Title

Dynamics At a Smeared Phase Transition

Abstract

We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times.

Department(s)

Physics

Sponsor(s)

National Science Foundation (U.S.)
University of Missouri Research Board

Library of Congress Subject Headings

Condensed matter
Ising model
Phase transformations (Statistical physics)

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2005 Institute of Physics - IOP Publishing, All rights reserved.

Share

 
COinS