Abstract

Projectile angular-differential cross sections for single-transfer and transfer excitation have been calculated with the two-center extension of the nonperturbative basis generator method for 5-200 keV proton-helium collisions. The calculations are based on the independent electron model, and the eikonal approximation has been used to extract angular-differential cross sections from impact-parameter-dependent transition amplitudes. The present results are compared with experimental and previous theoretical data where available. In particular, we consider the ratio of transfer excitation to single capture versus double excitation to single excitation at intermediate energies. An experimentally observed structure in this ratio at a scattering angle about 0.5 mrad is qualitatively reproduced, while a previous classical evaluation failed in this respect. Therefore, we conclude that this structure is caused by quantum mechanical heavy-particle-electron couplings.

Department(s)

Physics

Sponsor(s)

German Academic Exchange Service (DAAD)
National Science Foundation (U.S.)

Library of Congress Subject Headings

Collisional excitation
Collisions (Nuclear physics)
Helium

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2008 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS