Fock Space Localization, Return Probability, and Conductance of Disordered Interacting Electrons

Abstract

We numerically simulate the low-energy properties of interacting electrons in a random potential using the Hartree-Fock-based exact diagonalization method. In particular, we investigate how the transport properties are influenced by the combined effects of disorder and correlations in the presence of the electron spin. To this end we calculate the participation number of many-particle states in Fock space, the return probability of single-particle excitations, and the Kubo-Greenwood conductance. It turns out that in the strongly localized regime interactions increase the conductance whereas for weak disorder interactions decrease the conductance. In contrast, single-particle excitations in general experience a localizing influence of the interactions.

Department(s)

Physics

Keywords and Phrases

Charge transfer; Electric conductance; Electric insulating materials; Electron transitions; Phase transitions; Probability; Transport properties; Exact diagonalization method; Fock space localization; Kubo-Greenwood conductance; Metal to insulator transitions; Quantum theory

International Standard Serial Number (ISSN)

0921-4526

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2001 Elsevier, All rights reserved.

Publication Date

01 Feb 2001

Share

 
COinS