MISSOURI
s Missouri University of Science and Technology

Scholars' Mine

Graduate Student Research & Creative Works Student Research & Creative Works

01 Dec 2020

A Brief on Characteristic Functions

Austin G. Vandegriffe

Follow this and additional works at: https://scholarsmine.mst.edu/gradstudent_works

b Part of the Applied Mathematics Commons, and the Probability Commons

Recommended Citation

Vandegriffe, Austin G., "A Brief on Characteristic Functions" (2020). Graduate Student Research & Creative
Works. 2.

https://scholarsmine.mst.edu/gradstudent_works/2

This Presentation is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion
in Graduate Student Research & Creative Works by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.


http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/gradstudent_works
https://scholarsmine.mst.edu/student_work
https://scholarsmine.mst.edu/gradstudent_works?utm_source=scholarsmine.mst.edu%2Fgradstudent_works%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarsmine.mst.edu%2Fgradstudent_works%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=scholarsmine.mst.edu%2Fgradstudent_works%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/gradstudent_works/2?utm_source=scholarsmine.mst.edu%2Fgradstudent_works%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A Brief on Characteristic Functions

A PRESENTATION FOR HARMONIC ANALYSIS
MissoURI S&T : RoLLa, MO

PRESENTATION BY

AUSTIN G. VANDEGRIFFE

2020



Contents

11 Basic Properites of Characteristic Functions|

2__Inversion Formulal

13 Convergence & Continuity of Characteristic Functions|

4__Convolution of Measures|

|IB_Measure Theory|

1 asic

easure

€ory

[B2 Convergence in Measure & Its Consequences|. . . . . . . . .. ..

13

17

17
17
20
22

25



Notation

tU\%J,bg' L@ﬂu_v%(<

BO
BC
2(%)
P,
B, (w)

“F(X,Y)

%b(X? Y)
€. (X,Y)
©p(X,Y)
C

diag(as, ...

S B

5%
2
S

NROE Y
:lj 3

3

IS} v
S
m
\1

For all

For P-almost all, where P is a measure

There exists

If and only if

Disjoint union

Weak convergence

Lebegue measure on R™; the n is omitted if n = 1

Characteristic function of a measure p

Complete convergence

The boundary of a set B

The closer of a set B

The interior of a set B

The complement of a set B

o-algebra generated by open sets of the implicit topology 7(€2)
o-algebra generated by the usual topology on R™

A ball of radius r about an element w of an implicit metric space
(2.d)

Space of continuous functions from X to Y with £ continuous
derivatives

Space of bounded continuous functions from X to Y

Space of continuous functions from X to Y with compact support
Space of periodic continuous functions from X to Y

The complex numbers

, ) An n X n matrix with diagonal elements aq, ..., ay,

The distribution function of p, that is, F,(z) = pu((—o0, z))
If and only if

Space of functions f : Q — Q' such fP is p-integrable
Set of probability measures on F

Set of probability measures on %,

The rational numbers

Set of Radon measures on the o-algebra F

Set of Radon measures on 4,

The real numbers

Such that

An open set in 7 containing w

Complex conjugate
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Characteristic Functions



Introduction

Characteristic functions (CFs) are often used in problems involving convergence
in distribution, independence of random variables, infinitely divisible distribu-
tions, and stochastics [5]. The most famous use of characteristic functions is in
the proof of the Central Limit Theorem, also known as the Fundamental Theo-
rem of Statistics. Though less frequent, CF's have also been used in problems of
nonparametric time series analysis [6] and in machine learning [7H9]. Moreover,
CFs uniquely determine their distribution, much like the moment generating
functions (MGFs), but the major difference is that CFs always exists, whereas
MGPFs can fail, e.g. the Cauchy distribution. This makes CFs more robust in
general.

In the following, I will present an introduction and basic properties of the
Fourier-Stieltjes transform, it’s inverse and relation to the Radon-Nikodym
derivative, then go on to prove the Lévy Continuity Theorem, and finally a
short presentation of measure convolutions. Much of the following presentation
will be for probability measures and their distribution functions; however, some
results can be generalized to (un)signed finite measures [1,/5,[10]. One can find
an overview of background knowledge in the Appendix.

1 Basic Properites of Characteristic Functions

Definition 1.1 (Characteristic Function / Fourier—Stieltjes Transform). Let
X (Q,FP) - (R", B, (e,0)) and u = X4P, the pushforward measure /
distribution of X. The characteristic function or Fourier—Stieltjes transform of

W is
(e = [ @OXD dp(e) = [ 02 du(a)
Q R™

where equality comes from Theorem [B.7

In terms of the Fourier transform, if 4 admits a Radon—-Nikodym derivative
f with respect to the n-Lebesgue measure A, (Theorem [B.26)), then

lt) = [ 0 duta) = [0 f(@) d,(@) = Fo
R7L RTL

That is, the characteristic function is nothing but the Fourier transform of the
density of u if one exists.

Theorem 1.2 (Properties of the Characteristic Function). Let p be as above,
then

i) (0) = 1
ii) |t)] < 1



iii) ji(~t) = i)
i) fu is uniformly continuous on R™

o —

v) (p1 + p2) = i + fi
Proof.
i)
(0) = [ €0 du(e) = [ dute) = (@) =1
R"L R”L
ii)
it = | [0 du(a)
R’n
< [1609)] dute)
R’VL
< [1du(a)
R’VL
= p(R") =1
iii)
/ ¢
R’n
:/ -i(t,x)
R’n
= /eZ (t.e) du(z) \\ since e’ = e—ix
R’n.
— /67‘ t,x) d'u
R'n
= /(D)
iv) Let § > 0

e +8) = (o) = | [ 0495 = ) dp(a)
Rﬂ,



_ /ei(t,m>+i<é,x> — "B du(z)

RTL
= /ei<t7$> . 6i<57w> - ei<t7w> d/”’(x)
RTL
Rn
o] o ] e
RTL
:/ e(0:) —1’ du(z)
R‘IL
§ sup 61(5@) 1’ 610 0
rER"

]R‘n

= /e“t’””> dpn () +/e’<t"'”> dps(x)
R" R™

= [i1 + fi2

Theorem 1.3. Let (R™, Z(R™),\) be as usual, p € P(BR")), and f €

LY(R",C; \), then
[ Fau= [ giax,

R R

Proof. This follows from Fubini’s theorem

/f@—/(/wWW@MMw>wm

=/ /wwmwww e

R Rn

Z/f(a:) ( /em(t’z> du(t)) dAn ()
n

R™



— [ 17 fl@) dni(a)

Rn
O
Theorem 1.4 (Uniqueness). If u1, uo € Py, then
p1 = p2 = i1 = fiz .
Note: the equality of the characteristic functions is over the real numbers.
Proof.
“ =7 This is obvious
fu(t) = /ei(t#£> dua(z) = /ei<t»$> dua(z) = fia(t)
R’VL R’Vl
“<=": Suppose fi1(t) = fi2(t) for all ¢, then
[ et = pal(w) = [ elanta) =0 v e rr
Rn ]R’n
N .
then for all trigonometric polynomials vy (e) = > c(thm’tn)e“t(l ,,,,, n)®)

t1,etn=—

[ w(@)dnta) =0

R

we have

and so for the uniform limit y(e) in NV, which are the continuous periodic func-

tions (Theorem [C.6)), we have

[r@dat) =0

]Rn
Let c(e) be a continuous function which vanishes outside a fixed, bounded
support S, choose m such that S C (—m,m|®", and choose v,,(e) to be a
continuous periodic function with period 2m such that v,(x) = c(x) Vo €
(—m,m]®™. Since [ is the difference of of two monotone increasing functions
(Fz = Fu, — F,,), it is a function of bounded variation; hence Ve > 0 3 m s.t.
i(x) < e for |x| Z m1 and we have

Oz/vmdﬁm—w>/cdﬁ=/cdﬁ20
R" R" s

Since ¢ was arbitary, we have, by Theorem and taking ¢ to be indicator
functions on sets in 4%4,,, that

p=p1—p2=0
and S0 p1 = pa- O



2 Inversion Formula

Theorem 2.1 (Inversion). Let (R™, %, \) be as usual; p € Zp,; a,b e R™ (a <

b) and let (a,b) ={z e R" : a < z < b)}, then

n -itja; e—itJ b

a0+ 27 (a6)) = 2 i [T (¢

Too

-
(-kk) LI=1 "

there k= [ky,....,k,)T and (-k,k) = {zx € R": ~k < z < k}.
Proof. We have that

[ n e—itjaj _e‘it]'bj 1 R
o(k) = / 11 (Z.t. > fu(t) dA,(t)
(-kk) LI=1 ! i
n Sitja; _ ity | 4
= / H (M) /el(t@ du(z) | di(t)
(—k,k) _j=1 Zj i Rn
n -itja; _ ,-itjb; .
AV [H () e’“’”] dﬂ(Z)) At
(-kk) \Er [J=1 "
n itj(z;—a;) _ pitj(z;—bj)
_ / /H (6 i\#Zj—a; . etilZi—Y; ) d'u(z) d)\n(t)
" th

n Lt(z—a)_tt(z—b)
ng./ / ( e )d)\ )| d
= I | ] n 11(2)

it;
R* \ (-kk)

Where Fubini’s theorem comes from

o [ n eitia; _ oTitib; | .
e b= o [ |]] (t) A(6) dh(6)
(kk) LI=1 ! |
n [ n e‘itj(lj _ e‘itjbj ] .
< (27T> / H (Zt) /L(t) d)\n(t)
(ki) | 7= ! J
n n e—it]‘aj _ e—it]’b]‘ Z_<t Z>
= (27) H(——— o) du(z) || drn(t)
(-kk) | =1 I 1\ g

) at) da(t)



/ H(#)]ew dMZ)) A (t)

Rn Jj=1

1

by
( 11 / et @) | | 42 duz) || dan )

=
<

aj

ei(t,z)

du(z) | dAn(t)

(-kk) \ R»
— 2m)™ / / A ([, b)) du(Z)) A (t)
(-k.k) n

= (2m)" A ((k, k) An ([, b)) n(R™)
= (27) " An((-k, K))An(Ja, b]) < 00 VE € RF™

Continuing from the application of Fubini’s theorem we get

kg
) n eiti(zj—a;) _ oitj(z;—bj)
o9 —tim [T | / - Mhalty)| duz)
R™ J=1 —kj /
[ K k;
n itj(zj—a;) itj(z;—bj)
:lllTrglo/H /% dt; — / % d\(t)| du(z)
i J J
CE A —k;
n [ kj . .
i /H / cos(t; (2 — a;) + isint;(z; — a;) i (t;)
kToo is1 th
OO
k;
_ / cos(tj(z; — by) frlsm(tj(zj — b)) ()| du(z)
’Ltj
—k;

3 t _
Now, the trick here is to use the Cauchy Principal Value of M,
i

that is

0—e k
t(z — t(z —
PV/COS d)\l()—lim[ /M (1) + / costz =) 4y, 1)
el0 it it
—k O+e
by antisymmetry. So we obtain
kj
COS(tj(Zj — aj) + isin(tj(zj — a]‘) ]
)= jim [ ] H / Z-tj Pus)
R’VL



cos(tj(z; — bj) +isin(t;(z; — bj)
_ d\i(t;)| d
/ % 1(t;) | du(z)
n [ kj ( ( ) kj ( )
. sint:(z: —a sin(t;(z; — b
| R A [ CE LN e
Br I=1 |k ! —k;j !
n [ kj(zj—a;) ( ) kj(zj=b;) ( )
sin(u; sin(v
— i SN d)\ J dA j
TV e T
Bn =1 | k(2 —ay) —kj(z;—b;)

where u; = t;(z

sin
i—a;) and v; = t;(z;—b;). Since ) is uniformly continuous,

and so, for all ¥(k,c) € R?, the integral functions

+k(z—c) ) ( )
4 sin(x
Gio@ =t [ B
0
is uniformly continuous in &, and so
ooy (2) = 0o (2) + UG 0 (2)
is uniformly continuous with limits
0 z=c
lim U, o (2) =
ktoo (k")( ) {g L o.w
This gives five cases for
" kj(zj—aj;) kj(z5—bj)
(2 (a,b)) = lim S0) g ) - S0 17 wy)
ktoo 1 Uj Uy
I=0 L —ki(zj—ay) —kj(z5—b5)
= lllTrilo J U (y,05) (2) + Uk, 05) (25)]
namely
0 rz<a
2" :z=a
U(z; (a, b)) 1 ra<z<b
2" :z=Db
0 :b<z



Finally, we have

ktToo

——%/WWMMmdM@=M®bD+T%H&M)

Rn

(k)

O

Corollary 2.2. If ji is integrable, then p is absolutely continuous with respect
to the Lebesgue measure \ and its Radon-Nikodym derivative is given by

Dala) = (2™ [ ) ()

Rn

Proof. We will first show that p has not atoms. Let M = /|ﬂ(t)| A\ (t)

R

" eTitia; _ oTitib;
(@ b)) + 2" (b)) = (2"t [ h1<iw>]“”dM“)

ktoo .
(-kk) L=
) [ » e itja; _ e-ztjbj
<er i [ TS0 |[1ao] aw
(_kvk) —j:1 !
—eomim [T [ o | || ao] o
(-k.k) _jzl a;

(_k7k)

=@mWMﬂamy/m@ndm&>
RTL

= (2m)"" A\ ([a,b]) M < o0
Now, focus on an arbitrary point x € R". Let § > 0

S Xt D) T (= 5 xS S (m) Al — 5, x 4 SDM

= (2m) M 2% 0

p((x =



Hence, p has no atoms. Now for the Radon-Nikodym derivative we use Theo-

rems [B.26] and

B pE@)
D) = B o o

eiti(zi—8) _ gmitj(z;+3)

= lim (2m6)™" lim H( i ) fi(t) dn(t)

e iti(@i—8) _ gmitj(z+3) .
( t) dAa(t)

A= it;0
- -ty (25 —5) _ ority(zi+3)
D -n . € & R
=" (2m) / 161301H< o ) fi(t) dA,(t)
R Jj=1
= (2m)™ / eHEX (t) dhn (t)

O

3 Convergence & Continuity of Characteristic
Functions

We want to further relate measures and their characteristic functions. In the
following, we develop convergence of characteristic functions from convergence
in measures, and vice versa plus properties of said convergences.

The main result of this section is

Theorem 3.1 (Lévy’s Continuity Theorem).

ntoo

B — B = /:Ln — f
where f is continuous at the origin. Moreover, i = f.
Proof. We need a couple lemmas:
Lemma 3.2. Let (jux)y>1 C %n and pp € Ry If g LGN , then [ig(t) LGN
[(t) uniformly for t belonging to a compact subset of R™.

Proof. We must show that (fix);>; is a uniformly equicontinuous family of func-
tions (see Definition [C.1): Let € > 0. By Corollary [B.15, the sequence (4 );>1

is tight; hence, we can find a compact interval K = B,.(0) such that

i (K€) = € Vk



By the differentiability of e*** 3§ > 0 such that for &, & € R™ (|&; — & < 6)
|et€sm) _ pil€2im)| = |gilenm) || — i€z —E1,a))
< 1 - eitmeun)

<€

for all x € K. Hence,

|,Uk(§1) [ (€2)] §/ il —&2, fﬂ)‘ dpug, (z /|1 eil€1—&2,2) |d,uk( )
K

S a4 | [ 111+ ()

< cpn(R™) + 2414 (K°)
Se+2e=3e 1 n

recalling that ug(K¢) < e. This give uniform equicontinuity on K; hence,

[n (§1) = &) = |[fin(€1) = fin(82)| + |An(§2) — &)+ |A(62) — &2

equicontinuity convergence Continuity: Thm. [I.2]
<3l n
which gives uniform convergence on a compact set. O

Lemma 3.3. Let p € Z, N P, then Yk >0

p({eerrel>2}) s [ a0)- a0 an

By (0)

where |x| > 2 = |z;| > 2 (vector absolute value).
k J k

10



Proof. With 1(0) = 1 and p(R™) = 1, we have immediately that

e [0 i @ =k [ [t du@)| dne)
By (0) By(0) L R»
—i / syl o) s )] I (1)
B (0)
Fub. j—n / / 1— e85 dxn,(t)| du(z)
Rn B (0)
—n [ [ [H & ] W] dn(a)
R™ | By(0) =
:’“7”/ An(Br(0)) — / [H ] d\(t)| du()
Re | BL(0) L=t
(x)
Noting the independence of the Lebesgue measure: / H f(t;
Rn JE ]
H f(t;) dA1(t;) and that By (0) C [—k1, k1] we continue to obtain
JEM] gn
®zr [ | e |11 / s an ()| | duta)
Rn J=1"
n K
:/ 2" — k" /cos(tjmj)+isin(tjmj) dM\i(t;) | | du(x)  (%x)
Rn I=1"

Now by antisymmetry of sine, we have that

k k k k
/COS(tjl’j)+i Sin(tjfﬂj) dAl(tj) = /COS(tjl’j) d)\l (tj)+l / sin(tjazj) d)\l(tj) = /COS(tle'j) d)\l(tj)
—k —k —k —k

:aln(k:w)

And so, noting that 1 — 2> 0, we have

.k
:/ 2" — kT H/cost xj) dAi(t;)| | du(z)
k

Rn j=1"

11



Rn Jj=1 xj
n " sin(kzx;)
=2 /1— 11 kxﬂ du(x)
R~ J=1 /
[ o sin(kx ;)
> 1— J
2 U s du(x)
{w:[z]> 2} =t
L
> on 1- 111 du(x)
o Kl
{w:|2|>2} U=
“ol
= 2" | 1- ] du(x)
Kl
{w:|2|>2} =
= / 2" (1—-27") du(z) (%)
{w:|z[> 2}
> 1 du(z)
{wi|z|>2}

:M<{azeR”:|w|>2}>

n
* .
where is because (1 —

1
I — is minimized when —— is maximized
kx| Kz
2

Jj=1
at r; = %. ]

Lemma 3.4. Let (px)p>1 C ZnNPp. If ik LN L is continuous at the origin,
then (ur),>1 tight.

Proof. From the previous lemma, we have, for all £ > 0

u({weR”:|m|>2})§w [ i) = i) an)

B, (0)
And since fig Koo, Ve > 03k, >0 s.t.

i [ a0) = i) ) < o
By, (0)

12



and by dominated convergence 3 J s.t.

B, (0)

2
uj({a:eR":|:c|>k}><e

From Lemma 3 k¢ for each (ug),< s s:t.

2
ug<{x€R”:|:c|>}) <e
kg

So if we take k = min({k., k1, ..., ks}), we have that

2
1 <{weR”:|w|>l~€}><ewgl

which implies

hence (u) is tight.

O

Lemma 3.5. Let (u) C ZN Py, If [ik Koo, f, where f is continuous at the

origin, then 3 p s.t. pg Koo, wand L= f.

Proof. From Lemma and Theorem there exists (ur,);>1 C (k) g1

which converges completely to some pu. Now, by Lemma [3.2]

we have that

fik; ITeo, i1, and so f = ji. From the uniqueness of the characteristic function,
the limit p is independent of the sequence (jx,);>1, and thus, by Corollary ,

e — [

Proof of Theorem (3.1
“ = 7. By weak convergence we have

fnl®) = [ 0= (a) M= [ eaute) = oo

Rn Rn

“ «=": The result follows from Lemma [3.5].

4 Convolution of Measures
For all B € %, and x € R", let
B—u={b—u:be B}
For any 1, e € &, and B € %, the function
z— (B — 2)

is a bounded function and measureable.

13

O



Theorem 4.1 (Convolution of Measures). Let p1,us € Pp N Xy, then the
convolution

p(®) = [p1 * p2)(e) = / lo(z +y) dlp @ pal(z,y) = / dlpy ® pa)(2,y)
R™ xR™ rtyce
s a finite measure, and
u(o) = [ 2l = o) dun() = [ (o= 9) dua(y)
R~ R~
Proof. Clearly
p(B) = [ Laty) dhn @ )
R7 xR

< [ dmowlay)
R™ xR"™
= [,U,l X ,U,Q](R” X Rn) = ,U,l(Rn)/,LQ(Rn) < oo VB e %4,

Now let (An),>; C %, be a disjoint sequence, then, noting that 14,wa; =
1Ai +1Aj V’L?é],

il A= [ La, o+ w) dn © pl(a,y)
ngl Rn xR"

- / > la (@ +y)| dim @ pol(z,y)

R xR" n>1

=y / 1a,(z+y) dp @ po)(z,y)

ngl Rn xR"
= Z (Ayn)
n=1

where dominated convergence comes from the disjointness of A,,, that is, given

an (x,y), x+y only belongs to at most one A, hence > 14 (z+y) < 1, which
n>1

14



is integrable. Finally, let B € 4, then

u(B) = / dlp @ po](x,y)

z+y€eB

= / dlpn @ pol(z,y)
rEB—y

= / 1p—y(z) dlp ® po](z,y)
R xR"”

= /ul(B —y) dua(y)
]Rn

and similarly we obtain u(B) = /ug(x — B) dui(x). O

R’VL
Theorem 4.2 (Convolution Theorem). Let pi1, o € %, and pn = py * o, then
fo= fun - flo.
Proof. With du(u) = 1,(x + y)d[u1 ® pe](z,y), we have

() = [ & du(u)

R™

B / T dlpy @ po)(x, y)

R xR™
= / !0 Ay @ ps)(x, y)

R xR™
- / 0 gy () / 09y ()
= [fi1 - 1] (t)

O

Now, using the uniqueness of the characteristic functions, we immediately
have

Corollary 4.3. The product of the characteristic functions of two Radon mea-
sures is the characteristic function of a Radon measure.

Consequences of the above corollary is that the product of the character-
istic functions of two probability measures is the characteristic function of a
probability measure.

15



Preliminaries’

*This section has not been developed in detail as the focus of this text is characteristic
functions. The details are left as a future work.



A Topology

Definition A.1 ( Topology, Open/Closed Sets). Let Q be a non-empty set,
then a collection 7 C 2 is a topology if

. 0,Qer
w Ty, Ther = ThyNITy, er

111, (Ti)iGICR CT — U T, €T
1€L

Sets in T are called open, if T¢ € T then T is closed, and if T is both open and
closed it is clopen.

Definition A.2 (Set Closer). Let (2,7) be a topological space. The closer of a
set B C Q is the smallest closed set B such that B C B.

Definition A.3 (Interior Points). Let (2,7) be a topological space and B C .
A point b € B is an interior point if there exists an open set containing b
completely contained in B.

Definition A.4 (Boundary of a Set). Let (2,7) be a topological space. The
boundary of a set B C € is its closer less its interior, that is

0B = B\ B°

B Measure Theory

B.1 Basic Measure Theory

Definition B.1 (o-Algebra). Let Q be a non-empty set. A collection F C 2
s a o-algebra if

i. Qe F
ii. Ae F = A°eF
iii. (Aj)jz1 CF = |JAeF
i1
Definition B.2 (Measurable Maps / Random Variables). A map X : (Q, F) —
(', F') is called measurable if

XY FYcF

17



Definition B.3 ((Probability) Measure). Let (2, F) be a measureable space,
the set function p: F — Ry U {oc} is a measure if

i. u(0) =0
i p(ly Ai) = 30 p(A:)

i1

The measure p is called a probability measure if u(2) = 1. The space of
all probability measures on (Q, F) is denoted P (F); we will reserve &y, to be
Z(BR")).

Definition B.4 (Inner Regularity, Borel Measures, & Radon Measures). A
o-finite measure p on a topologicallﬂ measure space (0, F,T) is

i) Inner regular / tight if

w(B) =sup(u(K) : K C B is compact) ¥YB € F

ii) a Borel measure if

YweQ3U, €T st p(Uy) <0

i11) a Radon measure if u is Borel and inner regular

Further, the set of Radon measures on F will be denoted Z(F); we will reserve
R, to be Z(B(R™)).

Corollary B.5 (Approximation by Compact Sets). If pn € Z(F), then
V(e >0,B e F) 3K € F (compact) sit. u(B\ K) <
Proof. Immediate from inner regularity. U

Definition B.6 (Image Measure / Distribution). Let X : (Q, F,P) — (', F')
be a random variable, then we can endow (Q', F') with the distribution, often
called the image measure, = XyP=Po X!

Theorem B.7 (Image Measure Integration). Let X : (€,
W = Xgup. Assume f € LYY, R; 1), then fo X € LY,

Q/fonuQ//fduoXlg//fd,u/

Ithe topology will usually be implicit

f,u) = (Y, F") and
R; ) and

18



Proof. Use the standard mechanism] O

Definition B.8 (Distribution Function). If (R™, %,,u) is a finite measure
space, then the distribution function of p is given by

F, :R" — [0, u(R™)]
= p((—00,z))

Theorem B.9 (Properties of the Distribution Function). A distribution func-
tion, Iy, has the following properties

i) x1 £ w9 = F,(x1) £ Fy(x2) (nondecreasing)
i) wliiloFN(x) =0
i) i F, () = p(R")
i) %i{rg F,(x—9) = F,(z) (left continuous)

Note: Sometimes distribution functions are defined on right inclusive intervals
(i.e. x+— p((—o00,x])), in which case property (iv) would become right continu-
ous %iﬁ)lFu(x +0) = F,(x)

Proof.
i) Fu(x2) = p((-00,22)) = p((-00,21) W [x1, 72))
= p((-00,z1)) + p(lz1, 72))
Z p((-00,21)) = Fyu(x1)

. n|Too
ii) Let x, LAY By monotone convergence

0= pu(0) = p(lim (Y(~o0,,)) "= lim pu(((Y(~00,0))

ntoo ntoo

iii) Let 2, 1% 0o

p(R™) = p(lim |_J(=00, ) "= Tim p(| J(—00, )

ntoo ntoo

) ueoe,) =ty = ) " (e~ )

O

2Show it works for indicator functions, then step functions, then positive integrable func-
tions, then general integrable functions.
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Definition B.10 (Continuity Sets and (Dis)Continuity Points). Let (2, F, u)
be a probability space. A set C € F is a continuity set of u if

n(0C) =0
Further, if F = B(R™), then a point x € R™ is a continuity point of p if

L s((—00, = 8)) = p((~o0, ]

and a discontinuity point if

lim (00,2 +3)) = p((—00,a]) # lim((—oc,a = 8))

Definition B.11 (Uniform Boundedness). A collection B of measures on F is
uniformly bounded if IM > 0 such that

p() =M VueB

Definition B.12 (Tightness of Measures). A collection T C P(F) is tight if

Ve > 0 3K, € F(compact) s.t. u(Q\ K¢) <eVueT

B.2 Convergence in Measure & Its Consequences

Definition B.13 (Weak Convergence in Measure / Convergence in Distribu-
tion). A sequence of measures (jin),>1 converges weakly to i, denoted pi, o,

if
ntoo

n(C) —= u(C) YC € F (bounded) s.t. u(0C) =0

That is, u, converges to p on the bounded continuity sets of u.

Definition B.14 (Complete Convergence in Measure). A sequence of measures
(Nn)ngl converges completely to p, denoted ju, — p, if it converges weakly and

i (Q) "% 1(62).

Corollary B.15. If u, kN t, then (pug),>1 is tight.

Proof. See Corollary 2.6.2 pg. 33 of [1]. O

Theorem B.16 (Helly’s First Theorem). If a sequence of measures (iin),> @8
uniformly bounded, then 3(n, )>1 which converges weakly to some measure .
Further, if (tin),>1 1S a sequence of measures which is uniformly bounded and
tight I(pin,, ) p>1 which converges completely to some measure .
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Proof. See Theorem 2.6.1 pg. 29 of [1]. O

Theorem B.17 (Helly’s Second Theorem). Let (ur)y>1 C Pn- If (1) is
uniformly bounded and converges weakly to p and if f € € (R™,C), then

litoo
jB/fdukw%B/fdu

for any bounded continuity set B of u.
Proof. See Theorem 2.6.4 pg. 34 in [1]. O

Theorem B.18 (Helly-Bray / Narrow Convergence). A sequence of measures
(Hn)n>1 converges weakly to p iff ¥V ¢ € (L R)

[ du == [va

Proof. See Theorem 2.6.5 pg. 35 in [1]. O

Theorem B.19.

i) If (k) >1 is uniformly bounded and if pu,; IToo, i for any weakly conver-

k
gent subsequence (fik;);>1 C (fk)k>1, then py LEN 1.

i) If (i) g>1 is uniformly bounded and tight and if py, IToo, 1 for any weakly

convergent subsequence (/ik_,»)j; C (Nk)/@p then i LIEN L.

Proof. For (i) we will do a proof by contradiction: We have that for all weakly

convergent subsequences (i, );>; that g, EAGN u for some p; now suppose

that —(pg Koo, ), then 3 a bounded p-continuity set B € F and some € > 0

s.t. VK > 03 k; > K s.t.

|1k, (B) — u(B)| > e (%)

Now, let’s focus on these (u,);>1; since (u) is uniformly bounded, the sub-
sequence (px,;) too is uniformly bounded; hence, by Theorem we can
extract a weakly convergent subsequence (px; );>1 C (kk;);>1- By hypothesis,
all weakly convergent subsequences converge to u, but this contradicts (ED (ii)
follows by a similar argument. O
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Theorem B.20 (Equivalence of Measures). Let (2, F) be an arbitrary measur-
able space and p; € P(F) (i = 1,2), then the following are equivalent:

i) p1 = po

i) [ v = [0 v e ()
i) [ din = [0 dua o € 60,9

) [ din = [0 dua o e 6.0

Proof. See Theorem 2.2.1, pg. 13 in [1]. O

1
Example B.21. Let p, ~ N (m, kI"> be an n-dimensional Gaussian distri-

bution where I, is the n x n identity matrixz. Then
A% -§]jz—ali3
Y dup = — P(z) e 2 2 d\,(2)
2
R"L R’n

and by taking 2 = Vk(z — x) we obtain

1 B N S LN “Hl2I gy, (2) =
o /1/) <m + \/Ez) e dMn(2) = @) /¢(a:) e dAn(2) = (=)
En R

where the dominating function is ||Y||s0; hence

fetoo B
[ 6 dun 5 o) R[ b ds,

R™

Therefore, ux LN Og-

B.3 Derivatives of Measures

Definition B.22 (Lower and Upper Measure Derivatives). Let pu,v € %,,. The
lower and upper derivatives of v w.r.t. v are

- vB@) e
D, v(z) = hrgl&)nf 1(Bs (1)) s u(Bs(x)) >0 v57>0
o0 230 >0 s.t. u(Bs(z)) =0



and

w(Bs(x)) >0V5 >0

00 230 >0 s.t. u(Bs(x)) =0

Lemma B.23. Let u,v € %, then VB € Z(R") and o € (0,00)
i) BC{z:D,v(r) = a} = v(B)= au(B)
ii) BC{x:D,v(z) 2 a} = au(B) < v(B)

Proof. Utilizes a corollary of the Besicovitch’s Covering Theorem: See Lemma
6.5 pg. 7 in [2]. O

Theorem B.24. Let u,v € %, then

p({z € R": Dy(z) =0} U{z € R" : D,v(z) < Dyv(z) < oc}) =0

That is, D, v(z) = Dyv(z) < oo ¥,z € R™.
Proof. For a fixed k,

[ € By(0) : D(v) = o0} € {w € By(0) : Dy(v) = a} Ya > 0
Hence, by Lemma [B.23]

p({z € Br(0) : Dyy(v) = o0}) = v({w € Bi(0) : Dy(v) Z o})

< S (By(0)) 10

Now, take 0 < v < f and Aap = {x € Bx(0) : D,,(z) < a < 8 < D,(z) < oo}
Then, again by Lemma we have

V(Aap) S api(Aap) and Bu(Aap) = v(Aap)

hence, au(Aqg) = Bu(Aqp). But since o # 3, we have u(Ayg) = 0. Observing
that
{2 €B(0): D,v(u) < Dyv(u) <o} = | Aap

o,BeQT
a<f

we have

p({ © € Bi(0) : D,v(u) < D,v(u) < oo}) < Z w(Agp) =0

a,8eQt
a<f
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With the above theorem, taking
N={zeR":[Dy(x) =00 ] vV [ D,v(x) <Dw(r) <o ]|}

we define

Dyw(x) = {Duy(u) cx € N

00 cx €N

Theorem B.25 (D, v-Measurability). Let u,v € %, then D,v(u) is measur-
able.

Proof. First we show that x — pu(B,.(x)) is upper semicontinuous: Let x,, — x,
then

V(e>0,r>0) 3N €N s.t. Br(xy,) C Brye(x)
By monotonicity of u

(B (7)) = p(Brie())

and so

limsup pu(Br(zn)) < p(Brie(x))

ntoo

By taking € | 0, and again by monotonicity,

lim sup pu(By(2,)) < pu(Br(x))

ntoo

In a similar fashion we can show that z — v(B,.(x)) is upper semicontinuous.
Now take N as above, and for € R™\ N we have u(B,(z)) > 0 Vr > 0, and so

< 0

D,v(z) = lim v(B,(z))
8 (B, (@)

Since N is a p-measurable null set where D,v = oo, we have that D,v is
p-measurable. O

Theorem B.26 (Radon-Nikodym on R™). Let (R™, Z(R")) be a measurable
space and p,v € P(F) such that N,y C N, (v < p), then

v(B) = /D#y du VB e A(R"™)
B

Proof. See Theorem 2.26 pg. 10 in [2]. O
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Theorem B.27 (Lebesgue(-Besicovitch) Differentiation). Let p be a Radon
measure on R™. For f € L} (R™; u)

loc

1
lim

010 p(Bs(z))

/ fdu=f(z) Vo e R"

Bs(x)

Proof. Tt is sufficient to prove the theorem for f > 0 and f € L'(R";u). We
can define a positive linear functional

M= [of duvo o)
Rn

By the Riesz representation theorem, there exists a Radon measure v satisfying

[ av=[vsduwicae

Rn Rn

Now, by Theorem we have that

v(B)= [ fdu VB e B(R")
/

Now, by Theorem [B:24]

lim v(B,(z)) = lim !

T2 u(Br(x)) 0 (B ()

[ 1du=Dua@) Vzer )

B, (z)

and, by Theorem

v(B)= [ fdu= | Dyv(z)du VB e BR")
fro- |

B
Hence

f=Duv Yz eR" (%)
With () and () we have the result. O

C Analysis

Definition C.1 (Equicontinuity). A collection of functions (f;)i € T on Q is
equicontinuous if

Ve>034 st |filw) = fi(@)] <eVEET; w,weQ st |w—o| <I)
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Definition C.2 (Algebra of Functions). A collection of K-valued functions on
Q, denoted A, is an algebra if for all f,g € A and c € K

i) f+ge A
i) fge A
iii) cf € A

Definition C.3 (Function Set Separating Points). Let A be a set of functions
on Q. A is said to separate points of Q if

Va,yeQx#y) 3 feAst f(x)# fy)

Theorem C.4 (Complex Form of the Stone-Weierstrass). Let Q be a compact
metric space. If a subalgebra A C €°(Q, C), containing the constant functions
on Q, separates points of ), then A is dense in the Banach space €°($, C).

Proof. See 7.3.2, pg. 139 in |[3]. O

Definition C.5 (Trigonometric Polynomials). A trigonometric polynomial is
a complex valued function of the form

N
T § : Cnez-rrnx
n=—N

and in the multivariate case

Corollary C.6. Let f be a function defined on R™ which is periodic with period
T; with respect to the j'* variable (j = 1,...,n). Then f is the uniform limit in
N of a sequence of trigonometric polynomials

S al n .
Z Z Clty,...,tn) €XP 2@2%

t1=— tn=—N j=1 J

N N i
o (t T
E o E Cltar )€ (... n)@)

ti=—N tn=—N

fn(z)

where i(l,...,n) =27 - Tlt(l)m’n) and T = diag(Th, ... Ty,).
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Proof. See 7.4.1 pg. 139 in [3]. O

Definition C.7 (Positive Linear Functional & Sublinear). ¢ € Q* is positive
linear if
Vw20 = lw)20

and is sublinear if Vwi,ws € Q and o € Rsr
i l(wy + ws2) S L(wy) + £(ws)

it. £(awr) = al(wy)

Theorem C.8 (Riesz Representation). Let (©,d) be a metric space, thenV positive { €
€2(0)* 3 inner reqular pn € P(B(14(0))) s.t.

eqr:/fdMer%ﬂ@)
©

Proof. See Theorem 7.3, pg. 22 in [4]. O

Definition C.9 (Cauchy Principal Value). Let f : =R be a function such that
Ve >0 f € LY (R\(-€¢);\), then the Cauchy principal value of f is, if it exists,
18

Example C.10. Let f be a symmetric integrable function, then
PV (f@)) ~0
x

1
by antisymmetry of —.
x
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