Abstract

There has been considerable interest recently in the low temperature dynamics of condensed phase tunneling phenomena. In this paper we consider the interplay between quasiparticle transport and vibrational relaxation; the former taking place via tunneling in a double well potential, and the latter occurring due to interactions of the tunneling system with a harmonic bath. Taking the system-bath interactions to be linear in the bath coordinates, and explicitly allowing for a vibrationally excited well, we present a unified treatment of the weak and strong coupling regimes and obtain reduced equations of motion for the tunneling particle position operator. Solutions are obtained for several important limiting cases. In particular, we find that at sufficiently low temperatures, the dynamical behavior strongly resembles that of multisite spin jump model.

Department(s)

Physics

International Standard Serial Number (ISSN)

0021-9606

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 1985 American Institute of Physics (AIP), All rights reserved.

Included in

Physics Commons

Share

 
COinS