Abstract

Investigations of the magnetic phase state of Nd2Fe14B high-energy hard ferromagnets under the action of an explosive shock wave traveling across the magnetization vector, M, have been performed. We demonstrate that the transverse shock-wave compression of an Nd2Fe14B hard ferromagnet with pressure at the shock wave front of P = 22.3 GPa causes a hard ferromagnet — to — weak magnet phase transition. Due to this phase transition, the magnetostatic energy stored for an indefinite period of time in the Nd2Fe14B ferromagnet is released within a short time interval and can be transformed into pulsed primary power. Based on this effect we have developed a new type of ultracompact (volumes from 9 to 50 cm3) autonomous explosive-driven source of primary power that is capable of powering a magnetic flux compression generator with current up to 4 kA, and of charging high-voltage Arkadiev-Marx type generator capacitor banks.

Meeting Name

2005 Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter

Department(s)

Mining and Nuclear Engineering

Keywords and Phrases

High-Pressure Effects; Magnetic Transitions; Neodymium Compounds; Shock Wave Effects

Library of Congress Subject Headings

Boron compounds
Ferromagnetic materials
Iron compounds

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2006 American Institute of Physics (AIP), All rights reserved.

Full Text Link

Share

 
COinS