Abstract

The accuracy of the Pluvinage wave function for the ground state of helium is investigated by considering a number of different physical processes including double ionization by photoabsorption, Compton scattering, and electron impact. In the high-energy limit of these processes, the accuracy of the initial ground state can be ascertained without reference to the final double-continuum state. In this limit, we find that a Hylleraas description is superior to the Pluvinage one. For intermediate energies, final-state correlation becomes important, so we employ a 3C description of the final state (the 3C wave function is the double-continuum analog of the Pluvinage wave function). In this case, however, better agreement with experiment is obtained with the Pluvinage initial state. A possible explanation for this seemingly paradoxical result is suggested.

Department(s)

Physics

Sponsor(s)

National Science Foundation (U.S.)

Keywords and Phrases

Pluvinage Wave Function; Helium; Photoabsorption

International Standard Serial Number (ISSN)

1050-2947; 2469-9926

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2004 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS