Abstract

General expressions for quantum electrodynamic corrections to the one-loop self-energy [of order α(Zα)6] and for the two-loop Lamb shift [of order α2(Zα)6] are derived. The latter includes all diagrams with closed fermion loops. The general results are valid for arbitrary excited non-S hydrogenic states and for the normalized Lamb shift difference of S states, defined as Δn=n3ΔE(nS)-ΔE(1S). We present numerical results for one-loop and two-loop corrections for excited S, P, and D states. In particular, the normalized Lamb shift difference of S states is calculated with an uncertainty of order 0.1 kHz.

Department(s)

Physics

Keywords and Phrases

Fermion Loops; Hydrogenic States; Lamb Shifts; Electrodynamics; Electron Energy Levels; Normal Distribution; Numerical Methods; Phase Shift; Quantum Theory

International Standard Serial Number (ISSN)

0031-9007

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2005 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS