Abstract

We provide a unified theoretical framework for recently emerging experiments that retrieve fixed-in-space molecular information through time-domain rotational coherence spectroscopy. Unlike a previous approach by Makhija et al. (V. Makhija, arXiv:1611.06476), our method can be applied to the retrieval of both real-valued (e.g., ionization yield) and complex-valued (e.g., induced dipole moment) molecular response information. It is also a direct retrieval method without using iterations. We also demonstrate that experimental parameters, such as the fluence of the aligning laser pulse and the rotational temperature of the molecular ensemble, can be quite accurately determined using a statistical method.

Department(s)

Physics

Keywords and Phrases

Molecular Orientation, Experimental Parameters; Induced Dipole Moments; Molecular Information; Molecular Response; Retrieval Methods; Rotational Coherences; Rotational Temperature; Theoretical Framework, Time Domain Analysis

International Standard Serial Number (ISSN)

2469-9926

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2017 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS