. If G is compact, then any irreducible representation of G
s finite-dimensional. Every unitary representation of G is a direct sum of
wrreducible representations.

When G is an abelian group, we saw that G is a set of continuous func-
tions on G. The general definition of G is the set of unitary equivalence
classes of irreducible representations of G. In the abelian case, we consid-
ered characters of G. In the general case the corresponding set of functions
is the set of matrix elements of the irreducible representations of G.

Definition 4.3.2. Suppose 7 is a unitary representation of G. The functions
(bu,v(x) = <7T($>’U,,U>H7r
for u,v € H, are called the matrix elements of 7.

Note that if u, v belong to an orthonormal basis {e;}, then ¢, ,(x) is one
of the entries of the matrix for 7 (z) in that basis, cf.

mij(z) = (m(z)ej, ).
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We denote the span of the matrix elements of © by &;. This defines a
subspace of C'(G) and depends only on the unitary equivalence class of .

The matrix elements of irreducible representions can be used to build an
orthonormal basis for L?(G). This relies on two main results.

First, we have the Schur orthogonality relations (see [9, Theorem 5.8]):

Theorem 4.3.3. Let w, 7 be irreducible unitary representations of G. Con-
sider Ex, Ex as subspaces of L*(G).

o If [n] # [n'] then Ex L &
e If {e;} is an orthonormal basis for Hy and m;; is defined as above,
then
{Vdim Hym; 4,5 =1,...,dim Hy}
is an orthonormal basis for E.
The next result we need is the following theorem (see [9, Theorem 5.11]).

Theorem 4.3.4. Let £ denote the linear span of

U &

[r]ed
Then & is dense in C(G) in the uniform norm and in LP(G) for all p < co.

We now state the main result (called the Peter—Weyl theorem [9, The-
orem 5.12]). In the following, given an equivalence class [r] we assume we
have chosen one fixed representative .

Theorem 4.3.5 (Peter—Weyl theorem). Let G be a compact group. Then
LG = & &,
[W]EG
and if
mij (@) = (m(2)e;, €3),
then the set

{V/dim Hymyj 24,5 = 1,...dim Hy, [7] € G}

is an orthonormal basis for L*(G).
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This is the starting point for Fourier analysis on compact groups. In
particular, for f € L?(G) we get the representation

dim H,

f= Z Z cr gy c;}:dimHﬂ/Gf(a:)Trij(x) dzx.

[rleG ©i=1

As stated, this requires that we choose an orthonormal basis for each
H. Alternately, we can define the Fourier transform of f € L(G) at 7
to be the operator f : H; — H, given by

) = / F@)m(@) do = / F@)r(@)" da

In particular, given an orthonormal basis for H,, then f (m) is represented
by the matrix

()i = [ Ha (@) do = g
where the coefficients are as above. In this case, we get
Z mij(z) = dim Hy Zf m)jimij(z) = dim Hy tr [f(ﬂ')Tr(ﬂ:)]
,J
Thus we arrive at the Fourier inversion formula
= Z dim H, tr [f(w)w(x)],
[r]eG

where convergence should be understood in the L? sense. The Parseval
formula now reads

1£ 1226y = S dim Hy [ ()" f ().

[7] eG

We turn to one more formulation. If 7 is a finite-dimensional unitary
representation of GG, we define the character x, of m by the function

Xr(z) = trm(x).

In fact, this depends only on the equivalence class of w. A direct computation
shows

tr[f(m)m(z)] = [ f(y) trlr(y ) m(@)] dy = [ fy) trrly ) dy = f * xa(2),
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so that the Fourier inversion formula may be written

f=> dimHy f*xx.

[7] eG

In particular, dim H f * xr is the orthogonal projection of f onto &;.

We introduce one final notion before working through some examples.
A function f on G is called central if f is constant on conjugacy classes,
ie. f(yxy™') = f(x) for all z,y € G. For example, the character of any
finite-dimensional representation is central, as

tr[m(z)m(y)] = tr[r (y)m(z)].
We denote the set of central functions with the prefix Z, e.g. ZC(G) and
ZILP(G). The linear span of {x, : [r] € G} is dense in ZC(G) as well as
ZLP(G) (see [9, Proposition 5.25]). One has that LP(G) and C(G) form
Banach algebras under convolution, with ZLP(G) and ZC(G) their centers.
Our final result (appearing as [9, Proposition 5.23]), states:

Proposition 4.3.6. We have that

{Xr : [r] € G}

forms an orthonormal basis for ZL*(G).

4.4 Examples

We work through the details of some special examples, namely SU(2) and
SO(n) for n € {3,4}.

Ezample 4.4.1 (SU(2)). Let U(n) denote the group of unitary transforma-
tions of C™, that is, the set of n x n matrices T satisfying T*T = I. We let
SU(n) be the subgroup consisting of 7' € U(n) with detT" = 1. Note that
T € U(n) if and only if TT* = I, so that the rows of T are an orthonormal
set.

When n = 2, we can write

T::(i Z)eU(2)

if and only if |a* + [b]* = |¢[* + [d|* = 1 and ac + bd = 0. In particular,
(a,b) is a unit vector and (c,d) = € (—b,a) for some 6 € R. It follows that
det A =€ and so T € SU(2) if and only if ¢ = 1. Writing

a b
Ua,b—<_5 a)a
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we have

SU2) = {Uup:a,b€C, |a]* + b]* = 1}.

The correspondence U, with (a,b) = (1,0)U, identifies SU(2) with a
subset of the unit sphere S® C C? (where the identity element is identified
with (1,0).

Three one-parameter subgroups of SU(2) are of particular interest:

ro - (5 2 ).
G(¢>)=< cos$  sing >’

—sing coso
cosy isiny
H) = .
(%) ( isinty cos )
These are three mutually orthogonal great circles in the sphere that intersect
at +1d.

Proposition 4.4.1. Every T € SU(2) is conjugate to precisely one matrix
F(0) as above, with 0 <60 < .

Proof. Unitary matrices are normal, so by the spectral theorem there exists
V € U(2) with

VTV~ = diag(a, §).
For T € SU(2) we have B = @ = e~ for some § € [—7,7]. In particular,

VTV~! = F(0). By replacing V with [det V]_%V, we may assume that
V € SU(2) as well. Furthermore, using

),

N[ =

we may reduce to 6 € [0,7]. To conclude, note that if 61,02 € [0, 7] then
F(01) and F(03) have different eigenvalues (and hence are not conjugate)
unless 61 = 65. O

This implies the following corollary.

Corollary 4.4.2. Let g be a continuous function on SU(2) and set

Then g — ¢° is an isomorphism from the algebra of continuous central

functions on SU(2) to C([0,]).
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We now describe a family of unitary representations of SU(2). We let P
denote the space of all polynomials

P(z,w) = Z cipluwP

in two complex variables, and P,, C P be the space of homogeneous poly-
nomials of degree m, i.e.

P = {Z Cjzjwmfj ¢ € (C}.
=0

Now let o denote normalized surface measure on S3. Then we can view P
as a subset of L?(c) with

(P.Q) = /S Qo

We will show that the monomials z/w" are orthogonal in P.

To this end, given (z,w) € C2, we introduce polar coordinates

(zyw)=Z=71Z", r=|Z=+|z2+ w2, Z €S8

Denote Lebesgue measure on C? by d*Z and Lebesgue measure on C by d?z
or d’w. Then
d*Z = d*2d*w = cr® dr do(2'),

where ¢ = 272 is the Euclidean surface measure of S3 (cf. the following
lemma).

Lemma 4.4.3. Suppose f: C? — C and f(aZ) = a™f(Z) for a > 0. Then

f(Z')do(Z") = (2)e PPz,

1 f
m
53 w20 (5 +2) c2

where T'(+) is the Gamma function.

Proof. We compute
/ F(Z2)e 2Ptz = c/ FrzZ)e ¥ do(Z') dr
Cc2 0 S3
=c / rm e [ $(ZY do(Z2') dr
0 S3

= ST( +2) /53 f(Z"do(Z").
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To complete the proof, take f = 1, so that
2 2 4
:/ e 1M gtz = [/ et dt] =72
C2 R

We now can prove the following.

N0

Proposition 4.4.4. Let p,q,r,s denote nonnegative integers. Then

0 )
/zpiqwrwsdo’(z,w) = { Q7P or sFET

19!
% g=p and s=r.

Consequently, the spaces Py, are mutually orthogonal in L?(c), and

{ (Al Goym=i . () <j< m}

J{(m—j)!
forms an orthonormal basis for Py,.

Proof. By the previous lemma, the integral equals

1

/szqe—|z|2 dz,z/1u7"u_156_|w|2 d>w.
2T (p+qg+r+s)+2)

These integrals can be computed using polar coordinates, viz.

) e’} 27 ) 5
/zpzqe|z| dQZ:/ / el (P=)0pptatl =1 g gp
o Jo

_Jo p#4q
2r-5T(p+1) p=gq.

This implies the result.

89

O

We can now describe a representation m of SU(2) on P and P,,. Given

Uap, we will define 7(U, ) : P — P via
[T(Uap)Pl(z,w) = P(U;bl(z, w)) = P(az — bw, bz + aw),

(4.2)

where we use the natural action of SU(2) on C?. Note that P,, is invariant
under m. We denote the subrepresentation of © on P, by m,. Then each
Tm 1S a unitary representation of SU(2) on P,, (with respect to the inner

product in L?(0)).

Our next goal is to show that each m,, is irreducible. We begin with a

lemma.
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Lemma 4.4.5. If M is a m-invariant subspace of Pp, and P € M, then

zg—ieM and w%—fEM.

Proof. Let G(¢) be as defined above. By assumption, for any ¢ # 0, we
have

3[m(G(¢))P - Ple M.

As ¢ — 0, the coefficients of this polynomial approach those of
P = &7(G(6))Ploco.

As P,, is finite dimensional, we have that M is closed in P,,. Thus, P € M.
Now we compute

P = % [P(z cos ¢ — wsin ¢, zsin ¢ + w cos )] |4=0
_ 0P oP
= Z% — wg
A similar argument using H (¢) yields
298+ wiE = 1L (H(¢))Ply=o € M.
Adding and subtracting yields the result. O

Theorem 4.4.6. For m > 0, each 7, is irreducible.

Proof. Suppose M is an invariant subspace of P,,. We need to show M =
Prm.-
Let 0 # P € M. Write

m
P(z,w) = Z c;jlw™™d
5=0

and let J denote the largest J such that ¢; # 0. Then we have
(w%)JP(z,w) =cyJlw™.

By the previous lemma, this implies w” € M. Now, by applying z% (and
the lemma) successively, we can deduce

awm e M, Z2w™ 2 e M, andfinally 2™ € M.

It follows that M = P,,, as desired. ]
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Our next goal is to show that the m,,’s give a complete list of the irre-
ducible representations of SU(2):

Theorem 4.4.7. [SU(2)]" = {[mm] : m > 0}.

Proof. First note that none of the m,;,’s are equivalent representations, be-
cause they all have different dimensions (and different characters, as we will
see).

Now, let x,, be the character of m,,, and define

Xm(0) = X (F(0))

as in the corollary above. Note that the orthogonal basis vectors z/w™ 7 for
P, are eigenvectors for m,, F'(#); indeed, using with a = € and b =0,
we get

T (F(0))(Zw™ 7)) = ! 2I=m)0 5iyym=7

Thus

X0 (0) = eiimmo — sin(lnt1)6) (4.3)
=0
(see Exercise [4.5.3). Tt follows that x3(0) = 1, x{(8) = 2cosf, and more
generally
X2 (0) — X%, _5(0) =2cosmf for m > 2. (4.4)

(see Exercise . Thus the span of {x2} equals the span of {cosm#}.
The latter is uniformly dense in C([0, 7]); thus, by Corollary the span
of {x%} is uniformly dense in the space of continuous central functions on
SU(2).

This means that the only function orthogonal to all x,, is the zero func-
tion. By Proposition this shows that x,, must include all possible
irreducible characters. This completes the proof. ]

To do ‘Fourier analysis’ on SU(2) (i.e. to write down a decomposition
of L?(SU(2)), we now need to compute the matrix elements of the repre-
sentations 7, relative to the orthonormal bases given in Proposition [4.4.4]

We set
ej(z, w) =4/ j%:j]).;!zjwm*].

In what follows, we reparametrize SU(2) by replacing b with b. So we set

mm(a,b) = mn(Uyp), 7k (a,b) = (mpn(a, b)e, e;).
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Now, by definition of the representations, we have

R (m—y (82 — bw)* (bz + aw)™ ¥ = [mpn(a, b)ex) (2, w)

:ijkab i(z,w)
—Z\/ abz] m=j,

and w = 1, then the sum becomes a Fourier series and

If we set z = 2™t

73¥(a,b) are computed like Fourier coefficients:

ﬂ_jk a b / / — 27rzt 7 b 27rz't_|_a)m—k6—27rijt dt.

When k£ = 0, one can compute

730 (a,b) = e;j(b,a) (4.5)

\/W
(see Exercise . In particular {mjy? : 0 < 35 < m} span Pp,. Here
vm + 1 =dim Hy,, is needed to normalize the matrix elements.

Let us also discuss the span of {W%f : 0 < j < m}. The identities
above show that 72+ (a,b) is a polynomial in the variables (a, b, a,b) that is
homogeneous of degree m — k in (a,b) and of degree k in (a,b). That is, it
has bidegree (m — k, k).

Furthermore, as a function on C2, each 7}, is harmonic:

4
2. jk . .
E 68;;5”:0, a=ux1+irey, b=ux3+iry
n

(check!).
We conclude this example with the following: We identify SU(2) with
the unit sphere in C3 by identifying U, with (a,b). Then the Peter—Weyl

decomposition
o0
- @e,
m=0

agrees with the decomposition of functions on the sphere into ‘spherical
harmonics’. We then have the further decomposition

7Tm - @ Hp '

p+g=m
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where H,, , is the span of ngq for 0 < j < p+ q. This is a grouping of the
spherical harmonics of degree m according to their bidegree.
Ezample 4.4.2 (SO(3)). We write SO(n) for the group of rotations on R"™.
To describe these groups (and their connections to SU(2)) we will make use
of the quaternions, denoted by H.

As a real vector space, we may identify H with R x R3, with elements
denoted by (a,x). Multiplication in H is given by

(a,m)(b,y) = (ab—my,bx+ay+x Xy)>

where - denotes dot product and x denotes cross product. One can verify
that this product is associative and that |£n| = |£]|n| (where &, € R* and
| - | denotes euclidean length in R*).

The subspace R x {0} is the center of H. We identify this with R and
view it as the ‘real axis’, and we identify {0} x R3 with R3. Then instead
of writing (a, z), we may write a + x. Denoting the standard basis of R by
1,7, k, we then have

(a,2) =a+x=a+ x1i+ x2j + x3k.
The multiplication law is determined by giving the products of these vectors:
==k =-1, ij=—ji=k, jk=—-kj=1, ki=—ik=]j.
The conjugate of £ = (a,z) is £ = (a, —x). Note that
EE=EE=a’ + |z = €.

Defining
U(H) ={¢ € H: [¢] =1},

we find that U(H) forms a group. For £ € U(H), the map
0 Eng!

is an isometric linear map from H to H that leaves the center R (and hence
the subspace R?) invariant. The restriction of this map to R3 is thus an
element of SO(3) denoted by x(£), i.e.

R(€)x = gxg

This belongs to SO(3) (and not just O(3)) because « is a continuous map
on the connected set U (H).
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Theorem 4.4.8. The map k is a 2-to-1 homomorphism from U(H) onto
SO(3). In particular,
SO(3) 2 U(H)/{£1}.

Proof. Let £ € U(H). Write
£ = cos O+ [sinf]u,

where 6 € [0, 7] and u € R3 is a unit vector. The angle § is unique, as is u
(except when sin# = 0, which corresponds to £ = £1 and x(£1) = I). In
particular, we may assume 6 € (0, 7).

Now let v | u be another unit vector in R? and define w = v x u. Then
{u,v,w} forms an orthonormal basis for R? satisfying

U= —uv = w, WU = —uw = 0.
An explicit computation yields
E(au4bv+cw)é = au+ (bcos 20 — csin 20)v + (¢ cos 20+ bsin 20)w, (4.6)

so that k() is a rotation of angle 26 about the u-axis.

Let us now show that every rotation of R? is of this form. To see this,
note that if 7 € SO(3) then the eigenvalues of T" have absolute value 1,
have product equal to 1, and the non-real eigenvalues come in conjugate
pairs. Thus (ignoring the case that T' = I) we have that 1 is an eigenvalue
of multiplicity one, and T is then a rotation about the u-axis (where u is
the corresponding unit eigenvector). O

Let us now connect H with SU(2). We write
a+bi+cj+dk=(a+bi)+ (c+di)j
and observe that the algebra structure on H restricted to elements of the
form a 4 bi coincides with that of C, with
jla+bi) = (a—bi)j.

In particular, we can identify H with C2, where multiplication corresponds
to
(= + wj)(u+ vj) = (20— wD) + (20 + wA)j,

with z,w,u,v € C. This identity shows that we may define an isomorphism
by identifying z + wj with the complex matrices

( f?):vz,w.
—w VA
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In particular, this gives an identification of U(H) with SU(2). We therefore
have the following:

Corollary 4.4.9. We have
SO(3) =2 SU(2)/{£I}.

This shows that the representations of SO(3) are given by representa-
tions of SU(2) that are trivial on +1. Since the irreducible representation 7,
of SU(2) on Py, satisfies mp,(—I) = (—1)"1, one can deduce the following:

Corollary 4.4.10. We have
[SOB) =A{lpk] : k=0,1,2,...},
where
pr(A(U)) = mop (U).
Here Ad(U)A := UAU 1.

Ezample 4.4.3 (SO(4)). We define L, R : SU(2) — L(U(H)) via

L(€)¢=¢ and R(§)¢ =,

where &, ¢ € U(H) = SU(2). Because the Euclidean norm on H is multiplica-
tive, it follows that the images of SU(2) under L, R are closed subgroups of
SO(4) if we identify H with R*.

These subgroups commute (this is the associative law) and intersect only
at +1. To see this, suppose L(§) = R(n). Then

E=LE1=Rm1=n" sothat L(¢)=R(").

Thus ¢ belongs to the center of H, i.e. R. Then £ = +1 and n = ¢~ = +1.
Next, we have the following.

Theorem 4.4.11. If T € SO(4), then there exist £,n € SU(2) (unique up to
a common factor of £1) such that T = L(§)R(n). Thus

SO(4) = [SU(2) x SU(2)]/{=(1,1)}.

Proof. Let T € SO(4) and ¢ = T(1) (where we view 1 = (1,0) € R x R3 as
above). Write S = L(¢)7!'T, so that S € SO(4) and S(1) = 1. In particular,
S leaves the real axis pointwise fixed, and hence can be viewed as a rotation
of the orthogonal subspace R3. By the preceding example, we saw that S
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must be given by conjugation by some n € U(H). In the present notation,
that means

S = L(n)R(n)-
Thus T = L(¢)S = L(§)R(n), where £ := (n. Uniqueness and the fact that
(&,n) — L(&§)R(n) is a homomorphism follow from the remarks above. [

Using this result, one can describe the irreducible representations of
SO(4) in terms of those of SU(2) x SU(2), which may ultimately be de-
scribed in terms of the irreducible representations of SU(2). Without delv-
ing into the theory, one defines the representation my,,, of SU(2) x SU(2) on
P ® Py, via

Wmn(& n) = mm(§) @ mn(n)

(where ® denotes tensor product). The conclusion is the following:

Corollary 4.4.12. We have
[SOD)]" =A{[pmn] : m,n >0, m=n mod 2},

where

The restriction that m,n have the same parity comes from the fact that
Tm(—1) = (=1)™I.

4.5 Exercises

Exercise 4.5.1. Recover the theory of Fourier series using the Peter—Weyl
theorem and the discussion thereafter.

Ezxercise 4.5.2. Verify that the maps defined in (4.2)) are unitary represen-
tations of SU(2).

Ezercise 4.5.3. Compute the sum in .
Ezercise 4.5.4. Prove the identity .
Ezercise 4.5.5. Prove .

Ezercise 4.5.6. Verify .



Chapter 5

Wavelet transforms

In this section we give an introduction to wavelet transforms, which are
mathematical tools that have a wide range of applications within mathe-
matics as well as in physics, engineering, and so on. Our primary reference
is [7], which covers much more ground than we can hope to cover here.

5.1 Continuous wavelet transforms

Given 9 : R — C, we define a family of ‘wavelets’ by rescaling and translat-
ing :
S R
() = a2 (58),
where a € R\{0} and b € R. These are L? normalized, i.e.

1|

2 = ¥z,

and we will assume that ||| ;2 = 1.
We assume [ 1) = 0, and more generally we will assume the admissibility
condition

Cy = 2r / € (O de < oo

(ie. ¥ € H _%) The necessity of this condition will become apparent below.
The continuous wavelet transform with respect to this wavelet family
is defined by

Tf(a,b) = (f,v"").

The wavelet transform yields a resolution of the identity in the following
sense.

97



98 CHAPTER 5. WAVELET TRANSFORMS
Proposition 5.1.1. For ¢ € H_%, we have
f=cy! / / Tf(a,b)yp a2 da db
in the weak sense; i.e. for all f,g € L?,
(f.9)=C," //Tf(a,b)Tg(a,b)a—2 da db.

Proof. The proof is a direct computation. We begin by using Plancherel’s
theorem and the definition of the wavelet transform to write

/ / Tf(a,b)Tg(a,b)a* dadb
= [[[[] Feonaze<itag ]
[ G0l an) dn] o

Now consider the functions

Fu(€) = a2 f(©)d(ag) and  Ga(€) = |a|2 ()P (at).

Then
/ F©)lalb e ™0(ag) de = (2m) Fu(b),

with a similar expression for the remaining integral. Applying Plancherel
(in the db integral), we continue from above to write

//Tfangab) _Qdadb_27r// a"2d¢da
=on [ (0 >[ / Waf)marlda} d

- C?/) fa >7
where we have changed variables in the da integral above and then applied
Plancherel once more. O

Remark 5.1.2. It is possible to be a bit more quantitative about the sense
in which convergence holds, but we will not concern ourselves with all of the
details here. See [7] for more details.
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There are several variations of the situation descibed above. For exam-
ple, if we use a real-valued v, then we get

~

(=€) = P(€),

and we can write

- 0 . 0 R
Cy =2 /0 €171 0(E) 2 de = 2 / €1 (e 2 de.

Then we have -
f= é;l / / Tf(a,b)p**a=2 dbda.
0 R

One can also investigate using bandlimited functions, wavelets, or using
complex-valued wavelets with real-valued signals, and so on.

One important variation involves using different wavelets for the decom-
position and the reconstruction of the signal f. In particular, we have:

Proposition 5.1.3. If ¥1,v9 satisfy

/ ()] [(6)] €] d < oo,

then
£= gk, [[ st doas

in the weak sense, where

Cpyapp =27 | V(&) a(€) €7 dE.

Proof. The proof proceeds exactly as in Proposition O

As before, under some reasonable conditions on f, the convergence above
can be shown to hold in stronger senses (e.g. pointwise at points of continuity

for f).
Reproducing kernel Hilbert spaces.

The continuous wavelet transform is related to the notion of a repro-
ducing kernel Hilbert space, as we briefly explain here.

Definition 5.1.4. Let H be a Hilbert space of real-valued functions on
some set X. For x € X, define the evaluation functional L, : H — R by
L,f = f(x). We call H a reproducing kernel Hilbert space (rkHs) if for all
x € X, L, defines a bounded operator on H.
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By the Riesz representation theorem (see Section [A.2)), if H is a re-
producing kernel Hilbert space, then for every x € X, there exists unique
gz € H such that

f(@)=Lof =(f gz) forall feH.

If the inner product is given by integration, this becomes

f@) = [ 1wsEmdy forall fe

The function g is called the reproducing kernel for the Hilbert space.
Now let us return to the continuous wavelet transform. For f € L*(R),

we have
c;t [[irsavpa?deds = [ 1@ da.

so that T maps L?(R) isometrically into the Hilbert space
L*(R*C a2 dadb).

Let H denote the closed subspace given by the image of L? under 7. Then
H is a reproducing kernel Hilbert space. In fact,

Flah) = (£ = 0" [[ K(abia 9)F (@ 5o dads,

where
K(a,bia, f) = (7, 4).
That is, point evaluation is given by integration against a kernel.

The windowed Fourier transform.

We turn to a comparison of the wavelet transform with the so-called
windowed Fourier transform. Given a smooth function g supported
near the origin, we define the windowed Fourier transform by

Fof(w,t)={f,g*"), where g¢“'(z)=e"“"g(x—1).

That is, F,f(w,t) represents the Fourier transform of the portion of f(x)
around the point x = ¢. This is a natural quantity to consider in the setting
of signal processing.

Arguing as in the proof of Proposition we have the following:
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Proposition 5.1.5. We have

f= / Fof (w,t)g”" dw dt

27Tllgll

in the weak sense. That is, for all f1, fo € L?,

(fi, f2) = / Fylr(w, ) Fy fa(w,t) dw dt.

2m HgH

One can use any g € L? for the windowing function. Typically, one
normalizes ||g||,2 = 1. The windowed Fourier transform also maps L? to a
reproducing kernel Hilbert space, viz.

= 217r/ K(w,t;w', ) F(w',t) du' dt’,

where

F(w,t) = Fgf(w,t), K(w,t;w' t) = <gw/’t,,gw’t>.

Construction of operators and time-frequency localization.

We saw in Proposition the following reconstruction formula:

f=c! / / (f, ") a=2 da db.

This can also be viewed as a ‘resolution of the identity’, i.e

Id=cCy! / / (-, ") p®a=2 da db

for an admissible ‘mother wavelet’ . Similarly, we have a resolution of the
identity using the windowed Fourier transform:

Id—// @By g@t dw dt

for an L?-normalized windowing function.
Note that in both cases, we are reconstructing the identity operator as
a linear combination of rank one projections. That is, the operator

=00

is simply the rank one projection onto the span of ¢.
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For the identity matrix, we give each projection equal weight. However,
by varying the weight given to each projection operator, we can construct a
wide variety of operators.

Let us consider this first in the setting of the windowed Fourier trans-
form. Inspired by applications in quantum mechanics, we switch to the posi-
tion/momentum variables (p, ¢) (instead of (f,w)). Given a weight function
w(p, q) and an L2-normalized window function, we may define the operator

W= 217r// w(p, q)(-, ") g dp dg.

If w is unbounded, then W may be an unbounded operator. However, for
reasonably chosen w and g, one can get a densely defined operator.

Ezample 5.1.1. With w(p, q¢) = p?, one gets
2
W=-4 4C,d,
where
¢, = [ €lae)de.
With w(p, q) = v(q), one gets

Wf(x) =Vy(x)f(x), Vy(x)=0x lg|%.

These correspond to the “quantized versions” of the phase space function
w(p, q), up to the additional g-dependent parts. Ideas related to these ap-
peared in work of Lieb establishing the validity of the Thomas—Fermi model
in the limit as the nuclear charge tends to infinity (i.e. very heavy atoms).

Let us consider the operator corresponding to time-frequency local-
ization. Recall from Corollary that a non-trivial function and its
Fourier transform cannot both be compactly supported. Nonetheless, in
practice it is of great utility to localize signals in both space and frequency
as much as possible. We will consider two notions of time-frequency local-
ization.

Ezxample 5.1.2. First, we make use of the orthogonal projection operators
Q1 and Pq, given by

Qrf(z) =1_rn(@)f(x) and F[Pof](&) = 1_aa(€)f(©).

Suppose f is time-limited, i.e. f = Qrf. If we transmit f over a bandlim-
ited signal, the result is of the form PoQrf. To measure how faithfully the



5.1. CONTINUOUS WAVELET TRANSFORMS 103

transmitted signal represents the original signal, we may compute

[PaQrfl32  (QrPaQrf, f>‘

1Al 1

The largest value of this ratio corresponds to the largest eigenvalue of the
symmetric operator QrPoQ7, which is an integral operator with integral
kernel

(QrPaQr)(z,y) = 1_71)(2)1_771) (y)%

(exercise). The eigenvalues and eigenvectors of this operator are known, due
to the fact that this operator commutes with the operator

A= %(T2 - :1:2)% - %;f,
which was previously studied in the context of solving the Helmholtz equa-
tion via separation of variables. The eigenfunctions are called ‘prolate
spheroidal wave functions’.

The eigenvalues may be put in decreasing order. One finds (by a rescaling
argument) that the eigenvalues of QrPo@Qr depend only on the product
TQ. It turns out that (for fixed TQ?) the eigenvalues begin close to 1 before
suddenly plunging down to essentially zero. There are about @
near one before a plunge region of width about log(7'2).

This gives a rigorous version of something empirically observed long ago.
In particular, in a time and band-limited region, there are 27°Q /7 ‘degrees
of freedom’ (i.e. independent functions that are essentially time and band-
limited in this way). This is proportional to the area of [T, 7] x [-, Q;
it also corresponds to the number of sampling times within [—7', 7] dictated
by Shannon’s sampling theorem (Theorem for a function with Fourier
support in [—, Q.

eigenvalues

Ezample 5.1.3. Next, returning to the discussion above, let us use the win-
dowed Fourier transform to define an operator that corresponds to time-
frequency localization to a set S C R%. We define

Ls = 5 // (-, g°") g dw dt.
(w,t)esS

Note that 0 < Lg < Id in the sense of operators. The lower bound is
immediate, while the upper bound follows from the resolution of the identity

property:
(Lsf 1) < & / / (gD dwdt = | f]2.



104 CHAPTER 5. WAVELET TRANSFORMS

Suppose S is a bounded subset of R? and ¢,, is an orthonormal basis for
L?(R). Then

Z<LSSOn, (pn

%//z] o 1) 2 du dt = //HML dwdt = |S|.

This shows that Lg is a trace class operator (see Section .

By the spectral theorem, we may find a complete set of eigenvectors
¢n forming an orthonormal basis for L? with nonnegative eigenvalues \,
decreasing to zero.

The interpretation of Lgf is that we build up f out of time-frequency
localized pieces (f, g“"!)g*"!, only using (w,t) € S.

Even if S = [-Q, Q] x [-T,T], the operator Lg will not be the same as
QrPoQ@Q7. In this construction, we are free to choose more general sets S.

In general, it is difficult to compute the eigenvalues and eigenvectors of
the operator Lg constructed above, in which case the construction is not
particularly useful. However, there is a special case in which things can be
computed explicitly.

Ezample 5.1.4. Consider the operator Lr = Lg, defined as above, with
S =8r={(wt):w*+t* <R*}

and
9(@) = golw) =i L,
In this case, things can be computed fairly explicitly. We only mention some
of the results; more details may be found in [7, pp38-40].
With these choices of gy and Sg, one finds by direct computation that
L commutes with the harmonic oscillator Hamiltonian, defined by

H=-% 221

In fact, one can compute the action of the unitary group e~ on gy explic-

itly and prove that

LRe—isH — e—isHLR’
which implies the result. The proof boils down to showing that the action
of e7H on gff simply produces (up to a phase factor) some other gws’ts,

where (ws,ts) are given by a rotation matrix applied to (w,t). One then
applies change of variables (given by a rotation, which leaves the domain Sg
invariant) to prove the identity above.
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As Lr commutes with H, these operators are simultaneously diagonal-
izable. Fortunately, it is a well-known exercise in quantum mechanics to
compute the eigenvalues and eigenvectors of the harmonic oscillator (see
e.g. [11]). The eigenvalues are simply {2n} and the eigenfunctions are the
Hermite functions

Gn =273 (n) "3 (x — L)"go(2).

The eigenvalues for Ly can be found (after some computation), using

LR
M(R) = (Lagn, én) = 4 / §e ds.
0

This is called an incomplete I'-function and the behavior as a function of n
and R is understood:

For each R, the A, (R) decrease monotonically as n increases. They start
close to 1 and then ‘plunge’ down to zero. One finds

max{n : A\,(R) > 3} ~ 3 R?,

which (writing it as 7R?/27) is again the area of the time-frequency local-
ization region divided by 27w. The width of the ‘plunge region’ is larger this
time, but still essentially negligible compared to %RQ. The eigenfunctions
turn out to be independent of the size of Sg; that is, the R-dependence is
completely represented through the eigenvalues.

So far, we have focused on using the windowed Fourier transform to build
operators. Of course, a similar construction is possible using the wavelet
transform. That is, given a weight w(a,b), we may define

w=cy' / / w(a,b) (-, p**)p*°a=2 da db.

Once again, one may interested in using a weight w(a, b) that simply cuts off
to a subset S. Once again this leads to operators Lg satisfying 0 < Lg < 1,
which (provided S is compact and does not contain a = 0) are trace class.
As before, the eigenvalues/eigenvectors can be difficult to analyze except in
some special cases. One such case involves taking 1&(5) = 2¢e~¢ X[0,00) (§)
and using the identity

1=a,! /0 / [ i + (™" ")a™2 dbda,
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where ¢ = 1 and 1&— (€)= 7[’(5) One then considers localization to regions
Sc = {(a,b) € (0,00) x R : a® + b* +1 < 2aC’}

corresponding to the disks |z — iC|> < C? — 1 in the upper half of the
complex plane. The role of the harmonic oscillator Hamiltonian is played by
a different operator that commutes with Lo and is diagonalized by Laguerre
polynomials. We refer the interested reader to [7] and the references therein.

Let us now consider one final ‘purely mathematical’ application of the
continuous wavelet transform.

Characterization of local regularity.

We will prove two theorems relating regularity of functions to their
wavelet transforms. The first is a global result; we have seen similar re-
sults in the setting of the Fourier transform or Fourier series. The second is
a local result; this type of result is typically not possible using the Fourier
transform or windowed Fourier transform.

Theorem 5.1.6. Suppose

/(1 + |z ¢ (@) de < 00 and 1 (0) = 0.
If f is bounded and Hoélder continuous of order o, then

(F, ™)) < la]ot 2. (5.1)

Conversely, suppose v is compactly supported and f € L?(R) is bounded and
continuous. If (5.1) holds, then f is Holder continuous of order «.

Proof. The first statement follows from a direct computation. Using [ =
0,

W™, f)] < / a3 [(220)|f(x) — £(b)] da
< / o~ H | (Z=2)] 2 — b|* da
< Jaf**} / () 191 dy,

as claimed.
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We turn to the converse statement. Let 1)y € C° with [ = 0. We
can choose 12 so that the constant Cy ,, = 1. Using the resolution of the

identity,
— [ty @) daa.

We split the integral into the part where |a| < 1 and |a] > 1. We call
these two terms fg and f (for small and large scales, respectively).

First consider the large scale piece, which is actually already guaranteed
to be Lipschitz. We begin by showing fr, is uniformly bounded. In fact,

@) < // 1 e ol a3 o (222) | da db

< 1Al se el 2 e o / "% da < 1.

la]>1

Now let |h| < 1 and write

[fe(@ +h) — fr(z)|

///a> a2 F () [(Z0)[$2(HE=2) — o (552)| dy dbda
S Ih!///saﬂf(yﬂdadbdy,

where (using the compact support of ¢ and 1)2)
S={(aby):la| =1, |y—bl<|aR, |o—b|<|aR}

for some R > 0. In particular, using Holder’s inequality,
3
ule 4 1) = o) Sl | ot adda 5ol
a|>1

We turn to the small scale piece, beginning again with uniform bound-
edness:

11 o _
Ifs(a:)|§//|<1 la|* T2 |a| "2 2 (£2) a2 da db

< Il / o da < 1.
la]<1
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Next, for |h| < 1, we consider fg(x + h) — fs(z) and split the integral into
two regions. Firast, we get the contribution

j(/) lal® (|92 (222)] + |t (=) ) a2 da db
jal <A

N//Q2M%</ la| 1T da < |h|%,
S la|<h

S ={(a,b) : |la] <|h| and |z —b| < |a|R}

where

for some R > 0. Next, using the fact that vy is Lipschitz, the contribution
of |h| < |a] <1 is controlled by

/ la[*|Ala]"a "2 dadb < || a2+ < |,
S [h|<|a|<1

where we have denoted
S=1{(a,b):|h| <|a|<1 and |z—b|<|a|R}
for some R > 0. This completes the proof. O
Next, we turn to the following characterization of local Holder regularity.

Theorem 5.1.7. Suppose

[ 1@+ jal)dz < oo and 9(0) =
If f is bounded and Hoélder continuous of order o at xq, then
1 (03 (03
|(f, ") < fal2 (Jal* + [b]).

Conversely, suppose 1 is compactly supported and f € L? is bounded and
continuous. If there exists v > 0 such that

(LoD S a2 and [(f,9"70)] < lal2 (jal” + 1) (52)

(uniformly in a,b), then f is Holder continuous of order « at xg.

Proof. By applying a translation, we may assume xy = 0.
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Again, the first part follows from a computation: using [ ¢ =0,

!<f,¢“’\</!f FO)] a3 [ (22)) da
S [latlal Ho(5h) ds
< Jafot} / ()] [y + 21 dy < Jal3* + [al 3 ]pl,

as desired.

We turn to the converse statement. In fact, the argument proceeds
similar to the proof of Theorem We actually only need to establish a
suitable bound on |fs(h) — fs(0)| for |h| < 1. This time we split into four

pieces:
//a|§h&/v |a||1ha(2=2) a2 da db, (5.3)
// |a/7<|a‘<,h|(|“‘a+|10g|b||)!1/12( b)|a™? da db, (5.4)
//a|<h lal® + o) e~ 2)la™? da db, (5.5)

Sl 2ty — a2 daas
We first estimate
(5.3) < la| 7 a1 S R,

lal<|h|o/

which is acceptable.
Next, supposing the support of 1, is contained in [—R, R|, we have

-1
" SJHwQHLl / ]a\ +a da
la|<[h|

—1_(a|R+ |h])"
+f ja| ! da
IR/ <|al<[A] [ log(|alR + [h])|

rawlda] < [,

< h|® [1 + 7|101|h||
BV S Inle/ <lal<n)

Similarly,

- —1_ (la[R)*
63 < a1+ da + / o]
lal<[h| lal<h| | log(la|R)|

S [hf*
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[To solve the latter integral, make the substitution u = log(|al).]
Finally, using the Lipschitz bound for s,

. (lalR + 1))
69 < | mwﬂmw+ (lalR + 1)) da
5.9 S og([al& + 7))
. o (lalR + |afy+o
Sl e qalre+ ) + oD g
h|<la|<1 |log(|a|R)]|
< e,
This completes the proof. O

5.2 Discrete wavelet transforms

We turn to the discrete wavelet transform. We let 1 be an admissible
function. We will restrict to positive scales a > 0, so that the admissibility
condition becomes

(%) . 0 .
%=A|§Wmﬁ%=/QaWMW&<w

For a fixed dilation step ag > 1, we will restrict to the discrete set of
scales a = a* where m € Z. We next fix a translation parameter by > 0 and
define the rescaled and translated wavelets

- —m -2 x—nbya™
wm,n(«r) = CLO 2 w(ao T — nbO) = a’O ? 1/’( ‘16” 0 )7

where m,n € Z.

The basic questions we are interested in are whether functions are uniquely
determined by their wavelet coefficients (f,¥y,), as well as how functions
may be reconstructed using wavelets and wavelet coefficients.

We will need the notion of a frame.

Frames and reconstruction.

Definition 5.2.1. A family of functions {¢;};ec; in a Hilbert space H is
called a frame if there exist 0 < A < B < oo such that for all f € H,

AllFIP <Y K fel? < BILFI
JjeJ

We call A, B the frame constants. If A = B then we call {p;} a tight
frame.
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If {¢;} is a tight frame, then for any f € H we have

AP =5 D1 el
J

which implies (via the polarization identity) that

F=A" (f i) (5.7)
J

in the weak sense.
Frames (even tight frames) need not be orthonormal bases.

Ezample 5.2.1. In H = C?, {p; ?:1 defined by

Y1 = (07 1)7 Y2 = (_77 _%)7 Y3 = (737 _%)

form a tight frame with A = %

In this case, A = % gives the redundancy ratio (i.e. we are using three
vectors in a two-dimensional space). If A = 1 then a tight frame is an
orthonormal basis.

Proposition 5.2.2. If {y;} is a tight frame with bound A = 1 and ||¢;|| = 1,
then {¢;} is an orthonormal basis.

Proof. By definition, if (f, ;) = 0 then f = 0. Thus, it suffices to verify
orthonormality. To this end, we observe

logll =Y Koz eml® = llegll* + > 1es 0n) -
k j#k
As ||p;]] = 1, this implies (p;, i) = 0 for any j # k. O

We turn to the question of reconstruction. In the case of a tight frame,
one has (5.7). To deal with more general frames, we first introduce the
notion of the frame operator.

Definition 5.2.3. If {¢;},cs is a frame in H, the frame operator F' is
the linear operator F' : H — ¢2(J) defined by (Ff); = (f, ;).

The frame operator is bounded, as ||Ff||> < B|/f||>. The adjoint of F is
computed via

(Fre, £y =(c.Ff)y=> ci{f.o5) = cilej f),

J J
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which yields

F*C = ZCj(pj.

jedJ

Note that |[F*| = ||F|| < B? and that

Z! frenl = IFfI? = (F*Ff, f).

Thus, the frame condition may be written
Ald < F*F < BId.

As a consequence, we find that F*F is invertible (cf. the lemma below). In
fact, one has B~1Id < (F*F)~! < A~'Id.

Lemma 5.2.4. Let S be a positive bounded linear operator on a Hilbert

space H satisfying S > aId. Then S is invertible, with S~ bounded by
-1

at.

Proof. Exercise. O

Proposition 5.2.5. Suppose {¢;} is a frame and F' is the frame operator.
Define
b= (FF) "y,

Then {@;} is a frame with frame constants B~! and A=Y, The associated
frame operator F' satisfies

F=FFF)!
as well as
F*F=(F*F)"', F*F=F'F=Id.
Finally, FF* = FE* is the orthogonal projection in (> onto R(F) = R(F).
Proof. Exercise. O

One calls {¢;} the dual frame of ¢;. (The dual frame of ¢; is simply the
¢; again.) The conclusions of Proposition may be succinctly written

as
Z(f:‘:@] )oi=1[= Zf:@]

J

This yields a reconstruction formula for f using (f, ¢;), while simultaneously
writing f as a linear combination of the ¢;.
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Note that typically the ¢; are not even linearly independent, and thus
there may be many linear combinations of the ¢; that yield f. The particular
linear combination given above has a minimality property.

Proposition 5.2.6. If f =3, cj¢; but we do not have c¢; = (f,;), then
Dol > KL e
J J

Proof. First note that f = Zj cjp; is equivalent to f = F*c. Now decom-
pose ¢ = Fg+ b where Fg € R(F) = R(F) and b € [R(F)]* = nul(F*).
Then

lel® = [ Fgll” + (16>

Now (since F*F = Id)
f=F¢c=FFg+Fb = f=g.

Then
D el = lel® = IF AP+ 1002 =D 1L @0 + 116l

which implies the result. ]
Ezample 5.2.2. In the example above we had
3
%Z v, 05)¢
7=1

However, since ) ¢; = 0, we also have

1N

3
SZ v,e;) +alp; forany aeC.
7j=1

However, the minimal length representation occurs when we choose o = 0.

The {¢;} also play a special role in the decomposition for f, in the sense
that if f=3_,(f,¢j)u; then

> Kui 9) > 1@, 9)
J J

forall g € H.
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We return to the question of reconstruction. Given a frame {¢;}, the
problem boils down to computing the inverse of F*F. Suppose r = & —1 «
1. Then we may expect F*F ~ (A + B)Id, and hence

(F*F)~' ~ AJFLBId, and so @~ AJFLB%-.

With this in mind, we set R = Id — A+B F*F and write
f= a5 Y (fei)ei+ RS
J
By construction, we have

B—A B—A B—A
—grald<R< 55 1d, andso |R[| <55 = o0

This shows that simply writing
[~ MLBZOC’ ©5)P;
J

yields an approximate reconstruction of f with error of size ~ r|| f]|.
Pushing this further, we can describe an algorithm for reconstruction
based on the fact that

F*F =458(Id— R), sothat (F*F)"'=25(Id—R)™"

As |R| < 2 +1 < 1, we can write

(Id - R)~ Z R*.

Then
o0
~ 2 k
¢ = z25 >_ R'e;.
k=0

The approximation above corresponds to keeping only the k = 0 term. More
generally, we can define

~N k ~ k N+17,~
©; :A_,_LBZR $j=¥j— A+B Z Rfpj=[Id—R +]‘Pj'
k=0 k=N+1
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It follows that

1f =D (fren@) || = sup \ =D (fen@) 9
;

llgll= j
= sgp\z<f7 el @i — &7 9)|
J
= sup| Y (f,9;)(R"*'¢;, 9)]
J J
< IRIMHIAN < (52=) "I

As for actually computing the gbj-v , one can use an iterative algorithm
(that actually is relatively practical to implement) and write

¢y = B i +R*N 1

See [7] and the references therein for more details.
Frames of wavelets.

We return to the setting of the discretized wavelet transform, with

¢m,n($) = a(;m/Qw(aam.fC — nbo)

We will next discuss necessary and sufficient conditions for this family to
form a frame in L?(R). The following appear as Theorem 3.3.1 and Propo-
sition 3.3.2 in [7].

Theorem 5.2.7. Suppose Yy, form a frame for L? with frame bounds
A, B. Then

whe A< [T e < e,
0
Y GRS

Conversely, suppose the following hold:

inf Z\w sup 3 [hlag o)l < oo,

1<[¢]<ao * 1<[¢[<ao0 ez,

and

—supZ\w 5O 1P (agé + s)]
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decays at least as fast as (1 + |s|)~(+2) for some € > 0. Then there exists
by > 0 such that the 1, n, form a frame for any by < b, with the following
frame bounds:

A= nt STIGRF - z[m%kw%kﬂ%}’

1<[¢|<ao 570
1
27r{ sup Z‘w 5 |2+Z QWk)]2}.
1<‘§|<a0 k;ﬁo

Instead of going through the technical details of the proof of Theo-
rem we will focus on discussing a few examples below. At this point,
we only remark that the conditions on v are satisfied, if (for example)

D) < €11+ €)™Y, with a>0 and ~v>a+1.

Roughly speaking, if ¢ is an admissible mother wavelet (in the sense of
the continuous wavelet transform), then we can expect that the discretized
Ym,n will form a frame for (ag, by) close to (1,0). In fact, for some examples
we can use (ag, bp) rather far from this special value.

It is convenient to consider the value ap = 2. If we hope to have an
(almost) tight frame, then the bounds

ging 0oP < B

imply that ) 1h(27€)|? should be roughly constant (for & # 0). This is a
rather strong condition. One way to remedy this is to use multiple wavelets
¢!, ... 9", and to consider the frame obtained from {¢}, , } (setting ap = 2
for each).

The analogue of Theorem for the windowed Fourier transform is
given by the following. In this case, we consider the functions

IMwoT

gmn(z) =€ g(z — ntp)

for m,n € Z.

Theorem 5.2.8. If g,,, , form a frame for L? with frame bounds A, B, then
A< Zolglle < B.

Conversely, suppose

inf (x — nto) 250 su x —nto)|? < oo
ot 2 lol —nto)f* > 0. sup 3 gl —nio)” < oo
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and

5(s)i= sup 3" lgla - nto)l lg(o — nto + )
0<z<tg n

decays at least as fast as (1+ |s|)~0+9) for some ¢ > 0. Then there exists
wy > 0 so that the gm n form a frame whenever wy < wg, with the following
frame bounds:

A= it S lote -t - SRS 20)

k0

B = {SupZ]g x — ntp) |2 —1—2 2”1{: 2”14:)]%}

k+£0

Ezample 5.2.3 (The Mexican hat function). The Mexican hat function v is
the second derivative of the Gaussian e~*"/2. Normalizing the L? norm and
imposing ¥ (0) > 0, one finds

Y(w) = Zri(1—a?)e 2,
If one uses at least two voices, this yields an essentially tight frame for
bo < .75. This wavelet is often used in computer vision applications.

Ezample 5.2.4. For the windowed Fourier transform, the Gaussian g(z) =

rie=v /2 g commonly used. It turns out that the ratio wotg=+2m is relevant.

In particular, the g, , form a frame whenever wyty < 27. This is related
to the notion of time-frequency density, which is discussed in detail in [7]
Chapter 4].

Time-frequency localization in frames.

We have the following result regarding time-frequency localization.

Theorem 5.2.9. Suppose Ymn(2) = m/2w(aamx —nbg) forms a frame
with bounds A, B. Suppose that

(@) € (@)™ and DO S € (e)BH

for some o > 1, >0, and v > 0. Then for any e > 0, 0 < Qp < Qq, and
T > 0, there exists a finite set B such that for any f € L?,

1F=> (s,
B

< \/%[EHJCHLQ + 1 Fllc2qes) + 1Flz2qer<ao) + 11l L2ei>a)] -
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The set B is defined by
B={(m,n):mo<m<my, |nb|<ay™T +t}, (5.8)

where mg, m1,t are chosen depending on €2y, 21,7, €.
The analogous result for the windowed Fourier transform is the following.

Theorem 5.2.10. Suppose gnm(x) = ™0%g(x — ntgy) form a frame with
bounds A, B. Suppose that

lg(z) S (@)™ and [g(&)] < (€)™

with o > 1. Then for any € > 0, there exists t.,w. such that for any f € L?
and T, > 0, we have

1f = Z<f7 Imn) Gmnll L2
B

Blelfllz + 1 flz(est) + 1 fll2qe=0]
where B = {(m,n) : |mwy| < Q+we, |nto] <T +t.}.

We will only sketch a proof of Theorem Similar ideas suffice to
establish Theorem [£.2.101

Sketch of the proof of Theorem[5.2.9 We define B as in (5.8). We will es-
timate the norm by duality. Fix h € L? with ||h||;2 = 1. Then

Foh) =S U ) @ B) = S (Fy ) (Y ).
B Be
This can be controlled by two sums. First, we have
S 1P )| + (1 = Pa) £ mn]| (G 1)
B

where
By ={(m,n):m<mg or m>mg}.

Here we write Py to be the Fourier multiplier operator cutting off the fre-
quency support to Qg < [£] < Q5. Next, we have

S Qe f, )| + (1 = Q1) f, )| (Wrm, B,

By
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where
By ={(m,n) :mg <m <my and |nbo| >ag™T +1t}.

Using the fact that the Jn\l/n are a frame with frame bounds B~1, A1,
we can estimate

ST~ Po) f )| [y B)]
B1

(Z| (1-Po) f,wmn\:’) (Zwmn, 12)

< B:
< /B llz2qger<am + 1l 2ggsan)-

Similarly, the contribution of (1 — Q7)f to the Bs sum is controlled by
the || f||z2(jz|>7) term. It remains to show that the remaining terms can be

(1= Pa)fll 2 A% ||h| 2

controlled by s\/g IIfllz2. We deal only with the P term, leaving the Qr

term as an exercise.
Applying Cauchy—Schwarz and writing g = Po f, we are led to estimate

S g Y=
B, By

2rbs tar ™
> / D7 giboapng Z G(& 4 2mlag™by ) (afté 4 2mlby )
0

[ 560 diapeyetes

B1
2mby tag ™ ~ 2
=3 / o by DY (alre + 2mlby )| de,
mGB’
where we use Plancherel (on the torus) in the final step and
Bi={m:m<my or m>mg}
Expanding this out, this becomes
S IOIE ~ 2mtag 19O 16 — 2w de
LeZ,meB]
where

Sy = {Qo < |€], € £ 2mlag™by | < Q).
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We now apply Cauchy—-Schwarz and a change of variables. We are led to

estimate L
W I [ e )

¢ o€ex

where

Fi= " [h(ag)I* |d(agé + 2xby 0)|

meDB]

for some 0 < A < 1 to be chosen below. Now, by assumption,

[ (ag )] (ag ¢ + 2mby 1 0)] < (ag'€) " (ap ¢ + 2mby )™
SO

Continuing from above,

ZKPQf’ wm,n>|2
By

Sb HIPaflI7 > (O sup Y (e P,

Z Qo<IE|< o

The sum in ¢ converges provided v\ > 1, while

sup Y [ib(agre) 4N

Qo<IE|<

meB]
< Z <a6”Q —29(1-X) + Z 251 A)
m>m1 m<mo

5 (Qoagn)f?y(lf)\) + (QICLBRO)Z,B(lfA)_

Choosing A = (1 +~71) (say) and then choosing mg sufficiently negative
and m; sufficiently positive, we can arrange

ST Paf )| < BE2| £,
By

as desired. The Q7 f term is left as an exercise. This completes the proof.
O

Redundancy in frames

We close this section by making a brief comment about redundancy in
frames. For frames that are tight or close to tight, this can be measured by
the size of (A + B).
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Suppose {¢;};c is a frame. If additionally {¢;} is an orthonormal basis
then the map f + (f, ;) is a unitary map from H onto ¢2(.J). If the frame
is redundant, then the range is a strict subset of £2(.J).

Recall that the reconstruction formula

=Y (f00)%

jed

involves a projection onto the range of this map, written f = F*Ff.

Now, if the coefficients (f, ¢;) were modified by adding some «; (e.g. be-
cause of a roundoff error in a numerical computation) then the reconstructed
function would be given by

fapp = F*(Ff + ).

However, since F** includes a projection onto the range of F', the part of the
sequence « that is orthogonal to the range of F' does not contribute. Thus,
we expect

1 = fappll = [[E" ]
to be smaller than [|«||. This effect should become even more pronounced
if the frame is more redundant, since in this case the range of F' becomes
even ‘smaller’.

Ezample 5.2.5. Let u; = (1,0) and ug = (0, 1), giving an orthonormal basis
for C2. Let

3 1
€1 = U2, €2= —%U& — U2, €3=

s

1
uy — 5“2'

Then ey, es, e3 is a tight frame with frame bound %
Suppose we add aje to the coefficients (f,u;) or (f,e;), where a; are
independent normal random variables. Then one can compute

E{IIf =D [(f,u) + ajelug]|*} = 2€2,
while

E{|If — 2 [{f,¢;) + ajelejl*} = 2e2.

5.3 Multiresolution analysis

We turn to the notion of a multiresolution analysis.

Definition 5.3.1. A multiresolution analysis is a sequence of closed
subspaces V; C L? satisfying the following conditions:
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(i) Vj Cc Vi for all j € Z,

(i) Ujez Vi = L*(R),

(iil) ez Vi = {0},

(iv) feV; <= f(2) e,

(V) fe€Vo = f(-—n) eV, forallneZ,

(vi) There exists ¢ € Vj (called the ‘scaling function’) such that

{¢O,n ne Z}

is an orthonormal basis for V[, where
bin(x) :=2729(272 —n).

Thus, all the spaces are scaled versions of a central space V{, which is
invariant under integer translations. The final condition (vi) may be relaxed
considerably, but we begin with this simpler setting.

We will write P; for the orthogonal projection onto V;.

Ezample 5.3.1 (Haar multiresolution analysis). Let

V; = {f e L = constant for all k € Z}.

R) : f‘[QJ'k:,QJ'(k-H))
We may take ¢(x) = 1o q)().

We will prove the following theorem.

Theorem 5.3.2. If {V;}jez forms a multiresolution analysis of L?, then
there exists an orthonormal wavelet basis {1 : j,k € Z} such that

P =P+ Z<’ Vi) Vs k-
e

Proof. Let W; denote the orthogonal compliment of V; in V_1, so that
Via=V; o W;.

Thus
J—j—1

V=V, @ Wy forall j<..
k=0
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By (ii) and (iii), this implies
L =gw;.
JEZL
Next, note that the W; also inherit the scaling property (iv):

feW; < f(27) e W.

Using the scaling/transation property, the problem therefore reduces to find-
ing ¢ € Wy such that ¢ (- — k) produces an orthonormal basis for Wj.

To do this, we will utilize the scaling function ¢ of (vi). In particular,
since ¢ € Vo C V_1 and ¢_1,, are an orthonormal basis for V_;, we may
write

¢= hnd-1m, With hy=(¢,¢-1,) and I |kl =1.

We rewrite this as

¢(x) =V2) had(2x —n), sothat §(&) = J5 > hne "2G(E/2).

Defining
m(](é.) — % Z hne_ln£7

this becomes ¢(€) = mo(£/2)p(£/2), with mg a 27 periodic function.
We will now show that with

A~

(€)== P mo(§ + 1) (5), (5.9)

the functions {¢(- — k)} form an orthonormal basis for Wy (and so {9;}
form a wavelet basis for L?).

To this end, we let f € Wy, ie. f € V_; and f L Vy. By assumption,
we have

f = Z fnﬁbfl,na fn = <fa ¢fl,n>a

which becomes (as in the above computation)

F(©) = my(€/2)0(¢/2), mp(€) = J5 D fae™™.
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The assumption that f L ¢gj for all £ becomes
2r R -
0= / ¢S f(E + 2m0) Bl + 2n0) d,
0 ¢

so that . _
> f(E+2m0)d(¢ + 2ml) = 0.

14

Inserting the identities above (evaluating at 2¢), we get
me(g + Wﬁ)mo(% + ﬁé)\é(% + 70> =0
¢
As my and mg are 27 periodic, we this becomes

0=my(5)mo(5) Y |6(5 +m0)’

£ even
+mp(5+mmo(5+m) D 165+ 70
£ odd
We next claim )
S Ib(E + 20 = £, (5.10)
LeL
which then implies
myg(-)mo(-) + mye(- + m)mo(- +m) = 0. (5.11)

To prove (5.10), we rely on orthogonality. In particular,
b= [ o(@)oa Ry da
2
= [t iR = [ e S e+ 2m0 e

LeZ

which implies ((5.10]).
Now, arguing as we did to derive ([5.11]), we have

> Imo(§ + 7065 + 70 = o,
l

which yields
Imo(€)” + [mo(€ +m)[* = 1.
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In particular, mg(-) and mg(-+7) cannot both equal zero on a set of nonzero
measure, and hence (5.11]) implies that there exists a 27-periodic function
A so that

myg(§) = MEmo(§+m) and A(§) + A+ m) =0.
We rewrite the final expression as
ME) = e*p(2¢)

for some 27-periodic v. Returning to our formula for f , we get

~

F(&) = €2 mo(§ + m)w(€)d(5),

which (by periodicity) allows us to write
FO = me ™)), ie f=D mi(-—k)
k k

for suitable vy.
It therefore remains to verify that the {¢)(- — k)} belong to V_1 N Vg*
and are orthonormal. This we leave as an exercise! O

Remark 5.3.3. The proof above provides an example of a wavelet that one
can use. Such examples are not unique—one could modify 0 by multiplying
by any 2m-periodic function that has magnitude one almost everywhere.
Using this freedom, we will take

Y= Zgn¢—1,nv gn = <_1)nh—n+1-

Let us mention a few examples.

Ezample 5.3.2. In the Haar multiresolution analysis, we take ¢ = 191). In

this case
L n=0,1

hn = \/§/¢(x)¢(2x —n)dx = {\/5

0 else.
It follows that
1 0<z<}
V= Jsb0— 5o =q -1 3<a<]

0 else.

This is the Haar wavelet basis.
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Ezample 5.3.3 (Meyer basis). Define ¢ via its Fourier transform:

) ! €l < ¥
O€) = 7= - qeoslFu( e - 1)) F <[¢] <,
0 else,

where v satisfies v =0 for 2 <0, v =1 for x > 1, and v(z) + v(1 —x) = 1.
We then take Vj to be the closed subspace spanned by the (orthonormal)
set {¢(- — k)}. In this case, it turns out that

(€)= V2re 2 [p(€ + 2m) + p(z — 2m)]B(5).

See [7] (say) for more details.

In practice, orthonormality of the basis ¢(- — k) can be relaxed to requir-
2

ing that
AZ’Ck‘QS ch(ﬁ(—k) §BZ‘C[€|2
k L2

(in which case they are called a Riesz basis). In many examples, one starts
with the scaling function ¢ and then defines V) by taking {¢(- — k)} as an
(orthonormal) basis. The spaces V; are then the closed subspace spanned
by

Gin(z) =272 0z — k).

This construction will lead to a multiresolution analysis provided

b2) = 3 end(2 — )

for some {c,} € ¢2, with

0<a<) |¢E+2m0) <8< oo
)4

See [7] for more detail.

We close this section by describing the connection between multiresolu-
tion analysis and subband filtering schemes, which play an important role
in applications.

Suppose we begin with some initial approximation to a function f, say
f% = Pyf. We can then write

fo=flrdteviaomw =W,
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where f1 = P; fO is the next coarser approximation to f in the multiresolu-
tion analysis, and §' = f0 — f! = Q; f° represents the information lost in
the transition from f° to f'. Here @i denotes orthogonal projection onto
Wi.

Recalling that V;, W; have orthonormal bases ¢; x, 1, we may write

F=) ddin 6= diia

In fact, we can describe these coefficients c; and d}.. To see this, first recall
that by construction we may write

Yik = Zgn¢j—1,zk+n = Zgn—2k¢j—1,m
n n

and similarly

Gk =Y _ hn-okbj-1n-
n
Using this, we deduce

1 70 1 — 0
cp = Z hpn—okc, and d = Zgn_gkcn.
n n

In compact notation, ¢! = Hc? and d' = Gc°.
Continuing this, we can write f! = f24 62 with ¢> = Hc! and d? = Gl
In practice, one stops this after a finite number of levels. In particular,
we write the information in ¢® in the vectors d!,...,d” and a final coarse
approximation ¢’

This process is invertible, and can be summarized via

A= hnoc) t, d= Gamc) !,

= Z [hn—2kcji + gn—zkdﬁ-
k

In engineering applications, these are the analysis and synthesis steps of
a ‘subband filtering scheme’. In the analysis part, the incoming sequence
is convolved with two filters (one ‘low-pass’ and one ‘high-pass’). In the
synthesis part, the resulting sequences are subsampled (i.e. only the even
or odd entries are retained).

This type of subband filtering scheme is central to many applications of
wavelets (e.g. the JPEG2000 compression algorithm).
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5.4 Exercises

Ezercise 5.4.1. Work out the details in the discussion of Example [5.1.2
Ezercise 5.4.2. Solve the differential equation discussed in Example
Exercise 5.4.3. Show that if {¢;} is a tight frame with bound A then

F=AT (00
J

Exercise 5.4.4. Prove Lemma [5.2.4]
Exercise 5.4.5. Prove Proposition

Ezercise 5.4.6. Show that for ¢ chosen sufficiently large in the proof of The-
orem [5.2.9] we can arrange

Q7 f1I72 < Bell fI7--

Ezercise 5.4.7. Show that the functions {¢(- — k)} defined in Theorem [5.3.2]
are orthonormal. [Hint: Use the same trick appearing in the proof of the
theorem. That is, apply Plancherel and split the integral into a sum over
¢ € Z. Split the sum into even and odd parts and use the properties of myg
and ¢ that were already established.]



Chapter 6

Classical harmonic analysis,
part I

Many problems in harmonic analysis are related to the boundedness prop-
erties of certain operators on various function spaces. For example, in this
section we will study a special example (the Hardy-Littlewood maximal
function) and its variants, along with other classes of operators for which
we can understand boundedness properties.

An extremely useful tool for proving boundedness properties of operators
is that of interpolation, and so we begin there.

6.1 Interpolation

In this section we will consider sublinear operators, i.e. those satisfying
T (cf)| = | |T(f)] and |T(f +9)| <|T(f)|+|T(g)|- This includes not only
linear operators, which include many important examples, but also maximal
operators, as well as square function type operators. The latter two may
have the form

Tf=suwp|T.f| or Tf= (Z\Tnfp)%

for some collection of linear or sublinear operators T;,.
We begin by making some notions of boundedness precise.

Definition 6.1.1. Let 1 < p,q < oo and let T" be sublinear. We say T is of
strong type (p,q) if we have an estimate of the form

ITfllze < Cllf e

129
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for some C' = C(T,p,q) and all f € LP. Here we typically take LP(R?)
and L9(R%), but one can of course work in LP(X) and LI(Y) for more
general measure spaces. Also, we may initially only require that T’ be defined
pointwise on a dense subclass of LP; the bound above allows for a unique
extension to all of LP.

Similarly, for ¢ < co we say T is of weak type (p, q) if

1T fllzace < ClfllLe

(cf. Section [A.1)). When ¢ = co, we define weak type (p,q) to mean strong
type (p, q).

Note that if T is of type (p,q), then T is of weak type (p, q); indeed, by
Tchebychev’s inequality,

[T fl|zaee < ([ Tf| Lo
As usual, we can define operator norms
T zp—re = nf{C : |Tfllra < C|fllzr forall fe LP},

and so on.

In the following, we will always consider operators with the property
that (|Tf|,|g|) is finite whenever f, g are taken to be simple functions with
finite measure support.

We will study the problem of interpolating various types of bounds for
operators 1. Let us begin with the following application of Holder’s in-
equality, which is essentially an interpolation-type result for the identity
operator.

Lemma 6.1.2 (Hélder’s inequality). We have the following estimate:

[4 —0
1Fllze S NN Zoo £ 110k

whenever 1 < pg, p1 < 0o and
1_ 60 4 1-0
5= 0t 5, forsome 6€[0,1].
To prove this, write |f| = |f|?|f|*~% and apply Hélder’s inequality with
exponents £ and 5.
Let us turn to a slightly more general result, in which we begin with
strong type bounds and vary the exponent in either the domain or target
space alone.
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Proposition 6.1.3 (Warmup version of interpolation). The following hold:

(i) Suppose T is type (p,qo) and type (p,q1) for some 1 < p,qo,q1 < 0.
Then T is type (p,q) for all q such that

1_ 0 1-6
i = ot forsome 0 < [0,1].

In fact,
1Tl 2o —ra S NT NG Lo I TN, o

(ii) Suppose T is type (po,q) and type (p1,q) for some 1 < po,p1,q < oco.
Then T is type (p,q) for all p such that

1 _ 6 1-0
1-2,1% for some 0 € [0,1].

In fact,
1Tl zo—pa S T %e0 s pall TN ot a-

Proof. For (i), we apply Holder’s inequality (in the form of the lemma
above). We find

[4
ITfllze ST ANGao 1T Fllzel S NTNGo—s oo 11722, Lo 11 2o,

which yields the result.
We turn to (ii). We let A > 0 and estimate

ITflle < IT(Fxqr<np) lze + 1T (Fxqesap) iz
S ||THLPO—>L‘1HfX{|f\<>\}HL”0 + Tl s s pall fxq g5 a3 o1

S ZA " HT”L”J—)LquHLP'
7=0

Optimizing in A now yields the result. O

In the following we will extend Proposition to the setting where
we vary both of the parameters p and ¢. Furthermore, we will see that
even if we begin with weak type bounds, we can obtain strong type bounds
through interpolation. There are two standard results, known as ‘real inter-
polation’ and ‘complex interpolation’ (in reference to the techniques used in
the proofs).

Our first main goal is the following:



132 CHAPTER 6. CLASSICAL HARMONIC ANALYSIS, PART I

Theorem 6.1.4 (Marcinkiewicz interpolation theorem). Let T' be a sublin-
ear operator and

1 <po,qo,p1,q1 <00, poF#Dpi, qoF Q-

If T is of weak type (po, qo) and weak type (p1,q1), then T is of type (p,q)
for all (p,q) such that p < q and

1 1y _ (6 1-6 6 1-6
(o) =Gt 5wt 0 ) forsome 6€(0,1). (6.1)

Remark 6.1.5. We have not pursued optimal hypotheses here. For exam-
ple, it suffices to assume ‘restricted weak type’ bounds on T rather than
weak type bounds, and the conclusion of the theorem can be stated in terms
of more general Lorentz spaces (rather than just Lebesgue spaces). We will
not pursue such generality in these notes; however, we would like to point
out that although we will work in the context of Lebesgue measure, this
result applies to operators mapping LP(du;) to L9(dus) for more general
measures.

Remark 6.1.6. We would also like to point out that to obtain strong type
bounds, the restriction to p < ¢ is necessary. To see this consider for example

Tf=l|a|"3f

in dimension d = 1. Let us check that 7" maps L? to L»* and L™ to L*°.

However, T" does not map L? into LP% for any 2 < p < oc.

First, since T'f is a.e. bounded by the function |x|7%|]fHLoo, it is not
difficult to verify that T': L= — L** boundedly. Now suppose f € L? and
let us prove that

{272 1] > o} S o Y| £l

uniformly in «; this yields the L? — L% bound. We write

{le| 21/ > a} ¢ | {lal?a~ N and [f]> N}
Ne2Z
Thus, by Tchebychev’s inequality and volume bounds we can estimate
_1 L _
{lz[721f] > a}| S D min{fa N N7?||f[|7.}.
Ne2?

Choosing the optimal N and summing leads to the desired estimate.
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2
Finally, to see that 1" does not map L? into Lr’%, consider the function

_p+2

_1
z = || 7 [log(lz| + |27 %

and observe that
x> |z log(lz] + [z 1) ~°

belongs to L! if and only if § > 1. (See the exercises for more details.)

Before beginning the proof of Marcinkiewicz interpolation, let us collect
a few preliminary lemmas. The first lemma is an improvement of Hélder’s
inequality in a special case.

Lemma 6.1.7. Let f € L9 with ¢ > 1 and let E be a set of finite measure.
Then

1
[(Fixe)l S 1 fllas | Bl

Proof. Note that the distribution function of fx g is given by
a— {zxeE:|f] > a},

so that

/|fXE|d93:/O H{x € E:|f| > a}|da.

Now, for each a we have the bound
{z € E:[f]>a}| Smin{|E],a™||fl|Tex}-

Setting
1
g = || fllLaee|E] 7,

we therefore have

ag %)
/ Fxldr < /0 B dov + / o Ly da

0

1
S fllpase|El7,
as desired. O

The next lemma is a weakened version of Marcinkiewicz.
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Lemma 6.1.8 (Weak Marcinkiewicz). Under the assumptions of the Marcinkiewicz
theorem, the operator T satisfies

11
(Txr,xe)|l S |F|?|E]Y
for all (p,q) as in (6.1) and all finite-measure sets F, E.

Remark 6.1.9. The estimate appearing above is an immediate consequence
of the refined Holder inequality and a weak type bound, but only provided
g > 1. In particular, we do not necessarily know this bound holds for T'
using the exponents (pj,q;). The purpose of this lemma will be to allow
us to assume ¢; > 1 (at the price of replacing weak type bounds with the
restricted weak type bounds appearing above).

Proof. Let F be a set of finite measure. By assumption,

1 1
al{|Txr| > a}| S lIxrlles S IF[™

uniformly in « for j = 0,1. Recalling the definition of (p, q), it follows that

1—

1 i+ 0 1
o{|Txr| > ajfs S |F|o" S |F|,
uniformly in «, and thus
1
ITxFllLaee S [F]7.

for all sets of finite measure. As we may assume g > 1 (cf. gy # ¢1), we may
apply the previous lemma to deduce

11
(Txr, xe)|l S I TxrllLe~lxelLe S FI7IE[7,
which implies the desired result. O

With the preliminaries in place, we are now ready to prove the Marcinkiewicz
interpolation theorem.

Proof of the Marcinkiewicz interpolation theorem. Our goal is to show that

1T flle S I fllze

for (p,q) as defined above. By duality and density, it suffices to prove that

KITFL gD S I llzellgll Lo (6.2)
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for f and g simple functions with finite measure support, say. Furthermore,
we may assume f, g are nonnegative.
Using Lemma [6.1.8, we may assume that assume that

(I Txrl, [xe)] 5]2(1)111{|F|1/”j|EI1/"9} (6.3)

for any F, E (cf. Remark above).
We turn to (6.2). In fact, it will be convenient to write down a different
decomposition for f and ¢g. First, writing

9= 9 Xen-1g<am),
meZL
we find (by the triangle inequality) that we may assume
meZ

where FE,, are disjoint sets such that

1
o

/ q
gl o ~ (Z gma |Em\) .

m

For f, it is not enough to use upper bounds (due to the presence of T).
Instead, we write

f= Z I X{2n-1<f<on} = Z 2" Z 2_jXAgla

nez neZ  j=1

where A, is the set of z such that 2"~! < f(z) < 2" and the coefficient of
277 in the binary expansion of 27" f(z) is 1. In particular, we may write

o0
f=227% gy,
j=1

nel

where F? are disjoint sets and for each j

(Z2wi)” S 1l (6.4)

n

Jun



136 CHAPTER 6. CLASSICAL HARMONIC ANALYSIS, PART I

In particular, by applying sublinearity and noting that Zj>1 277 is finite,
we find that it also suffices to consider f of the form

f=> 2"xg,

ne”

with the F, obeying (6.4]).
Applying (6.3) and sublinearity, we find

T fL gD < 2n2ij:1(j)I,11{|Fn‘1/pj’ | E|Y/9Y
m,n
1 11 L1 1

Recalling the definition of p, g, it follows that we may rewrite the minimum
appearing above as
ERIETR s N
min [|Fn|m o | B, |1 QO] .
j=0,1
Applying a dyadic decomposition, we are now led to estimate

1 11 1 1750 1
S (X zad) w4k wst (),
]:7

A,Be2Z “n:|Fp|~A m:|Eyp,|~B

Now, because pg # p1 and qg # g1, we are in a position to apply Holder’s
inequality and Schur’s test (Lemma |A.3.4)) and bound this quantity by

S 2ar om B
1| Fp |~ A N | B |~ B o
1 1
S 2rar > 2mBY| |
n:|Fp|~A A m:|Em|~B E?BI

where we have used p < ¢ and the nesting of sequence spaces in the final
step. It therefore remains to verify that

p
1
S ea) ey S e ein
A n|Fp|~A A n:|F,|~A n

and similarly for the E% sum. The desired inequality follows from the fact
that

> 2" < [2max 2|7 < 2 > 2

nes nes
for any finite set S C Z. This completes the proof that T is type (p,q). O
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We turn to another interpolation result. This estimate requires strong
type bounds to begin with, but yields strong type bounds with no restriction
on the order of p and ¢; it also easily gives an estimate on the operator norm.

Theorem 6.1.10 (Riesz—Thorin complex interpolation). Let T' be a linear
operator and 1 < po,p1, 4o, q1 < 00.

If T is strong type (po,qo) and (p1,q1), then T is strong type (p,q) for
all (p,q) such that

Ay = (& 1200 L 120y for some 6 € (0,1).
In fact,
1Tl zo—ra S T %00 pao 1T 17wt o -

Proof. Clearly we may assume (pg, qo) # (p1, ¢1); otherwise, there is nothing
to prove. Let us prove the estimate

0 41-6
(Tf. )| < ABAT I e llgll o
for all f, g simple functions of finite measure support, where
Aj =Tl grs -
Let us first assume that none of the exponents equal infinity. Writing f =

> agXxr,, we observe that

1-0

)

0
= s lawl o | |Slanl v,

which follows from the fact that

p
S adn, = (S )

for disjoint sets Fy. In other words, we may factor
-6
f=cfofi™,
where f; is a simple function in LP/. Similarly, we may factor

0 1-0 A
g=Cghgi™?, gjeL%.

Note that under this decomposition, we have

[4 —0
1 follzoo I fLll et ~ 11 £1lze
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and similarly for g.
Now we define

F(2) = (T(cf i), < g0

One can verify (by linearity of 7" and the fact that the functions involved
are simple functions) that F' is analytic and has at most exponential growth
in z. Furthermore, we claim that by hypothesis we have

Aol follzeollgoll oy  Rez=1

1F(2)] S -
Aill fillzedllgrll o Rez=0.

Indeed, let us consider the case Re z = 1. Then we can write
féfi "= fo-h where |h|=1

on the support of f, and similarly for the g term. Thus the result follows
from Hoélder’s inequality and the assumption that 7" is type (po, qo)-

Applying the three lines lemma of complex analysis (Lemma , we
deduce that

0 A1-0 0 —0 0 —0
IEO)] S AGAT I foll oo Lf1ll o1 1190 Zao 191 1| 7o
0 410
S AAT N e llgll Lo

for 0 € (0,1), which yields the result.

It remains to consider the case when one or more of the exponents is
infinite. In light of Proposition [6.1.3], we may assume pg # p1 and qo # q1.
Let us give the idea, but leave the details to the interested reader. If, say,
p1 = oo, we use the fact that % = p% and write

[}
Db
S lashv, = (3l

in place of the decomposition above. We do a similar decomposition if one
of the g; is infinite. Following the same argument as above then yields the
result. O

A similar arguments extends this to the case where T also varies analyt-
ically in z. We leave the following result due to Stein as an exercise.
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Theorem 6.1.11 (Stein interpolation). Let T, be a family of linear opera-
tors defined on {0 < Rez < 1} such that for each pair of simple functions
f, g of finite measure support, we have

Z = <Tzf7g>

defines an analytic function on the strip with at most double-exponential
growth. Suppose that for some 1 < pg,p1,qo,q1 < 00 we have

I T i pas < Aj  for Rez=j.

Then
1Tyl Lr—ra < Aj° A

for 8 € [0,1] and (p,q) satisfying

1 1y _ (0 1-6 6 1-6
Ga) =Gt mw @)

6.2 Some classical inequalities

In this section we discuss some applications of the interpolation results given
in the previous section.
The first is an estimate for the Fourier transform.

Theorem 6.2.1 (Hausdorff-Young inequality). The Fourier transform F
is strong type (p/,p) for all 2 < p < oo. That is,

1fle SNl forall 2<p<oo.

Here we recall p' is such that % + % =1.

Proof. The Fourier transform F is strong type (1,00) and (2,2). Therefore,
by interpolation, F is strong type (p,p) for all 2 < p < co. O

Next we have the Hardy-Littlewood—Sobolev inequality. This is a stronger
version of what is commonly known as Young’s convolution inequality.

Theorem 6.2.2 (Hardy-Littlewood—Sobolev). The following estimate holds:

If*gller S 1 llzellgll o

whenever

l<p<r<oo, 1<g<oo, and 1+%:
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In particular,
2~ fllr S 1 Fllze

whenever
D<a<d, 1<p<r<oo, and %—i—%:f.
Before turning to the proof, we recall two basic convolution inequalities.

Lemma 6.2.3. The following hold:

1f*glleee S flleellgllpers I = gllee S N Nzellgllzr,
where 1 < p < o0.

Proof. The first estimate follows from Holder’s inequality, while the second
follows from duality: for h € L¥', we use Fubini’s theorem to write

(f g, 1) = g, £+ W)L S gl llf * bl S glloa LNz 1Bl o
where f(z) = f(—z). O
Proof of Theorem [6.2.3. The first estimate implies the second, cf.

—(d— —(d—
=@ fllee S WAz lllel ™ e o < 11l

provided we define exponents as above.
We turn to the first estimate. We fix 1 < ¢ < oo and g € L9 and
consider the linear operator

Tf=7fxg.

We normalize g so that [|g||pecc = 1. Our goal is then to prove that T is
strong type (p,r) for all 1 < p < r < oo satisfying the scaling relation above.
In fact, by (Marcinkiewicz) interpolation it suffices to show that T' is weak
type (p,r) for such exponents. Thus we aim to show

{If +gl > a3l S @™ I f]Le

uniformly in « > 0. To this end, let us fix a > 0.
Let A > 0 and split g = g1 + g2, where g1 = gx{|g/<x}- In particular,

{If % gl > a}| <HIf * g1 > 5o} + [{|f * gl > 30}.
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We claim that by choosing A sufficiently small, the first term on the right-
hand side vanishes. To see this, we first need the following bound:

4 _a
g Xiglealle < llgllfaceA' " forany 1<g<a<oo,  (6.5)

which we leave as an exercise. Thus, using (6.5 with a = p’ (which is greater
than ¢ provided r < co), we find

1—Z

7 fllze,

1+ gillzee S llgall o 1f e S A

_ 4
which implies the claim, provided we choose \' 7 < allflizs, ie.

/ p/

A= car a0

for0 < ek 1.
We are left to consider the contribution of go above. In this case, we
need the following:

19 Xjgsallz S 1gll% A ™ for any 1< g < oo, (6.6)

which we leave as a further exercise. Now, applying Tchebychev and ,
we estimate (using the form of \ above)

H{If * g2l > 50} S a7 P f * gallF

S a P g2l

S a PN £, [ gl 7 o

~

/
< a—ZH'P(l—Q)ﬁ Hin_p(l_Q)p/pi—q
» .

Using the scaling relations, we can simplify this to

{If * g2l > 50} S a7 || flI7e,
which finally completes the proof. O

An important application of the Hardy—Littlewood—Sobolev inequality
yields a class of so-called Sobolev embedding inequalities. To describe
them, we need to introduce a family of operators that extend the usual
notion of derivatives.

Recall that differentiation operators act as multiplication operators un-
der the Fourier transform. More precisely, we found

F0° £1(€) = (i€)* f(£),
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which we may write more succinctly as
0% = F i) F

as operators. In fact, an important class of operators (known as Fourier
multiplier operators) arises in this fashion: given a function m(§), we
may define the operator

Ty = F 'm(€) F.

Using Lemma [2.5.11} we find that (as long as m is a reasonably well-behaved
function) the operator T), is given as a convolution operator, namely

T f = (21) 2100 % f,

where m = F~!m. Conversely, a convolution operator (i.e. an operator of
the form T'f = g * f) may also be viewed as the Fourier multiplier operator

with symbol (27r)%g.

Remark 6.2.4. We have just observed that convolution operators and
Fourier multipliers are one in the same. We remark here that a (bounded)
operator T is of this type if and only if it commutes with translations. In-
deed, to see that this is sufficient, note that for any test function v, the fact
that T' commutes with translation implies

YxTf =T f,
where T™ denotes the adjoint of 7. Thus, by Lemma [2.5.11
-Tf=T%-f.

Choosing v so that 1/3 is everywhere nonzero (e.g. by choosing ¢ = e_|m|2, cf.
Lemma 2.5.9)), we find that 7" is a Fourier multiplier operator, as desired. Let
us finally note here that all Fourier multipliers commute with one another,
as well.

Returning to the above, we can naturally extend the notion of derivative
and define the class of operators |V|* as Fourier multiplier operators, namely,

IV|* = F Y¢S F, seR.

For —d < s < 0 these operators are instead known as ‘fractional integra-
tion’ operators. In this case we can actually compute the inverse Fourier
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transform of |£|® (in the sense of distributions) and so compute the corre-
sponding convolution kernel. In fact, we already saw a special case of this
in Section [2.6] when we used a symmetry argument to deduce that

]:_1‘5‘_2 :C‘x’_l when d=3.
Arguing similarly, one finds that
]:_1|5|_S = Cs,d|x\s_d for 0<s<d.

Exercise shows how to compute exactly the constants c; 4.

Having introduced this notion of fractional derivative (or fractional in-
tegration), we can now state an important class of Sobolev embedding in-
equalities.

Theorem 6.2.5 (Sobolev embedding). Let

s>0, l<p<g<oo and == —

1
q

Sl
Ulw

For any f € S, we have

[fllze S VI fll e

Remark 6.2.6. Let us briefly explain the name Sobolev embedding. Just
as one has ‘Lebesgue spaces’, there is also a notion of ‘Sobolev spaces’. In
particular, one defines the spaces

WP = {f € S+ [[[VI*fll» < o0}

for 1 <p < oo and s € R. The theorem above asserts that

WP < L9 whenever s>0, 1l<p<g<oo and %:%—3.

That is, it yields an embedding result between Sobolev and Lebesgue spaces.
Such results have wide application in the field of PDE.

Proof of Theorem[6.2.5, We argue by duality. For f,g € S we first observe
(by Plancherel and the definition of |V|*) that

(Ll =AVELIVITg < TIVEFllze VI gll o
Now, by Hardy-Littlewood—Sobolev (and the scaling relations)

Vgl S Ml % gl < Nlgl o

The result follows. O
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The result just stated only applies to the fractional derivative operators
|[V|*. What about when s € N7 For example, do we have

| fllee SV fllze whenever 1<p<g<oo and %:%—1.

This would follow if we could establish that

VI fllze SNV fllze

for any 1 < p < oo. This question, in turn, boils down to a question about
certain Fourier multiplier operators. Namely, are the operators defined with
multipliers

m;(§) = %

(known as Riesz transforms) bounded on LP? The answer is quickly seen
to be yes for p = 2; this is a consequence of Plancherel. For p # 2 the answer
is still yes, but it is not as simple to prove it. We will return to this question
below.

6.3 Hardy—Littlewood maximal function

We turn to our next object of study, namely, the Hardy—Littlewood maximal
function. This is one of the most fundamental objects of study in harmonic
analysis.

For z € R? and r > 0, we denote the ball of radius r centered at = by

B(z,r) ={y e R : |z —y| < r}.
Given a locally integrable function f on R% and r > 0, we consider the

1
Bz /B(:M) f(y) dy.

This is well-defined and is a continuous function of z. The operator

average

Mf(e) =swp ey [ 17wl dy
r>0 B(z,r)

is called the Hardy—Littlewood maximal function of f. The operator
M is called the Hardy—Littlewood maximal operator.

It is easy to observe that M is strong type (00,00). Our main goal will
be to establish the following.
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Theorem 6.3.1. The Hardy-Littlewood mazximal operator is weak type (1,1);
that is,

M fllpree S Il

Applying the Marcinkiewicz interpolation theorem, we can then conclude
the following:

Corollary 6.3.2. The Hardy-Littlewood mazimal operator is strong type
(p,p) for all1 < p < .

Before we begin the proof, let us make a few observations about the
operator M. First, suppose f is a nontrivial function. By considering r ~
|z] > 1, we can observe that

M f(2)] Z |z|™7.

Thus we should not expect M to be strong type (1, 1); instead, mapping into
weak L' is the natural assertion. Of course, this rate of decay is compatible
with mapping into all higher L” spaces.

We will need the following lemma.

Lemma 6.3.3 (Wiener covering lemma). Let B; = Bj(xj,r;) be a finite
collection of balls in R%. There exists a subcollection of balls, denoted S,
such that

e distinct balls in S are disjoint,
e UB; C USB(l'j,?)?"j).
Proof. We run the following algorithm. Begin by setting S = (.

1. Choose a ball of largest radius from the remaining collection and add
it to S.

2. Discard from the remaining collection all balls that intersect a ball in

S.
3. If no balls remain, stop. Otherwise, return to step 1.

This algorithm terminates in finitely many steps; indeed, we remove at least
one ball from the collection in each step. The balls in S are disjoint by
construction, so it remains to verify the second point. In fact, if B; does
not belong to S, it must interest a ball in S of larger radius; it then belongs
in the three times dilate of that ball. This completes the proof. ]
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We are now ready to prove Theorem [6.3.1

Proof of Theorem [6.3.1] Let o > 0 and consider an arbitrary compact sub-
set K of the set
{z: Mf(z) > a}.

We need to show that |K| < a™t|f]|z: (with implicit constant independent
of K).
Let x € K. Then there exists a radius r(z) > 0 such that

1
M/B(I o f(y)]dy > a.

We therefore have

K c | B(x,r(x)),

zeK

and hence by compactness there exists a finite subcollection B; = B(xj,r(x;))
such that K C U;-Vlej. By the Wiener covering lemma, we may find a sub-
collection S of disjoint balls such that K C UgB(xj,3r(x;)).

We now write
K| <Y 3Bl <39 [Bj|.
S S
Now, by the choice of r(z;), we have

Bj|50é_1/ |f(y)|dy for each j,

J

and hence (since the balls are disjoint) we have
Kl<3% Y [ ifldy <3t [ 1)1
s /Bj

As the implicit constant (namely, 3d) is independent of K, we may now take
the supremum over compact K C {x : M f > a} to conclude the desired
result. O

A standard application of the Hardy-Littlewood maximal inequality is
to prove the Lebesgue differentiation theorem:

Proposition 6.3.4. Let f be locally integrable. Then

. 1 —
I ke [, S o= 1@

for almost every x.
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The details are left as an exercise, but we sketch the idea as follows. First,
one should show that it suffices to treat functions in L' (not merely locally
integrable). Next, one should observe that the result follows for smooth,
compactly supported functions. Finally, one should extend this to L' by
approximation; it is here that the maximal function estimate will come into
play.

Let us next discuss a generalization of the result above that we will need
later. For a locally integrable function w : R? — [0, 00), we define a measure
via

Then we have the following result:

Theorem 6.3.5. We have M : L'(Mwdx) — LY*®(wdx) and M : LP(Mw dx) —
LP(wdzx) for 1 <p < oo. That is,

w((f > a}) St [ 17(@)| Muo(e) da,
/\Mf(:v)]pw(x) dr < / lf(x)PMw(xz)dx for 1<p< oo,

HMfHLOO(wdx) S.; Hf”L"O(dez)-

Sketch of proof. Again, by Marcinkiewicz interpolation it suffices to estab-
lish strong type (co,00) and weak type (1,1) bounds. For the (oo, 0)
bounds, we note

M £l oo (w dar) Lonf | sup f(@) < fllzoo(da)
and thus it suffices to check that

Il = It sup |f(@)l < | inf o sup [F@)] = [ fllee(vdn)-
(cf. Exercise. In fact, this inequality is a consequence of the fact that
(Mw)(E) = 0 implies |E| = 0.

For the weak type (1, 1) bound, the argument is similar to that appearing
in the proof of Theorem One constructs the set K, the balls B;, and
the subcollection S as in that proof. This time we need to estimate w(3B;)
(where 3B := Bj(xj,3r;), which we do by writing

i) = w T )adxr w\T)dr d i w
wGB) = [ wwdrs [ o< alsie

J
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for any y € Bj, so that

w(3B >/| \dy<|B|/ o) Maly) dy.

This implies (by the choice of B;)

w(3Bj) S a”! / () [ Maw(y) dy,

Bj

which then gives

K) <Y w@B) Sal / F )| Me(y) dy < o / ()| Mew(y) dy,
S

j
yielding the desired bound. O

Remark 6.3.6. It is also a natural question to ask for which weights w we
have that M maps LP(wdx) to LP(wdz) boundedly for some 1 < p < oo.
The sharp condition for this is known; in particular, one needs that

p
O\
supé/ w(y)dy - (é,/ w(y) dy> Sl
B B B

In this case we call w an A, weight, and write w € A,. We will not pursue
the topic of A, weights in these notes; we refer the interested reader to [27].

‘We next turn our attention to so-called vector-valued maximal func-
tions.

Definition 6.3.7. For f : R? — (2(C) given by f(z) = {fn(2)}n>1, we

define
o = ([ 11200

We define the vector maximal function by

@ =(Thnw ) = 1ol

The result we will prove is the following.
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Theorem 6.3.8. The operator M is weak type (1,1) and strong type (p,p)
for all 1l <p < oo. That is,

{z: Mf>a}l Sa Y flip
and )
IMflle S fllee for 1<p< oo.

Remark 6.3.9. In the scalar case, the L® case was trivial. In the vector
case, it is false! In particular, one can check that if f,(z) = X[Qn_172n£(x)
then f € L™ but |M f(z)|?> = co. Instead, the trivial estimate is from L? to
L?. Indeed,

sl = | (2 wis)'|
<(/ Zermn?dx)%
< (/ernﬁdxf 1l

where we use that M : L? — L? boundedly.
We now have enough tools to prove Theorem when p € (2,00).

Proof of Theorem [6.3.8 for p € (2,00). Recall from Theorem that we

have

/ M fo() Poo(z) dar < / )2 Ma(a) dor,
so that

[ 15 @) Pote) da < / 1 (@) |2 Ma(a) da

for any locally integrable w. Now let 2 < p < oo and set ¢ = (§)". Then by
duality we have

52718 = 1)) g = sup [0 1w ds

lwllpa=1
< sup / () [ Mew das
|wllpe=1

< sup [[IIF @2l g IMwllze S 1£1IZe,

lwllpa=1

where we have used that M maps LY — LY boundedly. This completes the
proof. O
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It remains to establish the weak type (1,1) bound in Theorem for
then all of the remaining cases follow from Marcinkiewicz interpolation. For
this, we introduce the so-called Calderon—Zygmund decomposition.

Lemma 6.3.10 (Calderon-Zygmund decomposition). Let f € L'(R%; £2(C))
and set a > 0. There exists a decomposition f = g+ b such that g,b have
the following properties:

e lg(z)]lp2 < @ for a.e. x € RY,

o The support of b is a union of nonoverlapping cubes Qy, with

< 1o /Qk b(2)[l,> da < 2%

e We have g = f(1—>"xq,)-

Proof. We begin by decomposing R? into a mesh of equal-sized nonoverlap-
ping cubes whose common diameter is large enough that

ﬁ /Q [f(z)]|p2 dx <

for all cubes in the mesh.
Let @ be one of the cubes in this mesh. Subdivide Q into 2% congruent
cubes, and let (' denote one of the resulting cubes. If

31 [ 1@l de> o,

stop and select @’ as one of the cubes (). Note that in this case we have

d
a< A [ @) e de < Z | 1f (@) de < 2%.
T Jo 1l Jgo

If instead
& [ ISl de <o

then we subdivide further into 2¢ congruent cubes and repeat the same
selection process for each of the resulting cubes. We continue subdividing
until (if ever) we are forced into the first case.

We repeat this with all of the cubes in the mesh, leading to the collection
of nonoverlapping cubes Q. We then define b = f - ) xg,, which has the
desired bounds by construction.
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It remains to verify that ||g(z)||;2z < « for a.e. z € RY, where g = f — b.
To this end, note that for any = ¢ UQy, there exists a sequence of cubes
@ > r with diameter tending to zero and such that

] /Q 1f )]l dy < .

Applying the Lebesgue differentiation theorem (to the integrable function
x = || f(x)|l2), we deduce that

|f(x)]l;z <« for almost every = ¢ UQy.
As f = g outside of UQy, the result follows. O

Remark 6.3.11. The same proof and decomposition works for scalar valued
f. In this case we can extend the result to get a mean zero condition for b,

namely
1/ bdr =20
|Qk| O

for each k. Indeed, in this case we let

o(z) = {f(x) x ¢ UQk,
o Jo, fWdy = ey

and again set b= f — g. In this case we have |g(z)| < 2%, while

/Qk blw)dz = /Q @) - gla)do =0

Note that we still have

|Qlk|/ b(a)| dz < a.
Qk

Proof of Theorem[6.3.8, Let a > 0 and f € L'(R%¢?(C)). We use the
Calderon—Zygmund decomposition to write f = g+b as above. In particular,

{IMFf| > a}| < {|Mg| > za}| +{|Mb] > 3a}|.

We can first estimate by Tchebychev and the strong type (2,2) bound for
M:

{[Mg| > 30} S a”?||Mgllz> < a*|lgllZ--

~
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Now, since [|g(z)]|;2 < « a.e., we have

o? / l9(2) % dz < o™ / l9(@) e dz < o Ygllon < oY flze,

which is acceptable. It remains to treat the contribution of b.
Observe that by construction we have

UQk| < a7 fll 1

In particular, writing 2Qj for the dilate of @ with the same center, we have
02Qk| < 2% | £l
and hence it suffices to show that
{a € (U2Qk)": Mb > ga}| S a™ || f -

For this, we introduce an averaged version of b with components

b, — 1
n—;XQk Qk|/Qk ‘fn(y”dy

We first observe that for z € Qy,

lile = | [, 1wl < [ 1wleds 5o

This also shows

1Bl = E};/@k 16(2) 2 d < Ek:/cak 1f @l dy <[ f1 12

Finally, note that if z ¢ Ux2Qy and B(x,r) N Qy # 0, then Q C B(x,2r).
Thus, letting S = S, , = {k : B(z,r) N Qk # 0}, we can estimate

Mb()—suPerZ/B y)l dy

kes” Bz, T)ka

a0 / o

keS

sup Bx2r|/ B(e.2r) Z XQ, (2 |Qk|/ y)| dy dz

N Mbn(x>v
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whence Mb < Mb.
Using the above and arguing as we did for g,
{z & Uk2Qk : Mb > Ja}| S {Mb Z a}|
< a7 || Mb| 7
< a”?|lb7
Sa bl Sa Ml
which is acceptable. This completes the proof. ]

Remark 6.3.12. The theory of vector maximal functions can be extended
to ¢4 instead of £2, but we will not pursue this here.

6.4 Calder6n—Zygmund theory

Recall that (in the setting of Sobolev embedding) we encountered the ques-
tion of whether the Fourier multiplier operators defined via the symbol
m;(&) = % (known as Riesz transforms) are bounded on LP spaces.
To answer this question (as well as to understand some other fundamen-
tal operators in harmonic analysis) we will need to develop what is known
as Calderén—Zygmund theory. This theory addresses the case of ‘singular
integral operators’. The precise definition we need is the following.

Definition 6.4.1. A Calder6n—Zygmund convolution kernel is a func-
tion K : R\ {0} — C that obeys

(a) |K(2)| < |z|~? uniformly for = # 0,

(b) For any 0 < Ry < R2 < o0,

/ K(x)dz =0,
Ri<|z|<R

(c) The estimate
/ |K(x+y)— K(x)|dzx <1
[z[>2]y]
holds uniformly for y € R

Given a Calderén—Zygmund kernel K, we will consider the operator
defined via f — K x f.
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Example 6.4.1 (Riesz transforms). Consider m;(§) = _lgj The Fourier

multiplier operator with symbol m, is a convolution operator with the kernel

Kj(x) = F~lmy(x) = =04, F(|€]7).
Now recall that F~1(]¢|~1) = c|z|'~¢, and so
Kj(x) = cajle| =+

for some c.

Using this, we readily observe that (a) holds. As for (b), let us con-
sider (without loss of generality) the case j = 1 and d > 2. Define A =
diag(—1,—1,1,...,1) and consider the change of variables y = Az. As
det A =1, |y| = |Az|, and y; = —z1, this shows

/ x|z~ de = —/ x|z~ @D da,
Ri<|z|<R2 Ri<|z|<R2

which shows this integral is zero. Finally, for (c) we observe that
VEj| = O(Ja| =),
and hence the desired inequality follows from Lemma below.

Lemma 6.4.2. A kernel K obeys (c) whenever |VK (x)| < |z|~(@+1),

Proof. We use the fundamental theorem of calculus to write
1
K(z+y) — K(x) :/ VK (xz+6y)-ydb.
0
Thus

1
/ K(z+y) — K@y)|dr < / / WIIVE (x + 0y)| db da
|z|>2]y| 0 Jlz|>2|y|

1
< ]y\/ / ]ac—i—ﬁy]_(dﬂ) dx df
0 Jiz|>2[y|

< [yl |~ dz < 1.
|| >2]y]

In the above, we have used

| > |z + 0y| — Oly| > |z + Oy| — 30]z],
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which implies
4+ Oy D  faf ),

/ 2]~ da <y,
|z|>2]y|

which can be seen by changing to spherical coordinates:

We also used

(o] o
/ |ZL’|_(d+1) dr = / / p @D g qoy < / r=2dr < |yt
|z|>2]y| Sd=1 J2ly| 2[y]

This completes the proof. ]

Ezample 6.4.2 (Hilbert transform). Define K : R\{0} — R by K(z) = L.
This kernel defines the Hilbert transform

£ 71r/ f(ﬂﬁy—y) dy.

This kernel clearly satisfies (a) and (b), while to verify (c) we compute the
derivative of K.

We turn to our first main result, which shows that Calderén—Zygmund
operators define bounded operators on L? (i.e. are type (2,2)).

Theorem 6.4.3. Let K be a Calderon—Zygmund convolution kernel. Given
e > 0, define
K.(z) = X{a<|:c|<a*1}(x)K(x)'

Then for all f € S,
1K # fllpe S I fllze uniformly in e > 0.
Consequently, the operator
f'—)K*f::ii_I%Ke*f

extends from Schwartz space to a bounded operator on L2.

Proof. Let f € S. We will show that {K # f}.~q is Cauchy in L? as ¢ — 0.
This implies that K, % f converges in L?2. We denote the limit by K * f,
which then satisfies

K+ fllpz SN fllp2 +0(1) as e —0.
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Now let 0 < g7 < g2. Then we may write

K51 * f(x) _K€2 *f(x)

- / K(y)f(x - y)dy - / K(y)f(x—y) dy.
e1<|y|<e2

ey ' <Jyl<er!
Consider first the contribution of £; < |y| < 2. Using the cancellation

condition (b), the fundamental theorem of calculus, and the bound in (a),
we may write this term as

\ / o KOS =) = 1) dy'
S|Y|1S€E2 .
< / ol /0 IV f(a+ 0y)|dbdy

< / 1Y £l oo (gt 49
e1<]y|<e2

Because f is a Schwartz function, we may bound this gradient term by
(z)710% (where (x) = /1 + |z|2). Thus, performing the integral in y, we
find

Seg—e1 =0 as eg,61 — 0.
L3

/ K(y)f(z—y) dy
e1<]y|<e2

It remains to treat the range 62_1 < |yl < 51_1. For this, we use the
convolution inequality Lemma and (a) to bound

|

[\ K@i
g5 <|yl<e]

S HKXE;g\yEE;l * fllze

L2

Sz HKnglg\yEE;l 22

1
2
i ([, lela)
ey <[yl<e]

d
SIfllies -0 as ex — 0.

Now we need to establish LZ — L2 bounds for K. that are uniform in
€ > 0. To do this, we will show that K. themselves are Calderén—Zygmund
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convolution kernels. In fact, properties (a) and (b) are straightforward to
see, so we will focus on (¢). We need to bound

/ ‘Ks(x"i‘y)_Ka(x)’dx'
lz[>2]y]

This splits into three regions: (i) If ¢ < |z| and |z+y| < e~! then this integral
is equal to the integral of |K(z 4+ y) — K(z)| and the desired bound follows
from the fact that K is a Calderén-Zygmund kernel. (i) If ¢ < |z| < &7}
but |z +y| < € or |z +y| > 71, this integral reduces to an integral of |K ()|
alone. (iii) If ¢ < |z +y| < e~ ! but |x| < e or |z| > £}, this integral reduces
to an integral of |K(x + y)| alone.

Consider region (ii). If |z + y| < €, then

2| < |z +y|+ |y <e+ Slz| = |7] < 2.

Thus this region can be estimated by

/ lz| "% dx <1
e<|z|<2e

uniformly in e > 0. If instead |z + y| > e}, then we have
2] > |z +yl = [yl > 7! = gla| = |a > 7.

Thus this region can be estimated by

/ lz|~4dx < 1
Zem1<|z|<e !

uniformly in € > 0.
The treatment of region (iii) follows along similar lines. If |z| < ¢ then
ly| < /2, and hence |z + y| < 3. Thus this region is controlled by

lz+y <1
/e§w+y|§3;

If |z] > &' then —|y| > —3e ! and so |z +y| > |z| — |y| > 27!, and the
region is controlled by

/ z+y[? <L
s <]aty|<e!
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This completes the proof that K. is a Calderon-Zygmund kernel (with im-
plicit bounds independent of ¢).

To complete the the proof, we will show that || K.|ze < 1 (uniformly
in ¢ > 0), which implies that K. : L? — L? boundedly (uniformly in ¢).
Indeed,

1K * fllpz ~ 1K fllze S K llze [ f1] 2

by Plancherel’s theorem.
We fix ¢ € R4\ {0}. Then (up to constants depending only on 7, d),

K.(¢) = / e K, (2) da

:/ e K, (x) da:+/ e K (z) da.
|z|<[¢]~* |z|> ¢!

Using condition (b) and then (a),

‘ /| <lgl! ¢ K(o) da

/ e~ _ 1]K.(z) da
fel<lel-1

< / 2] de <1
lz|<|g] 1

uniformly in €. The remaining region will take a bit more effort.

We begin by writing

2/ e K, (z) dx
|| >]€] 1

:/ e K, (x) da —/ e K () da

|z[>[¢] = |z|> ¢

= / e K, (x) da — / e K (2 + &%) du,
fel>¢[ N S

where we have written

and performed a change of variables in the second integral.
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Now let us rewrite the integral above as the sum of three pieces, namely,

/ e [Ko(2) — Ke( + i) da, (6.7)
|z[>2m[¢| 1
/ e K, () du, (6.8)
[~ <[a|<2m¢| !
- / e K (x + %) dzx, . (6.9)
R

where R is the region
= {|z| < 27| ! | L€‘>|5| 1}
R x , |+ i .

The term (/6.7]) is bounded uniformly by property (c). The second term
is bounded uniformly by property (a). For the third term, we note that in
the region R we have

€17 < |2+ gl < 3migl ™,

and hence term is again uniformly bounded by property (a). This
completes the proof. O

Our next main result states that Calderén—Zygmund operators are weak
type (1,1) and strong type (p,p) for all 1 < p < oc.

Theorem 6.4.4. Let K be a Calderon—Zygmund kernel and K. be as before.
Then the following hold (uniformly in e > 0):

o {IK:=fl>a}l S a7 fle,
o [|Kcx fllor S fllze for all 1 <p < oo.

In particular, f — Kxf = lim._,o Kc.x f extends continuously from Schwartz
space to a bounded map on LP for 1 < p < oo.

Proof. We show the bounds and leave the extension as an exercise. Given
a > 0and f € L', we perform a Calderon-Zygmund decomposition and
write f = g + b, where the support of b is a union of nonoverlapping cubes

Qp, with
1 _ 1
L

and |g] < a a.e.
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We then have
{IKe * fl > a}| < [{|K:* g| > Fa}| + [{|K: b > 3a}|.

The contribution of g is handled in a straightforward fashion. We have
by Tchebychev’s inequality,
{IKe * gl > 5o} S @ ?[|Ke x gll72 S @ |gllfz S ™ Ifllor,

~ ~

where we recall that |g| < « and the definition of g (cf. Remark [6.3.11]).
Now consider the contribution of b. We let ()}, denote the cube centered
at z (the center of Q) and dilated by 2v/d. Then

UQH <D 1Qk =D 2V Qk S o M £l

by construction of the @i, and hence we only need to show
{z € (UQR) : [K=xb(z)| > 50} S a || fl 1

We begin by with an application of Tchebychev’s inequality to bound
this measure by

ot / |K. b dz. (6.10)
N(@Qp)°

We now use the mean zero condition on b to write

K. % b(x) = Z/ (Ko(z — ) — Ko(z — 22)]b(y) dy.
k k

3 / Ke(e —y) — Ke(x — a4)| b(y)| dy do
Qr
sy ot [ [ iR g) - Ko - a0l de )l do
k
Now write
/ ]Ke(x—y)—Ka(a?—ack)]da::/ |Ko(z4xp—y)— K ()| da.
(@Qp)e —{zr 1+ (QF)°

Now we claim that |z| > 2|z, — y| for x,y in the appropriate sets above.
Indeed, we first have |z, — y| < Vdl(Qy) for y € Qp, while |z| > 2v/dl(Qy).
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Thus condition (c) applies and this integral is bounded uniformly, leading

to
GI0) < o 12/ Dy < a1 f s,

as desired.

Marcinkiewicz interpolation now yields (p,p) bounds for 1 < p < 2
(uniformly in €). It remains to treat the case 2 < p < oo. To this end, we
fix 2 < p < 0o and write

|5 fllw = sup / K.z — ) f()3(x) d dy

9l —

—sup/f /K z —y)g(y)dzdy

- Sup<f7 8(__) * g>
S [ fllze sup [ Ke(=-) * gl 1

S I llze,
where we have used L?" boundedness for K (—-), which follows from the fact
that 1 < p’ < 2. This completes the proof. O

Remark 6.4.5. Let us briefly summarize the ideas of the proofs above.
Essentially, what we showed is that the three conditions defining a Calderon—
Zygmund kernel K guarantee that K is bounded, which yields the L? — L?
bounds by Plancherel. Then, using a Calderon-Zygmund decomposition
and item (c), we showed that Calderon-Zygmund kernels have weak type
(1,1) bounds. Interpolation yields (p, p) bounds for 1 < p < 2, and a duality
argument yields (p,p) bounds for 2 < p < oo.

Remark 6.4.6. Boundedness in L' and L™ can fail. To see this, consider

again the Hilbert transform

Let f = X[ € LN L'. We claim that

Hx(qpl(z) =

which belongs to neither L' nor L*>. Indeed, we can write

1 X(a,p) (T — Y)
HX[a b]( ) ig% eyl <e-1 Y

dy.
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Now note that x(,p)(z —y) # 0 if and only if z — b <y < ¥ — a. Thus if
x > b, then for € sufficiently small we get

HX[a,b](ﬂf)Zi/ vy =log|)-

Similar considerations treat the cases a < < b and x < a (choosing € small
enough), and so the identity follows. (See the exercises.)

6.5 Exercises
Exercise 6.5.1. Show that that
x> ||~ og(|z] + |2 71) 7
belongs to L'(R) if and only if # > 1. Use this fact to fill in the details in

Remark [6.1.61

Ezercise 6.5.2. Prove the estimates (6.5)) and (6.6]). Hint: Write the norms
in terms of the integral of the distribution function.

Ezercise 6.5.3. Use the Hardy—Littlewood maximal inequality (Theorem|6.3.1])
to prove the Lebesgue differentiation theorem (Proposition |6.3.4]).

Ezercise 6.5.4. Fill in the details of the proof of Theorem [6.3.5

Ezercise 6.5.5. Show that if f,(r) = x[an-120)(7) then f = {f,} € L% but
M f(x)|?> = cc.

Ezercise 6.5.6. Fill in the details in Remark [6.4.6]



Chapter 7

Classical harmonic analysis,
part 11

In this chapter we primarily focus on the topics of Littlewood—Paley theory
and the theory of oscillatory integrals.

We define a partition of unity to be used throughout the chapter as
follows. We let ¢ : R? — [0, 1] be a smooth C°° function such that

() 1 |z| <14
€Tr) =
4 0 |a|>1.42.

We let 4 : RY — [0, 1] be given by 1 (z) = ¢(x) — ¢(2z). For N € 2%, we set
Yy (x) = Y(5). It follows that

Z Yn(x) =1 almost everywhere.
Nea?

Indeed,
> Un(m) = 9(3) - o(35).

N1<N<N:

In what follows, sums over N will be understood to be indexed by N € 2%,

7.1 Mihlin multiplier theorem

Recall the notion of a Fourier multiplier operator, i.e. an operator of the

form
T, = F 'mF for some m:R?— C.

163
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It is a simple consequence of Plancherel’s theorem that 7}, maps L? — L?
boundedly whenever m € L. The following theorem concerns the more
general question of LP boundedness for Fourier multiplier operators.

Theorem 7.1.1 (Mihlin multiplier theorem). Suppose m : RN\{0} — C
satisfies

|0gm()] < 1€l (7.1)

uniformly in & € RI\{0} and for all multiindices o of order 0 < |a < [%EL].
Then T,,, = F~'mF is bounded on LP for all 1 < p < oco.

Proof. Observe that T}, is given by convolution with 7 = F~'m. Now, as
just mentioned, the L? — L? bound for T}, follows from the assumption
that m is bounded (which is just with |a| = 0).

Thus, revisiting the proof of LP boundedness for Calderén—Zygmund
operators (cf. Remark following Theorem, we only need to verify
that condition (c) holds for rn, i.e.

/ lm(x +y) —m(z)|de <1 uniformly in y.
|z[>2]y|

Recall that this condition would be implied by the estimate |Vm(z)| S
||~ (@) uniformly in z € RN {0} (cf. Lemma [6.4.2)). Let us first see that

this stronger condition holds if we assume ([7.1]) holds up to |a| < d + 2.
We write

m(&) = ZmN(f), where mpy = Yym.
N

By the product rule,

OEEmnIl=| D carag (Em(E)OE N
altas=«

S 2 NI gy
al1toas=«a

Thus
|2Vl S 10 [Emn]ll

S ) g1l N leal g

a1+a2:a |§|NN
d+1—|a
< Ndti-lad,
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Applying this with || = 0 and |a| = d + 2 yields
Vi (2)| < min{ N, N7z 7(@F2)},
Thus

Vi(z)| S Y, N4 YT NTHa T S e,
N<|z|—1 N>|z|—1

as needed.
Let us now prove condition (c) assuming (7.1]) holds only up to |a| <
[%] By Plancherel and the computation above,

/ i () di ~ / 02 m(©)]? de
< Z |¢| el y—2leal ge

a1 toas=a |£|~N

5 Nd—2\a|'

Using Cauchy—Schwarz and applying the above with |a| = 0, we find

/ (@) dz < (NR)S.

On the other hand, applying the above with |a| = [4],

3 >
/ iy (2)] d < (/ |mamN(:E)|2dm> (/ |2l d:n>
|z|>R |z|>R
S (VR)s T,
Choosing R ~ %, we find
/|mN(m)|dx <1 uniformly in N.
Arguing in the same way, we have
/ 0%y ()| dz < NV

In particular, this shows

/ (@ + y) — (@) da < Nyl
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Thus we have

m(x —m(z)|dz Al — ()| dz
[, i) =@l < Y /|x>2y|| vl + 4) — ()

" NS N>y -1 7 Izl
S1+ > (Nly) ﬂ% St
N>[y|~1
This completes the proof. O

Remark 7.1.2. This result is sharp in the sense that L' and L* bounds
can fail. To see this, let us re-use the Hilbert transform example, which
essentially corresponds to taking m(x) = % in d = 1. By using contour
integration (say), one can verify that m(&) is a multiple of the signum func-
tion. In particular, it satisfies . However, as we saw before, the Hilbert
transform is not bounded on L' or L.

Remark 7.1.3. One application of the Mihlin multiplier theorem is the
following ‘Schauder’ type estimate, which is useful in the setting of elliptic
PDE: for any 7,7 =1,...,dand 1 < p < o0,

82
g2 lle S IAf ] Lr

(uniformly for f € §). Indeed, this is equivalent to the LP boundedness of
the Fourier multiplier operator

mij(€) = 54,

which is a consequence of the Mihlin multiplier theorem. (This can also be
deduced by using boundedness of Riesz transforms twice.)

7.2 Littlewood—Paley theory

Definition 7.2.1. For N € 2%, we define the Littlewood-Paley projection
operators Py via

Fn(€) = Pnf(€) = vn () f(€).

In particular,

fn(z) = / N (Ny) f(z — y) dy.
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Note that Py is not an actual projection, in the sense that P]%, # Py. We
further define P<x by

Fen () = PanT(€) = o(£)/(9).
Finally, we have P>N =1- PSN and PNS-SM = ZNSKSM PK.

Remark 7.2.2. There is an alternate definition of frequency projection that
utilizes heat flow. Recall that the solution to the heat equation

up = Au,  u(0,2) = f(x)
is given by u(t, z) satisfying

at, €) = e P f(¢).

We may alternately write this as u(t) = e!®f. Suppose f is a nice function
(e.g. f € S8). Then at time ¢t > 0, & will mostly be concentrated where
€] < ﬁ In particular, we can consider

Poyfi= ety
to represent a projection of f to frequencies < N. We could then define
pr _ eA/N2f . 64A/N2f.

This viewpoint is useful in settings in which one may not have a nice notion
of a Fourier transform, but one can still solve the heat equation (e.g. on
manifolds).

We next prove some basic properties of the Littlewood—Paley operators.
Proposition 7.2.3. The following hold:
(a) Pn and P<y are bounded on LP for 1 < p < oo (uniformly in N ).
(b) We have the pointwise bound
[fn (@) + [fen (@) S [Mf](2)
for all N, where M denotes the Hardy—Littlewood maximal function.

(¢c) For1<p<oo and f € LP, the sum ) fn converges in LP to f.
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(d) For1<p<q< o0, we have

d_d
[fnlle S Nv-all fnllze

and 4 g
| f<nllze S N? 4|l f<nlLe-

(e) For1 <p<oo and s € R, we have

VI fxllze ~ N[ fnll e

In particular, for s > 0,

IVI*fenllze S N°|[fllLe,
>y flle S NZNIVEF e

Remark 7.2.4. The estimates in (d) and (e) are known as Bernstein esti-
mates. Item (c) may fail in L' and L. To see this, first observe that for
each IV, we have that P<xnf € C™ (since P<y is convolution with a smooth
function), but C*° is not dense in L>°. Alternately, note that f = 1 belongs
to L, while

fulz) = / Iy)dy = 0.

To see why (c) fails in L', note that any individual piece fy (and hence any
finite sum of pieces) has mean zero, while mean zero functions are not dense
in L'. Indeed,

/fN(:v) dx = fn(0) = 0.
The proof of (c) above, however, will show that f<y — f in L! as N — oo.

Proof. Item (a) follows from the fact that Py and P<y are given by con-
volution with L! functions with uniformly bounded L'-norms (in N). In
particular, by Young’s convolution inequality and a change of variables,

1Px fllze = IF " on]  fllze < IF 7 onllzallfllze < Nf ]z,

and similarly for P<y. This argument also proves (d), since

[N * flle SINF Nl 1 f )|z

for % +1= % + %. By a change of variables, one readily checks that

d

d_
IF on]llr S Nv T,
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which yields (d).

Item (b) follows from the general fact that convolution with a spheri-
cally symmetric L'-normalized function is always controlled by the maximal
function, which we state as Lemma below.

Next consider (c). Writing >, <y<n, fN = f<n, — f<n;, the problem
reduces to showing f<y — f as N — oo and f<y — 0 as f — 0. For the
first point, we observe

p

I~ Fewlls = [ \ [ elite— ) - sy as,

where we have used [ ¢ = 1. The result now follows from continuity of
translations in LP and the fact that f|x‘> g |#|dy can be made arbitrarily
small by choosing R large enough. The details are left as an exercise. Note
that this part of the argument works even when p = 1.

For the second point, recalling that |P<x f| < M f pointwise, we see that
by dominated convergence (and the maximal function estimate) it would be
sufficient to establish P<yf — 0 pointwise. This holds, for example, for
f €S8, since

1P<n fllzee S NGl flis =0 as N = 0.

Thus we have P<yf — 0 in LP for f € S, and the result for f € L? follows
from density and LP boundedness of P<p.

Finally, we turn to (e). It suffices to prove the bound for fy, for the
remaining two estimates can then be obtained by summation over M < N
or M > N. We consider the Fourier multiplier operator with multiplier

my(§) = N7°|¢*dn (€),

where ¢y is a slight fattening of ¥y. As ¥y is supported away from & = 0,
we have my € S. Thus F~!(my) € S and a change of variables shows

IF~ mn)llze S 1
uniformly in N. Since Py Py = Py, we deduce from Young’s inequality that
VI fnllee S N[Nl

However, since s € R was arbitrary, the argument above also shows the
reverse inequality. This completes the proof. ]

The following lemma was used in the proof above and may be of inde-
pendent interest.



170 CHAPTER 7. CLASSICAL HARMONIC ANALYSIS, PART II

Lemma 7.2.5. Suppose K € S is nonnegative. For any N > 0, we have

N / K(N(z — )/ ()| dy S Mla].

Proof. Without loss of generality, assume f > 0. Then

[N = ) 1) dy
d d _
SN /Nx_mglf(y) dy+Z/R NYK(N(z —y)f(y) dy

<SMf@) + Y L&) / IN(z — )| (N (2 — ) f(y) dy

R>1 Nl|z—y|<2R

SMf(z)+ Y RIMf(z) S Mf(x),
R>1

where we sum over dyadic R > 1 and the implicit constants depend only on
[(a) K oo O

Our next result is the Littlewood—Paley square function estimate.
Theorem 7.2.6 (Littlewood—Paley square function estimate). Let

s = (3 rmmr?)é.

Ne2Z

Then
ISfllze ~ | fllr for all 1< p< oc.

The proof we present will make use of a probabilistic result known as
Khinchin’s inequality.

Lemma 7.2.7 (Khinchin’s inequality). Let X, be independent identically

distributed random variables on a probability space with X,, = £1 with equal
probability. For any 0 < p < oo,

(IS wxat)) o (S

for any {cn} € (2.
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Here independence of X and Y means that

E{f(X)g9(y)} = E{f(X)} E{g(YV)}

for any measurable, bounded f,g. Note that E{X,} = 0 for the random
variables defined above.

Proof. Without loss of generality, take ¢, € R. By Tchebychev’s inequality,
for any t we can write

]P’{Z nXpn > A} < e ME{e! 2 enXn)
< e—)\t HE{etchn}
n
< 67)\1‘/ H %{etcn + e*tcn}
n

< ef)\tHetQC%/Z < efAtetQZc%/Q'
n

Now choose t = ﬁ to get the bound

2
P{>  cnXn| > A} < 2¢ A
This implies

(E{| chxnp}f = </Ooop)\p1P{| > e Xal > A} d/\) ’

[e’e) a2 117
< </ pA\P12e 25 dA)
0

1
2

2
(Z4)"
where in the final inequality we have made the substitution

1
p=0>_c) 2\

and used finiteness of the integral [ e*“2/2up*1 du.
It remains to establish the reverse inequality. We claim that

S —E{|Y X}

[

A
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Indeed,
E{Y eXu|’} = E{Z CnCm X Xom
= Zc E{X2}+ ) cnem B{X,} B{X,}

n#m

= Zc + ) cnem B{X,} E{ X} = ch,

n#m

where we used E{X?2} = 1 and independence.
Thus, for 1 < p < co we may use Holder’s inequality and the inequality
proved above to get

ZCZ = E{| ZCan|2}
< (B{Y. eaXal?))? (BY Y caXunl?})¥
< (BUY enXal?}) P (3 2)2

which yields the result.
Finally, for 0 < p < 1, we argue similarly to get

Z C?L = E{‘ Z Can|p/2’ Z Can’27p/2}
< B enXalP D) P B S en Xl 7)
S B XD 23 2)

Rearranging now yields the desired inequality. O

"d»—t

We turn to the proof of Theorem

Proof of Theorem[7.2.6. Let X be independent identically distributed ran-
dom variables with Xy = +1 with equal probability. By Khinchin’s inequal-

ity, 1
(SP)(a (E{\ZXNJ‘N )
Thus
1571 ~ B |3 Xn (o) da}
=E{II)_ Xnfallto} = Efllmx * fI7,},
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where

mx (&) =Y Xnn(6).
N

Let us now show that my is a Mihlin multiplier (with bounds independent
of the value of the Xy), which will imply [|Sf||z» < || f]lz». We compute

O ()] = ]Z XNN“'<agw><§>' < le[ 1,
N

where we use the fact that for ¢ € C2°(R%\{0}) only finitely many of the
terms above will contribute to the sum.

Remark 7.2.8. The proof shows that the bound ||Sf|/z» < ||f|/z» holds
for a wider class of ‘square functions’. In particular, instead of using the
multiplier ¢ (that defines P;), one could use any C2° function supported in

R4\ {0}.

It remains to establish || f||zr < ||Sf||z»- This will actually depend on
the fact that ¢y is a partition of unity. Define

pN:Pﬂ‘i‘PN‘i‘PQN, so that ]SNPN:PN.
2

Then by duality, Proposition [7.2.3|(c), and the estimate proved above,

<f79>:/ZPNPNf§dx
N
-/ > Py fPgds
< [(Spvser) % (S iPvor) i

SIS Fllze Sl v
SIS Fllzeligl e

This completes the proof. ]

In the following, we will establish some ‘fractional calculus’ estimates
that are useful in applications to PDE. We begin with the following corollary.

Corollary 7.2.9. The following hold:

11 L ~e (Z stlfN(:c)IQ)Q‘ (7.2
N

Lr
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foralls e R and 1 < p < oo, and

VI Fllze ~sp (7.3)

(% N2S|f>N<x>|2>;

Lp
foralls >0 and 1 <p < oo.

Proof. Using the (proof of) the square function estimate, we first observe

1

2

H <§ NQS\PN!V\_5912> ‘
N

Taking ¢ = |V|°f now yields RHS(7.2) < LHS(7.2). For the reverse in-
equality, we use Plancherel, Cauchy—Schwarz, Holder, and the estimate just

established to write

(g, h) 2 = /ZN_S\V]_SPNg-N_SN\SPthx

S llgllze-

Lr

1 1
</ (Z N%\vawﬁ) : (N?Srﬁmvr%r?) e
N
1 . 1
< IS N2 (P[] aP) o (3 N2 Bl 9P P)
< I N> | Py 5 P)

Taking the supremum over h € L and applying this to g = |V|*f yields

LHS(7.2) SRHS(7:2).
We turn to (7.3]). We will show RHS([7.2)~RHS(7.3). Using

IN = >N — [>on

and the triangle inequality, we readily deduce RHS(7.2) SRHS([7.3)). For the
reverse, we estimate as follows:

ZN2S‘f>N‘2§ZN28 Z |fN1”fN2|

N1,N2>N

<2YON* Y NIl mINS |
N<N;1<Ns
2s
S D D wewp NIl INS v
N1<N2 N<N;
NS
S Y NN ] S 30 N ],
N1<N2 N

N[

e 1Al Lo
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where in the last step we have used Schur’s test (Lemma [A.3.4). This
completes the proof. ]

We turn to the following fractional calculus estimates due to Christ and
Weinstein [6].

Theorem 7.2.10 (Fractional product rule). Let s > 0 and

with 1 < p,q,pj,q; < oo. Then

VPG D e S NIVE Fllzeligllize + [[fllza Vgl o

Proof. We use

VI (Fa)lee ~ 11D N*|Py(f9))? s

Now write

J9=J>n/a9 + f<n/ag>n/a + f<njag9<nya
so that

Pn(fg9) = Pn(fsnya9) + PN (f<njagsnya)-

Thus (using Proposition [7.2.3))
Z N*|Py(fg)]* < Z NQS’PN(f>N/49)\2 + Z N2S|PN(f§N/4g§N/4)’2
= Z N IM(fsn19)* + Z NZ|M(M fgsna)|*
Now, by the vector maximal inequality and the corollary,
1
I~ N*IM (fonyag)?)? e SUQIN® fonyal®) gl e
S lgllzez IV fll e
Similarly,
1
1D N*IM(M fgona)l®)? e S IMFCO IN*gonyal®) 2l

S M fllzal[[VIPgll a2
S Lo 1V P gll paz

This completes the proof. O
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Theorem 7.2.11 (Fractional chain rule). Let F': C — C be such that
|F(u) — F(v)|] <|u—v|[G(u)+ G(v)] for some G:C —[0,00).

Then for any 0 < s <1, 1 <p,p1 <oo and 1 < py < oo with

we have
IVIP(Fou)lre S I1G (W) Loz [V [ul| Ler -

We will need the following lemma, similar in spirit to Lemma

Lemma 7.2.12. Suppose |h(x)| < g(x), where g is a radial decreasing func-
tion with lim, o r%g(r) = 0. Then

[(hx F)@)] S Nlgll (M f)().

Proof. By the fundamental theorem of calculus, we have

a(y) = /| o (IuD(=2)(p) dp.

Yl

Thus

<// o (W) (=22)(0)|f (& — )] dpdy

< /0 /|y<p!f<w—y)\dy(—§$)(p>dp

< M(2) / -2 () dp
< Mf(x) /0 90" dp < gl M f(a).

Note that to integrate by parts used r%g(r) — 0 as r — co. This completes
the proof. ]

Proof of the fractional chain rule. We write
S S 1
IIVEF@) e ~ 1O NPy F()]*)2 | 0.

Now, using that [ =0, we write

[P (F(u)](x) = /N%(Ny) [Fou(x —y) — Fou(x)]dy,
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so that

|[Pn (F ()] (z)] < /NdIJJ(Ny)HU(:v—y)—U(:E)I[GOU(:E—?JHGM(?U)] dy.
(7.4)
We decompose

u(z —y) — u(@)] < [usn (@ — )| + lusn (@) + D Juk (@ —y) — uk (@),
K<N

We will now prove
lu (v = y) — uk(2)] < Kly|(Muk(z - y) + Muk (x)). (7.5)

It suffices to treat the case K ly| < 1. We may apply the fattened projection
Pg (abusing notation and writing the corresponding convolution kernel as
) and write

uk(@ ~ ) = wne(@) = [ KWK k(e ~y = 2) — ucla - 2] ds
= [ KU = )~ S~ 2)dy
= /del Ky -Vi(Kz — 0Ky)ddug(x — z) dz.
0
Thus, using the lemma above,

i~ ) = uc@)] £ Kyl [ gyt — v) dy

< KlylMug ()| K91+ K|2]) 1% 2
S Kly[Mug(z),

which is acceptable.
Continuing from (7.4, we bound | Py (F o u)(z)| by

| PN (F o u)(z)|
< M(usyGou)(x)+ M(usn)(z)G o u(x)
+ Jus N ()| M (G ou)(z) + |usn(2)(G o u)(x)
+ Y [ NURIG ) Mo~ ) + M)
K<N
X [Gou(x —y) — Gou(zx)]dy.
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The contribution of the first four terms can be bounded by
M (u>NGou)(x) + M(usn) () M(G o u)(x).
The contribution of the sum can be bounded by

> BAM(Mux G ou)(z) + M[Mug|M[G o u)(z)}.
K<N

Now we can estimate

1Y N |PyF(u)[?)? | s

IO N%[M(usnG o)) 1o (7.6)
1O N2 M (usn) M (G o u)[?)2 | o (7.7)
HIO N> EM(MugG ou)|?)? |1 (7.8)

K<N
HIO NN KM (Mug)M(G ou)|?)?|| . (7.9)
K<N

It remains to bound these four terms.
First, by the vector maximal inequality and the corollary to the square
function estimate,

[T0) < 11G o u(> " N [usn]?)? s

S G oul ez |[IVIPul e
Arguing similarly,
1
D S IM(G 0w |(Y IM(N*usn) )2 | o
S G oulle: [[[VPul| e

Note that ps = oo is allowed.
For (7.8) and (7.9), we need the following general inequality:

SN Y fexl ST NFea provided <1 (110)
K<N

Using this and arguing as above suffices to treat (7.8) and (7.9). The proof
of (7.10) (and (7.8) and (7.9)) is left as an exercise. O
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7.3 Oscillatory integrals

In this section we discuss the theory of oscillatory integrals. There are two
types of integrals one often considers.
Oscillatory integrals of the first kind are written

() = / AW (2) de,

where A > 0, ¢ : R » R, and ¢ : R? — C. In this case we are interested in
the asymptotic behavior of I(\) as A — oo.
Oscillatory integrals of the second kind are written

Tof(z) = / D (2, ) £ () dy,

where A >0, ¢ :RIxRY 5 R, K : R x R* - C, and f : R — C. In this
case, we are interested in estimates on the operator norm of T as A — oc.

We begin by considering oscillatory integrals of the first kind in dimen-
sion d = 1.

Proposition 7.3.1. Let ¢ : R — R and ¢ : R — C be smooth functions.
Suppose 1 has compact support inside an interval (a,b) and ¢'(x) # 0 for
all z € [a,b]. Then

b
I(\) = / @) y(x) da

satisfies
TN <y AN forall N >0.

Note that without the assumption of compact support inside (a,b), the
best possible decay is A™!, which is realized by ¢(z) = = and () = 1.

Proof. First, the bound |I(\)| < 1 is immediate. Next, we write

i\ _ 1 d i
eP0lE) = L4 ixole)

and integrate by parts. This yields

10 = = [ 0L [t dn

so that
TN S A
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To continue, define the operator D via
__ 1 d
Df(z) = sy anf (2)-
The computation above shows that the adjoint D! is given by
t _ _d 1
D'f(x) = & o /(@)
For any N > 0, we may write e’? = DNe*? and so
b .
I(\) = / eMNDYNy dex.
a
This yields

IV < / (DY de

e BBP(81 ) - - - (0%
SRV S i

k=0[B|+|a1 |+ +|eg|=N L ([a,b])
<N AN,
This completes the proof. O

Proposition 7.3.2 (Van der Corput Lemma). Let ¢ be real-valued and
smooth. Let k > 1 and suppose

0" (2)| > 1 for all x € [a,b].

If k =1, assume additionally that ¢’ is monotone. Then

b
I\) = / @) dy
satisfies
T(N)] Sk A7F,
where the implicit constant is independent of A, ¢, a, b.

Note that if £ = 1 then one needs more than just |¢'| > 1. This can be
seen first by noting that

b .
/ i) gy

>

/a ’ cos((a)) dal.
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Now, if ¢ is chosen so that ¢’ is very large when cos¢ < 0 and ¢ is very
small when cos ¢ > 0, then one can arrange that

—00 as b— oo.

/ ’cos(6(x)) da

Proof of Van der Corput. First consider k¥ = 1. Then an integration by
parts yields

b
_ 1 7ered)  gire(a) 1 ixe d (1
IV =50 — @) + i/\/ L (5y) da

As the integral is bounded by

b
| A

(since ¢’ is assumed to be monotone), the result follows in this case.
For k > 2, we proceed by induction. Suppose the result holds at level k.
Replacing ¢ by —¢ if necessary, we may assume that

<1

o) () > 1 forall z € [a,b).
In particular, (%) is increasing, so there is at most one point ¢ € [a, b] such
that ¢(*)(c) = 0.
Case 1. Suppose there exists ¢ € [a,b] so that ¢(*)(¢c) = 0. Then for
4 > 0 we have

10" ()] > 6 forall =€ [a,b]\(c—6,c+3d).

c—0 ct+o b
I\ = / e dx 4 / e dx + / e dg.
a c—d c+6

We estimate by the change of variables z = 5_%y:
c—6
/ e da:
a

where we have used the inductive hypothesis and the fact that

We write

==

) 0k (c—0) o\ 57%
’5_k /1 e Fy) dy’
dka

SR,

065 Fy)| > 6716 > 1.
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The contribution of (¢ + 4, b) is treated similarly, while the contribution
of (¢c—4d,c+9) is bounded by the length of the interval, i.e. 26. In particular,

b
/ e dx
a

as can be seen by choosing § ~ /\_k%rl.
Case 2. Suppose ¢\¥) £ 0 for = € [a,b]. If ¢*)(a) > 0 then we have
¢*)(z) > & for x € [a+ J,b]. Then we can write

b a+d b )
/ e dg / e dg / e dg
a a a+od

<6+ (6N)”
PN

<§ 4 (GN)F S ATEA,

< +

el

choosing § as above. If ¢(¥)(a) < 0 then we have ¢(*)(b) < 0 and so ¢*) (z) <
—¢§ for x € (a,b — §). Then we can argue similarly. This completes the
proof. O

Corollary 7.3.3. Let ¢ : R — R be smooth. Let k > 1 and assume that
10" ()] > 1 for all z € [a,b].

If k =1, assume additionally that ¢' is monotone. Then

b
/ €i>\¢>(:v)¢(x) dx

a

Sk ATE[[RO)] + 19121 (a8

Proof. We write

b b T
/e”\(b(x)w(;r)d:v:/ w(l‘);;/ PR dy dx

a

b b T
zi/)(b)/ e ow) dy—/ ¢/(az)/ W) dy da.

b b
/e”‘qswdx /e”“z’dy’
a a
+ sup

x
[ e i
z€lab]l/a

SIPB)ATF +ATF ]|,

Thus

< [9(b)]

where in the final step we use the van der Corput lemma. ]
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Proposition 7.3.4 (Stationary phase). Let ¢ : R — R be smooth. Assume
¢ has a nondegenerate critical point at xg, that is,

¢'(x0) =0 and ¢"(x0) # 0.

If ¢ : R — C is smooth and supported in a sufficiently small neighborhood
of xg, then

I\) = / @) () da
satisfies
I\ = (2mi) 2 A2 [¢" (20)] 2@ p(ag) + O(A"2)  as A — oo

Proof. Let us first get the decay rate.
Let a € O satisfy a(x) = 1 for |z| < 1 and a(x) = 0 for |z| > 2. We
write

I = L) + L),

where
L\ = /ei)“z’(x)w(:z:)a()\é(x — x9)) dz,
B = [ @)1 - a(x (o~ 20)] do.
Thus by a change of a variables,
L <Az

On the other hand, using integration by parts (and the fact that ¢'(x) # 0
on the support of ¥ away from z = xg), we can get

L) Sv AN

for any N.
To get the exact coefficients, we argue as follows. By Taylor’s theorem
and ¢'(z9) =0

¢(a) — d(x0) = 56" (x0)(x — x0)*{1 + ()},

where 7 is smooth and n(x) = O(|x — xo|).
Now let U be a small neighborhood of z so that (i) [n] < 1 on U and
(ii) ¢’ = 0 on U\{zo}. We make the change of variables

y = (z —z){1 +n(x)}7,
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which is a diffeomorphism from U to a small neighborhood of y = 0. Assume
that 1 is supported in U.
Now we write

I\ = €i>\¢(l‘o)/ ei/\[¢($)—¢(l‘o)}¢(x) dr
U

— (Mo(o) / e 2 (y) dy,

where 91 € C2 is supported in a neighborhood of y = 0. Set \; =
AP (x0) /2.

Introducing another C2° function 9 (equal to one on the support of 1),
we can write

/e“lyzz/n(y) dy = /6M1y2ey26y21/11(y)¢2(y) dy.

We now use Taylor expansion to write

N
) .
e Pi(y) =Y ay’ +y Ra(y) = Ply) + vy  Ru(y)
=0
for some N > 2. Note ag = 1(xp).
Thus
. 2 2 2 N ; 2 2 .
/e”‘ly e YV eY o dy = Zaj/el)‘ly e Yyl dy (7.11)
=0
+ / MY eV’ Py — 1] dy (7.12)
+ /ei)‘ly2e_yQyNRNz/12 dy. (7.13)

First consider ([7.11)). Then, using the change of variables z = y(1 —i)\l)%
and using (1 +2)"% = 1 — az + O(z?), we have

/6iA1y26_y2yj dy = /e—y2(l—i/\1)yj dy
=(1- i/\l)_%_% /e_z2zj dz

= (—id) TR T /e%ﬂ' dz
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Thus the leading term of (7.11)) is
(o) v/m[ R s,

2
_3
as desired. The next terms are all O(X; ?) = (’)()F%) (note that the integral
in the j = 1 case vanishes).
We would like to show that (7.12]) and (7.13]) are O()\_%).

For term (|7.12]), we note that
2
e " P(y)2(y) — 1]

is supported away from zero, so that we may integrate by parts to deduce
(7.12)) is <, A= for any m > 0.
We turn to (7.13). We write

/eMlyzyNe_yQRNlﬁQ dy _ /ei)quyNe—yQRNq[)Qa(g) dy (714)
+/eiA1y2be(y)[1 —a(Y)] dy, (7.15)
where ,
b(y) :=e ¥ Rn(y)2(y).
Now,

(T < / ya(L)]dy < N
To deal with ([7.15)), we write

N2 Sy o2
ez)\ly _ 1 d ez)\ly )

T 2iNiy dy

Then

i 2 m
715 = / MV [ ™ [V b(y) (1 - a())] dy.
Thus, choosing m > N + 1,
Na1]ge2ple= 21973 [1 — a] ()

S y :

k=0 a1 +as+az=m—k

SATYS / R
ko ly|>e

—-m N+1-m—(k4+a1+a
SAY e (ke o)
k,a
< Al—m€N+172m.

~
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N

Now choose ¢ ~ )\1_ , so that

N+1 )\1—m6N+1—2m'

£ ~
We have
_N+1 _3
((FI5)[ S Ay 2 S A2
for N > 2. This completes the proof. O

Ezample 7.3.1 (Linear Schrodinger equation). Consider the linear Schrodinger

equation
10su = —%Au,
u(0, ) = uo(),

where u : Ry x R, — C. We can solve this using the Fourier transform.
With

£(6) = (2m)7} / ¢~ f () da,

we have
idy(t, ) = 5l¢l*a(t, €),
so that
u(t,z) = (277)_g /emg_it£2/2uo($) dz.

Stationary phase allows us to describe the long-time behavior of solutions.
In particular, we write

e en o
ezac{ &2 /2 _ eth)({,t,:v)’ (I)(f, t,ZL‘) _ %f o %52
We compute the critical points of ®:

0P =75—-6=0 for §=¢:=7.

As 852d> = 1, we have that &y is a nondegenerate critical point.
Thus, stationary phase yields

ult x) = (2m)72 (2mi) 373 (~1)2eME0T 3D g (g9) + O(12)
as t — oo. Simplifying this we get the Fraunhofer approximation
ult, ) ~ (it) "2 2y (L).

Roughly, this states that the long-time spatial distribution is determined by
the initial momentum distribution.
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Ezample 7.3.2. Consider the Klein—Gordon equation
Upt — Ugpy + m?u = 0.
Using the Fourier transform, this becomes
iy = — (& + m?),

and so

at,€) = A(€)e"VET™ 4 B(g)etVETM

for some A, B defined in terms of the initial data. In particular, to un-
derstand the asymptotic behavior we need to understand the asymptotics

of
[ e () g,

Consider first
=56+ VE w2,

so that

x 2 2\—1 m?
' =+ +m) 2, q)//:m?éo'

The stationary point of ® occurs when
_1
P= @ mh)
Squaring both sides leads to

m2( )2

2 _
R EE)

I8

18

and thus we get a stationary point if [§| < 1. Considering separately the
cases ¢ < 0 and = > 0, we find that the stationary point is given by
—m(3)
§o = s
V1I=(%)

In this case, we get that

®(&) = my/1— (£)2 and ®"(&) =m?[1 - (£)?] 2,

and so

[ e () g~ (amiyhe

m_%[l_(%)Q]%eimt 1= —m )

N |=
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provided || < 1.
For the other phase, observe

[V () ag

_ /e—ix§+it\/£2+m2¢(§) d¢

= /eil?ﬁ—i-it\/qu(_@ de
~ (=2mi)b i [ — ()2 eI (.

_(E 2

—_
~
~

Now return to the PDE. Suppose uli—9 = f for some f : R — R and
Owuli—o = 0. (We leave the more general case as an exeg:ise). Solving for
A and B above then yields A = B = %f Noting that f(—f) = f(f) (for
real-valued f), we deduce

u(t,z) ~ 1 2m =3 [1 — (2)%]3 Refize™ V107 {2

1—

2}

—
o+ |8[[+18
~—

for || < t. Alternately, writing p = (t2 — \x!z)%, we can write
ult, @) ~m p~2 Relize™ f(mp)], ] <t.
We turn to the higher dimensional case. We begin with the following.

Proposition 7.3.5. Let 1) : R — C be smooth and compactly supported.
Let ¢ : RY — R be smooth, with V¢ nonzero on the support of 1. Then

I0) = / M) y(2) da

obeys
TN <y AN forall N > 0.

Proof. The case N = 0 is immediate. Let us demonstrate the N = 1 case;
the extension to N > 2 then follows from iteration.
We use the fact that

Ver? = iAV ¢ e?,
so that

ixg _ VO Veir?
iAVol|?
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We can then write

Vo - Veirs
/ T Ve

_ _ ,_ i@ iXgp
_;/ o | g e

and so Vo
IV <A V- ] <AL
As mentioned above, the case N > 2 follows from iteration. O

We skip the analogue of van der Corput’s lemma, which would yield a

1
bound of A" oI whenever one has lower bounds on 9%¢.
Instead, we will move to stationary phase in higher dimensions. The
result is the following.

Proposition 7.3.6. Let ¢ : R — R be smooth. Assume ¢ has a nonde-
generate critical point at xo. If ¢ : RY — C is smooth and supported in a
sufficiently smooth neighborhood of xg, then

I(\) = / @)y (2) da

satisfies
9 iAp(xo)
1) = TEING0) g )
(det[dz ((;i: ( )])2
as A — 00.
We also write ( 6;228%73]-) = D?%¢.

The proof is similar in spirit to the d = 1 case. The key step there was to
use a change of variables to turn the phase into an exactly quadratic phase.
The necessary result in higher dimensions is the following:

Lemma 7.3.7 (Morse lemma). Let ¢ : R? — R be smooth with a nonde-
generate critical point at xg. Then there exists a smooth local change of
variables y = y(x) such that y(z¢) = 0, %]wo = Id, and

d
d(x) = ¢lxo) + > 1N05,
j=1

where \; are the eigenvalues of D*¢(zp).
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With the Morse lemma in hand, the proof of the stationary phase lemma
is very similar to the proof in one dimension. So, we will conclude this section
just by proving the Morse lemma.

Proof of the Morse lemma. Noting that D?¢(z) is symmetric, we may (by
a change of variables) assume that

D?¢(xq) = diag(A1, - -, Aa)-
Now we can write

1
¢(x) = ¢(x0) + Vé(xo) - ( — x0) + /0 (1= 1) g2 [b(wo + t(x — z0))] dt,

as one can check by integrating by parts in the final integral. In particular,

d 1 2
o) = olan) = 2 (@ —wohlw = o)y [ (1= )5 o+t — )
ij=1 !
d
=: Z (x — z0)i(z — z0);mij(x).
2,j=1

2
Observe that m;; is smooth, with m;; = mj; and m;;(zo) = %%(mo).
10T

We proceed by induction. Suppose we have found a smooth local change
of variables y = y(z) so that

$(x) = d(x0) + FMyt + -+ S Wi+ Y vy (y),
ij>r

where y(xg) =0, %‘z:zo = Id, and the m;; are smooth and symmetric.
Now we compute

O Oz, (3MYR) = Mo (O, YO, Ye) + Neis (O, O, i) -
In particular, at z = g we have
O, Oz, (3 MY [o=0 = il
Thus

Dz(%/\ly% 4a %)\'f—lyz—l)’%:l‘o = diag{A1, ..., A\r—1,0,...,0}.
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Using the fact that
D2(¢(‘T) - (b(wO))‘x:xo = dia‘g{)\la ey ACl}7

we deduce
D? < > yl-yjmij(y)> = diag{0,...,0, Ar,..., Ag}.
©,j>T
In particular, this implies
[ (y(20))]ij=r = [ (0)]ijzr = sdiag{Ar, ..., Ad},

because if any ¥y survives undifferentiated then the contribution of the term
will be zero.

We would now like to define a change of variables 3’ so that y} =y, for
any j # r, while

Z yly]rh”(y) = %)\1 (y;)2 + Z yzyjm;](y)
i,j>r t,j2r+l

for some smooth symmetric m e This will imply all of the desired properties
for the new variable y’. Writing

Z Yiyimig(y) = e (Y)Ys + yr Z mjr(y)y; + Z Yiyimiz (y),
6,j=>r j=zr+1 4,j>r+1
we see that we should take

= mg)\(ry) <yr+ 3 bejr(y)yj)

Sl mrr(y)

With this change of variables, one can now verify all of the desired properties
and hence complete the induction. ]

We conclude this section with one sample result regarding oscillatory
integrals of the second kind. We will merely scratch the surface of a very
rich subject.

Define the family of operators T by

DHEO = [ 00,9 f(a) da,
where A > 0, ¢ € C®(R? x R?), and ¢ : RY x R? — R is smooth. Assume
that on the support of 1 the Hessian of ® is nonzero:

dot (2852 0

We will prove:
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Proposition 7.3.8. Under the assumptions above, we have
_d
ITal[z2—re S A2

Remark 7.3.9. Note that for fixed A, we can easily obtain L? boundedness:

1T Flsz < [ WG llzz 1£@) d < ol 11

The interesting point is to obtain decay as A — oo. Note also that if
O(x,&) = —2mx€, then after rescaling we get that the family of operators

T (€)= / 2T E Y S, A E) f(2) da

is uniformly bounded on L? as A — oo. This recovers the Fourier transform
if ¢(0,0) = 1.

Proof of Proposition[7.3.8 Let Ty denote the adjoint of 7). By the method
of TT*, it suffices to prove that the L? — L? norm of T\Ty is bounded by

A% (See Exercise )

We may write

TS £(€) = / Ka(,n) () dn,

where

Ka(é,m) = / ROy (2, ), ) de.

We will prove bounds on K.
2
Now let us denote by M (x,§) the matrix #gg. Given a € R", denote

by V¢ differentiation in the a direction.
For fixed (£,7n), denote

A= Az,€1) = Ve [@(,6) — & (x,n)]
where a(z) € R? is to be determined. We have
A= M(x,&alx) - (& =)+ O(I& = ).

As M is invertible, we may take

alz) = alz,&,n) = M(x, &) 0,
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so that
M(&,ma(z) - (€ —n) = [ —nl.
Now, if the support of v is sufficiently small, then we can guarantee

|A("B7§77])‘ > C‘f - 77’ for (gan) € supp K)\-

Now set D, = [iAA(z, &, n)]—lvg(’”). We use the identity
(D) N (eNP@E=@m]y — AP (L) =2 (z.m)]

and integrate by parts N times to obtain
Kx(&m) = / eAP@O =@ (DI (2, )P, )] der.
Rd
This yields
[EAE )] Sy (14 Mg =)™ = Ax(I )
for any N > 0. Thus
ITNTX ()] S [Ax = [£11(6),
so that (applying Young’s inequality and a change of variables), we get
ITT5 fllzz S 1Az 1 fllze S A7

This implies the desired result provided the support of 1 is sufficiently small.
To deal with the more general case, we employ a partition of unity to split
the support of ¥ up into a finite number of sufficiently small pieces. This
completes the proof. ]

7.4 Exercises

Ezercise 7.4.1. Complete the proof of (c) in Proposition
Ezercise 7.4.2. Prove ([7.10]) and complete the proof of (7.8) and (7.9). Hint:

Expand the inner sum and change the order of integration. Performing the
sum in N leads to a bound of

> (B K exLicy,
K<L

which can then be dealt with by Schur’s test.
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FExercise 7.4.3. Show that

N—oo

lim N/ tsin($) cos(Nt) dt = 0.
0

[Thanks to D. Grow for suggesting this exercise!]

Ezercise 7.4.4. Prove the stationary phase lemma in higher dimensions, us-
ing the Morse lemma to find the change of variables that makes the phase
exactly quadratic.

Exercise 7.4.5. Let T : L?> — L? and let T* be its adjoint. Show that
ITI1? = |T%|1* = | TT"].

Ezercise 7.4.6. In this exercise, you will prove the stationary phase lemma
in the special case of an exactly quadratic phase: Show that for u € C¢° (RY)
and N > 1, we have

=

] -1 gt d 1T sgn @
/ e QT/2hyy (1) o = (2m)2hT2e (D Q7 D) ) (0)+ Sy (u, h),
“(20)k| det Q|2 k!

i

where D, = —iV, and

d
|SN(U7 h)| Sd,Q,u,N hN+2 .

Here sgn ) denotes the signature of (), which is a nondegenerate real sym-
metric d x d matrix.
Hint: Use Plancherel and the Fourier transform to prove

/eix'QI/Zhu(a:) dr = h2eld SgnQ|det QF% /eihg'Qlf/Qﬁ(f) dg.

Then use Taylor’s theorem to write

N-1 /. \k
i 1t N
k=0 ’

Exercise 7.4.7. Let o denote the surface measure of the sphere S C R¢ with
d > 2. Show that

where

g(x) = /Sei“f do(§) and (x):=+/1+|z|%
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Hint: As do is invariant under rotations, we can write
. T d
o (x) = / el () ~ / ileleost i, 012 dp
S 0

where 6 is the angle between = and e4. To estimate this integral, use sta-
tionary phase and the van der Corput lemma.



Chapter 8

Modern harmonic analysis,
part I

8.1 Semiclassical analysis

In this section we discuss some of the most basic concepts and results in
semiclassical analysis, following [19]. This subject was developed largely
in order to give rigorous meaning to the ‘Bohr correspondence principle’,
which informally states that one recovers classical mechanics from quantum
mechanics in the limit A — 0 (where h is Planck’s constant). One of the
key tools in semiclassical analysis is known as pseudodifferential calculus,
which in turn has applications in a wide range of related fields (e.g. partial

differential equations and other areas of mathematical physics).
We begin with some basic definitions.

1. Let g be a nonnegative smooth function on R”. If for all multi-indices

o we have
9%g = O(g)

uniformly over R"™, then we call g a order function on R™.

example,
1, "=0104z2% and €%

are order functions. If g is an order function, so is 1/g (check!).

2. Given an order function g, we define S;(g) to be the set of all functions
a = a(z; h) (defined on R? x (0, hg] for some hg > 0) that are smooth

in x and satisfy
95 a(z;h) = O(g)

196
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uniformly over (z,h) for any multi-index «. Frequently, one works
with the order function g = 1, noting that a € Sy(g) if and only if
ag‘l S Sd(l).

3. Let a and {a;} belong to Sq(g). We write
a~ Z hjaj
j=0

if for any IV, a there exists hy o > 0 so that

N
oy (a — Zhjaj> ‘ <na Vg
=0

uniformly on R4 (0, hy o). If a ~ 01in Sy(g), then we write a = O(h*°)
in Sa(g)-

We have the following result.

Proposition 8.1.1. For any sequence {a;} of symbols in Sy(g), there exists
a € Sq(g) such that a ~ Y hla; in Sq(g). Furthermore, a is unique up to
the addition of an O(h™) symbol.

Remark 8.1.2. One calls ¢ a resummation of the formal symbol Y h/a;.

Proof. We only sketch the proof; the complete details may be found in [19,
Lemma 2.3.3]. Without loss of generality, take g = 1. One first constructs
a sequence £; — 0 such that if |a| < j,

11 = x(F))0%as]lpge < h7*
for h small enough, where x is a bump function. One then defines
a(z;h) = Z hj(l —x(%))a;(z; h),

which for any h > 0 is actually only a finite sum. One can then verify that
a~Y haj. O

Ezample 8.1.1 (WKB approximation). The resummation of a formal series
can be used to construct approximate eigenfunctions for 1d Schrédinger
operators.
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In particular, let V' be a smooth function on R and suppose V(zg) < E.
For x near xg, we define solutions to the ‘eikonal equation’

(W) =E-V
by setting

:j:/x\/E—V(y)dy.

Using this, a direct computation shows

(=h%9% +V — E)(ae®/") = fZth[a\f — ihs o’ ]“p/h

for ¢ = ¢4 and a smooth near z( (check!). We then recursively define a*

j
by solving the following transport equations:

(i )//
(a ey =0, (afyfeny =it —0

for j > 1. We then let ay(z;h) be a resummation of the formal symbol
> hja . By construction one can check that

(=h?9% +V — E)us(x,h) = O(h™), where us = ase+/".
Indeed, this follows from the fact that the formal series

. a:.t 7
PCVERETES

J=0

is identically zero.

These approximate solutions are called WKB solutions (after Wentzel,
Kramers, and Brillouin).

We only considered the case V(zg) < 0. In the case V(zg) = E (called
a ‘turning point)’, this technique breaks down. In this case one can instead
use a power series expansion for V(x) — E. Solving the ODE to first order
leads to an equation known as the Airy equation, which is solved with spe-
cial functions (the Airy functions). One then needs to patch together the
approximate solutions away from and near the turning points (which will
only be possible for special values of E).

Pseudodifferential operators.

We next define the semiclassical Fourier transform of a Schwartz
function v on R™ by

Fru(€) = 4(€) = (2mh) ™2 / ) e~ () d.
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This is an L?-isomorphism with inverse

Fy to(e) = (2mh) 2 / e/ (€) de.

n

As with the standard Fourier transform, Fj, extends to an isomorphism on
tempered distributions. Writing D, = —i0,, we have

Fun(hDyu) = EFpu and  Fp(xu) = —hDe¢Fpu,

generalizing the familiar identities obtained for the standard Fourier trans-
form.
Expanding out F, L Fpu = u leads to the identity

u(x) = (27h)™" // '@V My () dy dE.

Our next goal is to make sense of more general operators of the form

u(w) = (2mh) ™ [ [ D e,y uty) dy de

for some kernel a(x,y, ). This requires that we make sense of the integrals
@) = Haiz,y) = [ 0% a(a,y.6) de. (81)

Suppose a(z,y,&) € S3,((§)™). If m < —n, the integral I(a) converges and
for u € C°(R™) we may define

Agu(z, ) = / Ve g g,y E)uly) dy de.
Now observe that
Let@=y)é/h — ei(z—y)&/h’ where L := ﬁ(l — h&Dy).

Thus we can write
Avue. ) = D) = [ DML hD,) ) dy d

where ! denotes transpose and we have

("L)*(au) = (H2222) " (au) = O((&)™ )

uniformly as |¢| — co. Thus we have
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o [iu(z) converges provided m < k —n,
o [iyu = Ixu for all £ > 0.

Thus for any m € R, a € S3,(({)™), and u € C°(R™), we may define
Avua, ) = [ DL (e D) () dy d

for any K > m + n. One can check that A, defines a continuous linear
operator from C2° to C'*; in particular, (by the ‘Schwartz kernel theorem’)
we may find a distribution K on R™ x R" (called the distribution kernel
of A,) such that

(Agu,v) = (K,v ®@u),

where u,v € C2°, ® denotes tensor product, and (-, -) denotes the pairing of
distributions and test functions. We denote the distribution kernel by ({8.1J).

Ezample 8.1.2. If a = 1, then choosing k > n we may verify that
Agu(z) = (2wh)" u(z),

so that
/ @/ ge — (2mh)§(y — x)

in the sense of oscillatory integrals.

In light of the above, we make the following definition.

Definition 8.1.3. Given a € S3,((¢)™) and u € C°(R"™), define

Opy(a)u(z;h) = (2mh)™" / @V ha(z, y, E)uly) dy dE.
Then Opy,(a)u € C*°(R™). For any v € R, the operator
h™"Opp(a) : C°(R™) — C*(R")

is called the semiclassical pseudodifferential operator of symbol h™"a.
We say h="Opy,(a) is of degree m and order v.

Proposition 8.1.4. For a € S3,((§)™), we can extend Opy(a) to a map
from'S — 8 or from 8" — §'.
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Proof. Let us show that Opy(a) : S — S. We write
2P u(x) = /$'68§,‘[ei(“_y)é/h(tL)k(au)] dy d§
and split the integral into two regions I; and Is, where
Li={lz—yl < glal} and I ={Jz—y| > 3lal}.
Here we recall L = (14 ¢2)71(1 — héDy)). For k > m + n + |al, the integral
over I is uniformly bounded since

2P (g HlR ()™ = O((g)mHl R y) 1P

for any v > 0 on {|z — y| < 3|z[}. Choosing v > |B| + n, this contribution
is integrable with respect to y and &.
For the remaining region, we write

Integrating by parts IV times with respect to £, the integral over I5 is written
as a sum of terms of the form

S I e o Ly dy

(with a1 + ag = a). Choosing N > |5|, the contribution of I5 is uniformly
bounded. This shows Opj,(a)u € S, and in fact these estimates suffice to
show that the mapping is continuous. ]

Ezample 8.1.3 (Semiclassical differential operators). If

a(z,y,§&) = Zb

la<m

with by € Sy (1), then

Oph Z b

laf<m

a(z,y,§) = Zb

laj<m

If

with by € Sy (1), then
Opp(a) = ) (hDy)*ba(x).

lal<m
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Remark 8.1.5. If we replace e'@=¥8/h with e®(®5:8/h where © is a phase
function, then we are led to ‘Fourier integral operators’, often abbreviated
FIOs.

Remark 8.1.6. Given a(z,y,§), we define
a*(z,y,£) = a(y, z,§).
Then the operator
[Opp(a)]” := Opy(a®)
is the formal adjoint of Opja, which satisfies
([Opp(a)]"u,v) = (u, Opy(a)v)
for all u,v € S.

Composition of pseudodifferential operators.

Let a € S3,((€)*) and b € S3,((x)¥), and let A = Opy(a) and B =
Opy,(b). The composition of A and B is defined formally by

(Ao Byu(x) = (2xh) ™ / V(2 €) Buly) dy d

— (20h)" / @My (.2 myu(z) dz dn,
where
cn(, 2,m) = (2mh) ™" / e EM g (g, )b(y, z,m) dy dE.

To show that Ao B is again a pseudodifferential operator, we need to verify
that cp € S3,((&)™) for some m. We will prove the following:

Theorem 8.1.7 (Composition). Given a € S3,((£)™) and b € S3,((£)™),
there exists ¢ € Ss,((x)™™') such that

Opy(a) o Opy(b) = Opp(c).

A choice for c is given by

a#tb(z,y, ) = (27Th)_"/ei(x_z)(”_g)/ha(x,Z,n)b(zay,f) dz dn,
which satisfies

aftb ~ Y 020 (alw, 2 mb(z, v, ), .,

ilala!
lo|>0

in Sza((€)H™).
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To prove this, we rely on the method of stationary phase, specifically in
the form of Exercise In particular, an application of that result with
d = 2n, and @ the block matrix with —I in the top-right and bottom-left
corners, we may deduce

(27h) " / ey gy dedy = S B p00eu(0,0) + Sy (8.2)
la]<N—1

for u € C°(R?"), where
Sy SEN DT 10500 (0:0,)Vull 11 ran-
|a+B|<2n+1

Proof of Theorem[8.1.7, Proceeding as above, we may write

Opy,(a) o Opy,(b)u(z) = lim (2rh)™" / e @) e (2, y, )uly) dy dE,

£,0—0t

where
cs(x,y,€) = (2mh) ™" / e O/h=0E)=00 (g, 2, m)b(2, y, €) dz dn.

We will show that c¢s = O((&)™+™) uniformly in 6, so that we may pass to
a limit ¢p as 6 — 0 (by dominated convergence). We will then show ¢y €
S, ((€)™+™") | which allows us to send ¢ — 0 (and interpret the resulting
integral in the sense of oscillatory integrals).

We turn to the details. We define

2
L= [1+|Ti £ _1_‘1 Z|] 1[ _L;gDz‘i‘z;Z 77]'

We next let x1 € C2°(R) satisty

(s) 1 ]s] <1
S) =
X 0 |s|>2

and let x(z,y) = x1(|z — y|). Choosing k > |m| + 2n + 1, we can write
cs(@,y,€)
(2wh)~ / i(z—2)(n— f)/h {e a(z z,n)b(z,y,é’)}dzdn

ds(z,y,8) +es(x,y, &) + fs5(x,y,8),
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where ds includes the cutoff 1 — x(§,n) before a, es includes x(§,n)[1 —

x(z,2)], and fs includes x(§,n)x(z, 2).
We regard ds and es as perturbative terms. In particular, we can write
2nh)ds(w,.€) = [

()™ (&)™
|E—n|>1 O{ (I+hL[E—n|+hLz—2|)F } dz dn
=/0 ()™ (€)™ dn.
/ {(1+(2h)—1§_,7|)k—n_% Ui

Thus, for example, if m > 0, we can deduce (writing (7)™ < (&)™ +(E—n)™)
that

|(2mh) ds(x,y, €)] S WP (g

which is acceptable. We leave the remaining case m < 0 as an exercise (hint:
split into regions where |n| < 3(¢) and || > 3(¢) and estimate each piece
separately). Similarly one can deduce that

|(27h)"es(x, y, )] S BE"3 (€)™

for & > |m| + 2n + 1. We leave this estimate as an exercise. We also note
that one can get the same estimates for any number of derivatives, i.e.

|0%ds(x,y, )| + |0%s(x,y, )] = O(h® (€)™ ™)

uniformly over (x,y,£) and 6 > 0. In fact, taking derivatives just produces
powers of |x — z| or |p — £, which can always be overcome by choosing k
larger.

It remains to consider fs, which (undoing the integration by parts) has
the form

fﬁ(xvyvg)
= (2rh)™" / =20 (& m)x(, 2)e 0 Maa, 2, m)b(z, y, €) dz dn.
We will understand the behavior of this integral through the stationary

phase theorem (in the form (8.2])). We write 2/ = 2z —x and ' =7 — &, so
that fs has the form

fs(2,9,€) = (2mh) " / eEN G () de dif,

with appropriate
g (<) € CE(RY x RY).
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In particular, by (8.2)),

hled
fﬁ(mayvé) = Z magaguéz,y,ﬁ(zan) + SN;

la|<N—1 #=0n=0

where

N N, &
ISnIS PN Y 10207 (0:00)Nud y gl 1y n sy
|e+B]<2n+1

<V / (™)™ dz dn
[n—€|<L2, |z—2|<2
< AN (gymrm,

In fact, we can get the same bound for any derivatives of f.
Collecting the estimates, we can deduce that cs(z,y,£) — co(x,y,§),
where

co(z,y, &) = (2mh) ™" / @A=L )R (a(x, 2,0)b(2,y, €)) dz dn.

Furthermore, since the estimates above were uniform in §, we can deduce
that ¢y € S, ((£)™T™). Finally, taking the limit as § — 0 in the stationary
phase approximation for f, we can deduce the asymptotic expansion for
a#b. This completes the proof. ]

Note that when a is a polynomial in &, so that Op(a) is a differential
operator, then the formula giving a#b is an exact formula.
We now give an application of the composition theorem. We call a
symbol a € S4(g) elliptic if
lal 2 g

uniformly on R? x (0, hg] for some hg. The following result shows how we
may use the composition theorem to invert elliptic symbols up to errors
that are O(h*°). (One can compare this to the case of Fourier multiplier
operators; in this case, if |m(§)| 2 1 then the inverse operator is simply the
operator with symbol %)

Proposition 8.1.8. Let a € S3,((€)™) be elliptic. Then there exists b €
Sz, ((£)™™) such that

Opy(a) o Opy,(b) =14 Opy,(r), where r=O(h>) in Ss,(1).

Similarly, Opy,(b) o Opy(a) =1+ Opy (") for some O(h>) symbol r’.
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Proof. Let us only sketch the first claim. The idea is to construct b in the
form b~ )" hjbj in such a way to guarantee that a#b ~ 1, where a#b is as
in the composition theorem. To do this, we firstly set by = < € S5,((£)™™)
(cf. the chain rule). We can then define b; for j > 1 recursively. For
example, the linear in h terms in the sum will involve ¢, for |a| = 1 and
bp, along with ¢, for |a] = 0 and b;, which we use to define b; (so that the
total contribution is zero). Proceeding in this way, we can construct b as
desired. O

Quantization and symbolic calculus.

Classical observables are given as functions of the position z € R™ and
momentum & € R™. We would therefore like to define pseudodifferential
operators with symbols depending only on 2n variables (x,£). There is an
inherent nonuniqueness here—indeed, the symbol x;§; could be associated
with either x; - thj or th]. Ty

Now, for a € S2,((£)"™) and t € [0, 1], we have

a((1 —t)x +1ty,£) € S3n(()™)-

Thus we may define

Op},(a) := Opp(a((1 — t)a + ty, £)).
In particular, we have:
e If t =0, we get the standard or ‘left’ quantization.
e If t = 1, we get the Weyl quantization (denoted by Op}! (a)).
o If t =1, we get the ‘right’ quantization.

The Weyl quantization yields a symmetric operator whenever a is real-
valued; for this reason it is useful in the setting of quantum mechanics.

We will state two results regarding quantization of symbols; for the de-
tails see [19] Section 2.7].

Proposition 8.1.9. Given b = b(z,y,£) € Ssn(

(€Y™) and t € [0,1], there
eaists unique by(z, &) € S2,((€)™) such that Opy(b)

= Opl,(b). In fact,

by(z, &) = (2mh) ™" / &0/ 4 10,2 — (1 — )0, ") dE' db
R2n
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i the sense of oscillatory integrals, and

—_1)lelplal
b, &) ~ ST geomn e 10,5 — (1 - 10, €)oo

ilala!

in San(()™).

In this result, b; is called the symbol of index t of B = Opy,(b), and we
denote
bt = Ut(B).

When ¢ = 3, we call b% = b" the Weyl symbol of Op(b).
This proposition is proven by seeking b; satisfying

J e b de = [ () 1,

This ultimately leads to the oscillatory integral above; the asymptotic ex-

pansion is a consequence of the stationary phase theorem (after isolating the

relevant part of the integral, as in the proof of the composition theorem).
In the case t = 0, one can write

o0(B)(z, & h) = e /M B8/,
Ezample 8.1.4. If V =V (x) € S,(1), then for every t € [0, 1] we get
AR V) = €4V (),

which is independent of t.

The next result we state concerns composition:

Theorem 8.1.10 (Symbolic calculus). Let a = a(x,§) € S2,((§)™) and b =
b(xz,€) € So, ((6)™). For allt € [0,1], there exists unique ¢; € Son((€)™H™)
such that

Op}(a) o Opj,(b) = Opj(cy).

In fact, one can write down a formula and asymptotic expansion for
the symbol ¢; in the preceding theorem. The proof proceeds by applying
the composition theorem to write the composition in the form Opy(c) for
some symbol ¢, which then satisfies Opy,(¢) = Op!, (c;) for suitable ¢; (by the
previous theorem). The asymptotic expansion is again a consequence of the
stationary phase lemma.
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If A and B are pseudodifferential operators with symbols in Sa, ((§)™)
and Sy, ((£)™), then for all t € [0,1] one can show

oi(Ao B) = 0,(A)oy(B) +O(h) in Sy, ((£)™F™).

In the case of the commutator of two operators, namely [A, B] := AB— BA,
we instead get

ou([A, B]) = ${a,b} + O(A%) in Sau (&)™),

where {a, b} is the Poisson bracket defined by

{a b}_aaab da db

= 90z Oz 0"

A symbol a € So9,({£)™) is said to be classical if it admits an expansion
of the form

a(z,§;h) ~ Zhajxf

7>0

where a; € S2,((£)™) do not depend on h, and ag is not identically zero.
For v € R, we call h”ag(x, &) the principal symbol of the classical pseudod-
ifferential operator A = h”Opz (a). In particular, changing the quantization
does not affect the classical character of a pseudodifferential operator, nor
does the principal symbol depend on the choice of quantization. We define

h"ag = op(A).
Then one has

op(AB) = 0y(A)op(B) and  op([4, B]) = F{op(A),05(B)}.

L? boundedness.

Our final topic will be to consider the L? boundedness of pseudodiffer-
ential operators. To this point, we have only considered such operators as
acting on S or §’. We will prove the following result.

Theorem 8.1.11 (Calderén—Vaillancourt). Let a € Sz,(1). Then there
exists M = M (n) such that

10pR (@) 22 Su D 10%all oo (gin)-

o] <M
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We will need the following lemma, which may be of independent interest.

Lemma 8.1.12 (Cotlar-Stein Lemma). Let H be a Hilbert space, { Ay}, cz4
a family of bounded linear operators on H, and w : Z* — [0,00) satisfying
the following:

e For all p,v € 77,
[ A AL+ [[ AL A || < w(p —v).

o Cop=3, w(p) < oo.

Then for any M > 0, we have

> Al < Co
lul<M
Proof. First set S = Z‘ <M A,. Using Exercise we have
IS|#™ = ||s*s|™.

Next, observe that
1S=S|™ = [I(s™$)™|| for m =>1.

Indeed the > direction is clear. For the reverse, we argue essentially as in
(A.3)), using the fact that S*S is a bounded, positive, self-adjoint operator.

In particular, we can write S*S = [(S*S)m]% and use the general bound
|79\ < ||T||%; this yields the desired estimate.
Now observe that

S*S—( > A;A,,)m— S AL A, AL AL

“L‘,ll/‘SM |,u‘é|’|V€|SM

By assumption, each summand obeys the bound
1< A Al - 1AL, A | < w(pn = 1) -+ w(pm — vm).
Using instead the bound
1AL = 45 Aull < w(0),
we can also bound each summand by

[l £ Vw0)w(vr — p2) - w¥m—1 — ) v/ w(0).
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Taking the geometric mean of the previous two estimates yields the bound

1| < w(O)w(p — vi)w(vr — p2) - (Hm — vim)]2.

Thus, continuing from above, we perform one sum at a time (starting from
the vy, sum, then p,,, then v,,_1, ...) to get

IS Syl < D0 0wl — m)w(r — ) wlm — v

l1els|vel <M
< ) V(O < 2M + D) w(0)epm
|| <M

Hence

ISP = 1(S*$)I™ < (2M + 1)*y/w(0)Cg™ .

Taking the ﬁ root of both sides and sending m — oo yields the desired
result. O

Proof of Theorem[8.1.11. Using Proposition we may find b € Sy, (1)
so that A = OphW(b). Moreover, by integrating by parts in the integral

expression for b, we can control derivatives of b in terms of derivatives of
a. Thus we may take A = Op}’ (a) for some a € Sy,(1). Furthermore, by
rescaling £ — h&, we can further reduce to proving the theorem for the case
h = 1. That is, we may take A = Op{" (a).

Now let Yo € C°(R?") yield a partition of unity through the translations
xu(2) = xo0(z — p) for p € Z4. In particular, > Xu = 1. We set a, = ax,
and observe that

10%,| < sup ||0%a] L~ uniformly.
|BI<]ex

Define A, = Op;" (a,), so that

Au = Z Ayu forall uwe CF(R"™).
m

This series can be summed in L?, for example. To proceed, we will prove
estimates for the operators A, A} and then apply the Cotlar-Stein lemma.
To this end, we write

A A u(z) = /K v(T,y)u(y) dy,
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where

Kyu(z,y) = (21)7" / Wttt g, (242 )a, (Y52, ) dz di dE.

Now, a, and a, are smooth and compactly supported, so that K, , is smooth
on R?”. We now use the operator

L=[14]|z—z+|y—2z>+|¢=n’| "1+ (x—2) D¢ — (y— 2) Dy — (=) D2),

which obeys
L]t @&yn=2ttzn)] — pil@é—yn—zttan)

Thus for any N > 0, we may integrate by parts IV times to get

Kyuu(z,y) = (21)7" / e vt ({L)Na,, (452, €)ay (Y52, m)] dz dp de.

Now, if |u — v| is large enough, then in order for a,(t,7)a,(s,o) to be
nonzero we must have

lw—vl~ |t =s[+ [ —oal.

Thus, if we write u = (u1, pe) and v = (v1,12) and define the following set
of (y,2,1,¢),

Duy={lp—vi~lz—yl+l§=nl [§—plS1 In—wl31}

then we find

/|K ,V<x,y>\dys/ [t Jz— 2| +y — 2| + |6 — ]~ dy dz dn de,

v

where the implicit constant depends on

sup [9%al|3.
la|<N

Now we use the fact that
2 — 2|+ |y — 2| > |z —y]

and the definition of D, , to get the bound

[+ fu— e
K 14 ) d < d d .
w5 | G = g e
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In particular,

sup / Ko (@) dy S sup [0%lf3ee - [1+ i — o[77H2N
@ lal<N

A similar argument yields

sup / Ko (@, 9) dz < sup [0%al2e - [1+ [ — w22V,
y la|<N

Thus by Schur’s test (cf. Remark , we deduce

1AL A 22 S sup 0%l Zee - [1+ [u— ]2 F27

la]<N

uniformly in g, v. The same argument handles A} A, .

We now choose N = 4n + 3 and apply the Cotlar—Stein lemma with
d = 2n and

w(p) ~ (L4 |ul) 727 sup [|0%alf7~,
la]<N

where the implicit constants depend only on the dimension. In particular,
we can get

I > Auullzz < Collullzz  uniformly in M >0 and u€ L?
lul <M

which then implies ||Au||;2 < Co|lu||z2 for any u € L?. This completes the
proof. ]

We close this section with a few applications.

First, combining Proposition with the L? boundedness result, we
have that if @ € Ss3,((§)™) is elliptic then we may find b € Ss,,((£) ™) such
that

Opj(a) o Opy(b) =14+ Ry and Opy,(b) o Opy(a) =1+ Ry,

where

[Billz2sp2 + | Rall 22 = O(R).

In particular, if m = 0 and h is sufficiently small, then Op(a) is invertible
on L?, with inverse satisfying

Opp,(a)~! = Opy(b) + O(h™).

Finally, we prove the following estimate:
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Proposition 8.1.13 (Garding inequality). Suppose a € Sa,(1) is real-
valued and satisfies a > é Then for any Cy1 > C, we have
Op¥ () = & on AR
for h sufficiently small, i.e.
(OpY (a)u, u) > C%HUH%Q for all we L

Proof. Let C < Cy < Cy so that

\/a— C% € Son(1).
B = OphW(q/a— C%),

so that B is bounded and self-adjoint on L?(R™). By the symbolic calculus,
we may write

Write

Op})(a— &) = B>+ hR, where |R|p22 S 1.

Since B? > 0, we may find C’ so that

and hence
for h small enough. O

8.2 Coifman—Meyer multipliers

In this section we will prove a version of the Coifman—Meyer multiplier
theorem. This may be viewed as a generalization of the Mihlin multiplier
theorem (cf. Theorem to the case of bilinear operators. In particular,
given m : RYxR?% — C we may define the bilinear operator T}, by prescribing
its Fourier transform:

FITu(. 90O = [ ml = n.0)f(€ ~n)ito) dn.

Equivalently, we may write

To(f.9)(x) = / / % m (€ — ) F(E — n)a(n) di de.
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Note that if m = 1 then T,,(f,9) = fg (cf. Lemma . Similarly,
if m(&1,&2) = a(&1)b(&2) then T, (f, g9) = [Tuf][Trg], where T, is the Fourier
multiplier operator with symbol a.

We may also understand T,, by observing that (formally)

Tm(eZﬂ'im& ’ eZTrixfz) _ m(é.l, 52)627%:16(61—&-{2)_

Indeed, this follows from F[e?"2%] = §(¢ — &;). This shows that T}, multi-
plies plane waves (adding their frequencies) and modulates their amplitude
by m(&1,&2)-

Our goal will be to prove LP x L" — L% mapping properties for bilin-
ear operators of this type. We will consider multipliers/operators of the
following type.

Definition 8.2.1. We call m : R - R? — C a Coifman—Meyer symbol
if it obeys

1021 9¢2m(€1,2)| Sjan faala (1€1] + €)1 102!
for all multiindices a1, as. We call T3, a Coifman—Meyer multiplier.

Remark 8.2.2. This should be compared with the definition of a Mih-
lin multiplier (see again Theorem . In practice, only finitely many
multiindices (depending on the dimension) are needed, but we will not be
concerned with this refinement.

Note that the product of two Coifman—Meyer multipliers is again a
Coifman—Meyer multiplier.

In the setting of Mihlin multipliers, we sought to prove LP — LP bounds.
For Coifman—Meyer multipliers, it is more natural to seek Hoélder-type esti-
mates, i.e.

ITn(f, Dl S IFNeoliglin, L4+1=1.
In fact, we will prove the following.

Theorem 8.2.3. Let m be a Coifman—Meyer symbol. Then the multiplier
T maps LP x LY — L" boundedly for all 1 < p,q,7 < oo satisfying

1,1 1
p+q T’

Remark 8.2.4. This theory can be extended to handle the endpoints p, ¢, r €
{1, 00}; however, we will not pursue this extension here. See e.g. [22] for a
clear presentation.
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Ezample 8.2.1. Define

m(&1,&2) = ’5\%14‘&&2\2’

- T(f,g) = (—A) V] - Vg].

Then m is a Coifman—Meyer symbol, and hence

I(=2) "V f - Vglllr S I fleellgllze
for 1 < p,q,r < oo satisfying % = % + %.
The proof of Theorem will firstly rely on a ‘paraproduct decompo-

sition’ for Coifman—Meyer multipliers. In particular, we need the notion of
high-high, high-low, and low-high multipliers:
e We call T}, a high-high paraproduct if [£;]| ~ |£2] on the support of

m.

e We call T}, a low-high paraproduct if |¢; +&| ~ |£2| on the support
of m.

e We call T}, a high-low paraproduct if [; +&2| ~ |£1] on the support
of m.
We have the following paraproduct decomposiion:

Lemma 8.2.5. Given a Coifman—Meyer paraproduct T,,, we may decom-
pose

T = Thp + T + Tn,
where Ty, Th, T are high-high, high-low, and low-high Coifman—Meyer
paraproducts.
Proof. We recall the Littlewood—Paley multipliers ¢, o from Section

In particular, as the ¢y form a partition of unity (where we take N € 27%),
we can write for any (&1, &2),

1= ¥n(&)vu(&)
N,M

= ZlﬁN(&)@%(ﬁz) +> YN ()Y (&) + ) @ P (E)dn (&)
N N

<M<8N N

|2

These three expressions are high-low, high-high, and low-high multipliers,
respectively. If we multiply by m(&1,&2), then we complete the proof of the
lemma. O
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Thus, to prove the Coifman—Meyer theorem, it suffices to treat low-high
and high-high multipliers; the high-low case follows by symmetry.
We will need the following technical lemma.

Lemma 8.2.6. Let f be a Schwartz function and N € 2Z. For any .y, we
have the bound

|P<v )| S (N(y — 2))'Mf (=),
where (x) =1+ 22 and M is the Hardy-Littlewood mazimal function.

Proof. We begin with the estimate

N / B(N(y — 2)| 1£(2)|dz < N / (N(y — 2))" %% £(2)] dz,

where we use the fact that ¢ is a Schwartz function.
For the region (z — x) < (y — ), we estimate

N / (N(y — 2)) %% £(2)] dz < N / (=) dz
(z—x)S(y—x) (z—x)S(y—x)

S NUy — a) M f (),

which is acceptable. For the remaining region (z — z) > (y — z), we use
Lemma [[.2.5] to estimate

v / (N(y — 2)) %% £(2)] dz
(z—z)>(y—x)
< N / (N(z — )" 1% ()| dz < M f(z),

which is also acceptable. ]

Lemma 8.2.7 (High-high paraproducts). Let mp be a high-high paraprod-
uct. Then mhy satisfies the bounds appearing in Theorem |8.2.5.

Proof. We write

mhn(f,9) = Y Tan(PN Py f, PrrPurg),
N M

where Py denotes the operator corresponding to the fattened Littlewood—
Paley multiplier. Now, the operator

Thn (P, Par-)
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is zero unless N ~ M; in this case, it is a bilinear multiplier with a symbol
mpy, which is a bump function supported where |£1] ~ |{2] ~ N. Writing
Ty for Th,y,,, we find

m(f )l < 3 Twar(Px s, Pag)l
N~M

Now consider the symbol myj;. We will decompose mpy (&1, &2) using
a Fourier series on a torus in R% x R? of sidelength CN for large enough
C>0:

mam(EL,6) = Y oy e TSz E)/ON

ni,n2€Z%

on the support of ¥ (&1)¥ar(€2). Now, using the definition of the Fourier co-
efficients and integration by parts, the Coifman—Meyer condition guarantees
that

Cnymy S (1 ] + [ng]) 710 (8.3)

(see Exercise [8.3.2).

The advantage of this decomposition is that it factors m into a sum of
terms of the form a(&1)b(&2). In particular, we compute

Tnm(Pnf, Prg)(@)
= 3 enna P (= &) Pusle — ),

ni,n2
so that
|Thi(f, 9) ()]
S (@ nal + n2) T Py f(z — )| [Parg(z — E)-

N~M ny,my
We write Py f = PNPN f and use Lemma to estimate
[Py f(x = 501 S (n) M [Py f]().
Similarly, recalling N ~ M,

|[Parg(a — 33| S (n2)M[Pasg)(x).
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Thus
[mhn(f, 9)(@)] S Z Z |n1‘+|n2| 100d|MPNf( MM Pprg(z)|

N~M ni,n2

S Y IMPyf(x)| M Pyg(z)|

N~M ) .
< (; MPys ) (; MPyg(o)?)

and hence, using Holder’s inequality, the vector maximal inequality (Theo-
rem|6.3.8) and the Littlewood—Paley square function estimate (Theorem|7.2.6))

7w (F )l < <Z|MPNf ><Z|MPN9 > .
< <Z|MPNf ) (Z|MPN9 )1

La
3 3
<|(Sievsr)’| [(Simvaer)
N Lp N La
S fllzellglize,
provided1<p,q,r<ooand%+é:%. ]

It remains to treat the case of low-high paraproducts.

Lemma 8.2.8 (Low-high paraproducts). Let 7, be a low-high paraproduct.
Then my, satisfies the bounds appearing in Theorem . (In fact, we may
allow p = c0.)

Proof. We write
min(f,9) =Y mn(f, PxPng) = ZTmN(PS%fv Png),
N N
where

my(&1,&2) = m(fb@)@%(fl)@zN(&)-

Here m denotes the multiplier for 7j,. In particular my is a bump function
supported where |£1| < N and [€2| ~ N. Thus, we may perform a Fourier
series decomposition for my(&1,&2) as before and write

mn(f, 9) Z Z Cni,ng <Nf Cr'lijl\f)PNg($_ %)

N ni,n2
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with

[enr s | S (na] + ng) 1%,

We estimate the L™ norm by duality. We fix h € L Noting that
P_x fPyg = Px[P_x fPng),

we use Lemma Proposition [7.2.3(b), the vector maximal inequality
(Theorem [6.3.8)), and the Littlewood—Paley square function estimate (The-
orem 7.2.6: , to estimate

[ lensmaPey flo = &) Pgle — &) Ph(o)] da

N ni,n2

/Z Z <|n1\+\n2| 100d [M fIM [PNQHpNh\dx

N nin2

</ er\(;rM[PNgW)é(;PNhF);da:
(;\M[mu?)é ) (%ju%vh\?)é L

< Fllzolglzollil o

SIIMF e

Taking the supremum over unit & € L" yields the result. O
Proof of Theorem[8.2.3 Combining the high-high and low-high estimates,
we complete the proof of Theorem O
8.3 Exercises

Ezercise 8.3.1. Prove ({8.2)).
Ezercise 8.3.2. Prove ({8.3).



Chapter 9

Modern harmonic analysis,
part 11

9.1 Rearrangements and the sharp
Gagliardo—Nirenberg inequality

In this section and the next we will consider the problem of existence of
optimizers for some functional inequalities. We will consider some particular
cases of the Gagliardo—Nirenberg inequality and the Sobolev embedding
inequality, namely

1 3
1Fllze < CanlfIL:IVfIlf. for fe HY(R?)

and _
1fllrs < Csobl|Vfllz2 for fe HY(R?).

Here we use Coy and Cg,, to denote the best possible constant in these
inequalities. Our goal will be to prove that there exist functions that attain
the best constant. The basic idea is to take an optimizing sequence and
try to prove the existence of a limit, which one then proves is an optimizer.
However, one must contend with a lack of compactness due to the presence
of symmetries that leave the inequalities invariant, namely, translation and
scaling invariance. For example, suppose one already knew that there existed
an optimizer f* to one of these estimates. Then f,, := f*(b,x + x,) would
be an optimizing sequence for any choice of parameters b, € (0,00) and
x, € R3. However, one can readily choose these parameters so that f,
converges weakly to zero (i.e. |z,| — oo, b, — 0, or b, — 00; see the
exercises).

220
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Thus, to prove the existence of a limit, we need to restore the loss of com-
pactness. For the case of Gagliardo—Nirenberg, we first perform a rescaling
to suitably normalize the sequence. We will restore the loss of compactness
due to translations by taking radial decreasing rearrangements and exploit-

ing the compactness of the embedding H Tlad — L*. For the case of Sobolev

embedding, a different approach is needed, as the embedding H}ad — L% is
not compact. We will use the technique of concentration compactness and
profile decompositions, which allows us to understand precisely the ways in
which a bounded sequence in H' could fail to be compact. See [I8] for an
alternate approach.

We begin by proving the following:

Lemma 9.1.1 (Gagliardo—Nirenberg inequality). There exists C > 0 such
that for all f € H(R3),

1 3
[fllzs < ClAN IV 72 (9.1)

Remark 9.1.2. This is a special case of a more general range of inequalities
of the form

1 lze < IV f15R° (9:2)

We leave the investigation of the general case as an exercise.

Proof of (9.1). Using the triangle inequality and Bernstein estimates, we
have for any Ny € 2% the estimate

1Al <Dl lra
N
3 _1
S Z Nal[fllp2 + Z N7a(| Ve

N<Np N>No
S NG 712 + Ny 19 2.
Optimizing in Ny yields the result. O
We define the optimal constant Cqy by
Cal = mE{IF 152 IV Al s + s+ £ € HYRO\O}).
We will prove the following:
Theorem 9.1.3. There exists f € H'(R3)\{0} such that

1 3
[fllzs = Canllfllz2 IV flIZe-
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Remark 9.1.4. Using the Euler-Lagrange equation associated to the opti-
mization of Gagliardo—Nirenberg, one can deduce the existence of solutions
to the nonlinear elliptic partial differential equation

“AQ+Q-Q*=0, Q:R>=>R.

To prove Theorem we will need to develop a few tools, specifically,
the notion of a radial decreasing rearrangement, and several compactness
tools.

We first introduce radial rearrangements. We give here an abbreviated
introduction; for more details and further results, see [I8, Chapter 3.

For a measurable set S C R%, we define the radial rearrangement of
S (denoted S*) to be the ball centered at the origin such that |S*| = |S].
The radial rearrangement of a function f is then defined by

f*(m)Z/O X{|f|>A}+ () dA,

where yg denotes the characteristic function of S. This can be compared
with the level set (or “layer cake”) decomposition

|f(z)] 00
@) = /O dx = /O Xitroa (@) dA. (9.3)

To make sense of this, we only consider functions such that [{|f| > A}| is
finite for all A > 0.
This definition guarantees that xg = xs+. Indeed, noting that

S Ae(0,1)

{XS”}:{@ A> 1,

we find .
X5() = /0 xs+ (@) dX = xs+ (2).

By construction, the rearrangement f* of a function f is a nonnegative,
radial (i.e. spherically symmetric), decreasing function. Furthermore, the
level sets of f* are the rearrangements of the level sets of | f|, that is,

{7 > A ={lf1> A"

This implies that rearrangements preserve all LP norms (cf. (A.1)).
We need the following estimate. We only sketch the proof; complete
details may be found in [I§].
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Proposition 9.1.5 (Riesz rearrangement inequality). For non-negative f, g, h,
(frgxh) < (f*,9"xh").

Proof. We first consider the one-dimensional case. Using the decomposition
, we may first reduce to the case when f, g, h are characteristic functions
of sets of finite measure. Using approximation by open sets, we further
reduce to the case of open sets. Writing open sets as countable unions
of open intervals and using monotone convergence, we further reduce the
problem to considering finite disjoint unions of open intervals, say

J3

J1 J2
f@)=> filx—aj), glx)=> gjlx—0b), hx)=>_ hjz-¢c),
=1 =1

Jj=1

where fj,g;,h; are characteristic functions of an interval centered at the
origin. Now for ¢ € [0, 1] let

Lige(t) = / fi(x —taj)ge (v —y — th ) he(y — tee) da dy
= / fi(@)gr(z — y)he(y + t(a; — bp — c)) dz dy
=: /ujk(y)hg(y +t(a; — by — ¢)) dy.

We have that u;; is a symmetric decreasing function of y, and so I is a
decreasing function of ¢.

We now start sending ¢ | 0. As soon as two intervals corresponding to
one of the functions intersect, we stop the process and redefine the function
so that it contains an interval that is the union of these two intervals. We
now repeat this process finitely many times until we are left with just three
intervals centered at the origin with the same measures the intervals com-
prising f, g, h (i.e. until we have constructed f*, ¢g*, h*). As this process has
only increased Iz, this implies the result.

To prove the higher dimensional case, we introduce the Steiner sym-
metrization. Given a direction e, we define the Steiner symmetrization of
A, denoted A*¢, to be the 1d symmetrization of A along lines that are par-
allel to e. Given a rotation p of R? with pe = e1, we define pf(z) = f(p~'x)
and and let [pf]*! be the 1d symmetrization of pf with respect to z1 (keeping
xi fixed). We then set

fr=p )
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This notion of symmetrization preserves measurability of sets and functions
(exercise).

We will focus on the case d = 2. Again, we may reduce to considering
f,g,h to be characteristic functions of finite measure sets, say A, B,C. By
the 1d rearrangement inequality, we have

I(A*¢,B*,C*) == (f*, 9"« h™) > (f,gxh) =1(A,B,C)

for all directions e € S'.

Now let & > 0 be an irrational multiple of 27 and let R, denote rotation
by angle a. Let X,Y denote Steiner symmetrization along the x,y axes.
We set

A = (YXR,A)F

and similarly for By, Cj. Note |Ax| = |A| and each Ay has reflection sym-
metry about both the x and y axes. Furthermore,

I(A,B,C) < I(Ag, By, Ck) < I(Ag+1, Brt1, Crt1)

for all k. The key is to prove that x4, — x4+ in L? along a subsequence, and
similarly for By, Cy. This suffices to complete the proof, since we estimate
along this subsequence

|I(A*, B*,C*) — I(Ag, By, Cy)|
< Ibear = xallellxs- 2 lxe Lo + [Ixall2llxs- = xs:llz2lxo-ll o1

+ Ixapllzzxse o Ixer — xclle2
—0 as k — oo.

We now sketch how to prove the desired convergence. We first note that
each Ay, is of the form

A ={(z,y) : [yl <wi(lz[)}

where wy is a symmetric decreasing function. We can further reduce to
the case that A, B, C are all contained in a ball. Then we can use uniform
boundedness of the w; and a diagonal argument to find a subsequence on
which wy, converges at every rational point. Using monotonicity, we can get
convergence at all but countably many points (where jumps may occur). We
can then get L? convergence of the x 4, (and x B, , xc, ) along a subsequence,
say to some x ;. To complete the proof, one needs to show that A is a ball,
for then it must necessarily be A*.
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To see this, one can introduce v = e~1el* consider the sequence ap =
Ilv — x4, |2, which converges to a = ||~7 — Xjllz2- Using symmetries of
and the double reflection symmetry of A, we can deduce

/ Y Rax; < / VX Rax g < / VY X Rax s = / Y Rex 1.

which implies that Rox ; = XY Ry ;. This relies on Exercise Using
this, we find x ; = R2qX ;. To complete the argument, one relies on the fact
that any 6 may be approximated by irrational multiplies of 2. O

We will use the Riesz rearrangement inequality to establish the following
estimate.

Lemma 9.1.6. We have

IVl < IV £lze-

This estimate is known as the Polya—Szegt inequality, and it actually
holds in L? for all 1 < p < oc.

Proof. Recall the heat kernel e/® introduced in Section We compute
IVFIIZe = =(£. A1)
= (f,~ gle"* flle=0)
. _d —|z—y|? F
=t H 013 — () [ ) ) dea |

Applying the Riesz rearrangement inequality and reversing the steps above,
we find

IVAIIZ> > }igg)i{llf*lliz — (4mt)~2 / / eI £ (@) ¥ (y) dae dy}
= V]2
This completes the proof. O
The next result we need is a compactness result due to Riesz.

Theorem 9.1.7 (Compactness in LP). Suppose {fn,} C LP satisfy the fol-
lowing:

e Boundedness: there exists M > 0 such that || fullLe < M for all n.
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e Tightness: for any € > 0, there exists R > 0 such that
[ s <
|z|>R

for all n.

o Fquicontinuity: for any e > 0, there exists § > 0 such that

1) = fuwp s < <

for all n and all |y| < 0.
Then f, converges in LP along a subsequence.

Proof. Let ¢ be a smooth bump function supported on the unit ball with
[ ¢=1. For R > 0, we define

(@) = (%) [RIG(R) * fnl(x)

for each n. For any R, we have that {f[} is a sequence of continuous
functions on the compact set {|x| < R}. Note that for any R > 0, the {f}
are uniformly bounded:

a
12 llzee < 9l | RIG(R) * fullzee S IRIG(R) o | fulle S RY M

for all n. We next show that {f} are equicontinuous for fixed R > 0. As ¢
is smooth, it suffices to show that for any € > 0, there exists § > 0 so that

|RYG(R:)  fo(z + y) — RIG(R) % fr()|| 1o <

for |y| < d. As convolution is linear, this follows from the LP-equicontinuity
of the f,, and the estimates above.

By the Arzeld—Ascoli theorem, it follows that for any R > 0, every
subseuqgence of {f£} has a subsequence that converges in L>®({|z| < R})
and hence in LP({|z| < R}).

Now let € > 0. We claim that there exists R > 0 large enough that

I fn— fRe <& forall n. (9.4)

To see this, write

o= I =0 = ()] fn + S(5) [ fn — RIG(R) * fr].
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The first term can be made small in LP (uniformly in n) by employing
tightness. For the second term, we safely ignore ¢(%) and argue as in the
proof of approximation to the identity (Lemma. Recalling that proof,
we see that we may make this term small uniformly in n due to the fact that
we have uniform boundedness and uniform equicontinuity for the functions
fn-

Finally, let us show that {f,} has a convergent sequence in LP. To see
this, we will show that for any € > 0, there exists J such that

{fn} C U1 B(f))- (9.5)

Let us first see that this does the job. We apply this with the sequence
e = 27% to find a sequence fn i satisfying frp41 € Bo—k(fnr). Such a
subsequence is necessarily Cauchy and hence convergent in LP.

In fact, by , it is enough to establish the total boundedness property
for any {fF}. However, this follows from sequential compactness. To
see this, suppose towards a contradiction that for some g, we have

{f} ¢ UL B, (fff) for any J.

Then we can inductively build a subsequence ffk such that

fokarl ¢ Bso (quk)

By construction, this sequence can have no convergent subsequence, which
yields a contradiction. This completes the proof. O

Using this, we can establish the following result.

Lemma 9.1.8 (Compact embedding). Let H' ,(R3) denote the set of radial
functions in H'. Then H} ,(R®) is compactly embedded in L*(R3).

Remark 9.1.9. This is a special case of a more general result. In particular,

H! (RY) is compactly embedded in LP(R?) for 2 < p < dZTdQ (where the

exponent dQ_—dQ should be taken to be co in dimensions d = 1,2).

Proof. The fact that H' C L* is a consequence of Gagliardo-Nirenberg.
We need to show that any bounded sequence {f,,} in H} , has a subse-
quence that converges in L*. We will use Theorem In particular we
need to check boundedness, equicontinuity, and tightness.
Boundedness in L* is a consequence of Gagliardo-Nirenberg.
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For equicontinuity, we argue as follows. We first apply Gagliardo—Nirenberg
to estimate

15a() = Fal )it S 1 Fal) = Fal IV Full s,

so that it suffices to establish continuity in L?. In fact, this also follows from
H'! boundedness. Indeed, using Lemma m

Wl ) = Fu) 2 ~ / Ful©)Ple S — 12 de
< P / EFu ()2 dE < 9PV ful2e,

which yields equicontinuity.

Finally, we need to prove tightness. Here we rely on the radial symmetry.
We write f,, = fn(r) where r = |z| and denote the radial derivative by 0,.
By the fundamental theorem of calculus, we have for any radial function f
and any r > 0,

r?lf(r)fF =

22 [ 1010,80) dp\

< /0 o7 (0] 010, (o) dp

<(/ pz\f(p)lzdpf( / pzwapf@)\?dpf <171,

where in the last line we compute the integral using spherical coordinates.
In particular, we have

/ [fu(@)|  dz S R | fa(@)|* dz S B2 fall 22 2] full T
|z|>R |z|>R

S Rl
which implies tightness. This completes the proof. O

Remark 9.1.10. The estimate used to establish tightness is often called a
radial Sobolev embedding inequality.

With the requisite compactness tools in place, we can now prove exis-
tence of optimizers for Gagliardo—Nirenberg.
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Proof of Theorem[9.1.3. Let

TP
J _ WNLEn v J 2
=77,

for f € HY(R®)\{0}, so that Cgy = inf J(f). We take a sequence f, €
H(R3)\{0} satisfying

: e
nh_}ngo J(fn) = Con-

We now wish to pass to a limit; however, we need to make some modifications
to restore the compactness that is lost to scaling and translation symmetries.
We will first define

Gn(x) = an fr(bnx)

for suitable ay,, b,. In particular, if we define

1

2
SR 1T 1)
[Vl IV 5l

then
lgnllz = IVgnllz2 = 1.

Note that g, remains an optimizing sequence, i.e. J(g,) — C&f\,.

Next, we take radial rearrangements and define h,, = g;;. By Lemma[9.1.6
and the fact that rearrangements preserve LP-norms, we have that h,, is a
bounded sequence in H} , (in fact ||hy| 2 = 1 and ||[Vhy,| 2 < 1) satisfying

S (hn) < J(gn)-

In particular, A, is also an optimizing sequence.
By boundedness in H}ad, we have that h,, converges to along a subse-
quence to a limit 4, weakly in H! and strongly in L* (cf. compact embedding

and Lemma |A.2.3). Using Lemma we deduce

J(h) < lim J(hy) = inf J(f),

n—oo

thus giving the existence of an optimizer, as desired. ]
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9.2 Concentration compactness and sharp Sobolev
embedding

In this section we will introduce techniques related to ‘concentration com-
pactness’, specifically the notion of a profile decomposition. We will apply
these techniques to prove the existence of optimizers for a Sobolev embed-
ding inequality proved in Section These techniques also play an impor-
tant role in the setting of current research in nonlinear partial differential
equations.

Recall from Section that we have the following general inequality:
there exists C' > 0 such that for all f € H'(R?),

£l zemsy < CIV £l L2 ms)- (9.6)
We define the optimal constant Cg,, by

Csob = sup{ || fll o (rs) = |V fllr2s) : f € H (R*)\{0}}. (9.7)
Our goal in this section is the following theorem.

Theorem 9.2.1 (Existence of optimizers for Sobolev embedding). There
exists f € HY(R3) so that

| fll e (3) = Csobl|V £l L2(m3),
where Cgop is as in (9.7]).

Remark 9.2.2. Similar to the case of Gagliardo—Nirenberg, we can use
optimizers of Sobolev embedding to find solutions to the nonlinear elliptic
PDE —AW = W5.

The basic idea is to take an optimizing sequence and to extract a suitable
limit, which can then be shown to be an optimizer. The key to proving con-
vergence is to use a ‘profile decomposition’, which decomposes an arbitrary
bounded sequence in H! into a sum of bubbles (with well-defined spatial
positions and scales), plus a remainder that vanishes in the L® norm. We
then show that an optimizing sequence necessarily contains only one bubble.

The starting point is a refinement of Sobolev embedding that allows us
to identify a scale for concentration.

Lemma 9.2.3 (Refined Sobolev embedding). For f € H'(R?),
2 1
[RAIFTIS [SllprfNHLG] SV EIZ.

where fy = Pnf denotes Littlewood—Paley projection.
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Proof. We use the Littlewood—Paley square function estimate, Theorem|7.2.6
Then

3
171 ~ [ (S1ivl?) aa
N
~ Z /|fN1|2|fN2|2|fN3|2da:

N1,N2,N3

DY /|fN1|2|fN2|2|fN32dx.

N1<N2<N3

Continuing from above and applying Hdélder’s inequality and Bernstein’s
inequality (Propostiion [7.2.3)), we find

1F18 < D Ifnllmee Il fa sl Fva 7o s s L fvs L o

N1<N2<Nj3
4 Ny &
S lsupliivliee]” >0 (R IV Imllez Ve
N1<N2<N3
4 N\ N
S b lvlie]t Y () oGV 219 ol
N1<Nj3

Applying Schur’s test, we deduce

IF11Zs < [sup 1w llZe] DIV Fnl7e,
N

which implies the desired result. ]

Next, we combine this result with Hélder’s inequality to demonstrate
how to extract a bubble of concentration from a bounded sequence in H'.

Proposition 9.2.4 (Inverse Sobolev). Suppose {f,} € H'(R3) is a sequence
satisfying

limsup |[Vfullrz <A and liminf || f,|zs > e (9.8)
n—oo

n—oo

for some A > 0 and € > 0. Passing to a subsequence, there exists ¢ € Hl,
A € 2% and z, € R3 such that

A2 fa(n + ) — ()
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weakly in HY, with
5
Vo2 Z e(5)4. (9.9)

We have the decouplings

Jim [[[VfullZo = IVIfa = énllZ2 = [ Veull72] =0
and
Jim [l falle = 1 = énllfo — llénll3] = 0.
where

bn(5) = A P B(E52).

Proof. Passing to a subsequence, we may assume the bounds in hold
for each n. Then using Lemma [9.2.3] we may find a sequence IV,, such that

1
1PN, fullLs 2 €(5)>

for all n. By Holder’s inequality and Bernstein’s inequality,

N

1 2
S PN falls S NP full 2l P, fall oo
1 1 2
S Nu 2 IV full 21 P, foll £

! 2
S N * A3 P, fol| feo

(%)

Thus X
s 5
PN, frloes 2 €N (5)4,

and hence there exists x,, € R? such that
_1 5
Ni ? [P, fo(zn)l| Z e(5) 1.

We now set \,, = N, ! and define

T (2) = A2 fa(On + 20).

As h,, forms a bounded sequence in H 1(R3), Alaoglu’s theorem implies that
hy, converges weakly along a subsequence to some ¢ (cf. Lemma. We
now claim that ¢ is nonzero; in particular, we have exhibited concentration
for f,, at the physical scale A\, and spatial position x,.



9.2. SHARP SOBOLEV EMBEDDING 233

To prove the claim, we let K denote the convolution kernel of the
Littlewood—Paley projection P;. Then

/ K (2)hn(x) dz = / K(2)AE foOontt + 1) d
= N * [ NNy = 2a)) fuw) dy = N * P (o).
In particular, by construction, we have
(K. 6) = lim [(K, )| 2 £(5)1,
which by Holder’s inequality and Sobolev embedding implies
(51 < 6lzs S 1VH 2.
The H* decoupling follows from weak convergence and the fact that
hn = ¢ = [Vhnli2 = [IV]6 — hall72 = [V4IIZ2

(check!).

For the L5 decoupling, we will need the following refined version of Fa-
tou’s lemma due to Brezis and Lieb [I]: if a, is a sequence of LP functions
with limsup,, , ||an|/z» < 0o and a,, — a almost everywhere, then

lanllZy = llan — allz, — llal/Z,- (9.10)

We prove this below. Assuming (9.10) for the moment (see below), we now
claim that

1
)\ﬁfn()‘nm + xn) — QZ)

almost everywhere along a subsequence. To see this, we first observe that
HY(K) — L*(K) is a compact embedding for any compact K C R? (cf.
Theorem and the proof of Lemma . Thus, the weak convergence
implies strong L? convergence along a subsequence for any compact K C
R3. Using a diagonal argument, we can then deduce almost everywhere
convergence along a subsequence. (See Exercise m)

Thus, by (9.10)), we have

1 1
A fn(Anz + xn)”%ﬁ — A2 fa(Anz + 20) — @l s — H¢H%67

which after a change of variables yields the desired L% decoupling. O
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It remains to prove the refined Fatou lemma due to Brézis and Lieb [I].

Proof of (9.10). Let € > 0 be arbitrary and define
Wen = H lan|P — |a? — |a, — a‘p‘ —elan — am_p

where + denotes the positive part. By assumption, W, ,, — 0 as n — oo.
On the other hand,

llanl? —lal? = lan — al?| < |lan? — |ay — al?| + |af?
< elan — al? + Cclal’ + |al?,
where we have used the fact that for any € > 0, there exists C; > 0 such

that
|z + ylP — |zfP| < elaf? + Cely/P.

To see that this holds, consider the cases |y| < |z| and |y| 2 |z| separately;
the first case leads to the first term on the right-hand side, while the second
case leads to the second term.

Continuing from above, we deduce

0<Wey <(1+Co)alP € L.

Thus the dominated convergence theorem implies that f Wen —0asn —
oo. Now we observe that

Han’p - ’a’p - ’an - a‘p‘ < Ws,n + 8’0% - a‘py

and hence we deduce
limsup/Hanp — lal? — |an — a|p| dr Se.
n—oo
As £ > 0 was arbitrary, this completes the proof. ]

We can now turn to the main technical tool needed for the proof of
Theorem namely, a profile decomposition adapted to the Sobolev em-
bedding inequality.

Proposition 9.2.5 (Profile decomposition). Let {f,} be a bounded sequence
in H'(R3). There exist J* € {0,1,2,...}U{oco}, profiles {¢j}3];1, positions

{:1:%}3];1, and scales { )\, 3];1 such that along a subsequence in n we have

J )
falw) =D N2 () 0] for 0<J <"
j:l n

Furthermore, the following properties hold:
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o We have H' decoupling:

J
sup limsup|[|V foll72 — Y [Ve/|[72 — [Vr)]|7.| = 0.
J n—oo j=1

e The remainder vanishes in LS:

lim sup lim sup ||} |5 = 0,
J—=J* n—00

and we have the LS decoupling

J
limsup limsup| | fullfs — > 167 ]13| = 0.
J=J* n—oo =1
Proof. We define 0 = f,. If f, — 0 in L®, then we stop. Otherwise, we
apply inverse Strichartz to identify the first profile ¢! (and the parameters
(1, AL)) and define
rh =0 — AR ().

If . — 0in L°, then we stop. Otherwise, we again apply inverse Strichartz
to identify the next profile and parameters, defining 2 analogously to above.
Proceeding in this way, we construct the profiles, parameters, and remainder
terms. We may need to apply this (countably) many times, passing to a
subsequence in n each time. This determines whether J* is finite or infinite.

We now need to verify the properties claimed in the proposition. The
H! decoupling follows by induction and by construction.

Let us verify the vanishing of the remainder in L5. We define

ey= lim |[r]|s and Ay = lim |Vr] 2.
n—00 n—oo
By construction Ay < Ag. Thus, by and construction, we have
4 05 .5
IVelI7e 2 €51 (55H) 2 €1 (552
Hence, by H' decoupling,
J J .
Yo (FEP S IVIR. S A3
=1 =1

J

which implies ; — 0 as j — oo. Finally, the L5 decoupling follows from
induction and the vanishing of the remainder in LS. O
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With the profile decomposition in place, we turn to the proof of Theo-
rem [9.2. 1|

Proof of Theorem [9.2.1. We let {f,} be a sequence in H'\{0} such that
nhanc}o J(fn) = Cg‘ob?
where
T = 1 lgs = IV A1
Let us first normalize the sequence by replacing
fu WithroES

so that |V fn||2 = 1. We now apply the profile decomposition to f, to write
J

fo= Y AT (555 + 7

Jj=1

along a suitable subsequence. Now observe by the L8 decoupling and Sobolev
embedding,

J* J*
Clop = lim J(fu) = D 181136 < Cdop Y _ VS [52-
Jj=1 J=1
On the other hand, by the H' decoupling,

J*
> IVe|li. < 1.

Jj=1

Using the nesting ¢2 C £5, this implies that all of the inequalities above are
equalities. In particular,

J* Jx
SV = 3 IV = 1.
j=1 j=1
Since the ¢’ are all non-trivial, this implies that there must be only one
profile, say ¢, which satisfies [|[V¢| ;2 = 1. We therefore have
1
fa=2An QQZ)(%) + T,

1
with A2 fn(A\nz + x,) — ¢ and ||V fullrz = IV@| 2 = 1. In particular,
1

A2 fn(Apx+1,) converges strongly to ¢ in H'! and hence in LS. In particular,
J(¢) = C¢ ;. i.e. ¢ optimizes Sobolev embedding. O
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9.3 Exercises

Ezercise 9.3.1. Let f € L*(R?%). Show that g, := f(z+4x,) converges weakly
to zero if |x,| — oco. Show that h, = f(A,z) converges weakly to zero if
A, — 0 or A\, — oco.

Ezercise 9.3.2. Prove that the embedding H, ,(R?) — L5(R?) is not com-
pact. Here the subscript ‘rad’ denotes the restriction to radial functions, i.e.

[ satistying f(z) = f(|z]).
Ezxercise 9.3.3. Investigate the allowed range of exponents in (9.2)).

Ezercise 9.3.4. Let f, g be nonnegative functions such that [{f > A}| and
[{g > A}| are finite for all A > 0. Then

f@)g(x)de < | f*(2x)g"(z)dw.
Rd Rd

If f is strictly radially decreasing, then equality holds if and only if g = ¢*
a.e.

Ezercise 9.3.5. Show that Steiner symmetrization preserves measurability
of sets and functions.

Ezercise 9.3.6. Prove the existence of optimizers for Gagliardo—Nirenberg
by developing an appropriate profile decomposition.

Ezercise 9.3.7. Let K C R% be a compact set. Show that H'(K) — L?(K)
is a compact embedding. As a result, show that if g, — g weakly in H'(K),
then g, — g strongly in L?(K) along a subsequence.



Chapter 10

Modern harmonic analysis,
part 111

Our goal in this chapter is to provide an introduction to restriction theory
and some related topics, including ‘Strichartz estimates’ in the setting of
Schrédinger equations.

10.1 Restriction theory and Strichartz estimates

In this section, we give a brief introduction to restriction theory, focusing
on an early result due to Strichartz [30].

Restriction theory concerns the basic question of when it makes sense to
restrict a function’s Fourier transform. In particular, given S C R™ (with
n > 2) and a positive measure du supported on S, we can consider the
following two problems:

A. For which p € [1,2) do we have the following restriction estimate:
122wy S 1flloe@ny 7
B. For which ¢ € (2, 00| do we have the estimate

ICE dp) Nl pageny S I1F |2 (a7

By duality, these problems are equivalent provided g = p’ (i.e. %4—% 1).

Note that if f € L', then the Riemann-Lebesgue lemma tells us that f
is continuous with f — 0 at infinity. In particular, it makes sense to restrict
f to sets of measure zero. On the other hand, if f is merely in L? then
f € L? and it does not necessarily make sense to restrict f in this way.

238
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Ezample 10.1.1. There exists a function belonging to L? for all p > 1 whose
Fourier transform is infinite on an entire hyperplane. Let ¢ : R%~! — C be
a bump function and set

f(l‘) - (1 + ‘$1’)_1¢<$2, s Td).

Then f € LP for all p > 1. However, if we now set S = {¢£ € R? : & = 0},
then we observe that

_d
2

fl&) = n) bl &) [t dn =0

for £ € S.

The issue in the previous example is that the hyperplane S has no cur-
vature.

Following [30], we will first focus on the case that S is a quadratic surface;
we return to some more additional cases in Section [10.3] For simplicity, we
will restrict our attention to the case of the paraboloid

S:{x:xn:—[x%—i----%-xi_l]},

although more general quadratic surfaces may be treated by similar methods
(see [30]). In our case, the relevant measure dy is simple to describe. In
particular, for a function F on R", we have

F@)du() = [ Flo~loP) dy (10.1)
R Rn—1

We begin by observing that by Plancherel and Hélder, we may write
1F122 a0 = (Fs i) = (Fydias £) S 11 F ool £l

Thus, the restriction estimate in A. would hold for a choice of p € [1,2)
provided we could prove the convolution estimate

ldp* fll o S 11 £1|ze (10.2)

for the same choice of p. We will look for p such that (10.2)) holds. We will
utilize the Stein interpolation theorem, Theorem [6.1.11
In what follows, we will use the notation

= (y,x,) € R" 1 xR.
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We introduce the the following analytic family of distributions:

where + denotes the positive part. Here z € C and 7(z) is an analytic
function to be determined below with a simple zero at z = —1. To connect

these distributions to the problem above, let us prove the following:

Lemma 10.1.1. Define K, as above and suppose v has a simple zero at
z = —1. Then there exists a constant c such that

lim K, — cdu

z——1
in the sense of distributions.

Proof. Let F' be a test function on R”. Then by a change of variables we
have

[ K@r@ s =) [| [ Fant Pl do]
=) [ [P+ [ 11l do
Recalling ((10.1)), the problem therefore reduces to establishing
Y(2)[ L = cd as z— -1, (10.4)

where dy is the Dirac delta distribution. Indeed, with (10.4]) in place we get

[ K@ F@ e e [ F-lyPdy=c [ Fa)duta),

as desired.
As ~y is assumed to have a simple zero at z = —1, to prove ((10.4)) it is
enough to establish

(z+D[-]7 =6 as z——1,

which we now prove. We let H denote the Heaviside distribution

H(T):{l 7>0

0 7<0,

which satisfies 0, H = §yg. We now observe that

(z+ 1)1 =0~ [7‘+]Z+1.
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Thus, for any test function ¢, we get

((z+ D75, 0) = ~(r57,¢) = —(ri7 H, ¢') = —(H, ¢') = (30, )
as z — —1. This completes the proof. O

In light of the lemma above and ([10.2)), we have now reduced the restric-
tion estimate A. to establishing the LP — L¥ boundedness for the operator

feToaf =K 1%,
with K, as in (10.3]). Writing 7%, f = K * f, applying Plancherel and Holder

yields the estimates
1T fllez < 1Kzl fllze, ie [ Tellpzope < (1K Lo
1T fllzee S KNz llflle e (|1 Tellpropee < (1Ko

Then, to apply Stein’s interpolation result (Theorem |6.1.11]) we will look for
g > 1 and an analytic function v with a simple zero at z = 1 satisfying the
following on the strip —xp < Rez < 0:

(i) |y(z +4y)| has at most exponential growth as |y| — oo,
(ii) K.(z) is bounded when Re z = 0.
(iii) K,(x) is bounded when Rez = —xq.

Then, by Theorem [6.1.11] we can interpolate between the estimates at
Rez =0 and Rez = —x¢ to deduce

2xg
xo+1°

||T_1HLP_>LP’ S 1, where p=

Lemma 10.1.2. Let I' denote the Gamma function

r _ > —tyz—1 dt.
(2) /0 et t
Define

A(2) = D(z 4+ 1))

and let K, be as in (10.3). Then v has a simple zero at z = —1 and satisfies
items (i) and (ii) above. Furthermore, writing x = (y,x,) as above, we have

; Nty

K.(z)=c¢ exp{—%}izxn (10.5)
for some constant c. In particular, item (iii) holds provided

Rez = —x9 := —”T‘H.



242 CHAPTER 10. MODERN HARMONIC ANALYSIS, PART II1

This is the key lemma. With Lemma [10.1.2]in place, we conclude:

Theorem 10.1.3 (Restriction estimate for the paraboloid). The restriction
estimates A. and B. on the paraboloid S C R™ are valid for

_ 2(n+1)
- n+3

2(n+1)
n—1 7

and q=7p =
respectively.

We turn to the proof of Lemma, [10.1.2)

Proof of Lemma[10.1.3. For basic properties of the Gamma function, we
refer the reader to [29] (say). In particular, since I' is nowhere zero, we get
that (z) is analytic. As I' has a simple pole at z = 0, v has a simple zero
at z = —1. One can also check (i) and (ii); for example, for (ii) we observe
that for z = io,

|Kio (2)] = y(io)] - [Jan — [yP7] < In(io)].

One can then check (using Stirling’s formula, say) that |I'(1 + io)| — oo as
|o| = oo, which yields boundedness of |y(io)|.

Thus, the proof boils down to establishing . This computation will
also explain the origin of the mysterious choice of ~.

We begin with a change of variables and contour integration. We write
x = (y,xy,) and the dual variable as £ = (1,&,). Then

/ei[yn+xn§n] [ﬂﬁn _ ‘ymi dor — /ei[yn+§n|y|2] UOO eixnfnxi dxn] dy

0

n

_ iz+1£—(z+1)r(z +1) /ei[yn+£n|y2} dy.
Next, a Gaussian integral computation (i.e. completing the square) implies
lynténlyl?] gy — oo 3k
/Rnl emténlll gy = c ¢, 2 exp{—zE}. (10.6)
In particular, continuing from above leads to

e

/ei[y"“”"f”] [wn — \yﬂi dx = cI'(z 4+ 1)i%&, ) exp{—ﬂ?f }

Multiplying both sides by v(z) = [['(z + 1)] 7! yields (10.5), as desired. [l
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Restriction theory remains an active area of research within harmonic
analysis. We have truly just scratched the surface by demonstrating a single
result. Instead of delving deeper into restriction theory at this point, we
will now return to one of the themes appearing frequently in these notes,
namely, applications of harmonic analysis to partial differential equations.

We will first show that the restriction estimate for the paraboloid is
equivalent for a space-time decay estimate for solutions to the Schrédinger
equation. In fact, today these estimates go by the name of Strichartz esti-
mates, in honor of Strichartz and his seminal work [30].

Recall that in Example [7.3.1] we used the Fourier transform to solve
the initial-value problem for the linear Schrodinger equation on Ry x RZ. In
particular, the solution to

(10 + Ay)u = 0
{u\t—o e 2w, (10.7)
is given by
u(y. 1) = (2m)~ / iton=tinl*) () dy, (108)
Rd

where we temporarily use qg to denote the Fourier transform on R%.

Proposition 10.1.4 (Strichartz estimate). Let u : R¥! — C be the solution

to (10.7). Then

<
[P L Pt

Proof. Let n =d+ 1. As above, we set

2d+2) _ 2n+l
(;): (:jl) and p=¢.

We estimate the L4(R™) norm of u by duality. Employing ((10.8)) and denot-
ing elements of R by (y,t) € R4T!, we are led to estimate

// e =t) G () £ (y, t) dny dy dt = /é(n)f(m—lle)dn

for f € LP(R™), where f denotes the Fourier transform on R™. Thus, by

Plancherel, ((10.1]), and Theorem
[, )] S N80l (=01 L2z
SNl 2 ey 1 1l 2
S 1@l Lz @ay | fll o )

The result follows. O
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10.2 Strichartz estimates

In the previous section we established a space-time estimate for solutions to
the linear Schrodinger equation by means of a restriction estimate. In this
section we will extend the range of estimates by different methods.

Let us shift notation slightly and denote the solution u = u(t, z) to

(10 + A)u=0, u(0)=¢

by
u(t) = 2.

t

Here e? is the Fourier multiplier operator with symbol e‘it‘ﬂz, ie.

. _ i 2
eZtA = F 1e it[g| F.

Our goal is to prove space-time estimates for e*2¢. We begin by estab-
lishing estimates for fixed time ¢. By Plancherel, the representation above
immediately yields the L? bound

HeitAflsHLQ(Rd) = ”¢HL2(Rd)-
On the other hand, using Lemma we can also write
Py = .7:71[67“|£|2.7¢] = (27‘(‘)%‘/—"71[671‘”6‘2] * Q.
However, we have essentially already computed F 71[6*“'5'2] in . In
particular, we find
() = (amity [ I () ay,

which readily implies the ‘dispersive estimate’

; _d
HelmWLw(Rd) S 28l L1 rey-

Then, by interpolation we deduce

d_d

€20l ogeay S 117 E 6]l oy for 2 <p < o0, (10.9)
where as usual p’ denotes the Holder dual to p, i.e. the solution to % + z% =
1. This will be an essential ingredient in proving the following Strichartz
estimates.
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Proposition 10.2.1 (Strichartz estimates). Let d > 1 and suppose 2 <
q,r < 0o satisfy the scaling condition

2 d d
2rd=4g (10.10)

Then ‘
||eZtA¢HL§LT(R><Rd) S 9l L2 ray- (10.11)

Proof. We seek to prove
T:=e"™ maps L% — LIL.

We will employ the method of TT*. In particular, we need to compute the
adjoint T™ and prove that

TT*: LI - LIL,

where ¢’ and r’ denote the dual exponents to ¢ and r.
To compute the adjoint, we rely on the fact that 2 is unitary on L2

for each t. Thus,
(Tf,G // A f(2)G(t, x) da dt

/f /e HAG(t, z) dt dz,

T*G(z) :/e_iSAG(S,x)ds.
R

which shows

In particular,
TT*F(t,x) = / =92 (s, x) ds. (10.12)
R

We now use the dispersive estimate (10.9)), the Hardy—Littlewood—Sobolev
inequality (Theorem [6.2.2)), and the scaling relation (10.10)) to estimate
d

NE )], ds

17T Fliges 5 | 1= 574 o

_2
Sl = 1E@N L [ Lo

_2
S |||t q||Lt%’OO||FHLg/L;,

SIE

/
q /'y
L; LY
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yielding the desired bounds for T7T*. Note that the application of Hardy—
Littlewood—Sobolev requires ¢ > 2.

By the method of TT* (see e.g. Exercise , we deduce the desired
L? — LIL" boundedness of e**2. O

Remark 10.2.2. Note that this result covers the special case ¢ = r =
Q(dfjm covered in the previous section. The endpoint case ¢ = 2 (which is
compatible with only for d > 2) is also allowed provided d > 3; it is
valid in d = 2 in the radial setting. However, proving endpoint Strichartz

estimates is a much more challenging problem (see [16]).

Apart from the missing endpoint ¢ = 2, one may ask about the optimality
of the condition ; i.e. are there other exponent pairs for which we
may expect an estimate of the form ? If we insist on putting the
function ¢ in L?, the answer is no. One can check that the scaling relation
is necessary by considering ¢*(x) := ¢(A\x). Then we firstly have

_d
H@Z))\HL?(Rd) =A"2|¢l 2.

On the other hand, the solution to the linear Schrodinger equation with data
& is
i itA?
AN ())(x) = " A g] (M),
and so . . 4
12 (Nl Loy ey = A0 7 11€" Dl 1 11 (mxcra)-

In particular, the estimate is only possible if the powers of A match, which

is exactly (10.10]).
One may also ask whether ((10.11)) could hold with (g, r) satisfying ((10.10))

but 1 < ¢ < 2. The answer is also no. To see this, let us give the following
heuristic argument. Fix a nice function ¢ and consider the linear solution
u(t) = e®¢. Supposing the Strichartz estimate holds in L{L%, we can
find a sufficiently long time interval around the origin (of length 7', say) so
that ‘most’ of the norm is contained this interval. We now consider time-
translates of u by {tj}év:l, which are separated by a length > T. Then,
using time-translation symmetry of the equation, we should have

N

> ult—t))

j=1

2 N

LIL;(RxRY)

(by splitting into the disjoint time intervals where each u(-—t;) is nontrivial).
On the other hand, by linearity, we recognize ) | u(t —t;) as the solution to
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the Schrodinger equation with data > e~"i%¢. Thus, applying Strichartz,
the fact that e="2¢ and e~"% are almost orthogonal (provided |t; — tj| is
large enough), and Cauchy—Schwarz, we deduce

N
> ult—t))
j=1

In particular, if 1 < ¢ < 2, then we can reach a contradiction by choosing
N large enough.

One can also prove that the endpoint estimate (d,q,r) = (2,2, 00) fails
in general, but is recovered in the case of spherically-symmetric solutions
(see the papers [20, 23]).

Strichartz estimates play an important role in the settling of nonlinear
Schrodinger equations. For example, Strichartz estimates are the essential
ingredient in the well-posedness theory for equations of the form

N

Z e~itil g

Jj=1

<

~

LiLy

<N

L2

(0 + A)u = F(u), (10.13)

where F' is a nonlinear function of u; common examples include power-type
or Hartree nonlinearities, i.e.

F(u) = MulPu or F(u) = M|z|™7 * [u*)u.

In particular, to connect Strichartz estimates to the well-posedness the-
ory for , observe that a variation of parameters argument (i.e. looking
for a solution in the form u(t) = e*2v(t)) leads to an equivalent integral
formulation, known as the Duhamel formula:

t
u(t) = e Pug — i / A F (u(s)) ds,
0

where ug denotes the initial condition u|;—¢. In particular, solving the PDE
is equivalent to finding a fixed point of the operator

t
du(t) = e*Puy — z/ A F (u(s)) ds.
0

The usual strategy is to utilize the Banach fixed point theorem, which re-
quires proving that ® is a contraction on a suitable complete metric space.
In particular, this requires mapping properties (i.e. estimates) for the oper-
ators appearing above.
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We may apply Strichartz estimates directly to e’*2. The remaining op-
erator

t
F(t,x)l—>/ AR (s, 1) ds
0

is similar to the operator TT™ appearing in (for which we proved
estimates); however, it is not identical due to the truncation of the integral.
In the remainder of this section, we will discuss a result due to Christ
and Kiselev [5] that allows us to deduce bounds for the truncated operator
appearing in the Duhamel formula. The general result is the following:

Theorem 10.2.3 (Christ—Kiselev lemma, [5]). Let X and Y be Banach
spaces, and let

T:IP(R; X) = LYR;Y), 1<p<q< oo,

be given by an integral transform
TF(#) = / K(t5)f(s)ds, K:RxR— L(X,Y).
R

Defining
t
Tot)) = [ K(t.s)g(s)ds
we have that T is bounded from LP(R; X) to LI(R;Y).

Remark 10.2.4. In the generality stated above, the assumption p < ¢ is
necessary (e.g. one can truncate the Hilbert transform to find a counterex-
ample with p = ¢ = 2). We may allow p = 1 or ¢ = oo, in which cases p = ¢
is allowed; we leave the investigation of these details and extensions to the
reader.

Remark 10.2.5. To apply this in the setting of Strichartz estimates for the
Schrédinger equation, we use

Tf(t) - /Rei(t_S)Af(S) ds, p= qlv X = LT/’ Y=L"

Thus we have p < 2 < ¢, and e!t=9)2 ¢ L(X,Y) by the dispersive estimate.
Sketch of the proof of Theorem[10.2.5. Fixing f satisfying

1Ay = L
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we aim to prove
1Tl aryyy S 1-

We will use a ‘Whitney decomposition’ of the region S = {z < y} C R? in
order to decompose K (t,s)f(s). In particular, we need the following:

Whitney decomposition (see [27]). We may decompose S into a countable
disjoint union of dyadic squares {Q}qep, i.e. squares of the form

Q=1ILyx1Iy, ILp=k27,(k+1)277], jkez,

such that I(Q) ~ d(Q,dS), where [(Q) denotes side-length of Q.

To prove this, one takes (), to be the largest dyadic square containing x
with I(Q) < d(Q,0S5). Then verify that this leads to the desired decompo-
sition.

Now, with the nondecreasing function F': R — [0, 1] defined by

Ft) = / 1£(s)I% ds,

we claim that for any t € R, we may decompose

K(t,s)f(s) = Z Xma@ (F'(1) K (¢, 5)[Xm@(F () f(s)] (10.14)

QeD

for almost every s < t, where 7 (A x B) = A and my(A x B) = B. Indeed, if
F(s) < F(t), then by properties of the Whitney decomposition there exists
a unique Q(s,t) € D such that (F(s), F(t)) € Q(s,t). Then by linearity,
K(t,8)f(s) = Xq(s.)(F(s), (1)) - K(t,5)f(s)
= X7r2Q(8,t)F<t)K(tv 3) [XmQ(s,t) (F(s))f(s)]
— RHS(10.1%)

On the other hand, for any ¢ we have by construction

[ W@ ar =0,
FH(E()

which implies that f(s) = 0 for almost every s < ¢t with F(s) = F(t). Thus,
in this case we have that both sides of (10.14)) are zero (almost surely in s).
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Continuing from , we write
T10) = Y xma(F(0) [ K(t.5)lmo(F(s)1(:))ds

QeD
= 3 Xmo(FU)TI(xmg o F)A()
QeD

oo 27—1

- Z Z Z [X]jk © F]T[(XmQ o F)fl,

j=0 k=0 QED:mQ=1;},

where we have omitted the terms in which m@Q) = I 1 or [;; (cf. F €
[0,1]). Now observe that for fixed j, we have (using disjointness of supports
and the linearity and the boundedness of T')

oo 29—-1 q
1T ey D001 D (o F) Tl(xmg o F)/]
J=0 k=0 "QeD:mQ=1I;; La(R;Y')
q
<Yl oF)T[ > (xme oF)f]
5.k QED:m2Q=1I; La(R;Y')
q
< Z Z (XmQ © F)f
gk ' QeD:mQ=1I;;, Lr(R;X)

oo 27—1

<Y D> lxmge F) 50 @)

j=0 k=0 QED:mQ=1y,
Now, by construction, if [(Q) = 277 then we have
43

||(X7T1Q o F)quLP(R;X) ~2 7.

Furthermore, using properties of the Whitney decomposition, for fixed j, k
there are a bounded number of @) such that 72(Q) = I;,. Therefore

- - oo 271 L
1T gy S D057 2
j=0 k=0

provided 1 < p < ¢ < oo. This completes the proof. ]

° ‘\7.

oo
< ZQ—J'[%—U <1
=0

We have succeeded in proving a range of Strichartz estimates for the
linear Schrodinger equation. Of course, this is not the end of the story;
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e.g. we have left out the important endpoint estimate of [16], along with
many other extensions and possible refinements. Nor have we discussed in
detail how one may apply these estimates to prove local well-posedness for
nonlinear Schrodinger equations. For the interested reader, we recommend
the reference [3] for a thorough textbook treatment, as well as [I7] for an
expository introduction into some more advanced techniques.

10.3 Return to restriction theory; Tomas—Stein
lemma

In this section, we return to the restriction problem introduced in Sec-
tion Along with the paraboloid (discussed in Section this problem
has been widely studied in the setting of the sphere and the cone. Just as
the restriction theory for the paraboloid is connected to the Schrodinger
equation, the cone problem is connected to the linear wave equation.

We will focus on the case of the sphere. Similar to the paraboloid case,
we will be interested in estimates of the form

1F] sl zasdoy S 11l poay, (10.15)

where S = {¢ € R?: |¢| = 1} and do denotes surface measure on the sphere.

We begin with a few remarks. First, if p = 1 then holds for all
q € [1,00] (cf. Holder’s inequality and Hausdorff-Young). Next, if p = 2
then fails for all ¢ € [1,00], as f may be an arbitrary L? function
(and hence could be = co on 5).

Finally, note that if holds with some pair (p, ¢), then it also holds
with any (p, ¢) with p < p and ¢ < ¢. To see this, let ¢ be a bump function
with ¢ = 1 supported on B(0,2). Then

fls = f*¢ls,

so, by Hoélder, Hausdorff-Young, and Young’s inequality, we have

Iflsllza(s,ao) S I * lloa S+ ellze Se [1f1 e

Thus the goal is to take p, g as large as possible in ((10.15)).
~ As in Section we can formulate a dual version of ((10.15]). Define
R: LP(RY) — L9(S,do) by



252 CHAPTER 10. MODERN HARMONIC ANALYSIS, PART II1

The adjoint R* : LY (S, do) — L¥ (RY) (where primes denote Holder duals,
as usual) is computed by

(Rf. 9) 5.0 = /S RE©)g(€)do(€)

_d , .
= Cry [ f@) [ ew<g©) dote) dn = (1. (9d0) ).
In particular, R*g = (g do)", which is bounded if and only if

19 do) Nl ay S 191l o (5,00 (10.16)

We begin by finding necessary conditions for R, R* to be bounded.
Ezample 10.3.1. Let g = 1. Then ((10.16]) becomes

||5HLP’(Rd) S L

d—1

As |5(z)] = O((z)” 2z ) (cf. Exercise , we find that we must have
Gy’ >d, ie p< % (10.17)

Ezample 10.3.2 (The Knapp example). Let R > 1 and g = xx, where K is
a spherical cap centered at the south pole & of radius R~!. Then K c D,
where D is a disk of radius R~! and thickness R~2; indeed, with & = (£,&,),

1= —/1- |2 =~ [1 - }i6* + O(elh)] = -1 + O(R™),
Then
(gdo) (z) = e / (H(E=60) gy (£).

K

If |(€ — &)z| < 1, then (gdo)(z) is of size o(K) ~ R~(41),

Now, observe that for £ € K, we have

24(§ —&o)al ST if  |zal S R?,
while
[Z(€ -l S1 if [Z[ S R

In particular, (gdo) (z) ~ R~V throughout the ‘dual tube’ T to D,
centered at the origin, with height R? and radius R. So

d+1

(g do) | = B-@D|T)7 > R-E@-VRY .
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On the other hand,

1 _d-1
HgHLq/(S7do') So(K)Y SR
Thus for (10.16)) to hold, we must have
RDRY SRV, de <dl (10.18)

The restriction conjecture for the sphere states that the necessary
conditions ((10.17) and (|10.18) are in fact sufficient.

Conjecture 10.3.1 (Restriction conjecture for the sphere). We have

d+1

1 £1sll ooy S 1l poqray if and only if p < 24, i =1,

IA
a[f

This has been resolved completely in d = 2 [31], while the full result
remains open in higher dimensions.

In the rest of this section, we will discuss a positive result due to Tomas
and Stein.

Theorem 10.3.2 (Tomas—Stein). We have

r 2(d+1
| flsllz2(sdo) S NNl pray whenever 1 <p< (d+3)-

Note that when ¢ = 2, the necessary conditions in Conjecture
reduce to
2(d+1)
S T

so this result is sharp for the choice ¢ = 2.

Proof of Theorem [10.3.4 We will prove the result up to (but not including)

the endpoint p = ng;). We begin by obtaining the smaller range
1<p< b

by simply relying on the decay of do; recall the case p = 1 always holds.
Denoting
Rf=fls and R'g=(gdo),

we will employ the method of 77* and endeavor to prove R*R : LP(R%) —
LP (RY). Note that
R*Rf = (f|lsdo) = fxa.
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By Hardy-Littlewood-Sobolev (Theorem [6.2.2)), we have

1756l S Il oo

Now observe that since |5| < |z|77 for v € [0, 5] (cf. Exercise [7.4.7),

we have

5 _r . 2d(p—1 d—1 : 4d
€ L2»-1""  provided (Z; ) € (0, T]v Le. 1<p< 3d+1°

To go beyond this range, we employ the Littlewood—Paley partition of
unity and write

fxo=[x(po)+ Y [ (Wno).

N>1

Because ¢ € § and 0€L>°, we may use Young’s inequality to write
1 * (o)l S I llzellodll o < NSz

To estimate the sum, we wish to prove

If* (ono) | o S N E||fllee  for some e =e(p) >0, (10.19)

~

for then we may sum to deduce the desired estimate.

To prove , we will interpolate between an estimate for p = 1 and
an estimate for p = 2.

First, for p = 1, we have by Holder’s inequality and the decay of &

. . _(d=1
1f # (no)zoe S 1F 1l a6 ] oo apeny S Nl
On the other hand, we have by Plancherel and Lemma [2.5.11

1 % (nd)ll 22 S Ifll2 by * doll .

Now, fixing = € R%, we may write

[y * do(z)] < Nd/s [$(N (@ = y))ldo(y) < /5 Wy

for any m > 0.

To estimate this integral, we split into two regimes: (i) y € S with
|z —y| < %, which has a volume of ~ N~(4=1) In this regime the integrand
is bounded by N?. (ii) y € S with |z — y| ~ ﬁ for some M < N, which
has a volume bound of M ~(@=1) (which could of course be replaced by < 1
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if M < 1). In this case (N(z —y)) ~ 2, and if we choose m = d in the
estimate above we get that the integrand is bounded by M¢?.

Thus

[ #do(x)] S N NTED 4 N i@ SN
M<N

We now interpolate between the (1, 00) and (2, 2) estimates and check the
range of p for which we end up with a negative power of N. As % =60+ 1%9

when 0 = 2].%’7, we get

_d—12—-p p—1
1F* (W) SN2 7 N £l

~

One can check that this power is negative provided p < 2Sij31). This com-

pletes the proof. O

10.4 Exercises

Ezercise 10.4.1. Prove (10.6)).

Ezercise 10.4.2. (Challenge problem.) Develop a profile decomposition adapted
to the Strichartz estimate in order to prove existence of optimizers to this
inequality.



Appendix A

Prerequisite material

The purpose of this chapter is to collect prerequisite material that is used
throughout the main body of these notes.

Let us first recall some standard notation to be used throughout these
notes.

We use the following multi-index notation. Given d > 1, a multi-index
« is an element of N, where N = {0,1,2,...}. We let

d
_}: a _ ai aq g _ ol
|Oé|— (O7% r =T "‘Q?d, af—m
=1

We write A < B to denote A < CB for some C > 0. We write A < B
to indicate A < ¢B for some suitably small ¢ > 0.
We write xg for the characteristic function of the set F, that is,

R

A.1 Lebesgue spaces

Given a Lebesgue measurable subset E C R? of positive measure and 1 <
p < 0o, we define LP(E) to be the space of measurable functions f such that

I fllr ey = (/E \f(x)pdm)p < 0.

The functions f may be either real-valued or complex-valued. The quantity
| -l p(z) defines a norm. When p = oo, we define

[fllzoe () = nf{M : [{z € E: [f(2)| > M}| = 0},

256
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where S| denotes the Lebesgue measure of S. The quantity [ - ||1»(x) also
defines a norm. We will often drop the underlying set E and simply write
Lr.

To be precise, elements of LP should be regarded as equivalence classes
of functions that are equal almost everywhere; however, we will typically
ignore this distinction.

The spaces LP are vector spaces. Furthermore they are complete with
respect to the metric defined by the LP-norm (namely, d(f,g) = ||f — gllz»)-
In particular, they are Banach spaces. Furthermore, for 1 < p < oo, we
have that the space LP is separable (i.e. admits a countable dense subset).
On the other hand, L* is not separable.

For spaces of sequences ¢ = {c;} we use

1
P
rww—@]mﬂ,rww—www

The /P spaces are nested; that is, for p; < py we have
L P2 with o le||lpe < c||err -

The space L? admits an inner product, denoted by

<ﬁm=/}@m@ma

where = denotes the complex conjugate. Finiteness of (f, g) follows from the
Cauchy—Schwarz inequality (or Holder’s inequality):

(£ < 1l e2llgll 2

The space L? is therefore an example of a (separable) Hilbert space, i.e.
an inner product space that is complete with respect to the metric induced
by the inner product.

Given 1 < p < oo, we define 1 < p’ < oo via

1 1 _
lil=1.

We call p’ the dual exponent to p. It is often useful to compute LP norms
‘by duality’, i.e. using the fact that

[fllz» = sup [{f, 9},

where the supremum is taken over all g € L? with ||g||, = 1.
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For a measurable function f, we define the distribution function of f
by
a [{z:[f(x)] > a}]

We can compute the LP-norm of a function in terms of its distribution
function as follows:

[Pz =p [~ 111 > o do. (A1)
For 1 < p < o0, we define the weak LP space by
LPRRY) = {f : RS = C: ||f|lppee < 00},

where the LP*° quasi-norm is defined by
1
I fllLeee = sup al{|f] > a}|?.
a>0

A quasi-norm refers to a quantity that satisfies all of the hypotheses of a
norm except the triangle inequality, which must be replaced by ||z + y|| <
C(||z|| + [ly||) for some C > 0. See the exercises.

Note that LP C LP*°; indeed, by Tchebyshev’s inequality we have

{IfI >t S I

uniformly in «.
We have Minkowski’s integral inequality:

1 (e )l ey < IF (2 9)llpy e

for 1 < p < 0.

Let us briefly discuss one other theory of integration, namely, the Riemann—
Stieltjes integral. First recall the definition of functions of bounded varia-
tion.

Definition A.1.1. Let f: [a,b] — R, and let
I'={xo,...,zm}

be a partition of [a, b]. Define

m

St = Sr(f;a,b) =Y | f(z:) = flai)].

=1
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The variation of f over [a,b] is defined by
£l BV (fa,p)) = Sup Sr[f;a, 0.

As 0 < Sr < oo, we have ||f||py € [0,00]. If ||f|lBy < o0, we say f is of
bounded variation. We may write f € BV ([a,b]). Otherwise, we say f is
of unbounded variation.

Examples of bounded variation functions are those that are continuously
differentiable on an interval. For the reader unfamiliar with the notion of
bounded variation, feel free to replace ‘function of bounded variation’ with
‘continuously differentiable function’ and ‘BV norm’ with ‘L* norm of the
derivative’ throughout these notes.

Let us also recall the definition of Riemann—Stieltjes integration.

Definition A.1.2. Let f,¢ : [a,b] = R. Let I' = {x;}", be a partition of
[a,b] and let {&}", satisfy
rio1 <& <x; foreach i.

The quantity
Ry —Zf éz z - (xl—l)}

is called a Riemann—StleltJes sum for I.

If

I = lim Rr
IT'|—0

exists and is finite, then [ is called the Riemann—Stieltjes integral of f
with respect to ¢ on [a,b], denoted

I_/f ) dé(x /abfdgb.

We recall the following results concerning Riemann—Stieltjes integrals.

Proposition A.1.3. Suppose f € C([a,b]) and ¢ € BV ([a,b]). Then
f;fdcﬁ exists, and

b
/1@4SWMwWMw

Proposition A.1.4 (Integration by parts formula). If f fdo exists, then
so does fa odf, and

b b
/fm=w@wmw@am—/¢#
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A.2 Hilbert spaces

We record here a few basic results concerning Hilbert spaces. Recall that
a Hilbert space is a vector space equipped with an inner product that is
complete with respect to the induced norm. In these notes, we restrict our
attention to the setting of separable Hilbert spaces (i.e. spaces that admit
a countable dense subset).

Lemma A.2.1. Let Hy and Hs be Hilbert spaces. A linear operator T :
Hy{ — Hs is bounded if and only if it is continuous.

Proof. AsT is linear, it suffices to verify continuity at 0. This follows directly
from boundedness, cf.

1Ty < M|y

Conversely, boundedness and linearity readily imply continuity; cf.

IT(f) = T(9)lla. < M| f2 = filla,-
This completes the proof. ]

Lemma A.2.2 (Riesz representation theorem). Suppose ¢ : H — R is a
continuous linear functional on a real Hilbert space. Then there exists a
unique g € H such that

U(f)=<f9),

where (-,-) denotes the Hilbert space inner product.

Proof. Let {¢y} be an orthonormal basis for H. To obtain such a basis, start
with a countable dense subset of H and apply the Gram—Schmidt algorithm.
Given a function f € H, write f, = (f, vn) denote the ‘Fourier coeffi-
cients’ of f relative to {¢,}. (See Section[2.2)for more details.) In particular,
we can uniquely specify a function by prescribing its Fourier coefficients.
We define g by prescribing ¢, = ¢(¢5). Then by Plancherel’s theorem

E(f) = angn = (fvg>'

It remains to verify that this procedures defines g € H and that the result
is unique. To this end, define Pyg = Zgzl £(¢n)en and let us prove that
|Png|lz is uniformly bounded in N. Then, on the one hand, by linearity

we have
N

U(Png) =) [t(en)]*-

n=1
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On the other hand, by boundedness of ¢, Cauchy—Schwarz, and orthonor-
mality, we have

N N %
[6(Png)| < M|> Upn)en| < M< [ﬁ(%)]?> :
n=1 H n=1

Combining the last two displays yields

v :
|Prglsr = (Zw%)}?) <M

n=1

which yields the desired bound.
As for uniqueness, if (f,g) = (f,h) for all f € H, then applying this
with f = g — h immediately yields g = h. O

Using the Riesz representation theorem, we can identify H with its dual
space via the pairing (f, g). We say that a sequence f,, converges weakly
to fif

<fnag>_><f7g> fOI‘ a‘u gGH
We write f, — f.

Lemma A.2.3. The following properties hold concerning weak convergence:
(a) If fn = f, then || f[| < limsup, o [|lfnl-
(b) If {fn} is bounded, then f, converges weakly along a subsequence.

Proof. For (a), let £ > 0 and choose a unit vector g € H so that

{(f:9) > IIfIl - &

Thus by weak convergence and Cauchy—Schwarz,
Ifll < (f.g) +e= lim (fy,g) + & < limsup | fu|| +&.
n—0o0 n—00

As € > 0 was arbitrary, this implies the result.
We turn to (b). We let S = {g} be a countable dense subset of H. For
each k, the sequence

{(fr> 91}

is bounded and hence converges along a subsequence. In particular, by a
diagonal argument we may find a subsequence such that (f,, gx) converges
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to a limit (say ci) for all k. We claim that f, converges weakly along this
subsequence.

To see this, we need to define the limit f. By duality, it will suffice to
specify the values (f,g) for all g € H. To this end, we fix ¢ € H and take
a sequence of g € S converging to g. We will show that {c;} is Cauchy,
so that it has a limit ¢; we will then define (f,g) = ¢ and check that this
defines an L? function to which f,, converge weakly. Let € > 0 and choose
K large enough that ||g— gx|| < € for k > K. Now fix k,¢ > K. By choosing
n large enough, we may guarantee that

‘(.fnagk> - <fnvg£> - (Ck - Cf)‘ <E.
On the other hand, by Cauchy—Schwarz,

|<fn’gk> - <fn7.gf>| = |<fn7.gk: _g> - <fn7g€ - g>’ < 2Me,

where M is the uniform bound for the {f,}. Thus {c;} is Cauchy and hence
converges to ¢. An intertwining argument shows that we may uniquely define
f as a (linear) functional on H via (f, g) = c¢. To see that f € H, we observe
that

[{f,9)l =1 lim lim (f., gi)| < Mlg]],
—00 N—00

where g € S converges to g. In particular ||f|] < M. Finally, for weak
convergence we again let ¢ € H and choose a sequence S > g — g. We
then write

<f_fnag> = <f_fnvg_gk>+<f_fn7gk>'

The first term is M - o(1) as k — oo, while the second term converges to
zero by construction. This completes the proof. ]

Remark A.2.4. Item (b) in the previous lemma is a special case of Alaoglu’s
theorem.

Let T': Hi — Hy be a (bounded) linear operator. The adjoint of T,
denoted T, is the linear operator from Hs to Hy defined via

<Tf7 g>H2 - <f7 T*g>H1

We call T : H — H self-adjoint or symmetric if T = T,

An operator T : H; — H> is called compact if it maps bounded sets to
pre-compact sets. Equivalently, T is compact if whenever { f,,} is a bounded
sequence in Hi, {T'f,} has a convergent subsequence in Hs. We also have
the following:
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Lemma A.2.5. Suppose there exists a sequence of finite-rank operators T,
so that T, = T. Then T is compact.

Here finite rank means the range of T, is finite-dimensional, while the
convergence refers to the operator norm

1T} = sup [T
I flI<t

Proof. Suppose T has finite-rank approximations 7, and { f,,,} is a bounded
sequence. Then f,, has a subsequence f1 so that Ty f} converges. Similarly,
we can take a subsequence f2, of f1 sothat Ty f2, converges. Forn > m > K,
we write

Tfy =Tl =T =Tr)fy +Te(fy — f) + Tk = T)f3;-

Choosing K large enough, the first and third terms may be made arbitrarily
small small due to the fact that {f"},{f/'} are bounded sequences. For
fixed K, the middle term tends to zero as n,m — oo because {f}}n>k is a
subsequence of f Ilg . Thus T f]! is Cauchy and hence convergent. This implies
T is compact. O

If X CY are two Banach spaces, then we say X is continuously em-
bedded in Y if the inclusion map is continuous (i.e. bounded). We say X
is compactly embedded in Y if the inclusion map is compact.

Lemma A.2.6. Suppose X and Y are Hilbert spaces and X is compactly
embedded in Y. If x, converges weakly in X, then x, converges strongly in
Y (to the same limit)

Proof. 1t suffices to show that weakly convergent sequences are bounded.
Indeed, if z,, is bounded, then the compactness of the embedding implies
that any subsequence of x, converges strongly in Y along a further subse-
quence (to the weak limit of x,, by uniqueness of limits). This implies that
Zy, converges strongly in Y.

Let us now show that x,, is bounded. In fact, this will follow from the uni-
form boundedness principle (Lemma. We view each z,, as a bounded
linear map from X — R via z,(y) = (xy,y). Then weak convergence implies

sup [(zn,y)| < oo forall ye X.

By the principle of uniform boundedness, this implies

sup |2 || x>k = sup ||z || x < oo,
n n
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as desired. In the final step we have used the dual formulation to compute
the norm of x,, i.e. |zy,| = sup{|(zn,y)|} where the supremum is taken
over all y € X. O

Let us next sketch a proof of the following fundamental fact (a basic
version of the spectral theorem).

Theorem A.2.7. If T : H — H is compact and symmetric, then it is di-
agonalizable. That is, there exists an orthonormal set {u,} if eigenvectors
for H and a sequence {\,} C R so that Tu, = Ayuy, for all n, with A, — 0.
Furthermore,

T(z) = Z An (T, Up) U,

forx e H.

The fact that the A, are real is a consequence of the symmetry of T' (see
Exercise . Similarly, one can verify that eigenspaces corresponding to
distinct eigenvalues are orthogonal. Without loss of generality, we take H
to be infinite dimensional.

Sketch of proof. We first show that A has an eigenvalue ag with |ag| = [|4]|.
We let a = ||A]| > 0. Using symmetry, one observes

|A]> = sup (f, A%f),
[Ifll=1

so that we may take a sequence u, with |lu,| = 1 and (u,, A%u,) — o?.
By compactness of A (and hence of A%2—exercise), we have A?u,, — a?u for
some u (along a subsequence). But then
1(A% = a®)un | = || A%un|* — 20% (un, A%un) + o
< 202 (a? = (up, A%uy,)) — 0.

In particular, A%u, — o?u, — 0 and A%u, — o?u, so that u, — u. Thus
|lul| = 1 and A%u = a?u, so that

A+ a)(A—a)u=(A—a)(A+ a)u=0.

This shows that either o or —« is an eigenvalue of A. In fact, ||A|| must be
the largest eigenvalue of A (exercise).

Now let up be a normalized eigenvector corresponding to the largest
eigenvalue ag. Then set

HWY ={feH: (u, f) =0}.
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This is a Hilbert space with A : H® — H®: indeed
(Af,ug) = (f, Aug) = a(f,ug) =0 forall fe HW,

Let Ay = A|y). Then A; is symmetric and compact, and hence we can find
a largest eigenvalue «p with normalized eigenvector up... we now continue
in this way to construct a sequence of normalized eigenvectors {u;} that are
mutually orthogonal by construction with eigenvalues «;.

We claim that o; — 0. If not, then (passing to a subsequence) we get
a; # 0 for all j. Now consider the bounded sequence a—ljuj Then {Aaijuj}
has no convergent subsequence, since

1Ay — Agull* = lluy — uel* = 2.

This contradicts compactness. The representation of T in terms of eigen-
vectors is left as an exercise. Hint: Show that

N
1T (@) =Y Ml ununll < [ Al ]

n=1
This completes the proof. O

An operator T is called positive (written 7" > 0) if (T'f, f) > 0 for all
f € H. A bounded operator T : H — H is called trace class if there exists
an orthonormal basis {¢,} such that

tr(T) = Z(Tgon,cpn> < 0.

n

In fact, in this case the trace tr(7) is independent of the basis chosen. Trace
class operators are compact. We can prove this provided we take a few
Fourier analysis type results for granted (see Section for details).

We first claim that if T is trace class, then in fact

> ITenll* < oo (A.2)

Using this, we can complete the proof by exhibiting finite-rank approxima-
tions to T'. In particular, we set

Tnf =Y (INf ¢n)on.

n<N
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Then, using orthogonality and Cauchy—Schwarz, we can write
2

H(T - TN)f”2 = Z Z <f7 Son> <T§0n7 Spm>

m 'n>N
< [(f, on)|? (Ton, om)|*
S (S enf) (X Kremen?)
<A S S U Ten, om)l®
n>N m
< | fIP Z ITen|l* = |1 £]* - o(1)
n>N

as N — oo, which implies the result.

It remains to show that trace class operators satisfy (which is
actually the definition of ‘Hilbert—Schmidt’ operators). In fact, will
follow from the more general bound

|Tf||> = (T*Tf, f) < |TI(Tf, f)

for positive operators T', as we now prove. As positive operators are auto-
matically self-adjoint, we may replace T*T with T2. Multiplying both sides
by an arbitrary a > 0, we can reduce to the case that ||T'|| is as small as we
wish, say ||T|| < %. In this case, we have by Cauchy-Schwarz

(0 % ITFINAN = (T, f) =0,

and so
This shows I — T is positive and has norm bounded by 1. Then writing

T=I-(I-T)

and using the power series expansion for 1 — z (which converges whenever
|z|| < 1), we can define a (unique, positive) square root of 7. Then the
desired bound follows from

ITFI1? < 72272 12 < | TITS, £)- (A.3)

A.3 Analysis tools

The convolution of f and ¢ is defined by

fgla) = / £ — 1)g(y) dy.
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We use this both when the functions are defined on all of R%, as well as
when the functions are periodic on some torus. In this section we will focus
on the case of R%.

Definition A.3.1. We call a family of functions {K,} on R? a family of
good kernels if the following three conditions hold:

i) Jga Kn(y)dy =1 for all n,
(ii) there exists M such that for all n we have [pq |K,(y)|dy < M,
(iii) for each & > 0, we have fly\>5 | Ky (y)| dy — 0 as n — oo.
Ezample A.3.1. Let K : RY — R satisfy

/\K(mdmg 1 and /K(x) do =

Then the functions K, () := n?K (nz) form a family of good kernels.
Lemma A.3.2 (Approximation to the identity). Let f € LP(R?) for some
1 < p<oo. Suppose {Ky,} is a family of good kernels. Then

lim ||f — f* Ky,|zr = 0.

n—oo

If f is bounded and continuous, the same result holds in pointwise. If f is
bounded and uniformly continuous (or if f is continuous and tends to zero
as |x| — o00), then the convergence is uniform.

Proof. Let us prove the LP result and leave the remaining part as an exercise.
Using [ K,(y) dz = 1, we see that our task is to prove

[ Eaw)ls@) = 5 -l ay Cde =0,

We let ¢ > 0 and observe that because translations are continuous in LP,
there exists § > 0 such that

sup [ f(z) = fx —y)llz <e.

ly|<d

lim
n—oo

Thus (writing M as the uniform upper bound for ||K,|;: and applying
Minkowski’s integral inequality)

P
[ K@@ - -yl i

lyl<o

521|1<p5/|f flx—y)|Pdx- /K ) dy dac

S ePMP
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uniformly in n. On the other hand, applying Minkowski’s integral inequality
once again,

/‘ /|y|>5 Kuy)lf (@) = f(x —y)] dy
: </y|>6 (/'f —ylf dx>;dy)p
Kn(y) dy

< sup/|f P+ f (@ — y)P de
ly[>6

So(t): [ 1@ da

as n — oo. This completes the proof. O

P
dzx

We next record a result known as the principle of uniform boundedness.

Lemma A.3.3 (Uniform boundedness principle). Let X and Y be Banach
spaces and let F' be a collection of continuous linear functions from X to Y.

If

sup | T(x)|ly < oo forall ze€ X, (A4)
TeF
then
sup |7l x >y < oo. (A.5)
TeF

Proof. The standard proof relies on the Baire category theorem. Here we

present a completely elementary proof appearing in [25]. Let us omit the

subscripts from the norms below; the meaning should be clear from context.
First, for any linear operator T and any x, vy,

ITyll < IT(3(z +y) — 3z —y))ll
< s5[IT@ + )l + 1T - y)ll]
< max ||T'(z £ )|

Thus (using linearity once again), we have for any r > 0

ITIl = ; sup [Tyl < 3 sup max|T(z+y)| <1 sup [T,
lyll=r lyl<r “€B()

i.e. for any linear operator we have

sup ||Tz|| > r||T|| forall ze X,r>0.
z€B(z,r)
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Now suppose (A.5) fails; we will show (A.4) fails as well. We choose
a sequence T, € F such that ||T,| > 4". Define xg = 0. Proceeding
inductively, we may find a sequence x,, such that z,, € B(x,—1,3™") and

I Toznll > 537" 1Tl > 15(35)™

The sequence x,, is Cauchy and hence converges to some z. In fact, noting
that

m m
lom—zall € 3 Nog—agal < S0 37 < k3,
j=n+1 j=n+1

one finds ||z — z,|| < & -37". Now
ITn(2 = 2)|| < I Tallz - 37", while || Thanll > 537" Znll,

so that
| Tna|| > 237"(| Tl > 2(3)" — oo,

showing the failure of ({A.4]). O

Lemma A.3.4 (Schur’s test). Let {T;;} be a matriz satisfying

Supz Tjk| < C <oo and Sl/ipz |Tji| < C < oo.
J k §

Then [|T||gw—ew S C for all 1 < p < oo.

Proof. Let us show the proof in the simplest case p = 2 and leave the
remaining cases as an exercise. Using Cauchy—Schwarz and exchanging the
order of summation,

1T = S2> Tinss
ik
S ATl 16 D [Tyl
ik ¢
Ssup Y |Tyel - YO | Tinll el
) k j

SOOI s%pz Tjx| < C| 2,
k J

2

which yields the result. O
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Remark A.3.5. There is a completely analogous result concerning opera-
tors of the form T'f(z) = [ K(x,y)f(y) dy for some integral kernal K (z,y).

The following is a result from complex analysis. It relies on the max-
imum principle (see e.g. [29]): an analytic (also called holomorphic or
complex differentiable) function on a bounded domain in the complex plane
attains its maximum on the boundary.

Lemma A.3.6 (The three lines lemma). Let f be analytic on {0 < Rez <
1}. Suppose f satisfies
F()] < e

for some C > 0 and 6 > 0. Suppose that |f(z)| < My when Rez = 0 and
|f(2)| < My when Rez=1. Then we have

|f(2)] < My~Re? My
for all z in the strip.

Proof. First suppose that My < 1 and My < 1; we will show that |f(2)] <1
on the strip.
To this end, we let € > 0 and set

g9(2) = % f(2).

This is an analytic function, and because of the hypotheses on f we have
that |g(z +iy)| — 0 as y — £oo for any 0 < z < 1.

Therefore, applying the maximum principle on a sufficiently large rect-
angle [0,1] x [-R, R], we deduce that |g(z)| < 1 for all z in the strip. As
this holds for arbitrary € > 0, we may send € — 0 to deduce |f(z)| <1 on
the strip.

For the general case we let h(z) = f(2)MZ 'M;*. Then h has exponen-
tial bounds similar to f and is bounded by 1 on the boundary of the strip.
Therefore the previous analysis shows that |h(z)| < 1 everywhere, which
implies the result. ]

Remark A.3.7. One must impose some restrictions on the growth of the
function f above. Indeed, consider the analytic function f(z) = exp{—ie™*}.
Then |f(z + iy)| = exp{e ™sinnmz}. In particular, |f(z + iy)| = 1 for
x € {0,1} but f is unbounded for x € (0,1).

Finally, we recall the Arzeld—Ascoli theorem.

Theorem A.3.8 (Arzeld-Ascoli). Let K C R? be compact and let {f,} be
a bounded, equicontinuous sequence of functions on C(K). Then {f,} has
a uniformly convergent subsequence.
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A.4 Exercises
Ezercise A4.1. Let 1 < p; < po < oco. Show that
[aller2 < [lallers

for all a € ¢P1,

Ezercise A.4.2. Show that if T is a symmetric linear operator on a Hilbert
space, then its eigenvalues are necessarily real.

FExercise A.4.3. Show that

o = Inf su x)|.
£l = inf sup |(z)

Ezercise A.4.4. Prove Schur’s test (Lemma |A.3.4) for general 1 < p < co.

Exercise A.4.5. Show that the functions in Example form a family of
good kernels.

Ezercise A.4.6. Let 1 < p < co. Find the best possible C such that

1f + gllzece < C{Ifllzroe + llgllLes }

for all f,g.

Ezercise A.4.7. Show that if f,, — f weakly in a Hilbert space H and
| fnll = IfIl, then f, — f strongly in H.
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