The noncontact (van der Waals) friction is an interesting physical effect, which has been the subject of controversial scientific discussion. The direct friction term due to the thermal fluctuations of the electromagnetic field leads to a friction force proportional to 1/Z5 (where Z is the atom-wall distance). The backaction friction term takes into account the feedback of thermal fluctuations of the atomic dipole moment onto the motion of the atom and scales as 1/Z8. We investigate noncontact friction effects for the interactions of hydrogen, ground-state helium, and metastable helium atoms with α-quartz (SiO2), gold (Au), and calcium difluorite (CaF2). We find that the backaction term dominates over the direct term induced by the thermal electromagnetic fluctuations inside the material, over wide distance ranges. The friction coefficients obtained for gold are smaller than those for SiO2 and CaF2 by several orders of magnitude.



Keywords and Phrases

Atoms; Electromagnetic Fields; Gold; Ground State; Helium; Tribology; Van Der Waals Forces; Electromagnetic Fluctuations; Friction Coefficients; Metastable Helium Atoms; Non-contact Friction; Orders Of Magnitude; Surface Interactions; Thermal Fluctuations

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2016 American Physical Society (APS), All rights reserved.

Included in

Physics Commons