Abstract

We study the influence of electron-electron interactions on the electronic properties of disordered materials. In particular, we consider the insulating side of a metal-insulator transition where screening breaks down and the electron-electron interaction remains long ranged. The investigations are based on the quantum Coulomb glass, a generalization of the classical Coulomb glass model of disordered insulators. The quantum Coulomb glass is studied by decoupling the Coulomb interaction by means of a Hartree-Fock approximation and exactly diagonalizing the remaining localization problem. We investigate the behavior of the Coulomb gap in the density of states when approaching the metal-insulator transition and study the influence of the interaction on the localization of the electrons. We find that the interaction leads to an enhancement of localization at the Fermi level.

Department(s)

Physics

International Standard Serial Number (ISSN)

0163-1829

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 1997 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS