Abstract

Additional studies regarding our earlier electrothermodynamic theory are presented. Comparisons to recent expansion cloud chamber ion mobility measurements are made, indicating general agreement with observations. This theory predicts more stable and ordered structure for prenucleation ion-water cluster systems than accounted for by the classical Thomson's theory. In the limiting case of the dielectric constant ε = 1, our monopole electrostatic energy term contributed by the foreign ion center precisely converges to that of Thomson. Predicted ion cluster size distributions are found to correlate well with ion cluster size spectra obtained from the ion mobility measurements of hydrated ion clusters and Champman-Enskog theory. In view of good correlation between the theory and observation, we believe that ion mobility study at sufficiently low electric field is a powerful tool for studying prenucleation dynamics.

Department(s)

Physics

International Standard Serial Number (ISSN)

0021-9606

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 1983 American Institute of Physics (AIP), All rights reserved.

Publication Date

01 Jul 1983

Included in

Physics Commons

Share

 
COinS