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Chapter 1

Introduction to Algorithms

This course provides the basics for the design and analysis of algorithms. Algorithms are
generally designed to solve specific problems automatically, i.e. executable by a computer.
This requires the definition of an algorithm as a set of instructions, which constitute the
code of the algorithm. Instructions are executed on the input, in order to provide the desired
output, possible with the use of supporting data structures.

A typical problem solved by an algorithm is sorting, which takes a sequence of numbers
and returns the same numbers sorted in increasing (or decreasing) order. In the following
section we use sorting to motivate the need of designing efficient algorithms and necessity of
tools to analyze their complexity.

1.1 Algorithms design & analysis, why do we care?

Let us formally define the sorting problem.

Definition 1.1.1 (Sorting problem). Given n numbers < a1, an > find a permutation of
these numbers such that the numbers are in increasing order.

As we will see in the next sections, there are, among others, two solutions to the sorting
problem, named Insertion Sort and Merge Sort. Let n be the length of the sequence being
sorted, these algorithms have the following time complexity:

• Insertion Sort: c1n
2

• Merge Sort: c2n log n

where c1 and c2 are constants, such that usually c1 < c2. This means that the time required
to execute Insertion Sort on a sequence grows quadratically as a function of the sequence
length n, while for Merge sort the growth is c2n log n. The constants depend on the specific
implementation and computer on which the code is compiled and executed.

Let us now compare the two algorithms in terms of execution time by using two computers,
one, very recent and powerful, and one that I used to play with when I was 4 years old.
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• Computer A IntelCore i7 (2015), ≈ 1011 instructions per second, executes Insertion
sort

• Computer B Intel 386 (1985) ≈ 107 instructions per second, executes Merge sort

• We also assume that the young and cool owner of Computer A is a better programmer
than the nostalgic owner of Computer B, thus c1 < c2, and in particular c1 = 2 and
c2 = 50.

• We consider a sequence of n = 108 elements

The time to execute Insertion sort on Computer A is:

TA =

(
2(108)2

1011

)
= 2 · 105s ≈ 5.5hours

While the time to execute Merge sort on Computer B is:

TB =

(
50 · 108 · log2(108)

107

)
= 500 · log2(108) ≈ 1.2hours

This example shows that no matter the technological advancements, designing efficient
algorithms is the key to achieving good and satisfactory performance. Additionally, we need
mathematical tools to be able to quantify the efficiency of an algorithm, given its code.

1.2 Pseudo-code

The code of an algorithm may be defined in several ways, ranging from lower level assembly
language, or even binary code, to high level languages such as C, C++, Java, Python, etc. In
order to analyze algorithms it is often convenient to express the code in a form that abstracts
from specific details of a programming language and focuses on the core idea of the algorithm.
We refer to this way of writing as Pseudo-code.

The pseudo-code can include high level abstract language, is unconcerned with implemen-
tation details such as variable types and pointers, and does not need definitions or instantia-
tions. However, when studying sorting, we cannot just summarize an algorithm just writing
“sort the sequence”. Conversely, this will be possible when our focus will be on different
problems, and sorting will be only a subroutine of our algorithm.

In general, we should find the right level of abstraction to express clearly and without
ambiguity the core idea of the algorithm we are designing.

1.3 Introduction to Complexity Analysis

We now start introducing some basic ideas to study algorithm complexity. We will take
Insertion sort as an example, provide its pseudo-code, and analyze the complexity in the best
and worst case scenario.
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1.3.1 Insertion sort

Algorithm idea1: Given an array A of length n containing the sequence of numbers to be
sorted, at the generic iteration j, the elements in A[1, . . . , j− 1] are already sorted. We want
to find the correct position for the element A[j]. To this purpose, we use and index i, initially
set to j−1, and compare A[i] to A[j]. We shift the elements to the right and decrease i until
we find an element smaller than A[j]. The index of i is the correct index of A[j] in the sorted
subarray A[1, . . . , j]. Figure 1.1 summarizes the idea.

Figure 1.1: Insertion sort idea.

We now provide the pseudo-code of the algorithm.

1 InsertionSort(A, n)begin
2 for j=2 to n do
3 key=A[j];
4 i=j-1;
5 while A[i] > key and i > 0 do
6 A[i+1] = A[i];
7 i = i-1;

8 end
9 A[i+1] = key;

10 end

11 end

Algorithm 1: Insertion Sort

1.3.2 Example of Execution

In the following, we provide an example of the execution of Insertion sort on the array A:
< 5, 2, 1, 4, 3 >.

1Exams and homework often require you to describe the algorithm idea. This is an example of the required
level of detail.
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First for iteration: j=2 key=2 i=1
A[i] > key →< 5, 5, 1, 4, 3 >
i ≯ 0 → exit while loop
A[i] = key < 2, 5, 1, 4, 3 >

Second for iteration: j=3 key=1 i=2
A[i] >key →< 2, 5, 5, 4, 3 >
i >0 and A[i]> key →< 2, 2, 5, 4, 3 >
i ≯0 exit while→< 1, 2, 5, 4, 3 >

Third for iteration j=4 key=4 i=3
A[i] > key →< 1, 2, 5, 5, 3 >
A[i] ≯key exit while →< 1, 2, 4, 5, 3 >

Fourth and final for iteration j=5 key=3 i=4
A[i] > key →< 1, 2, 4, 5, 5 >
i > 0 and A[i] > key →< 1, 2, 4, 4, 5 >
i > 0 but A[i] ≯key exit while →< 1, 2, 3, 4, 5 >

1.3.3 Complexity Analysis

We want to understand the growth of the algorithm runtime with respect to the size of the
array i.e. the number of items contained in the array to be sorted, n. Note that, other
complexity measures may be of interest, for example the memory complexity, i.e. how much
memory is used as a function of the array size. In this course we will focus only on the
execution time, also called runtime, of the algorithms.

Line Number Pseudocode Runtime Number of Executions
InsertionSort(A, n) {

1 for j=2 to n { c1 n
2 key=A[j] c2 n-1
3 i=j-1 c3 n-1

4 while(i>0 and A[i]>key){ c4

n∑
j=2

tj

5 A[i+1]=A[i] c5

n∑
j=2

(tj − 1)

6 i=i-1 c6

n∑
j=2

(tj − 1)

7 }
8 A[i+1]=key c7 n-1
9 }

Table 1.1: Algorithm Complexity Analysis
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The total runtime is the sum of the executions of each of the instructions in the code.
We assume each line (i) of code has a runtime ci which is a known constant. We denote by
tj the number of times that the while loop is executed at iteration j of the for loop. Table
1.1 summarizes the complexity of the algorithm instructions.

We can now calculate the expression for the algorithm runtime T (n):

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

n∑
j=2

tj + c5

n∑
j=2

(tj − 1) + c6

n∑
j=2

(tj − 1) + c7(n− 1)

The best case occurs when the array is already sorted. In this case, the while loop is not
executed, therefore tj = 1 for each j = 1, . . . , n. We can simply the expression as follows:

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

n∑
j=2

tj + c5

n∑
j=2

(1− 1) + c6

n∑
j=2

(1− 1) + c7(n− 1)

= c1n+ c2(n− 1) + c3(n− 1) + c4(n− 1) + c5n+ c6n+ c7(n− 1)

= an+ b

where a and b are appropriate positive constants. We call this type of complexity, linear time
since the runtime T (n) grows linearly with the input size n.

The worst case occurs instead when the array is sorted in reverse order. This implies that
tj = j, and leading to the following expression for T (n):

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

n∑
j=2

j + c5

n∑
j=2

(j − 1) + c6

n∑
j=2

(j − 1) + c7(n− 1)

= c1n+c2(n−1)+c3(n−1)+c4

(
n(n− 1)

2
− 1

)
+c5

(
n(n− 1)

2

)
+c6

(
n(n− 1)

2

)
+c7(n−1)

= an2 + bn+ c

where a, b and c are appropriate positive constants.

We should now ask ourselves if we really need this level of precision in analyzing the
complexity, i.e. if we really need to specify for each line a different constant. In any case,
these constants would depend on the specific implementation and computer on which the
algorithm is executed. Additionally, at the end we summarized these constants in other
constants a, b and c.

This should give us the idea that what really matters is the order of growth of the runtime
function, rather than the individual constants. This intuition will lead us to study the
asymptotic complexity.
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1.4 Asymptotic Complexity Analysis

We want to define the mathematical foundation to compare the performance (runtime) of
different algorithms, neglecting implementation details. To this purpose, we look at input
sizes which are sufficiently large to ensure that the constants become insignificant and the
runtime depends only on the leading term of the complexity expression, i.e. the term with the
highest power of n. Considering large inputs gives this analysis its name, i.e. the asymptotic
analysis. We now introduce the basic notations of asymptotic analysis.

1.4.1 Big O Notation

The big O notation provides an asymptotic upper bound of a function.

Definition 1.4.1. Given a function g(n), and n ∈ N we say that O(g(n)) = {f(n) s.t.
∃c > 0 and n0 > 0 s.t. 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0 }. Therefore O(g(n)) is a set of functions.

Figure 1.2: Big O relationship graph

We generally use the definition to show that a function f(n) is a “big O” of another
function (usually with a simpler form) g(n). To this purpose, given f(n) and g(n) we look
for the constants c and n0 that satisfy the definition. If we are able to find such constants, then
we say that f(n) “belongs” or “is” a big O of g(n). We should write, to be mathematically
correct, f(n) ∈ O(g(n)), this is often written as f(n) = O(g(n)).

A visualization is provided in Figure 1.2. As the figure shows, if the input is sufficiently
large, g(n), multiplied by a constant, is always bigger than f(n), therefore f(n) is upper-
bounded by g(n). In terms of runtime, this means that if an algorithm has complexity f(n),
it cannot do worse than g(n) when the input is sufficiently large.

Example 1: Consider f(n) = 3n+ 3, prove that f(n) = O(n)
We need to find values for c and n0 that satisfy the necessary conditions.

3n+ 3 ≤ cn ∀n ≥ n0

divide by n

3 +
3

n
≤ c

9



if n > 3 then 3
n
� 1, therefore we can pick c = 4 (do not make it more complicated than

necessary).
We now solve the remaining inequality for n

3n+ 3 ≤ 4n

3 ≤ n

We find that n0 = 3 and c = 4 satisfies the conditions sought to be proven. Therefore,
f(n) = O(n).

Example 2: Given f(n) = 3n+ 3, prove that f(n) = O(n2)

3n+ 3 ≤ cn2

3

n
+

3

n2
≤ c→ c = 2

3n+ 3 ≤ 2n2

2n2 − 3n− 3 ≥ 0

n0 =

⌈
3±
√

9− 4 · 2 · −3

4

⌉
Choose maximum (ceiling) value, so n0 = 5. This example shows that although f(n) is a
linear function, it is upperbounded by a quadratic function. This is mathematically correct,
but we say that the bound is not tight. We generally look for tight bounds that better
characterize the complexity.

1.4.2 Big Ω Notation

The big Ω notation identifies an asymptotic lower bound.

Definition 1.4.2. Given a function g(n), and n ∈ N it is said that Ω(g(n)) = {f(n) s.t. ∃
c > 0 and n0 > 0 s.t. 0 ≤ cg(n) ≤ f(n) ∀n ≥ n0}

Figure 1.3: Big Ω relationship graph

10



If an algorithm has complexity f(n) and we can prove that f(n) = Ω(g(n)), then this
implies that when the input is sufficiently large, the algorithm runtime cannot be better than
g(n). Figure 1.3 show a representation of the big Ω notation.

Example 3: Given f(n) = 2n2 + 3, prove that f(n) = Ω(n).

2n2 + 3 ≥ cn→ c = 1

2n2 + 3 ≥ n which is true ∀n ≥ 0

Example 4: Given f(n) = 2n2 + 3, prove that f(n) = Ω(n2)

2n2 + 3 ≥ cn2 → c = 1

2n2 + 3 ≥ n2 which is true ∀n ≥ 0

1.4.3 Big Θ Notation

The big Θ notation identifies an asymptotic tight bound. Intuitively, f(n) and g(n) have the
same asymptotic growth.

Definition 1.4.3. Given a function g(n), and n ∈ N it is said that Θ(g(n)) = {f(n) s.t.
∃c1, c2, n0 > 0 s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n),∀n ≥ n0}

Figure 1.4: Big Θ relationship graph

Example 5: Given f(n) = n2

2
− 3n, prove that f(n) = Θ(n2)

c1n
2 ≤ n2

2
− 3n ≤ c2n

2

c1 ≤
1

2
− 3

n
≤ c2

∀n ≥ 12→ c1 =
1

4
, c2 = 1

1

4
n2 ≤ n2

2
− 3n ≤ n2

11



Figure 1.5: Common complexities graphed concurrently

The inequality above is true ∀n ≥ 12, therefore we can pick n0 = 12, c1 = 1
4
, c2 = 1

Figure 1.5 summarizes some common complexity functions. The following theorem, of
which we omit the proof, describes the relation between the O, Ω and Θ.

Theorem 1. Given f(n) and g(n), f(n) = Θ(g(n) if and only if f(n) = Ω(g(n)) and
f(n) = O(g(n)).

1.4.4 Algebra of Asymptotic Notation

We now introduce some rules, the algebra of asymptotic notation, that enable the determi-
nation of the asymptotic complexity much quicker than the examples in the previous section.

Constants: ∀ k ∈ R+, if f(n) = O(g(n)) then kf(n) = O(g(n)). Similar rule applies to Ω
and Θ.

Sum: if f(n) = O(g(n)) AND d(n) = O(h(n)), then O(f(n) + d(n)) = O(g(n) + h(n)) =
O(max[g(n), h(n)]). Similar rule applies to Ω and Θ.

Multiplication: if f(n) = O(g(n)) AND d(n) = O(h(n)), then f(n) ·d(n) = O(g(n)) ·h(n)).
Similar rule applies to Ω and Θ.

Transitivity: if f(n) = O(g(n)) AND g(n) = O(h(n)), then f(n) = O(h(n)). Similar rule
applies to Ω and Θ.

Reflexivity: f(n) = O(f(n)). Similar rule applies to Ω and Θ.
Simmetry: f(n) = O(f(n)). Similar rule applies to Ω and Θ.

• f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))

• f(n) = O(g(n)) if and only if g(n) = Ω(f(n))

• f(n) = Ω(g(n)) if and only if g(n) = O(f(n))

12



1.5 The Search Problem: Binary search

We now focus on the search problem, which can be defined as follows. Given an ordered
sequence < a1, a2, ...an > and a value x, determine if x is in the sequence or not. A trivial
solution for this problem is to iterate through the whole sequence. This would clearly incur
a cost of O(n). We consider a smarter approach, called binary search, which exploits the fact
that numbers are sorted.
Algorithm idea: Binary search is a recursive approach. Recursion is performed on the
length of the array. In the base case the array is of length 1. If the single element is equal
to x we return True, otherwise False. In the recursive step, we look at the element y in the
middle of the current subarray, if y < x we recursively search on the left half of the array,
otherwise on the right half.

Figure 1.6: Binary Search Execution

1 BinarySearch(A, start, end)begin
2 //(A, 1, n) for first call
3 if start==end then
4 if A[start]==x then
5 return True
6 end
7 return False

8 end

9 m=
⌈
start+end

2

⌉
10 if A[m] > x then
11 return BinarySearch(A, start, m-1)
12 end
13 return BinarySearch(A, m, end)

14 end

Algorithm 2: Binary Search

1.5.1 Example

Given the array < 1, 3, 7, 9, 11 > we execute binary search for the value x = 9.

13



First call: start=1 end =5
start 6= end → m=

⌈
5+1
2

⌉
= 3 → A[3]=7≯x

recursive call BinarySearch(A, m, end)

Second call: start=3 end=5
start 6= end → m=

⌈
5+3
2

⌉
= 4 → A[4]=9≯x

recursive call BinarySearch(A, m, end)

Third call: start=4 end=5
start 6= end → m=

⌈
5+4
2

⌉
= 5 → A[5]=11>x

recursive call BinarySearch(A, start, m-1)

Fourth call: start=4 end=4
start = end → A[4]=9=x
return True

1.6 Recurrence Equations

We use the binary search algorithm in the previous section to describe a general methodology
to analyze the complexity of recursive algorithms. This methodology is based on recurrence
equations. The goal is to calculate the complexity T (n) of the algorithm, which is initially
defined recursively. In the case of the binary search it is defined as follows.

T (n) =

{
Θ(1) n = 1 base case

T (n
2
) + Θ(1) n > 1 recursive step

The base case occurs when the array has length 1, and in this case the complexity is
constant, therefore Θ(1). The recursive case occurs when n > 1. The complexity of a
recursive step has two components, the cost of the current iteration, which in the case of
binary search is constant since there are no loops, and the cost of the other recursive call(s).
In this case, we recursively call the algorithm on an input which is half of the previous one,
so the recursive cost is T (n

2
).

There are several methods to solve recurrence equations such as the one above, for example
substitution method, iteration method, recursive tree method, and master theorem. In this
course we focus on the last two approaches.

1.6.1 Recursive Tree Method

The recursive tree method is based on building a tree, with the following meaning.

• Nodes represent the cost of a single sub-problem at that level of recursion

• Each level of the tree is a level of recursion

14



• Intermediate levels (between the root and leaves) are intermediate recursive calls

• Leaves are the base cases

• We use the constant c to indicate a constant cost

• For each level of the tree we keep track of the input size, and the overall cost (sum of
all nodes at that level)

Let’s now see an example of the recursive tree method applied to the recurrence equation
for binary search.

Tree Level Input Size Cost

c 0 n c
c 1 n

2
c

c 2 n
4

c
.. .. .. ..
c i n

2i
c

.. .. .. ..
c k (leaf or base case) n

2k
= 1 c

Figure 1.7: Recursion Tree table basic example

We start with the root node, which is at level 0, has input size n, and since the cost of
each recursive call of binary search is constant, we have a cost of c. We then write at least a
couple of additional levels to understand how things change as we go deeper in the tree. We
can then generally see a pattern, and we are able to write the generic level i. In this case in
the generic level i we have an input size of n

2i
, this is due to the fact that we always divide

the input in a half with binary search.
We stop when we reach the base case, at level k. This occurs when the input cannot be

further divided, i.e. we are considering a subarray of length 1. In other words, when n
2k

= 1.
Solving for k:

1 =
n

2k

2k = n

k = log(n)

Note that when we perform asymptotic analysis, we usually omit the base of the logarithm.
This is due to the logarithm property for which changing the base translates in multiplying
by a constant, and, as we know here, constants do not matter.

From the above equations we know that binary search performs a logarithmic number of
steps. To calculate the overall cost we sum the total cost of all levels. We split this in two
parts, the sum of the costs from 0 to k − 1 and the sum of the costs of the leaves. In this
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case the costs from 0 to k − 1 is
∑k−1

i=0 c and there is only one leaf therefore the cost is c. In
summary:

k−1∑
i=0

c+ c =

log(n)−1∑
i=0

c+ c = c · log(n) + c = Θ(log(n))

We can hence conclude that binary search has a complexity which is logarithmic in the length
of the input, which is better than the trivial linear approach.

1.6.2 A More Complex Example

Let’s consider a more complex example given by the following recurrence equation.

T (n) =

{
2T (n

2
) + Θ(n2) n > 1

Θ(1) n = 1

Let’s first make clear what this means. An algorithm having this recurrence equation
has a constant base case when n = 1. The recurrence step has two recursive calls, each
of which works on an input half the size of the previous input, therefore the term 2T (n

2
).

Additionally, the cost of each recursive call is quadratic with the size of the input, Θ(n2).
Be sure to have understood where each part of the equation comes from, which is usually a
source of confusion.

Tree Level Input Size Cost

cn2 0 n cn2

c(n
2
)2 c(n

2
)2 1 n

2
cn

2

2

c(n
4
)2 c(n

4
)2 c(n

4
)2 c(n

4
)2 2 n

4
cn

2

4

... .. ... ..

c( n
2i

)2 ... c( n
2i

)2 i n
2i

2i n
2

22i
= cn

2

2i

... .. ... ..
Θ(1) ... Θ(1) k (leaf or base case) n

2k
= 1→ k = log(n) 2kΘ(1)

Table 1.2: Recursion Tree table example

We can now sum the cost of all levels. The cost of the levels from 0 to k−1 is
∑log(n)−1

i=0 cn
2

2i
.

The cost of the leaves is 2kΘ(1), but since k = log(n) we get 2lognΘ(1) = nΘ(1) = nc.
Therefore:

log(n)−1∑
i=0

c
n2

2i
+ cn = cn2

log(n)−1∑
i=0

(
1

2
)i + cn

We can now use the following summation expression property for geometric series. This
formula is used often in solving recurrence equations, so be sure to remember it.

∑∞
i=0 x

i =
1

1−x , ifx < 1. In in our case:

cn2

log(n)−1∑
i=0

(
1

2
)i + cn = 2cn2 + cn = Θ(n2)
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1.6.3 Another Example

T (n) =

{
16T (n

4
) + Θ(n) n > 1

Θ(1) n = 1

Let’s again be clear about the meaning of this equation. The algorithm has 16 recursive calls,
each of which works on an input which is one fourth of the previous call. The cost of each
recursive call is linear.

Tree Level Input Size Cost

cn 0 n cn
16︷ ︸︸ ︷

cn

4
· · · cn

4
1 n

4
c16n

4
= 4cn

162︷ ︸︸ ︷
cn

16
· · · cn

16
2 n

16
c162 n

16
= 16cn

... ... ... ...
16i︷ ︸︸ ︷

cn

4i
· · · cn

4i
i n

2i
c16i n

4i
= 4icn

... ... ... ...
16k︷ ︸︸ ︷

Θ(1) · · ·Θ(1) k 1 = n
4k

k = log4(n) c16k = c16log4(n) = cnlog4(16) = cn2

Table 1.3: Complexity Analysis: Recursion Tree Method

We can now sum all levels between 0 and k − 1, plus the cost of the leaves.

log(n)−1∑
i=0

4icn+ c16k = cn

log(n)−1∑
i=0

4i + cn2

To solve summation recall:

k∑
i=0

zi =
zk+1 − 1

z − 1
, apply here:

cn

log(n)−1∑
i=0

4i = cn
4log4(n)−1+1 − 1

4− 1
= cn4log4(n) − cn = cnnlog4(4) − cn = cn2 − cn

Above we absorbed the denominator (4−1) into the constant c (this is the magic of asymptotic
analysis). Concluding, we can rewrite the complexity as:

cn2 − cn+ cn2 = Θ(n2)
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1.6.4 The Master Theorem

The master theorem provides a simple way to solve most recurrence equations.

Theorem 2. Let a ≥ 1 and b ≥ 1 be constants, f(n) be a function, and T (n) = aT (n
b
)+f(n)

then:

1. if f(n) = O(nlogb(a)−ε) for some ε > 0, then T (n) = Θ(nlogb(a))

2. if f(n) = Θ(nlogb(a)), then T (n) = Θ(nlogb(a)log(n))

3. if f(n) = Ω(nlogb(a)+ε) for some ε > 0 , and if af(n
b
) ≤ cf(n) for c < 1 and sufficiently

large n, then T (n) = Θ(f(n))

Example case 1

T (n) = 9T (
n

3
) + n→ a = 9 b = 3 f(n) = n

nlogb(a) = nlog3(9) = n2 → f(n) = O(n2−ε) ∀ 0 < ε ≤ 1

Therefore this example falls into case 1 and

T (n) = Θ(nlogb(a)) = Θ(nlog3(9)) = Θ(n2)

Example case 2

T (n) = 9T (
2n

3
) + 1→ a = 1 b =

3

2
f(n) = 1

nlogb(a) = n
log 3

2
(1)

= n0 = 1

f(n) = Θ(n0) = Θ(1)

Therefore this example falls into case 2 and

T (n) = Θ(n0log(n)) = Θ(log(n))

Example case 3

T (n) = 3T (
n

4
) + nlog(n)→ a = 3 b = 4 f(n) = nlog(n)

nlogb(a) = nlog4(3) = n0.7925 → f(n) = Ω(n0.7925+ε) for ε ≈ 0.2

In order to apply case three, we also need to prove the following that af(n
b
) ≤ cf(n).

af(
n

b
) = 3f(

n

4
) = 3

n

4
log(

n

4
) =

3

4
n log n− 3

4
n log 4 ≤ 3

4
n log n

We can select c = 3
4
, and satisfy the condition for case 3. Therefore,

T (n) = Θ(nlog(n))

18



1.7 Exercises

1. Let, P (n) =
∑d

i=0 ain
i, where, ad > 0, be a degree-d polynomial in n,and let k be a

constant. Use the definitions of the asymptotic notations to prove the following properties:
If k ≥ d, then p(n) = O(nk)

2. Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o,Ω, ω,
or Θ of B. Assume that k ≥ 1, ε > 0, and c > 1 are constants. Your answer should be in
the form of the table with ”yes” or ”no” written in each box.

A B O o Ω ω Θ
lgkn nε

nk cn√
n nsinn

2n 2n/2

nlg c clg n

lg (n!) lg (nn)

3. Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the
following conjectures.
a. f(n) = O(g(n)) implies g(n) = O(f(n)).
b. f(n) + g(n)) implies Θ(min(g(n), f(n))).
c. f(n) = O(g(n)) implies lg(f(n)) = O(lg(g(n))), where lg(g(n)) ≥ 1 and f(n) ≥ 1 for all
sufficiently large n.
d. f(n) = O(g(n)) implies 2f(n) = O(2g(n)).
e. f(n) = O((f(n))2).
f. f(n) = O(g(n)) implies g(n) = Ω(f(n))
g. f(n) = Θ(f(n/2)).
h. f(n) + o(f(n)) = Θ(f(n)).

4. Give asymptotic upper and lower bounds for T (n) in each of the following recurrences.
Assume that T (n) is constant for n ≤ 2. Make your bounds as tight as possible, and justify
your answers.
a. T (n) = 2T (n/2) + n4

b. T (n) = T (7n/10) + n
c. T (n) = 16T (n/4) + n2

d. T (n) = 7T (n/3) + n2

e. T (n) = 7T (n/2) + n2

f. T (n) = 2T (n/4) +
√
n

g. T (n) = T (n− 3) + n2

(Hint: Applying the Master Theorem whenever possible would be less painful most of the
time when you are asked to ”justify your answers” make sure you justified which case are
you referring to.)—
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5. Give asymptotic upper and lower bounds for T (n) in each of the following recurrences.
Assume that T (n) is constant for sufficiently small n. Make your bounds as tight as possible,
and justify your answers.
a. T (n) = 2T (n/2) + n/lgn
b. T (n) = T (n/2) + T (n/4) + T (n/8) + n

6. Rank the following functions by order of growth; that is, find an arrangement g1, g2, . . . , g30
of the functions satisfying g1 = Ω(g2), g2 = Ω(g3), . . . , g29 = Ω(g30). Partition your list into
equivalence classes such that functions f(n) and g(n) are in the same class if and only if
f(n) = Θ(g(n)).

lg(lg∗n) 2lg
∗n

√
2
lg n

n2 n! (lgn)!

(3
2
)n n3 lg2 n (lgn)! 22n n

1
lgn

ln ln n lg∗n n.2n nlg lg n ln n 1
2lgn (lgn)lgn en 4lg n (n+ 1)!

√
lg n

lg∗(lg n) 2
√
2lg n n 2n n lg n 22n+1
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Chapter 2

Divide and Conquer

The Roman Emperor Julius Cesar, and probably Philip II of Macedon before him, involun-
tarily defined a concept that became today a cornerstone of algorithm design. As the old
Romans realized, when you are facing a big problem, it is more effective to decompose it in
a set of smaller problems, the solution of which will easily lead to the solution of the main
problem. This is known as the Divide et Impera approach, in Latin, or Divide and Conquer,
in English.

With less belligerent intentions than the Roman Emperor, we can identify the main
components of this approach to solve a given problem (e.g. sort an array of numbers).

1. Divide: Identify a number of sub-problems that are smaller instances of the same
problem.

2. Conquer: If the size of the problem is small enough, then solve it in a straightforward
way (base case), otherwise solve the sub-problems recursively (recursive case).

3. Combine: Put together the solutions of the sub-problems in a way that yields the
solution to the main problem.

In this chapter we discuss some examples of this technique applied to different problems.

2.1 Merge Sort

Merge sort is a recursive sorting algorithm designed according to the Divide and Conquer ap-
proach. Different from most iterative approaches, (e.g. Insertion sort, Bubble sort, Selection
sort) which have a quadratic complexity O(n2), Merge sort complexity is Θ(n log(n)).

The previous high level scheme of Divide and conquer is applied as follows. Here we are
sorting an array of numbers of length n.

1. Divide: Break up the sequence of n elements into two smaller sub-sequences, each of
length n

2
.
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2. Conquer: If sub-sequences have length one, then they are already sorted (base case),
otherwise sort them recursively.

3. Combine: Combine the sorted sub-sequences to obtain the original array sorted.

2.1.1 Pseudo-code

The algorithm is composed by two main functions. The first function MergeSort(A, start,

end) takes as input the array A to be sorted, and the index of the first and last element in
A. When the function is called the first time, start is set to 1 and end to 0. However, these
values will change during the subsequent recursive calls. In general, start and end identify
the beginning and the end of the sub-array considered by the current recursive call.

The base case is implicit, and occurs when start == end, which implies that A has
length 1. In the recursive case, the function calculates the mid-point m of the array, recur-
sively calls itself on the left sub-array MergeSort(A, start, m) and on the right sub-array
MergeSort(A, m+1, end), and finally combines the two sorted sub-arrays calling the func-
tion Merge(A, start, m, end).

1 MergeSort(A, start, end)begin
2 if start<end then
3 m=

⌊
start+end

2

⌋
4 MergeSort(A, start, m)
5 MergeSort(A, m+1, end)
6 Merge(A, start, m, end)

7 end

8 end

Algorithm 3: Merge Sort

The function merge takes as input the array A, the current start and end indices, and
the mid-point index m. It knows that A[start,..., m] and A[m+1,..., end] are sorted,
and combines them. This is relatively a trivial task, the only challenge is to be sure that the
resulting complexity is linear, i.e. Θ(n). This will be crucial for the complexity of the overall
algorithm.

In order to ensure the linear complexity, the function Merge makes use of an additional
array B, of length end-start+1, i.e. the same length of the combined sub-arrays we are
considering. We use an index i to iterate on the first sub-array, and j to iterate on the
second, while we use k to iterate on B.

The function iteratively compares the values in A[i] and A[j], and put the smaller one
in B[k]. When i reaches the end of the first sub-array, or j reaches the end of the second,
remaining elements, if present, are copied in B. Finally, B is copied in A. Note that this
is not the smartest implementation of the function, for example we can easily get rid of B,
saving memory. I prefer this implementation as it is very clear and simple to understand,
while providing the same asymptotic complexity.
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1 Merge(A, start, m, end)begin
2 //Linear Compleity i.e. Θ(n)
3 i=start
4 j=m+1
5 k=1
6 create an array B of length end-start+1
7 while i≤m and j≤end do
8 if A[i]<A[j] then
9 B[k]=A[i]

10 k++
11 i++

12 end
13 else
14 B[k]=A[j]
15 k++
16 j++

17 end

18 end
19 while i≤m do
20 B[k]=A[i]
21 i++
22 k++

23 end
24 while j≤end do
25 B[k]=A[j]
26 j++
27 k++

28 end
29 Copy B in A

30 end

Algorithm 4: Merge
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An example of the execution of merge sort is in Figure 2.1.

Figure 2.1: Merge Sort Execution

2.1.2 Complexity

To analyze the complexity of Merge sort, let’s first look at the function MergeSort(). It
splits the input in two parts, each of which of size n/2, and performs a recursive call on each
of these. Therefore the recurrence equation T (n) will have a component 2T (n

2
). Let’s now

focus on the function Merge(). Lines 1-3 are constant, Θ(1). The while loop on line 7-18
is executed at most n times, since i can go from start to m, and j from m + 1 to end. The
remaining whiles may also do at most a linear number of iterations. Therefore, the overall
complexity of Merge() is Θ(n). This meas that each recursive call has a linear complexity.
Given that the base case occurs when n = 1, we can write the recurrence equation as follows.

T (n) =

{
2T (n

2
) + Θ(n) n > 1

Θ(1) n = 1
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Recursion Tree Method:

Tree Level Input Size Cost

cn 0 n cn
cn
2

cn
2

1 n
2

cn
cn
4

cn
4

cn
4

cn
4

2 n
4

cn
... ... ... ...

cn
2i
· · · · · · cn

2i
i n

2i
cn

... ... ... ...
Θ(1) · · · · · · Θ(1) k 1 = n

2k
k = log2(n) 2k

Table 2.1: Merge Sort Complexity Analysis: Recursion Tree Method

log(n)−1∑
i=0

cn+ c2k = cn

log(n)−1∑
i=0

1 + c2log2(n) = cnlog(n) + cnlog2(2) = Θ(nlog(n))

Master Theorem:

a = 2 b = 2 f(n) = Θ(n)

nlogb(a) = nlog2(2) = n1 = n

Since Θ(nlog2(2)) = Θ(n) = f(n), we are on Case II, therefore T (n) = Θ(nlog(n)).

2.2 Maximum Sub-array Problem

The maximum sub-array problem can be defined as follows. Given an array of size n contain-
ing positive and negative numbers, find the sub-array with the maximum sum of elements.
A sub-array is a set of consecutive positions of the original array, therefore we are looking
for the indices that identify the beginning and the end of the sub-array with maximum sum
of elements. Figure 2.2 shows an example.

Figure 2.2: Example of maximum sub-array

Several possible solutions may easily come to mind for this problem, which can however
incur a very different complexity. A straightforward solution is to consider each element
of the array, and all possible sub-arrays starting at that element. For each sub-array we
calculate a new sum of elements. This solution is very inefficient, and results in a complexity
of Θ(n3). This could be improved to Θ(n2) if we take into account the fact that the sum
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could be updated, instead of calculated from scratch for every sub-array starting at a given
element.

A more efficient solution is based on the Divide and Conquer approach, and allows to
solve the problem in Θ(nlog(n)). In Chapter 4 we will see a solution based on Dynamic
programming that allows to solve the problem in linear time.

2.2.1 Divide and Conquer Solution

The main idea of the Divide and Conquer approach is the following. Consider Figure 2.3. Let
start and end be the first and last index of the array, and m be the mid-point. Additionally,
let i and j be the beginning and the end of the sub-array with max sum that we are looking
for. We can have three cases:

1. The max sub-array completely lies on the left side, hence both i and j are on the left,
start ≤ i ≤ j ≤ m ≤ end

2. The max sub-array completely lies on the right side, hence both i and j are on the right,
start ≤ m+ 1 ≤ i ≤ j ≤ end

3. The max sub-array crosses m, hence i is on the left of m and j is on the right,
start ≤ i ≤ m < j ≤ end

Figure 2.3: Maximum Sub-array Algorithm Idea

Exploiting these cases, we first solve the problem for the case in which the sub-array
crosses m with the function FindMaxCrossingSubarray(). The main idea here is that if it
crosses m, then both the elements in A[m] and A[m+ 1] belong to the sub-array (otherwise
it would not cross m and we would be in one of the other cases). We exploit this fact to
look for the max sub-array on the left of m ending at A[m], and for the max sub-array on
the right of m starting at A[m + 1]. The concatenation of these two sub-arrays gives the
maximum sub array that crosses m.

The function FindMaxCrossingSubarray() first looks for the maximum sub-array ending
at A[m] (lines 2-11). It keeps track of the maximum sum of elements encountered Lsum and
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1 FindMaxCrossingSubarray(A, start, m, end) begin
2 Lsum = −∞ //sum of max left sub-array ending at A[m]
3 maxl //index of the first element of the max left sub-array
4 sum=0
5 for i=m down to start do
6 sum = sum+A[i]
7 if Lsum < sum then
8 Lsum=sum
9 maxl=i

10 end

11 end
12 Rsum = −∞
13 maxr
14 sum=0
15 for j=m+1 end do
16 sum = sum+A[j]
17 if Rsum < sum then
18 Rsum=sum
19 maxr=i

20 end

21 end
22 return (maxl, maxr, Lsum +Rsum)

23 end

Algorithm 5: FindMaxCrossingSubarray
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the index maxl of the first element of the sub-array that generated such maximum sum.
Subsequently, it looks for the maximum sub-array starting at A[m+1], and similarly it keeps
track of the maximum sum Rsum and the index maxr. The algorithm outputs the starting
index maxl and ending index maxr of the maximum sub-array that crosses m, having sum
of elements Lsum +Rsum.

1 FindMaxSubarray(A, start, end){
2 if start==end then
3 return (start, end, A[start])
4 end

5 m=
⌊
start+end

2

⌋
6 (Lstart, Lend, Lsum)=FindMaxSubarray(A, start, m)
7 (Rstart, Rend, Rsum)=FindMaxSubarray(A, m+1, end)
8 (Cstart, Cend, Csum) = FindMaxCrossingSubarray(A, start, m, end)
9 if Lsum ≥ Rsum and Lsum ≥ Csum then

10 return(Lstart, Lend, Lsum
11 end
12 if Rsum ≥ Lsum and Rsum ≥ Csum then
13 return(Rstart, Rend, Rsum

14 end
15 return(Cstart, Cend, Csum)
16 }

Algorithm 6: FindMaxSubarray

Given the above procedure, we can now introduce the main function FindMaxSubarray()

that solves the problem recursively. The base case occurs when the array has a single element
(start == end). In this case the maximum sub-array is the element itself. Otherwise, we
calculate the mid-point m and find recursively the maximum sub-array that lies on the left
of m, on the right of m, and use the function FindMaxCrossingSubarray() to find the
maximum sub array crossing m. The sub-array which has maximum sum between these
three is the sub-array we are looking for.

2.2.2 Complexity

Let’s start from the function FindMaxCrossingSubarray(). This function iterates over the
left half of the array, and then on the right half. There are no nested loops, thus the complex-
ity is linear Θ(n). The main algorithm function FindMaxSubarray() has two recursive calls,
each of which operates on an input which is half of the current input. Additionally, each call
invokes the function FindMaxCrossingSubarray() which has complexity Θ(n). Therefore
we can write the following recursive equation, and solve it with the Master Theorem.

T (n) =

{
2T (n

2
) + Θ(n) n > 1

Θ(1) n = 1
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a = 2 b = 2 f(n) = n

nlog2(2) = n f(n) = n = Θ(n)

We are therefore in case II and we can conclude that T (n) = Θ(nlog(n)).

2.3 QuickSort

Quicksort applies the divide and conquer approach to the sorting problem. It has a worst
case complexity of O(n2), but it can be shown that on average the complexity is O(n log(n)).
Additionally, the hidden constants, i.e. the constants that disappear in the asymptotic
analysis, are small, making Quicksort one of the best sorting algorithms in practice.

Algorithm idea. Quick sort is a recursive algorithm, at each recursive call it selects a pivot
value x and places it the correct position, i.e. in the position that x should have in the sorted
array. It then recursively sorts the sub-arrays at the left and right side of x.

The algorithm applies the divide and conquer approach as follows.

• Divide: given the array A[start..end] choose a pivot value x, find the correct position
p for x such that A[p]=x and both of the following statements hold:

– ∀i ∈ [start...p− 1], A[i] ≤ x

– ∀i ∈ [p+ 1...end] A[i] > x

• Conquer: Recursively sort the sub-arrays A[start...p-1] and A[p+1...end]

• Combine: Nothing left to do. The array is already sorted.

2.3.1 Pseudo-code

1 QuickSort(A, start, end)begin
2 if start<end then
3 p=Partition(A, start, end)
4 QuickSort(A, start, p-1)
5 QuickSort(A, p+1, end)

6 end

7 end

Algorithm 7: QuickSort

The algorithm has two functions. The main function QuickSort() takes as input the
array A, and the start and end indices. It invokes the function Partition() that returns
the position p of the pivot. The function QuickSort() then recursively sorts the sub-arrays
on the left and right side of p.
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1 Partition(A, start, end)begin
2 x=A[end]
3 i=start-1
4 for j=start to end do
5 if A[j]≤x then
6 i++
7 swap(A[i], A[j])

8 end

9 end
10 swap(A[i+1], A[end])
11 return i+1

12 end

Algorithm 8: Partition

The function Partition picks the last element of the current array, i.e. A[end], as pivot
value x. It then uses an index j to iterate over the array, and an index i. The idea is to
separate the array so that, at the j-th iteration all elements in A[start, . . . , i] are less than or
equal to x, all elements in A[i + 1, . . . , j] are greater than or equal to x, while the elements
in A[j, . . . , end] have not been analyzed yet. In order to keep this property, initially j is set
to start and i to start − 1. As j increases and an element is found which is smaller than
the pivot value x, i is increased, and A[i] (which is greater than x) and A[j] are swapped,
restoring the desired property. When j reaches end, the function performs a last swap to put
x in its correct position, which is i + 1. This location is also returned as pivot to the main
function.

2.3.2 Complexity

The complexity of QuickSort depends on the choice of the pivot value, and how this divides
the array in the subsequent recursive calls. In general, we can say that the array is split in
two parts, one of length k and the other one of length n − k − 1. The complexity of each
recursive call is given by the complexity of the function Partition(). This function has a
single for loop, which iterates on the entire array, therefore its complexity is Θ(n). We can
write the following general recurrence equation.

T (n) =

{
T (k) + T (n− k − 1) + Θ(n) n > 1

Θ(1) n = 1

We can identify the worst and best case for this algorithm. The worst case occurs when
the pivot value chosen at each iteration is either the largest or the smallest element of the
array. As a result, k = 0, or k = n− 1, and one recursive call will work on an empty array,
but the other one on n− 1 elements. The resulting recurrence equation is:
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Figure 2.4: Execution of QuickSort on an array

T (n) =

{
���T (0) + T (n− 1) + Θ(n) n > 1

Θ(1) n = 1

In terms of recursion tree, this degenerates in a tree where each level has a complexity
linear in the input size. Each level has a single child and works on an input equal to the
previous input decreased by a unit. As a result, the complexity is

∑n
i=0 c(n − i), since at

level i we work on an input of size n − i and the complexity is linear. By calling q = n − i
we can transform the summation as

n∑
i=0

c(n− i) =
n∑
q=1

cq =
n(n = 1)

2
= O(n2).

Therefore in the worst case Quicksort has quadratic complexity. The best case, instead,
occurs when the position of the pivot value is in the middle of the array, i.e. k ≈ n/2. We
can rewrite the general equation as follows.

T (n) =

{
2T (n

2
) + Θ(n) n > 1

Θ(1) n = 1

We have seen this equation already, as an example for the MergeSort algorithm, and we
know leads to a complexity of Θ(nlog(n)).
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2.3.3 Selection in Worst-Case Linear Time

We now discuss a selection algorithm SELECT that finds the desired element by recursively
partitioning the input array. Also, algorithm SELECT is deterministic because it uses the
deterministic PARTITION algorithm from quicksort (refer to Algorithm 8). However, it is
a slightly modified version of the of the deterministic Partition routine, where the partition
element is an input to this algorithm. In the worst case, algorithm SELECT can achieve
linear-time complexity. However, it needs to guarantee that the split is always good at each
Partition. Now, we build a solution so a good split will always be guaranteed.

Pseudo-code:

1 SELECT ()begin
2 /* index denotes the index of x that Partition() returns.*/
3 index = PARTITION(n)
4 if index = i then
5 return x.
6 end
7 if i<index then
8 apply SELECT recursively to A[1 . . . index− 1] to find the ith smallest

element.
9 end

10 else
11 apply SELECT recursively to A[index+ 1 . . . n] to find the (i− k)th smallest

element.
12 end

13 end

Algorithm 9: SELECT

1 PARTITION(n)begin
2 Divide the n elements into M groups where, M =

⌈
n
5

⌉
3 Determine the median of each of the groups.
4 recursively find the median x of all the medians found in previous step.

5 end

Algorithm 10: PARTITION for Algorithms SELECT

Worst-case Split: There are
⌈⌊

n
5

⌋
/2
⌉

groups with 3 elements (out of 5) is greater than or
equals to x. Note that, the last group is ignored if it has fewer than 5 elements. So, the
number of elements which are greater (resp. smaller) than x is at least 3(n− 4)/10. Hence,
SELECT is called recursively on at most (7n+ 12)/10 elements in the worst case.
Now, we define the recurrence relation for worst-case running time:
T (Select)≤ T (Median-of-medians) + T (Partition) + T (recursive call to select)
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T (n) ≤ O(n) + T (bn/5c) +O(n) + T ((7n+ 12)/10)
Where, first two terms stands for T (Median-of-medians), third terms is for T (Partition), and
the last term is for T (recursive call to select). From this relation we get:
T (n) ≤ T (bn/5c) +O(n) + T ((7n/10)) + 1.2)
Solving the Recurrence:
Base: For all n ≤ 24, T (n) ≤ 24n
For n > 24, T (n) ≤ an+ T (n/5) + T ((7n/10)) + 1.2)
We want to find a constant c, where c > 0 and for all n > 0 T (n) ≤ cn. Now,

T (n) ≤ an+ T (n/5) + T ((7n/10)) + 1.2)

≤ an+ cn/5 + 7nc/10 + 1.2c

= cn− (cn/10− an− 1.2c)

= cn− ((c/20− a)n+ (n/20− 1.2)c)

≤ cn; as long as c ≥ 20a.

Hence, in the worst-case, algorithm SELECT has a linear running time.

2.4 Counting Sort - Sorting in Linear Time

It can be shown that any sorting algorithm based on comparisons has a complexity Ω(n log(n)).
This implies, for example, that MergeSort is asymptotically optimal. However, we can im-
prove this bound by designing algorithms not based on comparisons, Counting Sort is an
example of these algorithms.

Algorithm idea. Counting sort assumes that the maximum value k in the array A is a
Θ(n). The algorithm creates an array C[1, . . . , k]. It then iterates over the array A and
keeps track in C of how many times a given number occurs in A. It then iterates on C, and
writes on A the numbers sorted.

2.4.1 Pseudo-code

2.4.2 Complexity

The pseudo-code of counting sort has several independent loops. The for loop (lines 3-7)
has complexity Θ(n). The for loop (lines 9-11) has complexity Θ(k). The for loop (lines
12-14) has complexity Θ(n). The while loop needs a slightly more deep analysis, since j is
not increased at every iteration. We should ask ourselves how many times the condition of
the If can be true. This can happen only Θ(n) times, since it occurs only once for each
element of A. When the If condition is not true, the else is executed and j increased. Hence
the complexity of the while loop is Θ(n+ k), since the If occurs n times and the else k.

Combining the above complexities we obtain Θ(n + k + n + n + k). Since we assumed
that k = Θ(n), the overall complexity is Θ(n).
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1 CountingSort(A, n)begin
2 k = A[1];
3 for i = 2 to n do
4 if A[i] > max then
5 k = A[i]
6 end

7 end
8 Create a new array C[0...k];
9 for j=0 to k do

10 C[i]=0 ;
11 end
12 for i=1 to n do
13 C[A[i]]=C[A[i]]+1;
14 end
15 i = 1;
16 j = 1;
17 while j ≤ k do
18 if C[0] 6= 0 then
19 A[i] = j;
20 C[j]–;
21 i++;

22 end
23 else
24 j++;
25 end

26 end

27 end

Algorithm 11: CountingSort

34



2.5 Exercises

1. The Carnival Coin Game: You are running a game booth at your local village carnival.
In your game you lay out an array of n (n > 0) coins on a table. In this game, you and your
customer alternately pick coins from the table, either 1 or 2 at a time. If your customer can
make you pick up the last coin, he wins and walks away with all the coins. You graciously
allow your customer to go first. Being an enterprising sort, you want to arrange the game so
that you will always win.
a) What constraint(s) for n do you need to guarantee a win every time?
b) Describe a correct algorithm (strategy).
c) What is the loop invariant for the algorithm?

2. The Max Sub-vector Problem: Given an array a[1 . . . n] of numeric values (can be positive,
zero and negative) determine the maximum value of sums to all sub-vectors a[i . . . j](1 ≤ i ≤
j ≤ n). Show that: Maximum Sub-vector is of Ω(n). (Hint: How to treat a subvector with
negative sum during the search process?)

3. Stable sorting algorithms maintain the relative order of records with equal keys (i.e.,
values). That is, a sorting algorithm is stable if whenever there are two records R and S
with the same key and with R appearing before S in the original list, R will appear before
S in the sorted list.
a. Which of the following sorting algorithms are stable: insertion sort, merge sort, heapsort,
selection sort, counting sort, radix sort.
b. Show that quicksort is not stable.
c. Modify quicksort and make it stable. (Hint: You need new comparison rule for two
elements with the same value)

4.
a. Demonstrate the operation of HOARE−PARTITION on the array A = [13; 19; 9; 5;

12; 8; 7; 4; 11; 2; 6; 21], showing the values of the array and auxiliary values after each itera-
tion of the while loop in lines 5-18. The next three questions ask you to give a careful
argument that the procedure HOARE − PARTITION is correct. Assuming that the sub-
array A[p . . . r] contains at least two elements, prove the following:
b. The indices i and j are such that we never access an element of A outside the subarray
A[p . . . r].
c. When HOARE − PARTITION terminates, it returns a value j such that p ≤ j < r.
d. Every element of A[p . . . j] is less than or equal to every element of A[j + 1 . . . r] when
HOARE − PARTITION terminates.
e. Rewrite the QUICKSORT procedure to use HOARE − PARTITION .
(Note that, the HOARE − PARTITION procedure, always places the pivot value (origi-
nally in A[p]) into one of the two partitions A[p . . . j] and A[j+ 1 . . . r]. Since p ≤ j < r, this
split is always nontrivial.)
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1 HOARE-PARTITION(A, p, r)begin
2 x = A[p];
3 i = p-1;
4 j = r+1;
5 while TRUE do
6 while A[j] ≤ x do
7 j = j-1;
8 end
9 while A[j] ≥ x do

10 i = i+1;
11 end
12 if i < j then
13 exchange A[i] with A[j];
14 end
15 else
16 return j
17 end

18 end

19 end

Algorithm 12: HOARE-PARTITION

5. a. If all element values are equal, then What would be randomized quicksorts run-
ning time?
b. The PARTITION procedure returns an index q such that each element of A[p . . . q − 1]
is less than or equal to A[q] and each element of A[q+1 . . . r] is greater than A[q]. Modify the
PARTITION procedure to produce a procedure PARTITION ′(A, p, r), which permutes
the elements of A[p . . . r] and returns two indices q and t, where p ≤ q ≤ t ≤ r, such that

• all elements of A[q . . . t] are equal,

• each element of A[p . . . q − 1] is less than A[q], and

• each element of A[t+ 1 . . . r] is greater than A[q]

Like PARTITION , your PARTITION ′ procedure should take Θ(r − p) time.
c. Modify the RANDOMIZED − QUICKSORT procedure to call PARTITION ′, and
name the new procedureRANDOMIZED−QUICKSORT ′. Then modify theQUICKSORT
procedure to produce a procedureQUICKSORT ′(p, r) that callsRANDOMIZED−PARTITION ′
and recurses only on partitions of elements not known to be equal to each other.

6. Show how to sort n integers in the range 0 to n3 − 1 in O(n) time.

7. Given a set of n numbers, we wish to find the i largest in sorted order using a comparison-
based algorithm. Find the algorithm that implements each of the following methods with the
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best asymptotic worst-case running time, and analyze the running times of the algorithms
in terms of n and i.
a. Sort the numbers, and list the i largest.
b. Build a max-priority queue from the numbers, and call EXTRACT −MAX i times.
c. Use an order-statistic algorithm to find the i th largest number, partition around that
number, and sort the i largest numbers.

8. Show that there is no comparison sort whose running time is linear for at least half
of the n! inputs of length n. What about a fraction of 1/n of the inputs of length n? What
about a fraction 1/2n?

9.Show that we can use a depth-first search of an undirected graph G to identify the con-
nected components of G, and that the depth-first forest contains as many trees as G has
connected components. More precisely, show how to modify depth-first search so that it
assigns to each vertex v an integer label v.cc between 1 and k, where k is the number of
connected components of G, such that u.cc = v.cc if and only if u and v are in the same
connected component.

10. Show that quicksorts best-case running time is Ω(nlgn).
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Chapter 3

Greedy Approach to Algorithm
Design

Greedy Algorithms are useful in a wide array of cases, especially dealing with optimiza-
tion problems defined in a particular domain. These are commonly problems of optimizing
(maximizing/minimizing) over a given input (e.g. array of numbers, sets, graph, etc.).

Greedy algorithms are generally iterative, and at each iteration the algorithm makes the
“best” currently available decision according to its selection criteria. These algorithms build
a partial solution which is extended at each iteration. Every time the current best element
is added to the solution, and it is not removed in the subsequent iterations.

Greedy Algorithms do not always find the optimal solution to a problem. The theory
of Matroids defines the necessary and sufficient condition under which a greedy algorithm
returns an optimal solution. If a greedy algorithm does not solve a problem optimally, often
it provides a solution with provable approximation bounds.

3.1 The Activity Selection Problem

The activity selection problem consist in scheduling activities (e.g. classes) that should take
place in a classroom. Obviously, in the schedule activities cannot overlap, and our interest
is to maximize the number of activities in the schedule. More formally,

• Consider n activities A = [a1 · · · an], from which a subset should be selected to occur
in one classroom

• The activity ai has a start time si and a finish time fi, such that 0 ≤ si < fi <∞.

• When an activity is scheduled, it takes place in the open interval [si, fi)

• Two activities a1 = [si, fi) and a2 = [sj, fj) are compatible if they do not overlap, i.e.
if si ≥ fj or sj ≥ fi.

Problem: Given the activities in A, select the maximum number of compatible activities.
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Figure 3.1: An example of input for the activity selection problem.

It is interesting to note that if instead of maximizing the number of classes to be scheduled,
we want to maximize the amount of class time allocated, the problem becomes NP-Hard,
and in fact cannot be solved in polynomial time.

3.1.1 An Example

Figure 3.1 shows an example of input for the activity selection problem. In this example, one
optimal, but not the only optimal, solution would consist of the activities {a1, a3, a6, a8}. In
any feasible solution, given this set of activities, the maximal number of activities which may
be compatible is 4. Therefore any feasible solution which consists of exactly 4 compatible
activities is optimal.

3.1.2 Potential Greedy Solutions

According to the greedy philosophy, we build a solution set S of non-overlapping activities.
We extend S at each iteration of the algorithm, and once an activity is included in S, we
never remove it from the solution. However, we have several options to pick the activity to
include in S at each iteration. Possible examples are the following.

1. Earliest start time

2. Least duration

3. Earliest termination time

Earliest start time

Algorithm 13 shows the pseudo code for the earliest termination criteria. We begin with
an empty solution set S. At each iteration of the while loop, we calculate the set D of the
activities that are compatible with the activities in S, and we pick the activity ak with the
minimum start time. We add ak in S and proceed to the next iteration. We keep iterating
until there are activities that can be added to S without creating overlaps.

39



1 EarliestStart(A)begin
2 S=∅
3 while ∃ a ∈ A : S ∪{a} does not create overlaps do
4 Let D ⊆ A \ S be the set of activities that do not overlap with activities in S
5 ak = arg min

ai∈D
si

6 S=S∪{ak}
7 end
8 return S

9 end

Algorithm 13: Earliest Start time as greedy criteria

a1 [1,10)
a2 [2,3)
a3 [4,5)

Table 3.1: Activity set to serve as counterexample to EarliestStart

We can easily find a counter example to show that the earliest start time criteria is not
optimal, i.e. it does not always find an optimal solution. Finding a counter example is a
general way of proving that an algorithm is not optimal, the idea is to find an input under
which the algorithm provides an output that is clearly not optimal. In this case, we can
consider the input in Table 3.1. With the greedy criteria being earliest start, a1 alone is
chosen, since it conflicts with both of the other two potential activities. We can instead
select a2 and a3 and provide a solution with two activities. This selection criteria therefore
does not lead to an optimal solution, as proven by the counter example.

Least duration

1 LeastDuration(A)begin
2 S=∅
3 while ∃ a ∈ A : S ∪{a} does not create overlaps do
4 Let D ⊆ A \ S be the set of activities that do not overlap with activities in S
5 ak = arg min

ai∈D
(fi − si)

6 S=S∪{ak}
7 end
8 return S

9 end

Algorithm 14: Least duration as greedy criteria

Another valid option is to look first for activities which have a short duration. The idea
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a1 [5,7)
a2 [3,6)
a3 [6,9)

Table 3.2: Activity set to serve as counterexample to LeastDuration

is to select small activities first, so more should fit in the schedule. The pseudo code is in
Algorithm 14.

However, not even this approach is optimal. Let us consider the input in Table 3.2. In
this case, the algorithm would pick a1 alone, since it conflicts with both of the other two
potential activities. The optimal solution is instead a2, a3. This selection criteria therefore
does not lead to an optimal solution, as proven by the counter example.

Earliest termination

1 EarliestTermination(A)begin
2 S=∅
3 while ∃ a ∈ A : S ∪{a} does not create overlaps do
4 Let D ⊆ A \ S be the set of activities that do not overlap with activities in S
5 ak = arg min

ai∈D
fi

6 S=S∪{ak}
7 end
8 return S

9 end

Algorithm 15: Earliest Finish time as greedy criteria

Another option is to consider the earliest finish time. The intuition behind it is to select
activities that leave more room for others. The pseudo-code is in Algorithm 15. We can
easily see that this approach solves both the previous counter examples. However, can we
find another counter example? If not, can we conclude that it is optimal?

3.1.3 Proving Greedy Algorithm Correctness

In general, proving the correctness of an algorithm requires creativity, ingenuity, and also a
fair amount of luck. Although this is true for greedy algorithms too, we can provide some
general guidelines on how the proof can be structured.

1. Prove that for any input, the algorithms terminates in finite number of steps

2. Prove that the partial solution produced at every iteration of the algorithm is always
included in an optimal solution, i.e. there exist S∗ optimal solution, such that for any
iteration we can prove that S ⊆ S∗. This is normally achieved through a proof by
induction.
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3. Prove that the final solution is optimal, i.e. it cannot be further extended.

Correctness of the Earliest Termination solution

We structure the proof according to the general guidelines.

1) At each iteration of the while loop we add a new activity to S. This can be repeated at
most for all activities in A, i.e. for at most n iterations.

2) Let Sh be the solution at the h-th iteration. Let m be the total number of iterations of the
while loop, hence h = 0, . . . ,m. We need to prove that ∀h = 0, . . . ,m ∃ an optimal solution
S∗ s.t. Sh ⊆ S∗. We prove this by induction.

Base case, h = 0: the statement is true because S0 = ∅, and ∅ is a subset of any set, and
thus S0 ⊆ S∗ for any optimal solution S∗.

Inductive hypothesis: The statement is true at the h-th iteration, i.e. ∃ an optimal solution
S∗ s.t. Sh ⊆ S∗.

Inductive step: We prove that the statement is true at the iteration h + 1. We know that
Sh ⊆ S∗. Let ak be the activity selected at the h+ 1 iteration.

If ak ∈ S∗ the statement is true, since S∗ is the optimal solution that includes Sh+1.
If ak /∈ S∗ we need to find another optimal solution that contains ak and all the activities

in Sh. In particular, we look for an activity in S∗ that can be substituted with ak. Such
activity exists because |Sh+1| ≤ |S∗|. Let aj be the activity in S∗ \ Sh with the earliest
termination and let S# = (S∗ \ {aj}) ∪ {ak}

We need to prove that S# is feasible (i.e. does not contain overlaps) and it is also optimal.
Since aj ∈ S∗ and aj /∈ Sh aj could have been selected by our algorithm at the h+1 iteration,
but the algorithm selected ak instead. This implies that the termination time of ak is less
than or equal to the termination time of aj, i.e. fk ≤ fj. As a result, ak does not overlap
with the activities in S∗ and hence S# is feasible.

To build S# we removed the activity aj from S∗ and added the activity ak. As a result, we
have |S#| = |S∗|, hence S# is optimal because it maximizes the number of selected activities.

3) We need to prove that Sm, i.e. the solution produced at the last iteration of the algorithm,
is indeed optimal. We know that exists an optimal solution S∗ s.t. Sm ⊆ S∗. We proceed
by contradiction. Let us assume that |Sm| < |S∗, i.e. Sm is not optimal. Hence, there exists
a ∈ S∗ s.t. a /∈ Sm.

Since a does not overlap with any activity in S∗, it does not neither overlap with the
activities in Sm, because Sm ⊂ S∗. As a result, the condition of the while loop would have
been true at the m+ 1 iteration, since there exist an activity in A that does not overlap with
the activities already selected in Sm. The algorithm would have then selected a and added it
to Sm, hence we get a contradiction since Sm cannot be the final solution of the algorithm.

This implies that |Sm| = |S∗|, hence Sm is optimal.
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1 EarliestTermination(A)begin
2 S=∅;
3 Sort A in a′1, . . . , a′n, s.t. fa′1 ≤ fa′2 ≤ · · · ≤ fa′n ;
4 t = 0;
5 for j = 1 to n do
6 if sa′j ≥ t then
7 S = S ∪ {a′j};
8 t = fa′j ;

9 end

10 end
11 return S;

12 end

Algorithm 16: Earliest Finish detailed pseudo-code.

3.1.4 More Detailed Psedo-code for Earliest Termination

The previous pseudo-code is more high-level, which is typically useful to prove the correctness
of an algorithm, where we focus on the algorithm idea rather than on the implementation
details. However, this does not allow us to evaluate the complexity, since many operations
are not specified in sufficient detail. As an example, we do not clarify how we actually pick
the next activity with earliest termination time, or how we check that the activity that we
pick does not overlap with the activities already in S. Therefore, there is another step to do,
which is not trivial, to make these aspects explicit and evaluate the algorithm complexity.

Algorithm 16 shows the more detailed pseudo-code. The key idea is to sort the activities
by finish time before starting the selection. This can be done in Θ(n log(n)) using one of the
sorting algorithms we already discussed. Sorting by finish time allows us to iterate over the
sorted set, and know that an activity has a finish time smaller than all the subsequent ones.

We need however to solve also the problem of checking compatibility efficiently. Going
through all the already selected activities and verify if the potential new activity is compatible
is very inefficient, and would cost O(n) at each iteration. Since this cost would be incurred at
every algorithm iteration, we would end up with a overall cost of O(n log(n) + n2) = O(n2).

We can however do something smarter, and consider an timestamp t which corresponds
to the finish time of the last selected activity. This way, to asses if the new activity under
consideration is compatible with all the other ones in S, we can just check if its starting time
is larger or equal to t. This way, we can verify the compatibility in constant time O(1), and
the while loop has complexity Θ(n).

The overall complexity of the algorithm is then Θ(n log(n) + n) = Θ(n log(n)).

3.2 The Cashier Problem

A Cashier has to give W cents (integer) in change for a transaction and she wants to use the
least number of coins. The available coin types belong to the set C = {c1, . . . , cn} and the
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element ci has value vi. Formally, we want to solve this optimization problem.

S∗ = arg min
S⊆C

|S|

s.t.
∑
ci∈S

vi = W

3.2.1 Examples in the US System

In the US system the set of values is {1, 5, 10, 25}. For W = 30 the optimal solution is
S∗ = {25, 5}, while for W = 67 is S∗ = {25, 25, 10, 5, 1, 1}.

3.2.2 Greedy Solution

The idea behind the greedy approach is to pick the largest value coin with value less than or
equal to W , then update remaining value of W. The pseudo-code is shown in Algorithm 17.

1 Change(W)begin
2 S=∅
3 while W > 0 do
4 ck = arg max

ci∈C:vi≤W
vi

5 S = S ∪ {ck}
6 W = W − vk
7 end
8 return S

9 end

Algorithm 17: Change Algorithm

The algorithm yields an optimal solution for the US coinage system. However, this is not
guaranteed to do so for all systems. As an example, consider the US coinage system without
the nickel, i.e. {1, 10, 25}. We want to give a change for an amount W = 30 cents. The
algorithm returns a solution {25, 1, 1, 1, 1, 1} which is clearly not optimal, since we can use
just three coins {10, 10, 10}.

3.3 The Knapsack 0-1 Problem

The Knapsack problem is a well-known problem in Computer Science, and many variants
exist in its formulation. The variant that we consider here is the so called Knapsack 0-1
problem, which can be formulated as follows.

A thief has a sack which can hold a limited amount of weight W . He enters in a shop at
night and has the option to pick the items to steal. There are a set of A = {a1, a2, . . . , an}
items, each item ai ∈ A has a value vi and a weight wi. The thief has to find the best set
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of items S∗ that maximizes the overall value, and has an overall weight less than or equal to
W . Formally the problem can be formalized as follows.

S∗ = arg max
S⊆A

∑
ai∈S

wi :≤ W

The name Knapsack 0-1 derives from the fact that the thief can pick an item or not, other
variants for example enable to pick multiple copies of the same item.

3.3.1 Greedy Solution

Following the greedy strategy, we can approach the knapsack problem as follows. We start
with an empty knapsack, S = ∅. We iteratively pick the “best” element, following an
appropriate criteria, until the knapsack is full. Several criteria can be formulated, as an
example we may pick the item ai (i) with max value vi, (ii) with minimum weight wi, (iii)
with maximum ratio vi

wi
. Algorithm 18 summarizes the greedy strategy with these criteria.

1 GreedyKnapsack(A)begin
2 S=∅
3 R=W //R is the residual weight capacity of the knapsack
4 D=A
5 while D 6= 0 do

6 ak = arg max
ai∈D

vi

∣∣∣∣arg max
ai∈D

vi
wi

∣∣∣∣ arg min
ai∈D

wi

7 if wk ≤ R then
8 S=S∪{ak}
9 R = R− wk

10 end
11 D = D \ {ak}
12 end
13 return S

14 end

Algorithm 18: Greedy Knapsack

3.3.2 Counter Examples and NP-Completeness

All the three criteria mentioned above are not optimal, i.e. for each of them there exist
an input in which the greedy algorithm does not give the optimal solution. In order to
show that an algorithm is not optimal, it is sufficient to provide such an input and show
the resulting output compared to the optimal solution. This is in general much easier that
showing the optimality. Obviously, if you find a counter example then showing the optimality
is impossible, while if you show the optimality then you cannot find any counter example.
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v1 v2 v3 w1 w2 w3 max vi min wi max vi
wi

Optimal

10 9 9 50 25 25 {a1}, 10 {a2, a3}, 18 {a2, a3}, 18 {a2, a3}, 18
10 1 1 50 25 25 {a1}, 10 {a2, a3}, 2 {a1}, 10 {a1}, 10
60 100 120 10 20 30 {a3, a2}, 120 {a3, a2}, 120 {a1, a2}, 160 {a3, a2}, 120

Table 3.3: Counter examples for knapsack greedy criteria.

We provide in table 3.3 some counter examples for each criteria. We consider three items
and a knapsack with capacity W = 50.

It is possible to show that the Knapsack problem belongs to a class of problems known
as NP-Complete. This means that there cannot exist a polynomial time algorithm that
optimally solves the problem. Therefore, our greedy algorithms which are clearly polynomial,
have no chance to be optimal. It is however possible to show that the greedy criteria based on
max vi

wi
, with some minor modification, yields a solution which is at least half of the optimal

solution. We say that such a greedy approach has a provable performance bound.

3.4 Exercise

1. Suppose you are given two sets A and B, each containing n positive integers. You can
choose to reorder each set however you like. After reordering, let ai be the i−th element of
set A,and let bi be the i−th element of set B. You then receive a payoff of

∏n
i=1 a

bi
i . Give an

algorithm that will maximize your payoff. Prove that your algorithm maximizes the payoff,
and state its running time.

2. Suppose that instead of always selecting the first activity to finish, we instead select
the last activity to start that is compatible with all previously selected activities. Describe
how this approach is a greedy algorithm, and prove that it yields an optimal solution.

3. Not just any greedy approach to the activity-selection problem produces a maximum-
size set of mutually compatible activities. Give an example to show that the approach of
selecting the activity of least duration from among those that are compatible with previously
selected activities does not work. Do the same for the approaches of always selecting the
compatible activity that overlaps the fewest other remaining activities and always selecting
the compatible remaining activity with the earliest start time.

4. Consider a modification to the activity-selection problem in which each activity ai has,
in addition to a start and finish time, a value vi. The objective is no longer to maximize
the number of activities scheduled, but instead to maximize the total value of the activities
scheduled. That is, we wish to choose a set A of compatible activities such that

∑
ak∈A vk is

maximized. Give a polynomial-time algorithm for this problem.
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Chapter 4

Dynamic Programming

Dynamic programming solves optimization problems by combining solutions of sub-problems,
but differently from divide and conquer, such subproblems are not disjoint, therefore indi-
vidual sub-problems may be common components to multiple higher level sub-problems. To
avoid computing the solution to the same sub-problem multiple times, which would be disas-
trous in terms of complexity, tables are generally used to keep track of the already calculated
solutions. A bottom up approach is followed, where we start from simple problems (base
cases) and use a recursive relation to solve higher level sub-problems combining the solutions
of the lower level sub-problems stored in the tables.

4.1 General Dynamic Programming Approach

When an algorithm is designed using a dynamic programming approach, generally three steps
are involved:

1. Identify sub-problems whose solution can lead to the solution of the bigger problem.

• The number of sub-problems are polynomial with respect to the original problem.

• Polynomial complexity to combine the solutions to obtain the solution to the
original problem.

2. Define a recurrence relation that relates the solutions of smaller problems to the solu-
tions of bigger problems.

3. First focus on calculating the value of the solution then on calculating the actual
solution.

4.2 Max Sub-array Problem

We discussed this problem in Section 2.2. We briefly recall its definition here. Given an array
A with positive and negative numbers, find the sub-array with maximum sum. We showed
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that we can solve the problem in Θ(nlogn) using a divide and conquer approach. Dynamic
programming can go do even better, and achieve a complexity of Θ(n).

We first define the table, and the sub-problems, that will be used by the algorithm. It is
advised to fully understand the definition .

Definition 4.2.1. Let T be a one dimensional table of length n. ∀ i = 1, . . . , n T[i] is the
sum of the elements in the max sub-array that ends at i.

We can therefore re-define our problem compactly as maxi=1,...,n T [i]. We now need to
define the recursive relation to calculate the solution T [i] given the solutions T [1], . . . , T [i−1].
Let’s start with the base case, i = 1. The sum of the elements of the max sub-array that ends
at 1 is clearly only A[1]. Now assume that you calculated all solutions up to i − 1, we can
have two cases. Either the max sub-array that ends at i is composed by the single element
A[i], so T [i] = A[i], or it is composed by the previously max sub-array to which we append
A[i], that is T [i] = T [i − 1] + A[i]. We can thus say that T [i] = max(T [i − 1] + A[i], A[i]).
We thus summarize the discussion in following recursive relation.

T [i] =

{
A[1] i = 1

max(A[i], A[i] + T [i− 1]) i > 1

Note that the only reason for which we may not decide to append the current item to the
previous maximum sub-array is when T [i− 1] < 0, this is exploited in the pseudo-code.

1 MaxSubarrayDP(A) begin
2 T[1]=A[1]
3 max = T[1]
4 for 1=2 to n do
5 T[i]=A[i]
6 if T [i− 1] > 0 then
7 T[i]=A[i]+T[i-1]
8 end
9 if max < T [i] then

10 max = T[i]
11 end

12 end
13 return max

14 end

Algorithm 19: Dynamic Programming MaxSubarray Algorithm

4.2.1 Pseudo-code

The hard work in defining dynamic programming algorithms is to identify the sub-problems
and the recursive relation, while the pseudo-codes are pretty straight forward. Generally we
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just iterate on the table, and in this case the table is just a one-dimensional array. Algorithm
19 shows the pseudo-code.

4.2.2 Example

Find the Maximum Subarray within A =< −1, 2, 10,−13, 5,−10, 1,−2,−4 >

A -1 2 10 -13 5 -10 1 -2 -4
T -1 2 12 -1 5 -5 1 -1 -4

max -1 2 12 12 12 12 12 12 12
i 1 2 3 4 5 6 7 8 9

Figure 4.1: Step by step execution on the given array

1 MaxSubarrayDP(A) begin
2 T[1]=A[1]
3 max = T[1]
4 b=1
5 for 1=2 to n do
6 T[i]=A[i]
7 if T [i− 1] > 0 then
8 T[i]=A[i]+T[i-1]
9 end

10 if max < T [i] then
11 max = T[i]
12 b=i //this is the new end of the max sub-array

13 end

14 end
15 a=b
16 while max− A[a] 6= 0 do
17 max=max-A[a]
18 a- -

19 end
20 return (a, b)

21 end

Algorithm 20: Dynamic Programming MaxSubarray Algorithm

4.2.3 Pseudo-code to Find the Actual Solution

We should now realize that the table T only gives us the value of the solution, i.e. the sum of
the elements in the maximum sub-array, but it does not tell us what the actual sub array is.
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We can now easily extend the algorithm to find the solution. The idea is to use to indices a
and b, such that 0 ≤ a ≤ b ≤ n. The index a represents the start of the maximum sub-array
while b the end. The idea is to first calculate the table T and b, then move backwards in the
array starting at A[b] to find a. The pseudo-code is shown in Algorithm 20.

4.3 Longest Common Subsequence

The Longest Common Sub-sequence (LCS) problem is a typical example that shows the
power of Dynamic programming. It solves a problem apparently hard in polynomial time.
Let’s first define the concept of sequence and sub-sequence.

Definition 4.3.1 (Sequence and Sub-sequence). A sequence X =< X1, X2, . . . Xn > is an or-
dered list of symbols (e.g. numbers, characters, etc.). Given a sequence X =< X1, X2, . . . Xn >,
we say that Z =< Z1, Z2, . . . Zk > is a sub-sequence of X if there exists a strictly increasing
list of indices < i1, . . . , ik > such that ∀ j ∈ [1 . . . k] Xij = Zj.

As an example, given X =< 9, 15, 3, 6, 4, 2, 5, 10, 3 >, Z =< 15, 6, 2 > is a subsequence of
X, while Y =< 4, 3, 10 > is not. The LCS problem definition is pretty straight forward.

Definition 4.3.2 (LCS problem definition). Given two sequences X =< X1, . . . , Xn > and
Y =< Y1, . . . , Ym > find the longest common sub-sequence, i.e.the longest sequence Z that is
a sub-sequence for both X and Y .

Example Consider the following sequences.

X =< 9, 15, 3, 6, 4, 2, 5, 10, 3 >

Y =< 8, 15, 6, 7, 9, 2, 11, 3, 1 >

The LCS is < 15, 6, 2, 3 >, since:

X =< 9, 15, 3, 6, 4, 2, 5, 10, 3 > indices < 2, 4, 6, 9 >

Y =< 8, 15, 6, 7, 9, 2, 11, 3, 1 > indices < 2, 3, 6, 8 >

4.3.1 Dynamic Programming Solution

In order to describe the approach to solve the problem, we need to provide some definitions.

Definition 4.3.3 (Prefix Xi). Given a sequence X =< X1 . . . Xn > its prefix Xi is defined
as < X1, . . . Xi >, ∀i ∈ [1, . . . , n]

We now introduce the table T that will keep track of the already solved sub-problems
during the algorithm execution. I encourage you to spend sometime to fully understand the
meaning of this table and its definition before moving forward with the rest of the discussion.
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Definition 4.3.4 (Table T). Given two sub-sequences X and Y , of length n and m, re-
spectively. We define a table T : n × m where T [i, j] is the length of the longest common
sub-sequence of Xi and Yj, ∀i ∈ [1, . . . , n] and j ∈ [1, . . . ,m].

As the definition of the table suggests, the sub-problems consist in finding the LCS for
the prefix Xi and Yj, progressively increasing i and j, until i = n and j = m. At that point,
T [n,m] will contain the answer to the main problem.

We now need to identify a recursive relation to calculate the solution of a given sub-
problem, given the solutions of the smaller sub-problems. In other words, we want to be
able to calculate the value of T [i, j], given that the table has been filled for all elements with
indices less than i and j.

Every good recursive relation starts with a base case. Here the base case occurs when at
least one of the two sequences is empty, in that case it is straight forward that the LCS is
also empty. Formally, T [i, 0] = 0, ∀i = 0, . . . , n, and T [0, j] = 0, ∀j = 0, . . . ,m.

When both i and j are greater than zero, there are two cases that may occur, depending
on the symbols in X[i] and Y [j].

1. If X[i] == Y [j] then these two elements are in common and the LCS between Xi and
Yj includes this symbol. Therefore, the length of such LCS is equal to the length of the
LCS between Xi−1 and Yi−1 plus one, i.e. T [i, j] = T [i− 1, j − 1] + 1.

2. If otherwise X[i] 6= Y [j] then these symbols do not belong to the LCS. Therefore the
LCS of Xi and Yj is the longest between the LCS of Xi and Yj−1, and the LCS of Xi−1
and Yj. That is, T [i, j] = max(T [i− 1, j], T [i, j − 1]).

We can summarize the recursive relation as follows.

T [i, j] =


0 i = 0 ∨ j = 0

T [i− 1, j − 1] + 1 If i, j > 0 ∧X[i] = Y [j]

max(T [i− 1, j], T [i, j − 1]) If i, j > 0 ∧X[i] 6= Y [j]

4.3.2 LCS Pseudo-code

As usual with dynamic programming approaches, the bigger effort is to identify the sub-
problems and the recursive relation that combines their solutions. Once this is done, the
pseudo-code is relatively straight forward. The pseudo-code is show in Algorithm 21. The
algorithm initially fills the table considering the base cases. Then, it iterates over all elements
of the table T and fills the value of T [i, j] applying the recursive relation accordingly.

4.3.3 Example

Find the LCS in the two sequences following:

X =< 9, 15, 3, 6, 4, 2, 5, 10, 3 >

Y =< 8, 15, 6, 7, 9, 2, 11, 3, 1 >
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1 LCS(X,Y) begin
2 for i=0 to n do
3 T[i,0]=0
4 end
5 for j=0 to m do
6 T[0,j]=0
7 end
8 for i=1 to n do
9 for j=1 to m do

10 if x[i]==y[j] then
11 T[i,j]=T[i-1,j-1]+1
12 end
13 else
14 T[i,j]=max(T[i-1,j],T[i,j-1])
15 end

16 end

17 end
18 return T[n,m]

19 end

Algorithm 21: Dynamic Programming LCS Algorithm

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1 1 1
3 0 0 1 1 1 1 1 1 2 2
4 0 0 1 2 2 2 2 2 2 2
5 0 0 1 2 2 2 2 2 2 2
6 0 0 1 2 2 2 3 3 3 3
7 0 0 1 2 2 2 3 3 3 3
8 0 0 1 2 2 2 3 3 3 3
9 0 0 1 2 2 2 3 3 4 4

Table 4.1: Example table T filled by the LCS algorithm

In this example n = m = 9. The Table 4.1 shows the table T filled with values. We know
that T [9, 9] contains the length of the LCS, that is 4. However, we are not still able to provide
the actual symbols that compose the LCS.
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4.3.4 PrintLCS Pseudo Code and Execution

In order to calculate the actual LCS, we use an additional recursive function PrintLCS().
The function starts from the bottom right cell of the table T and backtracks the decisions of
the algorithms in order to reconstruct the LCS. Specifically, at each recursive call the function
considers the table T and the positions i and j, initially set to n and m. It compares X[i]
and Y [j]. If they are equal, then the function prints the symbol and calls itself recursively on
the prefixes of length i− 1 and j − 1. If otherwise they are different, the symbol may not be
in the LCS, and the function calls itself on the maximum between T [i− 1, j] and T [i, j − 1].
The pseudo-code is shown in Algorithm 22.

1 PrintLCS(T,i,j)begin
2 if i > 0 and j > 0 then
3 if X[i] == Y [j] then
4 PrintLCS(T, i-1,j-1)
5 Print(X[i])

6 end
7 else
8 if T [i− 1, j] ≥ T [i, j − 1] then
9 PrintLCS(T,i-1,j]

10 end
11 else
12 PrintLCS(T,i,j-1)
13 end

14 end

15 end

16 end

Algorithm 22: Printing the elements of the LCS

4.3.5 Example - Actual LCS

We now extend the previous example to reconstruct the LCS by executing PrintLCS().
We highlighted in bold the path followed by the function. Additionally, we underlined the
recursive calls for which X[i] == Y [j], and thus those symbols will be part of the LCS. As
a result, the LCS is < 15, 6, 2, 3 >, which has length 4 as expected.
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0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1 1 1
3 0 0 1 1 1 1 1 1 2 2
4 0 0 1 2 2 2 2 2 2 2
5 0 0 1 2 2 2 2 2 2 2
6 0 0 1 2 2 2 3 3 3 3
7 0 0 1 2 2 2 3 3 3 3
8 0 0 1 2 2 2 3 3 3 3
9 0 0 1 2 2 2 3 3 4 4

Figure 4.2: Traceback through T of the LCS in the PrintLCS algorithm

4.4 Dynamic Programming Solution for the knapsack

problem

We now consider again the knapsack problem and give a solution based on dynamic pro-
gramming. Surprisingly, this approach yields an optimal solution. To understand how an
apparently polynomial algorithm can solve a Np-Hard problem, we need to dig a bit deeper
into the complexity analysis of the solution. Let’s first recall the knapsack problem.

Problem Description: Consider a set of items A = {a1 . . . an} with values {v1 . . . vn}
and weights {w1 . . . wn}. Given a knapsack of capacity W , find a set of items S ⊆ A that
maximize the sum of values, and their cumulative weight is less than or equal to W .

The idea of the dynamic programming approach is to decompose the main problem in sub-
problems which have less items and smaller capacity of the knapsack. Gradually increasing
the available elements and the size of the knapsack we get to the actual solution of the
problem. As usual, we make use of a table T defined as follows.

Definition 4.4.1. Given a set of items A = {a1 . . . an} and a knapsack of capacity W, we
define a table T : n ×W . The elemeng T [i, j] is the value of the solution of the knapsack
problem considering only the first {a1 . . . an} items, and a knapsack of capacity j.

In order to define the recursive relation, let’s first consider the base cases. The problem
is straight forward to solve if there are no items to select (i = 0) or if the knapsack has
zero capacity (j = 0). Let’s consider the generic case with i, j > 0, and define the recursive
relation for T [i, j]. It may occur that the item ai has a weight wi that exceeds j, in this case,
the solution to the problem cannot include ai, therefore it is the same as the solution with the
elements a1, . . . , ai−1 and same capacity j. In other words, in this case T [i, j] = T [i − 1, j].
If otherwise wi ≤ j we should decide weather to pick the item ai or not. If we pick it, we
are left with the items a1, . . . , ai−1 and a residual capacity j − wi, but we gained a value vi
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by including ai in the solution. If we do not pick ai, instead, we are still left with the items
a1, . . . , ai−1, the knapsack capacity j is unaltered, but we gain no value. To optimal solution
should be the best among these two, therefore T [i, j] = max(vi + T [i− 1, j−wi], T [i− 1, j]).
We can summarize the above discussion as follows.

T [i, j] =


0 i = 0 ∨ j = 0

T [i− 1, j] wi > j

max(vi + T [i− 1, j − wi], T [i− 1, j]) i > 0 ∧ j > 0 ∧ wi ≤ j

4.4.1 Pseudo-code

Once again, once the recursive relation is unveiled, it is simple to write the pseudo-code. The
algorithm simple initializes the table T for the base cases, and then has two nested loops
to iterate on every element of the table applying the recursive formula with a bottom up
approach. The algorithm is shown in Figure 23.

1 KnapsackDP(A, W)begin
2 for i=1 to n do
3 T[i,0]=0
4 end
5 for j=i to W do
6 T[0,j]=0
7 end
8 for i=1 to n do
9 for j=1 to W do

10 if wi > j then
11 T[i,j]=T[i-1,j]
12 end
13 else
14 T[i,j]=max(T [i− 1, j], vi + T [i− 1, j − wi])
15 end

16 end

17 end
18 return T[n,W]

19 end

Algorithm 23: KnapsackDP Pseudo Code

4.4.2 Example

Consider the set of items with their associated values and weights in Table 4.3. The execution
of the Dynamic programming solution to the knapsack problem is given in Table 4.4.
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Item Value Weight

a1 1 1
a2 6 2
a3 18 5
a4 22 6
a5 28 7

Figure 4.3: Set of Items A upon which to execute the KnapsackDP algorithm

A \W 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1
2 0 1 6 7 7 7 7 7 7 7 7 7
3 0 1 6 7 7 18 19 24 25 25 25 25
4 0 1 6 7 7 18 22 24 28 29 29 40
5 0 1 6 7 7 18 22 28 29 34 35 40

Figure 4.4: The table T after the execution of the algorithm

4.4.3 Calculate the Actual Solution

Similarly to the LCS problem, we have until now only calculated the value of the problem
solution, but not the actual items in the knapsack. Also in this case, we can recursively
backtrack the algorithm actions from the table, starting in the position T [n,W ]. For each
position, if T [i, j] == vi + T [i − 1, j − wi] then the algorithm picked ai, and we can print
it, otherwise it did not, and we can call recursively on T [i − 1, j]. Algorithm 24 shows the
pseudo-code.

1 PrintKnapsack(A, T, i, j)begin
2 if i ≤ 0 ∨ j ≤ 0 then
3 return
4 end
5 if T [i, j] == vi + T [i− 1, j − wi] then
6 print ai
7 PrintKnapsack(A, T, i− 1, j − wi)
8 end
9 else

10 PrintKnapsack(A, T, i− 1, j)
11 end

12 end

Algorithm 24: PrintKnapsack Pseudo Code

We represent in bold the position of the table where the function PrintKnapsack traces
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back, while we underline the items that have been picked to be part of the solution. Specifi-
cally, if T [i, j] is underlined than the algorithm picked the item ai.

A \W 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1
2 0 1 6 7 7 7 7 7 7 7 7 7
3 0 1 6 7 7 18 19 24 25 25 25 25
4 0 1 6 7 7 18 22 24 28 29 29 40
5 0 1 6 7 7 18 22 28 29 34 35 40

Figure 4.5: Traceback through T of KnapsackDP in the PrintKnapsack algorithm

4.4.4 A Discussion on Computational Complexity

Looking at Algorithm 23 it is straight forward to conclude that the complexity is Θ(nW ).
However, we discussed that this problem is NP-Complete, thus the complexity to find the
optimal solution should be exponential. To understand this apparent contradiction, we need
to think at the meaning of “size of the input”. It is straight forward that n is the size of
the set A, however W is a number and the size of this input is proportional to log(W ), since
this is the number of bits necessary to represent W . As a result, the complexity is indeed
exponential in the size of the input, since it depends on W although the input is of size
log(W ). The knapsack problem is called weakly NP-complete for this reason.

4.5 Exercise

1. In order to transform one source string of text x[1 . . .m] to a target string y[1 . . . n], we can
perform various transformation operations. Our goal is, given x and y, to produce a series of
transformations that change x to y. We use an array Z assumed to be large enough to hold
all the characters it will need-to hold the intermediate results. Initially, Z is empty, and at
termination, we should have Z[j] = y[j] for j = 1, 2, . . . , n. We maintain current indices i
into x and j into Z, and the operations are allowed to alter Z and these indices. Initially,
i = j = 1. We are required to examine every character in x during the transformation, which
means that at the end of the sequence of transformation operations, we must have i = m+1.
We may choose from among six transformation operations:
Copy a character from x to Z by setting Z[j] = x[i] and then incrementing both i and j.
This operation examines x[i].
Replace a character from x by another character C by setting Z[j] = C and then increment-
ing both i and j. This operation examines x[i].
Delete a character from x by incrementing i but leaving j alone. This operation examines
x[i].
Insert the character C into Z by setting Z[j] = C and then incrementing j, but leaving i
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alone. This operation examines no characters of x.
Twiddle(i.e., exchange) the next two characters by copying them from x to Z but in the
opposite order; we do so by setting Z[j] = x[i + 1] and Z[j + 1] = x[i] and then setting
i = i+ 2 and j = j + 2. This operation examines x[i] and x[i+ 1].
Kill the remainder of x by setting i = m + 1. This operation examines all characters in x
that have not yet been examined. This operation, if performed, must be the final operation.

As an example, one way to transform the source string algorithm to the target string
altruisticis to use the following sequence of operations, where the underlined characters are
x[i] and Z[j] after the operation:

Operation x Z
initial strings algorithm

copy algorithm a
copy algorithm al

replace by t algorithm alt
delete algorithm alt
copy algorithm altr

insert u algorithm altru
insert i algorithm altrui
insert s algorithm altruis
Twiddle algorithm altruisti
insert c algorithm altruistic
kill algorithm altruistic

Note that there are several other sequences of transformation operations that transform
algorithm to altruistic.

Each of the transformation operations has an associated cost. The cost of an operation
depends on the specific application, but we assume that each operation’s cost is a constant
that is known to us. We also assume that the individual costs of the copy and replace
operations are less than the combined costs of the delete and insert operations; otherwise, the
copy and replace operations would not be used. The cost of a given sequence of transformation
operations is the sum of the costs of the individual operations in the sequence. For the
sequence above, the cost of transforming algorithm to altruistic is
(3.cost(copy)) + cost(replace) + cost(delete) + 4.cost(insert) + + cost(twiddle) + cost(kill).
a. Given two sequences x[1 . . .m] and y[1 . . . n] and set of transformation-operation costs,
the edit distance from x to y is the cost of the least expensive operation sequence that
transforms x to y. Describe a dynamic-programming algorithm that finds the edit distance
from x[1 . . .m] to y[1 . . . n] and prints an optimal operation sequence. Analyze the running
time and space requirements of your algorithm.

The edit-distance problem generalizes the problem of aligning two DNA sequences. There
are several methods for measuring the similarity of two DNA sequences by aligning them.
One such method to align two sequences x and y consists of inserting spaces at arbitrary
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locations in the two sequences (including at either end) so that the resulting sequences x′ and
y′ have the same length but do not have a space in the same position (i.e., for no position
j are both x′[j] and y′[j] a space). Then we assign a ’score’ to each position. Position j
receives a score as follows:

• +1 x′[j] = y′[j] and neither is a space,

• -1 x′[j] 6= y′[j] and neither is a space,

• -2 if either x′[j] or y′[j] is a space.

The score for the alignment is the sum of the scores of the individual positions. For example,
given the sequences x = GATCGGCAT and y = CAATGTGAATC, one alignment is
G ATCG GCAT
CAAT GTGAATC
-*++*+*+-++*
A + under a position indicates a score of +1 for that position, a − indicates a score of 1, and
a ∗ indicates a score of 2, so that this alignment has a total score of 6.1− 2.1− 4.2 = −4.
b. Explain how to cast the problem of finding an optimal alignment as an edit distance prob-
lem using a subset of the transformation operations copy, replace, delete, insert, twiddle, and
kill.

2. We are given a color picture consisting of an m × n array A[1 . . .m, 1 . . . n] of pixels,
where each pixel specifies a triple of red, green, and blue (RGB) intensities. Suppose that
we wish to compress this picture slightly. Specifically, we wish to remove one pixel from each
of the m rows, so that the whole picture becomes one pixel narrower. To avoid disturbing
visual effects, however, we require that the pixels removed in two adjacent rows be in the
same or adjacent columns; the pixels removed form a ’seam’ from the top row to the bottom
row where successive pixels in the seam are adjacent vertically or diagonally.
a. Show that the number of such possible seams grows at least exponentially in m, assuming
that n > 1.
b. Suppose now that along with each pixel A[i, j] , we have calculated a real-valued disrup-
tion measure d[i, j], indicating how disruptive it would be to remove pixel A[i, j]. Intuitively,
the lower a pixels disruption measure, the more similar the pixel is to its neighbors. Suppose
further that we define the disruption measure of a seam to be the sum of the disruption
measures of its pixels.
Give an algorithm to find a seam with the lowest disruption measure. How efficient is your
algorithm?
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Chapter 5

Graphs

Graphs are a fundamental mathematical structure with an uncountable number of applica-
tions in Computer Science. When you access the Internet and your packets are router to a
server, when you use your GPS navigator, and when you use a search engine, there are graphs
used in the underlying algorithms. In this course we will review the basic graph notions and
algorithms, that compose part of the basic knowledge of any Computer Scientist.

5.1 Definitions

Definition 5.1.1 (Graph).
A graph is a pair of sets G = (V,E) in which V is the set of nodes or vertices, and E the set
of edges, also called links, such that E ⊆ V × V .

Definition 5.1.2 (Undirected Graphs).
A graph G = (V,E) is undirected if its edges do not have a direction. As a consequence, an
edge (u, v) ∈ E is the same as (v, u).

Definition 5.1.3 (Directed Graphs).
A graph G = (V,E) is directed if its edges have a direction, i.e. they go from a node to
another node. As a consequence, an edge (u, v) ∈ E is different than (v, u).

Definition 5.1.4 (Degree - undirected graph).
Given an undirected graph G = (V,E) the degree of a node v ∈ V is the number of edges
incident to v, that is:

deg(v) = |{(v, u)s.t.(v, u) ∈ E}|

Definition 5.1.5 (Degree - directed graph).
Given a directed graph G = (V,E), and a vertex v ∈ E, we define the in-degree deg−(v) as
the number of incoming edges of v, that is:

deg−(v) = |{(v, u)s.t.(u, v) ∈ E}|

We define the out-degree of deg+(v) as the number of outgoing edges from v, that is:

deg+(v) = |{(v, u)s.t.(v, u) ∈ E}|
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Definition 5.1.6 (Walk).
Given a graph G = (V,E) a walk is a list of vertices (v1, . . . , vk) such that (vi, vi+1) ∈ E
∀i = 1, . . . , k − 1.

Definition 5.1.7 (Path).
Given a graph G = (V,E) a path is a walk such that each node, except the first and last, are
distinct. The first and the last node can instead coincide.

Definition 5.1.8 (Cycle).
A cycle is a path p = (v1, . . . , vk) such that v1 = vk.

Definition 5.1.9 (Connected Nodes).
Two nodes are connected if there exists a path (v1 . . . vk) such that u = v1 and v = vk.

Definition 5.1.10 (Connected Component).
A connected component is a maximal set C ⊆ V such that, for each u, v ∈ C there exist a
path from u to v.

Definition 5.1.11 (Connected Graph).
A graph is connected if it has a single connected component.

Definition 5.1.12 (Tree).
An undirected graph is a tree if it is both connected, and contains no cycles.

Definition 5.1.13 (Complete graph (Clique)).
A graph is complete, or is a clique, if it contains all possible edges between its nodes, that is
∀u, v ∈ V ∃(u, v) ∈ E.

5.2 Representation of Graphs

The mathematical representation of a graph as a pair G = (V,E) is useful for abstract
reasoning, for example while designing an algorithm. However, how a graph is represented
in the memory of a computer is very different. Several option are possible, which differ in
the resulting complexity of common operations. In general, the best data structure should
be the one that optimizes the complexity of the most common operations that an algorithm
is supposed to perform. In the following, we assume that nodes are numbered from 1 to
|V |, and |V | = n. Figure 5.1 shows an example graph that is used to show the different
representations.

5.2.1 Adjacency Lists

The adjacency list consists of a mono-dimensional array Adj of size |V |. Each element of the
array is a pointer to a list of elements. Specifically, for a node v, Adj[v] points to a list that
contains an element for each node adjacent to v, i.e. such that (v, u) ∈ E. Figure 5.2 shows
the adjacency list for the graph in Figure 5.1.

If the graph is directed, there will be |E| elements in the list. If the graph is undirected,
there will be 2|E| elements in the list. The memory complexity is therefore Θ(|V |+ |E|).
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Figure 5.1: Example undirected graph

Figure 5.2: Example of an Adjacency List for the above graph

5.2.2 Adjacency Matrix

The adjacency matrix is a matrix M = |V | × |V | such that:

M [i, j] =

{
1 (i, j) ∈ E
0 else

If the graph is undirected, the resulting associated matrix is symmetric, i.e M [i, j] =
M [j, i] ∀i, j = 1, . . . , n. If the graph is directed, this is not true in general. The memory
complexity of an adjacency matrix is Θ(|V |2), since there is no dependence on the number
of edges in the graph. Table 5.1 shows the adjacency matrix of the graph in Figure 5.1.

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

Table 5.1: Example of an Adjacency Matrix for the above graph
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Adjacency List Adjacency Matrix

∃(u, v) ∈ E Θ(deg(v)) Θ(1)
Degree of a node v Θ(deg(v)) Θ(|V |)

Table 5.2: Complexity of Basic Operations.

5.2.3 Complexity Comparison of Common Operations

We now consider two common operations, specifically (i) to check if an edge exists between
(i, j), and (ii) calculate the degree of a node v. Table 5.2 summarizes the discussion.

Existence of an edge (i, j)

Using the adjacency list we need to iterate over the entire list of node i, pointed by Adj[i],
since the element j may be the last. This requires a number of iteration proportional to the
degree of node i, so the complexity is Θ(deg(v)). Conversely, with the adjacency matrix we
should just check the value of M [i, j], which can be done in constant time, that is Θ(1).

Degree of a node v

Using the adjacency list we need to determine the length of the list if pointed by Adj[i]. This
can be done in Θ(deg(v)), however if we extend the structure to keep track of the number
of elements in each list, it can be reduced to Θ(1). Differently, with an adjacency matrix we
need to iterate over the entire i-th row of the matrix M , so the complexity is Θ(n)

5.3 Depth First Search - DFS

Graph visits are algorithms that explore all nodes of a graph, generally starting from a
root node. From such node, these algorithms follow the edges in the graph to reach nodes
that have not been visited before, according to a criteria that defines the visit itself. As an
example, the Depth First Search (DFS) goes deeper in the graph. A new root node may be
selected if not all nodes can be visited from the previous root node. The process ends as soon
as all nodes are visited. Visit algorithms generally produce a forest that spans all nodes in
the graph.

We can summarize the DFS visit as follows.

• The visit goes deeper and deeper in the graph until it can’t find any non-visited nodes
then it backtracks to visit other nodes.

• Keep track of the predecessor of each visited node.

• The predecessor sub-graph Gπ is a set of trees, called DSF forest.

• For each node u we consider 2 attributes:
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– u.π - the predecessor of the node u

– u.visited - a boolean variable which is false (F) if the algorithm has not visited u
yet, and true (T) otherwise.

5.3.1 Pseudo-code

The DFS visit has two main functions. The first function DFS() first initializes the attributes
for each node, and then picks a root node that has not been visited and starts the visit from
there. The pseudo code is shown in Algorithm 25.

1 DFS(G) begin
2 for u ∈ V do
3 u.π =NULL
4 u.v =false

5 end
6 for u ∈ V : u.v == false do
7 //for a connected graph this is called once
8 DFSVisit(G,u)

9 end

10 end

Algorithm 25: Depth First Search Pseudo Code

The second function DFSVisit() performs the visit starting from the root node. It is
a recursive function. It first sets the visit attribute of the current node u to true, then it
explores the list of adjacent nodes, and as soon as it finds an adjacent node v that is not
visited, it recursively calls itself on v and sets the parent of v as the current node u. The
algorithm is shown in Algorithm 26.

1 DFSVisit(G,u) begin
2 u.v=true
3 for v ∈ Adj(u) do
4 if v.v==false then
5 v.π=u
6 DFSVisit(G,v)

7 end

8 end

9 end

Algorithm 26: Depth First Search Visit Pseudo Code

64



(a) (b) (c)

(d) (e) (f)

Figure 5.3: Step by step execution of the DFS Algorithm

Figure 5.4: Graph pf the Gπ Tree

5.3.2 Example

Figure 5.3 shows an example of the execution of the DFS visit. Figure 5.4 shows the resulting
DSF tree.

5.4 Directed Acyclic Graphs (DAG) and Topological

sort

Graphs and graph algorithms have multiple application in practical settings. In this section
we give an example of how we can use a slightly modified DSF visit to determine a scheduling
of jobs that have dependencies between each other. Let us consider the following setting.

• Nodes in the graph represent jobs or activities
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• There exists an edge from node u to v if v cannot be executed until u has terminated
(e.g., job v depends on the output of job u)

• These graphs cannot have cycles, therefore there must exist at least one activity with
indegree 0

Our problem consist in finding a scheduling of jobs v′1, v
′
2, . . . v

′
n, such that if the jobs are

executed in the prescribed order, when an activity is reached, all the activities on which it
depends have already been completed. Graphically, this is equivalent to say that if we put
the nodes in a linear order following the scheduling, all edges would go from left to right.
This order is called topological sort. An example is shown in Figure 5.4.

5.4.1 Pseudo-code

In order to find a topological sort, we modify the DFS algorithm. We first add two additional
attributes to each node u.

• u.s: (start) - the time at which the visit of u begins.

• u.e: (end) - the time at which the visit of DFS from u ends.

1 TopologicalDFS(G)begin
2 t=0
3 for u ∈ V do
4 u.π=NULL
5 u.v=false
6 u.start=0
7 u.end=0

8 end
9 for u ∈ V : u.v == false do

10 TDFSVisit(G,u)
11 end

12 end

Algorithm 27: TopologicalDFS Pseudo Code
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1 TDFSVisit(G,u)begin
2 t=t+1
3 u.start=t
4 u.v=true
5 for v ∈ adj(u) do
6 if v.v==false then
7 v.π=u
8 TDFSVisit(G,v)

9 end

10 end
11 t=t+1
12 u.end=t

13 end

Algorithm 28: TDFSVisit Pseudo Code

We then keep track of a timer t which is increased every time a visit starts and ends from
a node. The topological sort is then obtained by sorting the nodes in descending order by
end time. The modified algorithms are shown in Algorithms 28 and 28.

5.4.2 Example

Figure 5.5 shows an example of the execution of the topological sort algorithm. Figure 5.6
shows the resulting topological sort.
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Figure 5.5: Initial and final states for the DAG on which the Topological Sorting algorithm
is being executed

Figure 5.6: Final sorted order of the activities according to the Topological Sorting algo-
rithm’s execution
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5.5 Breadth First Search (BFS)

Breadth first search is also a visit algorithm, but differently from DFS, it first visits all nodes
adjacent to the current node before moving to the next node and visit its neighbors. Given
the source node s, the algorithm computes the distance between s and each node in the
graph. Additionally, it outputs a BFS-Tree containing all the vertices reachable from s and
s.t. the path from s to any node v in the tree is the shortest path in the graph G. The
algorithm uses the following attributes for every node u in G.

• u.v - a boolean variable which is false (F) if the algorithm has not visited u yet, and
true (T) otherwise.

• u.π - the predecessor of the node u

• u.d - the distance from the source s to u

1 BFS(G,s)begin
2 for u ∈ V \ {s} do
3 u.v=false
4 u.d=∞
5 u.π=NULL

6 end
7 s.v=true
8 s.d=0
9 s.π=NULL

10 Q={}
11 Enqueue(Q,s)
12 while Q 6= {} do
13 u=Dequeue(Q)
14 for v ∈ adj(u) do
15 if v.v==false then
16 v.v=true
17 v.d=u.d+1
18 v.π=u
19 Enqueue(Q,v)

20 end

21 end

22 end

23 end

Algorithm 29: Breadth First Search Pseudocode

69



5.5.1 Pseudo-code

The algorithm makes use of a queue Q which is used in First In First Out (FIFO). The
queue contains the nodes from which the visit should be extended. The algorithm initially
enqueues only the source s, then at each iteration it dequeues a node from Q, visits all its
unvisited neighbors and enqueues them in Q. The procedure is repeated until th Q is empty.
The Algorithm 29 shows the pseudo-code of the BFS visit.
Complexity Each node may be enqueued only once, therefore the while loop can perform at
most |V | iterations. For each node u, we need to scan its list of neighbors, which can be done
in Θ(deg(u)) using an adjacency list. Finally, Enqueue and Dequeue operations have constant
complexity Θ(1). As a result, the overall complexity is Θ(|V |+

∑
u∈V deg(u)) = Θ(|V |+ |E|).

5.5.2 Example

Figure 5.7 shows an example of the execution of the BFS algorithm. Figure 5.8 shows the
resulting BFS-Tree.

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Step by step execution of the BFS Algorithm
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Figure 5.8: BFS Tree following execution of the algorithm

5.6 Strongly Connected Components

In this section we describe an extension of the DFS algorithm that allows to identify the
Strongly Connected Components (SCC) of a directed graph.

Definition 5.6.1 (Strongly Connected Component).
Given a directed graph G = (V,E), a strongly connected component C ⊆ V is a maximal set
of vertices such that for each pair of nodes u, v ∈ V , there exists a path from u to v and from
v to u.

A graph may have multiple SCCs, as shown in Figure 5.9. If a graph G has a single SCC
we say that G is strongly connected.

Figure 5.9: Example of a graph and its constituent strongly connected components

The algorithm to identify SCCs makes use of the transpose of a graph. Specifically, given
a graph G = (V,E) the transpose GT = (V,ET ) is a graph with the same set of nodes and
where ET = {(u, v) : (v, u) ∈ E}. Intuitively, we are inverting the directions of the edges in
G. Figure 5.6 shows an example of the transpose of a graph.

The algorithm to find the SCCs of a graph can be summarized by the following steps.

1. Execute the DFS algorithm and compute the end time u.e for each u ∈ V

2. Compute GT .

3. Execute DFS on GT where in the main loop we consider vertices in decreasing order of
end time.

4. Output the vertices of each tree in the DFS forest calculated in step 3 as a separate
SCC.
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5.6.1 SCC Example

Figure 5.10: Graph and its transpose

1. Execute the DFS algorithm and compute the end time u.e for each u ∈ V

Figure 5.11: Execution of the modified DFS algorithm on G

2. Compute GT . See Figure 5.10.

3. Execute DFS on GT such that the nodes are considered in decreasing order of finish
time computed in step 1.
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Figure 5.12: Execution of the modified DFS algorithm on GT

4. Output each tree in the DFS forest calculated in step 3 as a SCC. Each tree in the
following forest represents a strongly connected component in the original graph.

Figure 5.13: DFS forest resulting from the execution of the SCC finding algorithm

There are 4 strongly connected components in the original graph: {1,3,2}, {6,7}, {4,5},
and {8}.

5.7 Red-Black Trees

A red-black tree is a special form of a binary search tree with one extra property for node:
its color, which is either RED or BLACK. In order to make the tree approximately balanced,
a red-black tree ensures no path exists (from the root to a leaf) which is more than twice
as long as any other. Each node of a red-black tree contains five attributes, namely: color,
key, left, right, and p. The corresponding pointer attribute of a node is NIL if its child or the
parent does not exist. Now we formally describe the properties of a red-black tree.

5.7.1 Properties of a Red-Black Tree

A legal red-black tree satisfies the following properties:
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1. Every node is either red or black.

2. The root is black.

3. All the leafs (often marked as NIL) are black.

4. Both the children of a red node are black.

5. For each node, the number of black nodes in all paths from this node to descendant
leaves is same.

7

4 11

3 6 9 18

14 19

12 17

Figure 5.14: A red-black tree (color is not shown in this diagram).

5.7.2 Rotation

Search-tree operations such as INSERT and DELETE (when running with n keys, takeO(lgn)
time) modify the tree structure. Hence, the resultant tree structure may violate the red-black
properties enumerated in the previous subsection. In order to restore these properties, colors
of some of the nodes in the tree needed to be changed and also some changes required in the
pointer structure. These changes can be made by rotating the tree structure, which is a local
operation in a search tree that preserves the binary-search-tree property. In this subsection,
we describe two kinds of rotations: left rotations and right rotations.
Pseudo-code for left rotations: The pseudo-code for the left rotation is presented in
Algorithm 30. Left rotation operation is explained in Figure 5.14 and 5.15. The tree in
Figure 5.14 are left rotated with respect to node 18. So, node 18 takes the place of node 11
and left child of 18 become the right child of 11.
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7

4 18

3 6 11 19

14

12 17

9

Figure 5.15: A red-black tree after performing leftrotate(root, 18) in Figure 5.14 (color is not
shown in this diagram).

The code for right rotation is exactly same as the left rotation, except for the pointers
which are changed by a rotation (i.e., all the left will become right in Algorithm 30 and vice
verca).

(a) Transition between first two cases after inserting
a node in a red-black tree.

(b) Transition between last case and the finish state
after inserting a node in a red-black tree.

Figure 5.16: INSERT operation in a red-black tree. This figure is adopted from [1]

A node can be inserted into an n-node red-black tree in O(lgn) time. In this subsection,
we discuss how to insert a node z into the tree T (then we color it as red). In order to
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1 leftrotate(node root, node x)begin
2 node y = x.right;
3 x.right = y.left;
4 if y.left 6= NIL then
5 y.left.parent = x;
6 end
7 if x.parent = NIL then
8 root = y;
9 end

10 else if x.parent.left = x then
11 /* x is left child*/
12 x.parent.left = y;

13 end
14 else
15 x.parent.right = y;
16 end
17 y.left = x;
18 y.parent = x.parent;
19 x.parent = y;

20 end

Algorithm 30: Left rotation in a red-black tree

guarantee that the red-black properties (discussed in this section previously) are not vio-
lated, an auxiliary procedure RB-INSERT-FIXUP is invoked which performs the recoloring
of the nodes and some required rotations. Pseudo-code for the insert operation presented in
Algorithm 31. The operation for inserting a node in a red-black tree is explained in Figure
5.16. In this figure dark nodes are the black nodes. In Figure 5.16 (a), the tree is shown after
a node z is inserted. A violation of property 4 occurs as both z and its parent are red. Now,
case 1 applies because of the uncle of z (y in this figure) is red. So the nodes are recolored
and move the node z up, resulting tree are shown in Figure 5.16(b). Now, z’s uncle y is black
but z and its parent are both reds. Case-2 applies in this case Since z is the right child of its
parent. So a left rotation is performed, and the tree that results is shown in Figure 5.16(c).
Now, case 3 applies and z becomes the left child. We perform recoloring and right rotation
which yields the legal red-black tree in 5.16(d). A diagram that shows the transition between
different cases are shown in Figure 5.17.

5.7.3 Deletion

Deletion of a node from an n-node red-black tree, takes O(lgn) time. Compared to the
insertion of a node in a red-black tree, deletion is a bit more complicated. Pseudo-code for
deleting a node from the red-black tree is given in Algorithm 35. Similar to the insertion
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Start

Case1 Case2 Case3

End

Figure 5.17: Transition between different cases after inserting a node in a red-black tree.

(a) Transition between first two cases after deleting
a node from a red-black tree.

(b) Transition between last two cases after deleting
a node from a red-black tree.

Figure 5.18: DELETE operation in a red-black tree. This figure is adopted from [1]

operation, deleting a node causes the violation in the red-black tree properties. So, an
auxiliary procedure RB-DELETE-FIXUP is invoked which performs the recoloring of the
nodes and some required rotations. A diagram that shows the transition between different
cases are shown in Figure 5.19.
All the cases in the while loop of the procedure RB-DELETE-FIXUP are explained in Figure
5.18. All the Dark nodes are BLACK in color, shaded nodes have are RED in color. Let us
assume that all the lightly shaded nodes have color attributes which are represented by c and
c (either RED or BLACK). In Figure 5.18, arbitrary subtrees are represented by α, β, . . . , ζ.
In each case, tree on the left side is transformed into the configuration on the right. This
is done by recoloring some nodes and/or by performing required rotations (left or right). If
any node is pointed by x, then it has an extra BLACK color attribute which is either doubly
BLACK or RED-and- BLACK. Note that, repetition of the loop causes only by case 2. In
Figure 5.18 (a), by exchanging the colors of nodes (B and D in this figure) and performing
a left rotation case 1 is transformed to case 2, 3, or 4. Case 2 is represented in Figure 5.18
(b), where the extra BLACK color is represented by the pointer x. It moves up the tree (by
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1 insert(node root, int data)begin
2 node y = NIL;
3 node x = root;
4 while x 6= NIL do
5 y = x;
6 if data < x.data then
7 x = x.left;
8 end
9 else

10 x = x.right;
11 end

12 end
13 if y = NIL then
14 root = z;
15 end
16 else if z.data < y.data then
17 y.left = z;
18 end
19 else
20 y.right = z;
21 end
22 z.parent = y
23 fixup(root, z);

24 end

Algorithm 31: Insert operation in a red-black tree

coloring node D in RED) and setting x to point to node B. If case 2 is entered through case 1,
the termination of the while loop happens because of the new node x, which is red-and-black.
It denotes the value c of its color attribute is RED. In Figure 5.18 (c), it is shown how case 3
is transformed to case 4 by exchanging the color of some nodes (C and D in this figure) and
performing a right rotation. Figure 5.18 (d), shows how the extra BLACK represented by x
removed in case 4 by changing some colors and upon performing a left rotation. Note that,
the left rotation is performed in such a way so that the red-black properties are not violated.
Finally, the loop terminates after this operation.

5.8 Minimum Spanning Trees

In this section we consider another fundamental problem in graph algorithms, named the
Minimum Spanning Tree (MST) problem. The goal is to find a tree that spans all nodes in a
weighted graph and has minimum weight. We will show that greedy algorithms can solve this
problem optimally. First, to motivate the MST problem consider the following application.
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Start

Case1 Case2 Case3

End

Case4

Figure 5.19: Transition between different cases after deleting a node in a red-black tree.

Data center design. We have a data center that contains a set of servers. These servers
need to be connected with cables either directly or indirectly i.e. through multiple nodes
(called hops in networking jargon). Cables have different costs, as an example as a function
of their length. We want to find the set of cables which has minimal cost and allows to
connect the set of servers. An example of this problem is shown in Figure ??, where nodes
are servers and the numbers on the edges represent their costs.

As the image suggests, we can describe the problem using a graph G = (V,E) in which
each vertex represents a server and the edges are the set of all possible cables which may
connect servers. The graph is weighted, specifically edges are weighted, and we represent this
with a weight function w : E → R+, that returns for each edge a weight greater than zero.
We can formalize the problem as follows.

Definition 5.8.1 (Minimum Spanning Tree). Given a connected weighted graph G = (V,E),
with weight function w : E → R+, find the set of edges T ∗ ⊆ E such that in the induced
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graph G∗ = (V, T ∗) ∀u, v ∈ V ∃ a path from u to v, and
∑

e∈T ∗ w(e) is minimal. T∗ is a
Minimum Spanning Tree of G.

In the above definition, the induced graph G∗ = (V, T ∗) is just a graph with the same
nodes as G, but considering only the edges in T ∗. Before we proceed, it is useful to reason
on the following question. The answer is left to the reader.

Question 1. Consider a simplified version of the problem, in which all edges have the same
weight, i.e. w(e) = c ∀e ∈ E. Which of the algorithms we have already studied can be used
to solve the problem?

5.8.1 Kruskal’s Algorithm

The Kruskal’s algorithm is a greedy algorithm for the MST problem. The idea of the algo-
rithm is the followin.
Algorithm idea Kruskal’s Algorithm is greedy algorithm. It iteratively builds a a set S
of edges, which is initially empty and is expanded at each iteration. Specifically, at each
iteration the algorithm adds to S the edge with minimum cost in E \ S that does not create
a cycle when added to S.

Pseudo-code and example

The pseudo of Kruskal’s Algorithm is shown in Algorithm 36.

(a) (b)

Figure 5.20: An example of Kruskal’s Algorithm
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Figure 5.20 shows an example of the execution of Kruskal’s algorithm. Figure 5.20 (a)
represent the initial graph G, while in Figure 5.20 (b) we highlighted in bold the edges
picked by the algorithm in the final solution. Such edges are chosen in the following order
S = {(A,C), (F,B), (A,B), (C,D), (D,H), (G,E), (G,H)}.

Correctness of Kruskal’s Algorithm

How can we be sure that the Kruskal’s Algorithm actually finds an optimal solution, i.e.
an MST? We need to prove that this is true in general, that is for any graph, and not for
just an example. We prove the algorithm correctness using the standard scheme for greedy
algorithms we introduced in Section 3.1.3.

Termination. At each iteration, an edge is added to the solution. The loop terminates when
adding any additional edge would create a cycle. Therefore, the final solution is a tree and
at most, |V | − 1 iterations can be performed.

Optimality of intermediate solutions. Let Sh be the solution at the hth iteration. We want
to prove that ∀h ∃ an optimal solution S∗ s.t. Sh ⊆ S∗.

• Base case: S0 = ∅ → S0 ⊆ S∗

• Inductive hypothesis: ∃S∗ : Sh ⊆ S∗

• Inductive step: We want to prove that given the inductive hypothesis, Sh+1 is a subset
of some optimal solution. Let (u, v) be the edge selected at the h+1 iteration. If (u, v) ∈
S∗ then Sh+1 ⊆ S∗ and the we are done. Otherwise, we can agree that S∗ ∪ {(u, v)}
definitely contains a cycle, since S∗ is a tree. Look now at Figure 5.21, which represents
the solution S∗ to which we add the edge (u, v). Since the algorithm picked (u, v), then

Figure 5.21: Optimal solution S∗ to which we add the edge (u, v).

this edge does not create a cycle when added to Sh, however it does create a cycle
when added to S∗. Therefore there exists at least one edge (x, y) in S∗ which is not
in Sh. This edge (x, y) does no create a cycle in S∗, thus it also does not in Sh, since
Sh ⊆ S∗. Therefore (x, y) is an edge which could have been selected by the algorithm
at the h + 1 iteration, but the algorithm instead picked (u, v). This implies that
w((u, v)) ≤ w((x, y)). Let’s now build another solution S# = (S∗ \ {(x, y)})∪ {(u, v)},
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clearly Sh+1 ⊆ S#, thus our objective is to show that S# is optimal. It indeed is, since
S# has |V | − 1 edges, and w(S#) ≤ w(S∗) which follows from w((u, v)) ≤ w((x, y)).
Therefore, S# is optimal and Sh+1 is a subset of an optimal solution.

The final solution is optimal. We know that the algorithm performs at most n−1 iterations,
where n = |V |. Let Sn−1 be the final solution, we know that Sn−1 ⊆ S∗, with S∗ optimal
solution. Sn−1 is a tree, additionally w(Sn−1) ≤ w(S∗), thus Sn−1 is optimal.

5.8.2 Efficient Implementation of Kruskal’s Algorithm

Similar to the activity selection algorithm, the high level pseudo-code is useful to reason
about the algorithm and prove its correctness. However, it is too abstract to be of practical
use, that is to translate it in an actual implementation. Two main problem arise: (i) pick the
edge with minimum weight may be more or less efficient depending on the implementation,
(ii) it is not straight forward to check if an edge does not create a cycle. In the following we
discuss an efficient implementation of the algorithm.

We use an array E to store the information about the edges, where E[i].u and E[i].v
are the endpoints of the edge i, and E[i].w is the weight. This array is sorted in ascending
order by weight. This will allow us to pick efficiently the next edge to consider. To solve
the second problem, i.e. check if an edge creates a cycle, the key point is to realize that an
intermediate solution S identifies a set of connected components. As more edges are added,
these components merge and eventually become a single component (the MST) at the end
of the algorithm. The idea of the efficient implementation is to keep track for each node
of the component of that node. When we pick an edge, this creates a cycle in the current
solution if it connects nodes from the same component, while it does not create a cycle if it
connects nodes in different components. We use an array CC[i. . . n], where CC[i] is the ID of
the connected component of node i. Initially, CC[i] = i ∀i ∈ [1 . . . n]. When a new edge is
added and two components merge, the ID of one component overwrites the ID of the other.

The efficient implementation allows us to study the complexity. Sorting the edges costs
Θ(m logm). The external for loop is executed m times, however the internal for loop is
executed only at most n−1 times, that is once for every edge added in the solution. Therefore,
the complexity of these loops is Θ(m+ n2). The overall complexity is Θ(m logm+ n2).

5.8.3 Prim’s Algorithm

Prim’s algorithm is also a greedy approach for the MST problem. It follows a different
approach compared to Kruskal’s algorithm, as summarized by the following algorithm idea.

Algorithm idea. Prim’s algorithm is an iterative greedy algorithm to find the MST of a
graph. It starts from a node and at each iteration it extends the tree rooted at that node by
adding the edge with minimum weight that connects a node in the tree to a node not in the
tree. The algorithm terminates when the tree includes all nodes in the graph.
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Pseudo-code

The algorithm iteratively builds a solution S, which contains the edges of the resulting MST.
The algorithm also keeps track of the nodes currently in the tree using the set C that initially
contains only the root r. The pseudo-code of the algorithm is shown in Algorithm 11.
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1 fixup(node root, node z)begin
2 while z.parent and z.parent.color == RED do
3 if z.parent = z.parent.parent.left then
4 y = z.parent.parent.right
5 if y.color == RED then
6 /*CASE-1*/
7 z.parent.color = BLACK
8 y.color = BLACK
9 z.parent.parent.color = RED

10 z = z.parent.parent

11 end
12 else
13 if z.parent.right = z then
14 /*case 2*/
15 z = z.parent
16 leftrotate(root, z);

17 end
18 /*case 3*/
19 z.parent.parent.color = RED
20 z.parent.color = BLACK
21 rightrotate(root, z.parent.parent);

22 end

23 end
24 else
25 Symmetric w.r.t the if condition above with right and left exchanged;
26 end

27 end
28 root.color = BLACK;

29 end

Algorithm 32: Fixup operations to restore the red-black tree properties after inserting
a node into it.
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1 Delete(T , node z)begin
2 node x, y = z;
3 y.originalColor = y.color;
4 if z.left = T.NIL then
5 x = z.right;
6 RB-TRANSPLANT(T, z, z.right);

7 end
8 else if z.right = T.NIL then
9 x = z.left;

10 RB-TRANSPLANT(T, z, z.left);

11 end
12 else
13 y. = TREE-MIN(z.right);
14 y.originalColor = y.color;
15 x = y.right;
16 if y.parents = z then
17 x.parents = y;
18 end
19 else
20 RB-TRANSPLANT(T, y, y.right);
21 y.right=z.right;
22 y.right.parents=y;

23 end
24 RB-TRANSPLANT(T, z, y);
25 y.left=z.left;
26 y.left.parents=y;
27 y.color=z.color;

28 end
29 if y.originalColor = BLACK then
30 RB-DELETE-FIXUP(T, x)
31 end

32 end

Algorithm 33: Delete operation in a red-black tree
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1 RB-TRANSPLANT(T , node u, v)begin
2 if u.parents = T.NIL then
3 T.root=v;
4 end
5 else if u = u.parents.left then
6 u.parents.left= v;
7 end
8 else
9 u.parents.right= v;

10 end
11 v.parents= u.parents;

12 end

Algorithm 34: TRANSPLANT operation in a red-black tree
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1 RB-DELETE-FIXUP(T , node x)begin
2 while x.color=BLACK and x 6= T.root do
3 if x = x.parents.left then
4 node w = x.parents.right;
5 if w.color=RED then
6 /* CASE - 1*/
7 w.color=BLACK;
8 x.parents.color=RED;
9 LEFT-ROTATE(T, x.parents);

10 w = x.parents.right;

11 end
12 if w.left.color= w.right.color=BALCK then
13 /* CASE - 2*/
14 w.color=RED;
15 x = x.parents;

16 end
17 else
18 if w.right.color=BALCK then
19 /* CASE - 3*/
20 w.left.color=BALCK
21 w.color=RED;
22 RIGHT-ROTATE(T,w);
23 w = x.parents.right;

24 end
25 /* CASE - 4*/
26 w.color=x.parents.color;
27 x.parents.color=BLACK;
28 w.right.color=BALCK;
29 LEFT-ROTATE(T, x.parents);
30 x = T.root;

31 end

32 end
33 else
34 Symmetric w.r.t the if condition above with right and left exchanged;
35 end

36 end
37 x.color=BLACK;

38 end

Algorithm 35: Fixup operations to restore the red-black tree properties after deleting
a node from it.
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1 Kruskal(G,w)begin
2 S = ∅;
3 while ∃(u, v) ∈ E \ S s.t. S ∪ {(u, v)} does not contain a cycle do
4 let D ⊆ E \ S be the set of edges that do not create a cycle when added to S;
5 (u, v) = arg min

(p,q)∈D
w(p, q);

6 S = S ∪ {(u, v)};
7 end
8 return S;

9 end

Algorithm 36: Kruskal’s Algorithm

1 Kruskal(G,w)begin
2 S=∅
3 m=|E|
4 Sort E in ascending order by weight
5 for i=1 to n do
6 CC[i]=i
7 end
8 for j=1 to m do
9 (u.v)=(E[j].u,E[j].v)

10 // The edge does not create a cycle

11 if CC[u] 6=CC[v] then
12 S=S∪{(u,v)}
13 cID=CC[v]
14 // Update component IDs of the nodes in component CC[v]

15 for p∈V do
16 if CC[p]==cID then
17 CC[p]=CC[u]
18 end

19 end

20 end

21 end
22 return S

23 end
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1 Prim(G,w)begin
2 S=∅
3 Select a node r ∈ V as the root
4 C={r}//nodes currently in the tree
5 while C 6=V do
6 (u, v) = arg min

(x,y)∈E:
x∈C∧y/∈C

w(x, y)

7 S=S∪{(u,v)}
8 C=C∪{v}
9 end

10 return S

11 end
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It is suggested to execute Kruskal’s and Prim’s algorithm on the same graph to understand
the differences in their logical execution.

Efficient Implementation of Prim’s Algorithm

The main problem to address to have an efficient implementation of Prim’s algorithm is how
to select the edge with minimum weight that connects a node in the tree to a node not in the
tree. Here we propose an efficient implementation that makes use of a queue Q. Q contains
the nodes not yet in the tree (unvisited nodes). We also make use of two attributes for a
node v, v.π that represents the parent of v in the tree, and v.d that represents the distance
of v from the current tree. Intuitively, we will look at each iteration for the node v in Q with
minimum distance. The efficient implementation is shown in Algorithm 37.

1 Prim(G,W,r)begin
2 for v ∈ V do
3 v.π=NULL
4 v.d=∞
5 end
6 r.d=0
7 Q=V //set of unvisited nodes
8 while Q6= ∅ do
9 v=Q.ExtractMin()

10 for u∈ adj(v) do
11 if u ∈ Q ∧ u.d > (v, u) then
12 u.π=v
13 u.d=w(v,u)

14 end

15 end

16 end

17 end

Algorithm 37: Pseudo Code for an efficient implementation of Prim’s Algorithm

The complexity of the algorithm is dominated by the while loop. This loop clearly does
O(n) iterations. In a straightforward implementation, the function Q.ExtractMin() takes
O(n). To better define the complexity of the internal for loop, we should do an aggregate
analysis. For each node u, we iterate over its set of neighbors, so the complexity is O(deg(u)).
Considering all nodes, the overall complexity of the for loop is the sum of the degrees, i.e.
O(sumu∈V deg(u) = O(|E|) = O(m). As a result, the complexity of the while loop, and of
the algorithm, is O(n2 +m) = O(n2).
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Example

We now show the execution of the efficient implementation on the graph in Figure 5.20 (a).
The execution is in Table 5.3. Node A is selected as the root node. Each row of the table
is an iteration and shows the distances of each node. Additionally, we bar the value if the
element is visited.

Q= A B C D E F G H

init 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 Select A 0 3 1 ∞ ∞ 5 ∞ ∞
2 Select C 0 3 1 3 ∞ 5 ∞ ∞
3 Select B 0 3 1 3 6 2 ∞ ∞
4 Select F 0 3 1 3 6 2 ∞ ∞
5 Select D 0 3 1 3 6 2 ∞ 3
6 Select H 0 3 1 3 6 2 6 3
7 Select G 0 3 1 3 4 2 6 3
8 Select E 0 3 1 3 4 2 6 3

Table 5.3: Iterative Execution of Prim’s Algorithm given in a table

Note that in step 7 the algorithm had a choice, since two edges were available of equal
weight. In this case, one was chosen arbitrarily, but if the other edge was selected, it too
would have yielded a different, but still optimal solution. The resulting graph of the minimum
spanning tree, which is the same as the one yielded for this graph when Kruskal’s algorithm
was applied, is given in Figure 5.22.

Figure 5.22: Graph of the Minimum Spanning Tree generated from Prim’s Algorithm

91



5.9 Single Source Shortest Paths

We now consider another classical problem of graph theory, finding the shortest path from a
node to all other nodes in the graph. This emerges in many application, including the one
in the following.

Internet routing. The Internet is composed by a network of routers interconnected
through fiber links. Packets sent from one router need to reach another router generally
through multiple hops. The process of determining which path to follow is called routing.
Links are not all equal, they generally have different delays depending on their capacity, on
the traffic that goes through them and on the processing power of the routers at the endpoints
of that link. The routing problem consist in finding the path with minimum delay (minimum
sum of delays of the links in the path) from the source to the destination.

We can model the problem using a weighted graph G = (V,E) such that V represents
the set of routers and E the set of links between them. We introduce a weight function on
the edges to model the delay, w : E → R+, where w(u, v) is the delay in the link (u, v) ∈ E.
Given a path p = (v1, v2, . . . , vk) the weight of p is w(p) =

∑k−1
i=1 w(vi, vi+1). The shortest

path weight between two nodes u and v is defined as δ(u, v) defined as follows.

δ(u, v) =

arg min
p:u→v

w(p) if u and v are connected

∞ otherwise

A path p between u and v is a shortest path if w(p) = δ(u, v).

Definition 5.9.1 (Single source shortest path problem). Given a weighted graph G = (V,E),
a weight function w : E → R+ and a source s ∈ V , find the shortest path from s to all other
nodes in V , i.e. ∀v ∈ V find p∗v s.t. w(p∗v) = δ(s, v).

5.9.1 Optimality Principle

Consider a graph G = (V,E) and a source s, assume that you calculated the shortest paths
from s to all the other nodes. Let’s now consider the graph that contains all nodes in V
but only the edges that appear in at least one shortest path. How does this graph look like?
The optimality principle helps answering this question, and gives a powerful tool to design
efficient algorithms to solve the shortest path problem.

Theorem 3 (Optimality principle). Given a weighted graph G = (V,E), a weight function
w : E → R+, two nodes u and v and the shortest path p between them, if a node q is in p,
then the path p′ between u and q is the shortest path for these two nodes.

Proof. We proceed by contradiction. Assume that p′ is not the shortest path between nodes
u and q, this implies that there exists another shorter path p′′ such that w(p′′) < w(p′). Let
p′′′ be the path from q to v, the weight of the shortest path p between u and v is w(p) =
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(w(p′) + w(p′′′)). However, we can build another path between u and v by concatenating p′′

and p′′′, the weight of such path is less than w(p) since w(p′′) < w(p′). Formally, w(p) =
(w(p′) + w(p′′′)) > w(p′′) + w(p′′′). This leads to a contradiction because p is assumed to be
the shortest path from u to v.

Corollary 5.9.1 (Shortest path tree). The union of all shortest path from a source to all
destination forms a tree, which is called the Shortest path tree.

5.9.2 Dijkstra’s Algorithm

The Dijkstra’s algorithm is a greedy algorithm for the single source shortest path problem.
It exploit the optimality principle as summarized by the following algorithm idea.

Algorihtm idea. The algorithm iteratively builds the shortest path tree from a source node
s, which is initially composed by the sole node s. Let R be the set of nodes in the tree at the
current iteration. The algorithm picks the edge that minimizes the distance from s to reach
a node not in the tree from any other node in the tree. Formally, it picks edge (u, v) such
that u ∈ R, v /∈ R and minimizes u.d+ w(u, v), where u.d is the shortest path distance of u
from s.

Peudo-code

We will use the following attributes for a node u.

• u.d: distance from the source in the shortest paths tree, for the source s.d = 0.

• u.d = δ(s, u): weight of the shortest path from s to u.

• u.π: parent of u in the shortest paths tree.

Example

Figure 5.24 shows the graph considered in the example. Figure 5.24 shows the execution of
the Dijkstra’s algorithms. The source node is node 1, we highlight in bold the edges selected
by the algorithm.
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1 DIJKSTRA(G,w,s)begin
2 s.d=0
3 s.π=NULL
4 // R is the set of nodes currently in the tree

5 R={s}
6 while ∃(u, v) ∈ E : u ∈ R ∧ v 3 R do
7 (u, v) = arg min

(x,y)∈E:
x∈R
y3R

(x.d+ w(x, y))

8 v.d=u.d+w(u,v)
9 v.π=u

10 R=R∪{v}
11 end

12 end

(a)

Figure 5.23: Example Dijkstra’s algorithms: initial graph
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(a) (b)

(c) (d)

Figure 5.24: Example Dijkstra’s algorithms: algorithm execution
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Efficient Implementation

In the efficient implementation of Dijkstra’s algorithm we make use of some additional vari-
able and data structures.

• Boolean array v[1...n]: visited[i] = T if node i is in the tree, F otherwise.

• Integer k: number of visited nodes.

• Array π[1...n]: parent vector.

• Integer array dist[1..n]:

dist[i] =


0 i = source

δ(s, v) visited[i]

current shortest path distance from s otherwise

The key point to understand here is the role of the array dist[]. The position dist[i] contains
the shortest path distance from s only if i is already in the tree, that is the algorithm has
already taken its decision on that node regarding the shortest path from s to i. On the
contrary, if i is not in the tree, dist[i] contains the best known distance up to now. This is
updated as more nodes are added to the tree. Basically, we keep track of the distance from
s of all nodes which are one hop away from any node already in the tree, and include in the
tree at each iteration the node which is at minimum distance. Similarly, π[i] is the actual
parent of i if i is part of the tree, otherwise is the potential father, i.e. the best node through
which I can reach i considering the nodes currently in the tree. Potential fathers, as the best
known distances, can be updated as we add more nodes into the tree.
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1 DIJKSTRA(G,w,s)begin
2 dist[s]=0
3 π[s]=NULL
4 v[s]=T
5 k=1
6 for q ∈ V \ {s} do
7 v[q]=False
8 if q ∈ Adj(s) then
9 dist[q]=w(s,q)

10 π[q]=s

11 end
12 else
13 dist[q]=∞
14 π[q]=NULL

15 end

16 end
17 // Find the best node to add

18 while k<n do
19 minD=∞
20 minV=NULL
21 for i=1 to n do
22 if v[i]==F∧dist[i]<minD then
23 minD=dist[i]
24 minV=i

25 end

26 end
27 v[minV]=T
28 k+=1
29 // Update the distances for the unvisited nodes adjacent to the

newly added node

30 for q∈ Adj(minV) do
31 if !v[q]∧dist[q]>dist[minV]+w(minV,q) then
32 dist[q]=dist[minV]+w9minV,q)
33 π[q]=minV

34 end

35 end

36 end
37 return dist,π

38 end
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The while and for loop perform each n iterations. The for loop over the set of ad-
jacent nodes of the newly added node minV performs a number of iterations equal to
Θ(Adj(minV )). We can perform again an aggregate analysis and conclude that overall
this loop has a complexity of Θ(m). As a result the complexity is Θ(n2 +m) = Θ(n2) since
m = O(n2).

5.9.3 Bellman-Ford: Shortest Path with Negative Weights

The Dijkstra’s algorithm provides an efficient way of calculating shortest path from a single
source, however this algorithm works only if the edge weights are positive. Edges with
negative weight may happen, for example, in applications in which going from a node to
another may provide a gain, instead of a cost. In these cases, the Dijkstra’s algorithm may
not work, as shown by the example in Figure 5.25.

(a) (b)

Figure 5.25: Graph with negative weights (a), output of Dijkstra (b), optimal shortest path
tree (c).

The Dijkstra’s algorithm fails since, as a good greedy algorithm, is based on the idea that
what is the best solution now, it is actually the best solution that will eventually bring to
the optimum. It has, in other words, a stubborn attitude an never changes its mind. In
addition, it also has a limited horizon, since it only considers the nodes currently reachable
by the nodes in the tree. Being stubborn and having a limited horizon rarely brings you
somewhere, and in this example it does not allow the algorithm to see that node B can be
reached much more efficiently through D than through A, but it is stubborn and does not
change its mind.

The problem of finding the single source shortest path needs however to be better defined
to make sense. Specifically, the problem makes sense only if the graph has no negative cycles.
A path p = (v1, . . . , vk) is a negative cycle if v1 = vk and

∑k−1
i=1 w(vi, vi+1) < 0. Intuitively,

if we have a negative cycle we can arbitrarily decrease the distance between two nodes by
going through the cycle as many times as we want. Therefore, in this cases the distance
between two nodes is not defined. We must consider only graphs with no negative cycles for
the problem to be well defined.
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As a consequence of the above discussion, the graph also has to be directed. Indeed,
undirected edges with negative weights can be seen as negative cycles of length 1, and would
make our problem not well defined. In this context, the following theorem is at the basis of
the Bellman-Ford algorithm.

Theorem 4. Consider a directed graph G = (V,E) with positive and negative weights, but
no negative cycles, and a source s. If a node v is reachable from s then the length (nr. of
hops) of the path is less than n.

Proof. We prove the theorem by contradiction. Assume that there is a shortest path p with
length ≥ n between s and a node v. This implies that there must exist a cycle in p. The
cycle cannot have a positive weight, since this would imply that p is not the shortest path.
Therefore the cycle must have a negative weight, which violates the assumptions of the
theorem. Figure 5.9.3 summarizes the proof.

Bellman-Ford algorithm

The Bellman-Ford algorithm is based on dynamic programming, which allows more flexibility
with respect to greedy solutions. As usual with a dynamic programming algorithms, we first
define the sub-problems, and then the recursive relation between their solution. We will also
make use of a table M to keep track of the problems already solved.

The sub-problems are defined by limiting the maximum length of shortest paths. We
know by Theorem 4 that a path cannot be longer than n − 1. The algorithm considers the
sub-problems of finding the shortest path from s to all other nodes with length at most k.
The value of k is increased from 0 (no edge in the path) to n− 1, the maximum length.

We define the table M : (n+ 1)×n. M[k,v] is the weight of the shortest path of length at
most k between the source s and v. If such path does not exist, then M[k,v] equals infinity.
We can now define the recursive relation between problems.
Base case. The base case occurs when k = 0, i.e. no edge in the path. This can be trivially
solved by setting M [0, s] = 0, and M [0, v] =∞ for any other node v 6= s.
Inductive case. Assume that we know the shortest path from s to v with length at most
k-1, and we want to calculate M[k,v]. We have two cases. First case, the shortest path of at
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most length k is the same, that is M[k,v] = M[k-1,v]. This happens when adding an extra
hop does not improve the length of the shortest path, so the previous one we found is still
good. The second case occurs when there exists a path p of length k with less weight between
s and v. Such path p is composed by a path pu from s to a node u, plus an edge (u, v). The
path pu has length k− 1, thus its weight is M[k-1,u], and it has been already calculated. We
summarize the inductive case with the equation below.

M [k, v] = min{M [k − 1, v],min{M [k − 1, u] + w(u, v) s.t. (u, v) ∈ E}}

Note that we can use the above formula for k ≥ n, this is useful to detect negative cycles.
Specifically, it is possible to prove that if and only if the graph has a negative cycle, there
exists v s.t. M [n, v] 6= M [n− 1, v].

Pseudo-code

1 BellmanFord(G,w,s)begin
2 M: table of size (n+ 1)× n
3 π[n]=new parent vector
4 ∀v ∈ V , M [0, v] =∞
5 M[0,s]=0
6 π[s]=NULL
7 for k=1 to n do
8 for v in V do
9 M[k,v]=M[k-1,v]

10 for (u,v)∈E do
11 if M[k-1,v]+w(u,v)<M[k,v] then
12 M[k,v]=M[k-1,v]+w(u,v)
13 π[v]=u

14 end

15 end
16 if (k==n∧M[k,v] 6=M[k-1,v] then
17 return “G has a negative cycle”
18 end

19 end

20 end
21 return M, π

22 end

Algorithm 38: Bellman-Ford algorithm

The algorithm is shown in Algorithm 38. It initially applies the base case, it then performs
two nested loops to apply the recursive formula. The vector π contains the parents of the
nodes in the shortest path tree.
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The algorithm has two nested for loops, each of which performs n iterations. The com-
plexity of the internal loop that iterates on the edges can be again calculated using the
aggregate analysis. The complexity is therefore Θ(n(n+m)) = Θ(n2).

Examples

Table 5.4 shows the execution of the Bellman-Ford algorithm on the graph in Figure 5.25
(a), for which Dijkstra’s algorithm yielded a non-optimal solution.

A B C D

0 0 ∞ ∞ ∞
1 0 1 0 99
2 0 -201 0 99
3 0 -201 -200 99
4 0 -201 -200 99

Table 5.4: Example of Bellman-Ford on the graph in Figure 5.25 (a).

Consider now the simple graph in Figure 22 with a negative cycle. Table 22 shows the
execution of the algorithm. The last line of the table shows a change, as expected, which is
due to the presence of the negative cycle.

Figure 5.26: Example of Bellman-Ford on a graph with negative cycle.

Figure 22 shows a more complex graph, while Table 22 the execution of the algorithm.
Note starred rows in the preceding example. These rows show no changes, this indicates that
paths with length 3 are better than any path of length 4. In general, when two consecutive

.

A B C

0 0 ∞ ∞
1 0 1 ∞
2 0 1 3
3 -1

Table 5.5: Example of Bellman-Ford on the graph in Figure 22.
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rows are equal for every element, we can terminate the algorithm, since all the subsequent
rows will be the same. This will save you time during exams.

Figure 5.27: Example of Bellman-Ford on a more complex graph.

1 2 3 4 5 6

0 0 ∞ ∞ ∞ ∞ ∞
1 0 1 2 ∞ ∞ ∞
2 0 1 0 0 8 ∞
3 0 1 0 0 6 -2 ∗
4 0 1 0 0 6 -2 ∗
5 0 1 0 0 6 -2
6 0 1 0 0 6 -2

π 1 2 3 4 5 6
NULL 1 2 2 3 4

Table 5.6: Example of Bellman-Ford on the graph in Figure 22.

5.10 Floyd-Warshall Algorithm: All Pairs Shortest Path

Dijkstra’s and Bellman-Ford’s algorithms are designed to calculate the shortest path from a
single source to all other nodes in the network. In theory, we may run these algorithms on each
node and have the shortest paths from any node to any other node. This however would
be inefficient. In this section we introduce the Floyd-Warshall algorithm that specifically
calculates the shortest path for each pair of nodes in the network.

This is a dynamic programming approach that works with graphs having edges with
negative weights, however it assumes that there are no negative cycles. Nodes are numbered
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from 1 to n. The graph is represented by an adjacency matrix W : n× n defined as follows.

W [i, j] =


0 i = j

w(i, j) i 6= j ∧ (i, j) ∈ E
∞ otherwise

The algorithm is based on the notion of intermediate vertex which is used to define the
sub-problems.

Definition 5.10.1 (Intermediate vertex). Given a path p =< v1, . . . , vl >, an intermediate
vertex is any vertex vi s.t. i = 2, . . . , l − 1, that is any vertex except v1 and vl.

The sub-problems are defined by progressively expanding the nodes that can appear in
a shortest path as intermediate vertices, until all nodes are considered. In particular, let’s
consider the subset of vertices {1, . . . , k}. For any pair i, j ∈ V , let p be the path with
minimum weight of all paths between i and j whose intermediate vertices are in
{1, . . . , k}. We can have two cases:

• k IS NOT an intermediate vertex of p. Then all intermediate vertices of p are {1, . . . , k−
1}, thus the sortest path from i to j with intermediate vertices in {1, . . . , k} is also the
shortest path from i to j with intermediate vertices in {1, . . . , k − 1}.

• k IS an intermediate vertex of p. Then we have a sub-path p1 from i to k, and then a
sub-path p2 from k to j. The concatenation of p1 and p2 is hence equal to p. Since p is
a shortest path, k can only appear once in p. Therefore, k cannot be an intermediate
vertex of p1 or p2. In addition, thanks to the optimality principle, p1 is the shortest path
between i and k, and p2 is the shortest path between k and j, both with intermediate
vertices in {1, . . . , k − 1}.

Let d
(k)
ij be the weight of the shortest path between i and j with intermediate nodes

{1, . . . , k}. We can use the above discussion to define the recursive relation between the
solutions of sub-problems.

Base case, k = 0. There are no intermediate vertices in the path, hence d
(0)
ij = W [i, j], for

each i, j ∈ V .

Inductive case, k > 0. We can pick the minimum between using k as an intermediate
vertex and not doing so, that is:

d
(k)
ij = min

(
d
(k−1)
ij , (d

(k−1)
ik + d

(k−1)
kj )

)
when k = n we have the solution, that is the length of the shortest path for each pair of
vertices.
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5.10.1 Pseudo-code

The pseudo-code of the algorithm uses a series of matrices D(k), for k = 0, . . . , n. D(k)

contains the elements d
(k)
ij , that is the shortest path distance between i and j using only

the intermediate vertices in {1, . . . , k}. The code first initializes the matrix D(0) to W , then

applies the formula to calculate D
(k)
ij given D

(k−1)
ij .

The algorithm complexity is straight forward, since we have three nested loops each
performing n iteration. Hence the complexity is Θ(n3).

1 FloydWorshall(W,n)begin
2 D(0) = W
3 for k=1 to n do
4 Let D(k) be a new n×n matrix
5 for i=1 to n do
6 for j=1 to n do

7 D
(k)
ij = min

(
D

(k−1)
ij , (D

(k−1)
ik +D

(k−1)
kj )

)
8 end

9 end

10 end

11 return D(n)

12 end

Algorithm 39: Floyd-Warshall algorithm

5.10.2 Example

We now show the execution of the algorithm on the graph in Figure 5.10.2.
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D(0) 1 2 3 4 5

1 0 3 8 ∞ -4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 ∞ ∞
4 2 ∞ -5 0 ∞
5 ∞ ∞ ∞ 6 0

(a)

D(1) 1 2 3 4 5

1 0 3 8 ∞ -4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 ∞ ∞
4 2 5 -5 0 -2
5 ∞ ∞ ∞ 6 0

(b)

D(2) 1 2 3 4 5

1 0 3 8 4 -4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 5 11
4 2 5 -5 0 -2
5 ∞ ∞ ∞ 6 0

(c)

D(3) 1 2 3 4 5

1 0 3 8 4 -4
2 ∞ 0 ∞ 1 7
3 ∞ 4 0 5 11
4 2 -1 -5 0 -2
5 ∞ ∞ ∞ 6 0

(d)

D(4) 1 2 3 4 5

1 0 3 -1 4 -4
2 3 0 -4 1 -1
3 7 4 0 5 3
4 2 -1 -5 0 -2
5 8 5 1 6 0

(e)

D(5) 1 2 3 4 5

1 0 1 -3 2 -4
2 3 0 -4 1 -1
3 7 4 0 5 3
4 2 -1 -5 0 -2
5 8 5 1 6 0

(f)

Figure 5.28: Execution of Floyd-Warshall algorithm

5.10.3 Constructing the Shortest Path

We are now able to calculate the shortest path distance, but we need to be able to translate
this into the actual shortest path between a pair of nodes. We can easily extend the previous
algorithm. We make use of the predecessor matrix Π : n× n as follows.

Π[i, j] =


NIL i = j

NIL @ a path from i to j

predecessor of j in the shortest path to i otherwise

Given Π we can print the shortest path between i and j as shown in Algorithm 40.

1 Print-All-Pairs-Shortest-Path(Π,i,j)begin
2 if i=j then
3 print i;
4 return;

5 end
6 if Π[i, j] = NIL then
7 print “No path between i and j”;
8 return;

9 end
10 Print-All-Pairs-Shortest-Path(Π,i,Π[i, j]);
11 print j;
12 return;

13 end

Algorithm 40: Print shortest path from predecessor matrix
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We define the matrix Π(k) : n×n such that Π(k)[i, j] is the predecessor of j in the shortest
path to i using intermediate vertices in {1, . . . , k}. We can now follow a similar idea of the
main algorithm to update Π(k).
Base case, k = 0.

Π(0)[i, j] =

{
NIL i = j ∨W [i, j] =∞
i i 6= j ∧W [i, j] <∞

Inductive case, k > 0.

• If the shortest path does not contain k, then Π(k)[i, j] = Π(k−1)[i, j]

• If the shortest path contains k, then Π(k)[i, j] = Π(k−1)[k, j]

The pseudo-code is in Algorithm 41.

106



1 FloydWorshall(W,n)begin
2 D(0) = W
3 for i = 1 to n do
4 for j = 1 to n do
5 if i = j OR W[i,j] = ∞ then
6 Π(0)[i, j] = NIL
7 end
8 else
9 Π(0)[i, j] = W [i, j]

10 end

11 end

12 end
13 for k=1 to n do
14 Let D(k) be a new n×n matrix
15 for i=1 to n do
16 for j=1 to n do

17 if D
(k−1)
ij < (D

(k−1)
ik +D

(k−1)
kj ) then

18 D
(k)
ij = D

(k−1)
ik

19 Π(k)[i, j] = Π(k−1)[i, j]

20 end
21 else

22 D
(k)
ij = (D

(k−1)
ik +D

(k−1)
kj )

23 Π(k)[i, j] = Π(k−1)[k, j]

24 end

25 end

26 end

27 end

28 return D(n),Π(n)

29 end

Algorithm 41: Floyd-Warshall algorithm with predecessor matrix
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5.11 Maximum Flow

The maximum flow problem is another example of widely used approach from graph theory.
It finds applications in communication networks, road traffic management, resource manage-
ment, and operating systems, just to mention a few. In the general formulation, we consider
a graph, where a node s, called source produces data, while a node t, called destination,
collects the data coming from the source. The graph is directed, where the direction defines
the allowed flow direction of data. Edges are weighted, and the weight of an edge represents
its capacity, i.e. the amount of data flow that can go through that edge.

Intermediate nodes (not s or t) just forward the data, with the constraint that all in-
coming data in a node equals all the outgoing data from that node. This is often called
the flow conservation constraint, which allows only the source to generate data and only the
destination to consume it.

Our objective is to calculate the maximum rate at which s can send data to t without
violating the link capacities. As an example, consider the graph in Figure 5.29. The maximum
flow from s to t is 5. In this case it is straight forward to calculate the solution, since the
paths from s to t are disjoint, however it gets more complicated when we have an arbitrary
graph, and we need to define an algorithm that returns the MaxFlow. Let’s first introduce
some definitions.

Figure 5.29: Example of MaxFlow problem, the maxflow is 5.

Definition 5.11.1 (Flow Network). A Flow Network is a directed graph G=(V,E) s.t.
∀(u, v) ∈ E the capacity c(u, v) ≥ 0. In addition, if (u, v) ∈ E then (v, u) /∈ E and G does
not contain self-loops. There are two special nodes s, t ∈ V , s 6= t. Finally, ∀ v ∈ V \ {s, t}
∃ a path {s, . . . , v, . . . , t}.

Definition 5.11.2 (Flow). A flow in G is a function f : V × V → R such that:

• Capacity constraint: ∀(u, v) ∈ V , 0 ≤ f(u, v) ≤ c(u, v)

• Flow conservation constraint: ∀u ∈ V \ {s, t}
∑

v∈V f(u, v) =
∑

v∈V f(v, u)
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Definition 5.11.3 (Flow value). Given a flow of f , the value |f | is the total amount of flow
leaving the source minus the total amount of flow entering the source, that is:

|f | =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

Definition 5.11.4 (Residual network). Given a flow network G and a flow f the residual
network Gf consists of edges with capacities that represent how we can change the flow on
G. Formally, Gf is defined as follows.

• It has same set of nodes as G.

• ∀(u, v) ∈ E:

– Residual capacity is cf (u, v) = c(u, v)− f(u, v). This represents how much we can
increase the flow in (u, v).

– We consider the edge (v, u) and set its capacity to cf (v, u) = f(u, v). This repre-
sents how much we can decrease the flow in (u, v).

– In summary:

cf (u, v) =


c(u, v)− f(u, v) (u, v) ∈ E
f(u, v) (v, u) ∈ E
0 otherwise

• We add to Gf the all the edges Ef = {(u, v) ∈ V × V s.t. cf (u, v) > 0}

(a) (b)

Figure 5.30: Example of flow network and corresponding residual network. The augmenting
path is highlighted in bold.

Definition 5.11.5 (Augmenting Path). Given a flow network G = (V,E) and a flow f , an
augmenting path is a simple path from s to t in Gf . The maximum amount of flow that can be
sent on an augmenting path p is the residual capacity cf (p) = min{cf (u, v) s.t. (u, v) ∈ p}.
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An example of flow network and corresponding residual network is shown in Figure 5.30.
Figure 5.30 (b) also shows an augmenting path with residual capacity 4, which is due to the
capacity of the edge (2, 3).

Given an augmenting path p with residual capacity p, we can calculate a new augmenting
flow fp s.t.

fp(u, v) =

{
cf (p) (u, v) ∈ p
0 otherwise

The augmenting flow fp can be used to augment the flow f in G as follows:

f ′(u, v) =

{
f ′(u, v) + fp(u, v)− fp(v, u) (u, v) ∈ E
0 otherwise

5.11.1 Ford-Fulkerson Algorithm

The Ford-Fulkerson exploits the concepts defined previously. The main idea is to start from
a flow network G with an empty flow f . We build the residual network Gf and find an
augmenting path p, and update the flow f by the augmenting flow fp. The procedure is
iterated until no more augmenting path can be found. The value of the flow in G is then the
maximum flow.

The pseudo-code of the Ford-Fulkerson algorithm is shown in Algorithm 42. If the capac-
ities are all integer values, it can be shown that the complexity is O(E × |F ∗|).

5.11.2 Example
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1 Ford-Fulkerson(G,s,t)begin
2 // The initial flow on each edge is empty

3 for (u, v) ∈ E do
4 (u, v).f = 0
5 end
6 calculate residual network Gf

7 while ∃p from s to t in Gf do
8 select an augmenting path p in Gf

9 cf (p) = min{cf (u, v) : (u, v) ∈ p}
10 for (u, v) ∈ p do
11 if (u, v) ∈ E then
12 (u, v).f = (u, v).f + cf (p)
13 end
14 else
15 (v, u).f = (v, u).f − cf (p)
16 end

17 end
18 calculate Gf

19 end
20 return

∑
v∈V f(s, v)−

∑
v∈V f(v, s)

21 end

Algorithm 42: Pseudo-code Ford-Fulkerson algorithm
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(a) (b)

(c) (d)

(e) (f)

Figure 5.31: Example of Ford-Fulkerson algorithm.

5.11.3 MaxFlow-MinCut Theorem

Definition 5.11.6 (Cuts). A cut in a flow netwrok G=(V,E) is a partition of V into two
sets S and T=V\S, such that s ∈ S and t ∈ T .

Definition 5.11.7 (Cut Capacity). The capacity of a cut (S,T) is:

c(S, T ) =
∑
u∈S

∑
v∈T

c(u, v)

The minimum cut is a cut with minimum capacity.

Definition 5.11.8 (Maxflow Min Cut Theorem). Given a flow network G=(V,E) the value
of the maximum flow for G is equal to the capacity of the minimum cut.
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Figure 5.32: Cut in a graph illustrating the maxflow-min cut principle

5.12 Bipartite Matching Problem

Consider the following problem. We have nL employees to be assigned to nR tasks. Each
employee has a set of skills which allow him/her to perform only some of the tasks. A task
needs only a single employee to be completed and an employee can execute at most one task.
Our problem is to assign, or match, employees with tasks so that we maximize the number
of completed tasks. We can model this problem using a bipartite graph, defined as follows.

Definition 5.12.1 (Bipartite Graph). A Bipartite graph is a graph G = (L∪R,E) in which
the set of nodes is partitioned into two disjoint subsets, L and R. This means V = L ∪ R
and L ∩ R = ∅. Edges are only between a node in L and a node in R, that is E ⊆ L × R
which is equivalent to say that ∀ (u, v) ∈ E, u ∈ L ∧ v ∈ R.

In the worker assigned problem, L is the set of employees, R is the set of tasks, and there
is an edge between and employee u ∈ L and a task v ∈ R if u can perform v.

Definition 5.12.2 (Matching). A matching M is a subset of E such that for each node
v ∈ L ∪R, there is at most one edge in the matching which is incident to v.

Definition 5.12.3 (Maximal Matching). A matching M is maximal if it cannot be further
extended, that is adding any other edge would make M not a matching anymore.

Definition 5.12.4 (Maximum Matching). A maximum matching is a matching with maxi-
mum cardinality.

Note that, a maximum matching is a maximal matching, but the viceversa is not neces-
sarily true. Figure 5.33 provides an example.

5.12.1 Algorithm for Maximum Matching

We can use the Ford Fulkerson Algorithm to solve the maximum matching problem. Specif-
ically, given the bipartite graph G = (L ∪R,E) we build a flow network as follows.

• Add a node for each node in L and R.
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Figure 5.33: Maximal vs. Maximum matching.

• Edges are the same as in G, but directed from nodes in L to nodes in R.

• We add two special nodes s and t.

• We add an edge (s, v) for each v ∈ L.

• We add an edge (v, t) for each v ∈ R.

• All edges have capacity 1.

Figure 5.34: Flow network for the bipartite graph in Figure 5.33.

Figure 5.34 shows the flow network for the bipartite graph in Figure 5.33. We can now
calculate the maximum flow from s to t, the edges (u, v), from L to R, s.t. (u, v, ).f = 1
correspond to the maximum matching.

In order to have an intuition of why this works, we should realize that the Ford Fulkerson
algorithm saturates an augmenting path when it selects it. In this case, since all edges have
the same capacity, it saturate all edges in the path. As a result, if a flow traverses a node
v through an edge, v cannot be traversed by the flow of any other edge. This implies that
the output of the Ford Fulkerson Algorithm is a matching. Since we find the maximum flow,
and again edges have unit capacity, we also maximize the number of nodes that are part of
the flow (each node can appear at most once), thus we are also calculating the maximum
matching.
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5.13 Exercise

1. Given an adjacency-list representation of a directed graph, how long does it take to com-
pute the out-degree of every vertex? How long does it take to compute the in-degrees?

2. Show the d and π values that result from running breadth-first search on the directed
graph of Figure 5.1, using vertex 3 as the source.

3. Show how depth-first search works on the graph of Figure 5.35. Assume the vertices
in alphabetical order, and assume that each adjacency list is ordered alphabetically. Show
the discovery and finishing times for each vertex, and show the classification of each edge.

Figure 5.35: A directed (not acyclic) graph

4. A depth-first forest classifies the edges of a graph into tree, back, forward, and cross
edges. A breadth-first tree can also be used to classify the edges reachable from the source
of the search into the same four categories.
a. Prove that in a breadth-first search of an undirected graph, the following properties hold:

1. There are no back edges and no forward edges.

2. For each tree edge (u, v), we have v.d = u.d+ 1.

3. For each cross edge (u, v), we have v.d = u.d or v.d = u.d+ 1.

b. Prove that in a breadth-first search of a directed graph, the following properties hold:

1. There are no forward edges.

2. For each tree edge (u, v), we have v.d = u.d+ 1.

3. For each cross edge (u, v), we have v.d ≤ u.d+ 1.

4. For each back edge (u, v), we have 0 ≤ v.d ≤ u.d.
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5. The edge connectivity of an undirected graph is the minimum number k of edges that
must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1,
and the edge connectivity of a cyclic chain of vertices is 2. Show how to determine the edge
connectivity of an undirected graph G = (V,E) by running a maximum-flow algorithm on at
most |V | flow networks, each having O(V ) vertices and O(E) edges.

6. A path cover of a directed graph G = (V,E) is a set P of vertex-disjoint paths such that
every vertex in V is included in exactly one path in P . Paths may start and end anywhere,
and they may be of any length, including0. A minimum path cover of G is a path cover
containing the fewest possible paths.
a. Give an efficient algorithm to find a minimum path cover of a directed acyclic graph
G = (V,E). (Hint: Assuming that V = {1, 2, . . . n}, construct the graph G′ = (V ′, E ′) where
V ′ = {x0, x1, . . . xn} ∪ {y0, y1, . . . yn}
E ′ = {(x0, x1) : i ∈ V } ∪ {(y0, y1) : i ∈ V } ∪ {(xi, yj) : (i, j) ∈ E}, and run a maximum-flow
algorithm.)
b. Does your algorithm work for directed graphs that contain cycles? Explain.

7. Show that a graph has a unique minimum spanning tree if, for every cut of the graph,
there is a unique light edge crossing the cut. Show that the converse is not true by giving a
counterexample.

8. Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of
a currency into more than one unit of the same currency. For example, suppose that 1 U.S.
dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys
0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and
buy 49 × 2 × 0.0107 = 1.0486 U.S. dollars, thus turning a profit of 4.86 percent. Suppose
that we are given n currencies c1, c2, . . . , cn and an n×n table Rof exchange rates, such that
one unit of currency ci buys R[i, j] units of currency cj.
a. Give an efficient algorithm to determine whether or not there exists a sequence of curren-
cies (ci1, ci2, . . . cik) such that
R[i1, i2] ·R[i2, i3] · · ·R[ik−1, ik] > 1.
Analyze the running time of your algorithm.
b. Give an efficient algorithm to print out such a sequence if one exists. Analyze the running
time of your algorithm.

9. a. Given a DAG with non-negative weights, briefly provide an O(V 2) algorithm.
b. Can you improve the complexity?
c. What happens if there are negative weights?

10. In this problem, we give pseudo-code for three different algorithms (refer to the Al-
gorithm 43, Algorithm 44 and Algorithm 45). Each one takes a connected graph and a
weight function as input and returns a set of edges T . For each algorithm, either prove that
T is a minimum spanning tree or prove that T is not a minimum spanning tree. Also describe
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the most efficient implementation of each algorithm, whether or not it computes a minimum
spanning tree.

1 MAYBE-MST-A(G, w)begin
2 sort the edges into non-increasing order of edge weights w;
3 T = E;
4 for each edge e, taken in non-increasing order by weight do
5 if T − {e} is a connected graph then
6 T = T − {e};
7 end

8 end
9 return T

10 end

Algorithm 43: MAYBE-MST-A

1 MAYBE-MST-B(G, w)begin
2 T = ∅;
3 for each edge e, taken in arbitrary order do
4 if T ∪ {e} has no cycles then
5 T = T ∪ {e};
6 end

7 end
8 return T

9 end

Algorithm 44: MAYBE-MST-B

11. We are given a directed graph G = (V,E) on which each edge (u, v) ∈ E has an
associated value r(u, v), which is a real number in the range 0 ≤ r(u, v) ≤ 1 that represents
the reliability of a communication channel from vertex u to vertex v. We interpret r(u, v) as
the probability that the channel from u to v will not fail, and we assume that these proba-
bilities are independent. Give an efficient algorithm to find the most reliable path between
two given vertices.

12. Suppose that we wish to maintain the transitive closure of a directed graph G = (V,E)
as we insert edges into E. That is, after each edge has been inserted, we want to update
the transitive closure of the edges inserted so far. Assume that the graph G has no edges
initially and that we represent the transitive closure as a boolean matrix.
a. Show how to update the transitive closure G∗ = (V,E∗) of a graph G = (V,E) in O(V 2)
time when a new edge is added to G.
b. Give an example of a graph G and an edge e such that Ω(V 2) time is required to update
the transitive closure after the insertion of e into G, no matter what algorithm is used.
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1 MAYBE-MST-C(G, w)begin
2 T = ∅;
3 for each edge e, taken in arbitrary order do
4 T = T ∪ {e};
5 if T has a cycle c then
6 let e′ be a maximum-weight edge on c T = T − {e′};
7 end

8 end
9 return T

10 end

Algorithm 45: MAYBE-MST-C

c. Describe an efficient algorithm for updating the transitive closure as edges are inserted
into the graph. For any sequence of n insertions, your algorithm should run in total time∑n

i=1 ti = O(V 3), where ti is the time to update the transitive closure upon inserting the
i−th edge. Prove that your algorithm attains this time bound.

13. Let us define a relaxed red-black tree as a binary search tree that satisfies red-
black properties 1, 3, 4, and 5 (refer to Subsection 5.7.1). In other words, the root may be
either red or black. Consider a relaxed red-black tree T whose root is red. If we color the
root of T black but make no other changes to T , is the resulting tree a red-black tree?

14. Show that the longest simple path from a node x in a red-black tree to a descendant
leaf has length at most twice that of the shortest simple path from node x to a descendant leaf.

15. What is the largest possible number of internal nodes in a red-black tree with black-
height k? What is the smallest possible number?

16. Show that any arbitrary n-node binary search tree can be transformed into any other
arbitrary n-node binary search tree using O(n)rotations. (Hint: First show that at most
n− 1 right rotations suffice to transform the tree into a right-going chain.)

17. We say that a binary search tree T1 can be right-converted to binary search tree
T2 if it is possible to obtain T2 from T1 via a series of calls to RIGHT − ROTATE. Give
an example of two trees T1 and T2 such that T1 cannot be right-converted to T2. Then, show
that if a tree T1 can be right-converted to T2, it can be right-converted using O(n2) calls to
RIGHT −ROTATE.

18. Show the red-black trees that result after successively inserting the keys 41, 38, 31,
12, 19, 8 into an initially empty red-black tree.

19. Professor Teach is concerned that RB-INSERT-FIXUP might set T.nil.color to RED, in
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which case the test in while loop would not cause the loop to terminate when Z is the root.
Show that the professors concern is unfounded by arguing that RB-INSERT-FIXUP never
sets T.nil.color to RED.

20. Suppose that a node x is inserted into a red-black tree with RB-INSERT and then
is immediately deleted with RB-DELETE. Is the resulting red-black tree the same as the
initial red-black tree? Justify your answer.

21. In each of the cases of Figure 5.18, give the count of black nodes from the root of
the subtree shown to each of the subtrees α, β, . . . , ζ, and verify that each count remains the
same after the transformation. When a node has a color attribute c or c′, use the notation
count(c) or count(c′) symbolically in your count.

22. Join operation on red-black trees: The join operation takes two dynamic sets S1 and S2

and an element x such that for any x1 ∈ S1 and x2 ∈ S2, we have x1.key ≤ x.key ≤ x2.key.
It returns a set S = S1

⋃
{x}

⋃
S2. In this problem, we investigate how to implement the

join operation on red-black trees.
A. Given a red-black tree T , let us store its black-height as the new attribute T.bh. Argue
that RB-INSERT and RB-DELETE can maintain the bh attribute without requiring extra
storage in the nodes of the tree and without increasing the asymptotic running times. Show
that while descending through T , we can determine the black-height of each node we visit in
O(1) time per node visited.
We wish to implement the operation RB − JOIN(T1, x, T2), which destroys T1 and T2 and
returns a red-black tree T = T1

⋃
{x}

⋃
T2. Let n be the total number of nodes in T1 and T2.

1. Assume that T1.bh ≥ T2.bh. Describe an O(lgn) time algorithm that finds a black node
y in T1 with the largest key from among those nodes whose blackheight is T2.bh.

2. Let Ty be the subtree rooted at y. Describe how Ty
⋃
{x}

⋃
T2 can replace Ty in O(1)

time without destroying the binary-search-tree property.

3. What color should we makexso that red-black properties 1, 3, and 5 are maintained?
Describe how to enforce properties 2 and 4 in O(lgn) time.

4. Argue that no generality is lost by making the assumption in part (1). Describe the
symmetric situation that arises when T1.bh ≤ T2.bh.

5. Argue that the running time of RB-JOIN is O(lgn).
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