Projectile Electron Loss and Capture in MeV/U Collisions of U²⁸⁺ with H₂, N₂ and Ar

Abstract

Electron capture and loss cross sections for U28+ colliding with H2, N2 and Ar were measured at 3.5 and 6.5 MeV/u. These data were used to benchmark n-body calculations using the classical trajectory Monte Carlo method. The n-body calculations include electrons on both nuclear centres and all electron-electron and electron-nuclear interactions between each centre. For the U28+ ion, 36 electrons were incorporated in the calculations (4s24p64d104f145s25p2), while for the H, N and Ar targets all electrons were used except those for the K-shell of Ar, leading to 39-, 45- and 54-body calculations, respectively. Projectile electron loss was predicted for U28+ at energies from 2 to 150 MeV/u. Only for the H-target did the projectile electron loss cross section decrease approximately as E−1. The heavier targets exhibited slower energy dependences, contrary to the E−1 prediction of one-electron theories. Moreover, the collisional interactions are quite strong with an average of 1.64 and 2.88 electrons removed from the U28+ ion at 10 MeV/u in each collision with N and Ar, respectively. These data and calculations were used to assess the vacuum requirements for the SIS-100 synchrotron ring under construction at GSI-Darmstadt. For the residual gases expected to be in the ring, the U28+ lifetime was found to be essentially constant as a function of projectile energy, leading to very stringent vacuum requirements.

Department(s)

Physics

Sponsor(s)

Robert A. Welch Foundation
United States. Department of Energy

Keywords and Phrases

Atomic Physics; Molecular Physics

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2004 Institute of Physics - IOP Publishing, All rights reserved.

Publication Date

01 Nov 2004

Share

 
COinS