Abstract

X-ray photoelectron diffraction (XPD) and low-energy electron diffraction (LEED) have been used to study the structural properties of V thin films on Cu(001). For room-temperature growth, submonolayer coverages result in (1x1) LEED patterns that evolve to exhibit very diffuse (2x1) structure at approximately 1 monolayer coverage. We do not observe any V forward-focusing enhancements for V films that exhibit either the (1x1) or (2x1) structure, suggesting that these structures are limited to the first 1-2 vanadium layers. At coverages above 1 monolayer, the V films display complex LEED patterns characteristic of four bcc(110) domains. This structure persists to V coverages as high as 100 ML, and the LEED and XPD angular scans suggest that V in these films retain the bulk V lattice constant. These results have important ramifications for predictions of magnetic order in vanadium thin films that typically assume pseudomorphic growth.

Department(s)

Physics

International Standard Serial Number (ISSN)

0163-1829

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2000 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS