Abstract

We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The self energy represents the largest QED correction to the relativistic (Dirac-Coulomb) energy of a bound electron. We focus on the perturbation expansion of the self energy of non-S states, and provide estimates of the so-called A60 perturbative coefficient, which can be considered as a relativistic Bethe logarithm. Precise values of A60 are given for many P, D, F and G states, while estimates are given for other electronic states. These results can be used in high-precision spectroscopy experiments in hydrogen and hydrogenlike ions. They yield the best available estimate of the self-energy correction of many atomic states.

Department(s)

Physics

Keywords and Phrases

Electron Energy Levels; Hydrogen; Perturbation Techniques; Relativity; Quantum Electrodynamics; Relativistic Bethe Logarithm; Self-energy Correction; Quantum Theory

International Standard Serial Number (ISSN)

1050-2947

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2003 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS