Abstract

We investigate the phase transition in a three-dimensional classical Heisenberg magnet with planar defects, i.e., disorder perfectly correlated in two dimensions. By applying a strong-disorder renormalization group, we show that the critical point has exotic infinite-randomness character. It is accompanied by strong power-law Griffiths singularities. We compute various thermodynamic observables paying particular attention to finite-size effects relevant for an experimental verification of our theory. We also study the critical dynamics within a Langevin equation approach and find it extremely slow. At the critical point, the autocorrelation function decays only logarithmically with time while it follows a nonuniversal power law in the Griffiths phase.

Department(s)

Physics

International Standard Serial Number (ISSN)

1098-0121

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2010 American Physical Society (APS), All rights reserved.

Included in

Physics Commons

Share

 
COinS